
Analyzing Feature Implementation
by Visual Exploration

of Architecturally-Embedded Call-Graphs
Johannes Bohnet
University of Potsdam

Hasso-Plattner-Institute
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

bohnet@hpi.uni-potsdam.de

Jürgen Döllner
University of Potsdam

Hasso-Plattner-Institute
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

doellner@hpi.uni-potsdam.de

ABSTRACT
Maintenance, reengineering, and refactoring of large and complex
software systems are commonly based on modifications and
enhancements related to features. Before developers can modify
feature functionality they have to locate the relevant code
components and understand the components’ interaction. In this
paper, we present a prototype tool for analyzing feature
implementation of large C/C++ software systems by visual
exploration of dynamically extracted call relations between code
components. The component interaction can be analyzed on
various abstraction levels ranging from function interaction up to
interaction of the system with shared libraries of the operating
system. The user visually explores the component interaction
within a multiview visualization system consisting of various
textual and a graphical 3D landscape view. During exploration the
3D landscape view supports the user firstly in deciding early
whether a call relation is essential for understanding the feature
and, secondly, in finding starting points for fine-grained feature
analysis using a top-down approach.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging –
Tracing, D.2.7 [Software Engineering]: Distribution,
Maintenance, and Enhancement – Restructuring, reverse
engineering, and reengineering, H.5.2 [Information Interfaces
and Presentation]: User Interfaces – Graphical user interfaces
(GUI), I.5.3 [Pattern Recognition]: Clustering – Algorithms

General Terms
Design, Experimentation, Human Factors, Measurement,
Verification

Keywords
Dynamic Analysis, Dynamic Slicing, Feature Analysis, Program
Comprehension, Reverse Engineering, Software Visualization

1. INTRODUCTION
As stated in [32] “year after year the lion's share of effort goes
into modifying and extending preexisting systems, about which
we know very little”. Requests for software changes are often
expressed by end users in terms of features, i.e. an observable
behavior that is triggered by user interaction. Requesting feature
changes concerns bug fixes or enhancements of feature functiona-
lity and is a key concept for maintaining, reengineering, and
refactoring large and complex software systems. To implement
these new requirements, software developers have to translate the
feature change requests to changes in code components and their
interaction behavior. The term component is used here in a more
general way than that defined by the Unified Modeling Language
(UML) [31] which describes it as an autonomous, modular unit
within a system or subsystem that has well-defined interfaces and
is replaceable within its environment. Here the term refers to a
structural unit of source code of any level of abstraction and
includes functions, classes, subsystems, and systems.

Before converting feature change requests to code changes, first
developers have to identify the components that implement the
feature functionality. Subsequently, they need to understand how
these components interact. After that, they can finally modify the
code and implement new functionality. Analyzing feature
implementation is particularly difficult where legacy systems are
concerned, as the existing documentation often differs
substantially from the as-is system design due to the long
evolution period [7]. Hence, in many cases the only reliable
documentation on a legacy system is the source code itself which
may consist of more than 1.000.000 lines of code (LOC).

Program slicing [34] is a common approach for reducing the
search space the user has to inspect in order to be able to
understand a specific functionality. Static slicing reduces a soft-
ware system implementation to all statements that may directly or
indirectly influence a set of variables at a specific code position
(backward slice) or to all statements that may be influenced by a
specific code statement (forward slice) [10]. Dynamic slicing
further narrows the search space by only taking into account the
statements that actually do affect a specific program state based
on a given input [1]. Profiling techniques can extract dynamic call
relationship among functions. These light-weight slices do not
cover variable accesses as static slicing techniques typically do
[7]. However, dynamic call-graph extraction techniques can
reveal some call relations that are difficult to identify by static

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WODA’06, May 23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005…$5.00.

41

analysis as they are defined at runtime [4]. Event driven systems,
for instance, often used for graphical user interfaces (GUI) or
network communications, are based on dynamic callback
mechanisms. Furthermore, object-oriented programming
paradigms such as polymorphism and dynamic binding make the
understanding of static call sequences more difficult.

