18 research outputs found

    Embedding Spatial Software Visualization in the IDE: an Exploratory Study

    Full text link
    Software visualization can be of great use for understanding and exploring a software system in an intuitive manner. Spatial representation of software is a promising approach of increasing interest. However, little is known about how developers interact with spatial visualizations that are embedded in the IDE. In this paper, we present a pilot study that explores the use of Software Cartography for program comprehension of an unknown system. We investigated whether developers establish a spatial memory of the system, whether clustering by topic offers a sound base layout, and how developers interact with maps. We report our results in the form of observations, hypotheses, and implications. Key findings are a) that developers made good use of the map to inspect search results and call graphs, and b) that developers found the base layout surprising and often confusing. We conclude with concrete advice for the design of embedded software maps.Comment: To appear in proceedings of SOFTVIS 2010 conferenc

    An Animation Framework for Improving the Comprehension of TinyOS Programs

    Get PDF
    To meet the increasing demand for monitoring of the physical world, there has been an increase in the development of wireless sensor network applications. The TinyOS platform has emerged as a de facto standard for developing these applications. The platform offers a number of advantages, with its support for concurrency, power-efficient operation, and resource-constrained hardware chief among them. However, the benefits come at a price. Even without the TinyOS platform, the inherent parallel and distributed nature of these applications makes it difficult for developers to reason about program behavior. Further, the TinyOS programming model adopts asynchronous, split-phase execution semantics. Developers must explicitly manage program control state across event-handlers, components, and devices. This makes the design, debugging, and comprehension of these programs even more difficult. In this work, we describe an animation framework for TinyOS programs, designed to enhance the comprehension of their runtime behavior. The framework enables application developers to specify, in the form of an XML configuration file, the runtime elements to be captured within a given system and the manner in which those elements should be displayed. The resulting visualization presents an animated play-back sequence of the events that occurred during execution. The framework also provides a visual representation that connects causally-related events in a distributed network. We describe the design and implementation of the animation framework and present an analysis of the runtime overhead it introduces

    The Visual Code Navigator:An Interactive Toolset for Source Code Investigation

    Get PDF

    Towards Actionable Visualization for Software Developers

    Get PDF
    Abundant studies have shown that visualization is advantageous for software developers, yet adopting visualization during software development is not a common practice due to the large effort involved in finding an appropriate visualization. Developers require support to facilitate that task. Among 368 papers in SOFTVIS/VISSOFT venues, we identify 86 design study papers about the application of visualization to relieve concerns in software development. We extract from these studies the task, need, audience, data source, representation, medium and tool; and we characterize them according to the subject, process and problem domain. On the one hand, we support software developers to put visualization in action by mapping existing visualization techniques to particular needs from different perspectives. On the other hand, we highlight the problem domains that are overlooked in the field and need more support

    Analyzing feature implementation by visual exploration of architecturally-embedded call-graphs

    Get PDF
    ABSTRACT Maintenance, reengineering, and refactoring of large and complex software systems are commonly based on modifications and enhancements related to features. Before developers can modify feature functionality they have to locate the relevant code components and understand the components' interaction. In this paper, we present a prototype tool for analyzing feature implementation of large C/C++ software systems by visual exploration of dynamically extracted call relations between code components. The component interaction can be analyzed on various abstraction levels ranging from function interaction up to interaction of the system with shared libraries of the operating system. The user visually explores the component interaction within a multiview visualization system consisting of various textual and a graphical 3D landscape view. During exploration the 3D landscape view supports the user firstly in deciding early whether a call relation is essential for understanding the feature and, secondly, in finding starting points for fine-grained feature analysis using a top-down approach

    Multi-scale navigation of large trace data: A survey

    Get PDF
    Dynamic analysis through execution traces is frequently used to analyze the runtime behavior of software systems. However, tracing long running executions generates voluminous data, which are complicated to analyze and manage. Extracting interesting performance or correctness characteristics out of large traces of data from several processes and threads is a challenging task. Trace abstraction and visualization are potential solutions to alleviate this challenge. Several efforts have been made over the years in many subfields of computer science for trace data collection, maintenance, analysis, and visualization. Many analyses start with an inspection of an overview of the trace, before digging deeper and studying more focused and detailed data. These techniques are common and well supported in geographical information systems, automatically adjusting the level of details depending on the scale. However, most trace visualization tools operate at a single level of representation, which are not adequate to support multilevel analysis. Sophisticated techniques and heuristics are needed to address this problem. Multi-scale (multilevel) visualization with support for zoom and focus operations is an effective way to enable this kind of analysis. Considerable research and several surveys are proposed in the literature in the field of trace visualization. However, multi-scale visualization has yet received little attention. In this paper, we provide a survey and methodological structure for categorizing tools and techniques aiming at multi-scale abstraction and visualization of execution trace data and discuss the requirements and challenges faced to be able to meet evolving user demands

    The Medium of Visualization for Software Comprehension

    Get PDF
    Although abundant studies have shown how visualization can help software developers to understand software systems, visualization is still not a common practice since developers (i) have little support to find a proper visualization for their needs, and once they find a suitable visualization tool, they (ii) are unsure of its effectiveness. We aim to offer support for identifying proper visualizations, and to increase the effectiveness of visualization techniques. In this dissertation, we characterize proposed software visualizations. To fill the gap between proposed visualizations and their practical application, we encapsulate such characteristics in an ontology, and propose a meta-visualization approach to find suitable visualizations. Amongst others characteristics of software visualizations, we identify that the medium used to display them can be a means to increase the effectiveness of visualization techniques for particular comprehension tasks.We implement visualization prototypes and validate our thesis via experiments. We found that even though developers using a physical 3D model medium required the least time to deal with tasks that involve identifying outliers, they perceived the least difficulty when visualizing systems based on the standard computer screen medium. Moreover, developers using immersive virtual reality obtained the highest recollection. We conclude that the effectiveness of software visualizations that use the city metaphor to support comprehension tasks can be increased when city visualizations are rendered in an appropriate medium. Furthermore, that visualization of software visualizations can be a suitable means for exploring their multiple characteristics that can be properly encapsulated in an ontology

    Code Coverage Measurement and Fault Localization Approaches

    Get PDF
    Code coverage measurement plays an important role in white-box testing, both in industrial practice and academic research. Several areas are highly dependent on code coverage as well, including test case generation, test prioritization, fault localization, and others. Out of these areas, this dissertation focuses on two main topics, and the thesis points are divided into two parts accordingly. The first part consists of one thesis point that discusses the differences between methods for measuring code coverage in Java and the effects of these differences. The second part focuses on a fault localization technique called spectrum-based fault localization that utilizes code coverage to estimate the risk of each program element being faulty. More specifically, the corresponding two thesis points are discussing the improvement of the efficiency of spectrum-based approaches by incorporating external information, e.g., users’ knowledge, and context data extracted from call chains
    corecore