Along with the technique of extracting analysis data, an important
usability aspect for an analysis tool is how to communicate the
results to the user. Established visualization techniques for call-
graph exploration are simple 2D graph drawings or just the user
guidance through the textual representation of the source code.
Some approaches abstract from the function level and visualize
the interaction of selected classes, e.g. by creating UML sequence
diagrams [9, 18, 29]. A prerequisite for this technique is that the
user has a basic understanding of the feature implementation and
knows the classes of interest. Additionally, UML sequence
diagrams are limited to a small number of interacting classes.

In this paper we present a prototype tool for analyzing feature
implementation by abstracting a dynamically extracted function
call graph to call-graphs of higher-level components of the
hierarchical software architecture, i.e. class, subsystem, and
system components. The user explores this architecturally-
embedded call-graph within an interactive multiview visualization
system. Prerequisites for the analysis of a software system are
firstly, the availability of the source code written in C/C++ and,
secondly, an executable file that is compiled with debug
information and can be executed under a GNU/Linux operating
system (OS). The tool has been tested with software systems
consisting of over a million LOC.

The tool guides the user during the call-graph exploration task.
The user can analyze the call relations on different levels of
abstractions, i.e. function interaction, class interaction, subsystem
interaction, and interaction of the system with shared libraries of
the OS. Provided with the opportunity of switching between
abstraction levels, the user receives (a) support with finding
specific functions as entry points for further fine-grained function
level analysis (top-down approach) and (b) is given support with
fast excluding function calls that are not likely to be helpful when
trying to understand the feature implementation. This assessment
is based on the higher-level component of which the function is a
part.

2. RELATED WORK
Wilde et al. introduced Software Reconnaissance [35, 36], a
technique for locating feature implementation based on a
comparison of traces from test cases with and without feature
execution. The analyzed source code needs to be instrumented.
With TraceGraph [17] Lukoit et al. facilitate the Software
Reconnaissance analysis process by providing a visualization
technique that displays source file, subroutine, or lines-of-code
activity, color encoded per time interval. Contrary to our
approach, no component relationship is shown. Other research on
locating feature implementation is based on Program Dependency
Graphs [26] which are extracted by static analysis. RIPPLES [4]
supports the user during manual exploration of a dependency
graph by 2D graph visualization. The user decides whether a
component, i.e. function, basic block, or statement, is relevant for
the feature and adds it to the search graph that finally represents
the feature implementation. In contrast to our approach, no
decision hint by embedding the functions into a high-level

structure is given. Eisenbarth et al. [7] first compare dynamic
execution traces, which depend on a set of features, by applying
concept analysis to find out to which feature a computational unit
contributes. Later the user identifies additional feature specific
units by exploring the statically extracted dependency graph. Our
approach, which suggests the embedding of functions into the
system architecture, is orthogonal to the described techniques
above and can, accordingly, be combined with them. Furthermore,
our user-supporting visualization technique may be used as
visualization front-end.

A variety of visualization techniques are used to facilitate reverse
engineering tasks. Some are based on the SeeSoft technique [5] of
displaying LOC metrics as color encoded miniaturized source
code lines, e.g. Tarantula [14], Gammatella [25], Bee/Hive [28].
sv3D [19] extends the technique to 3 dimensions. Other
techniques, such as ours, are based on graph visualization. The
Rigi [21] reverse engineering environment displays the
hierarchical software architecture as a 2D layout of nested boxes
with connecting straight lines. SHriMP [20] enhances Rigi views
by means of elaborate navigation and exploration techniques and
is used for visualizing statically analyzed Java programs.
CodeCrawler [6] calculates various software metrics and encodes
them in box shapes of simple graphs. Several graph visualizing
techniques use virtual reality techniques: NV3D [27] displays
nested cubes connected by tubes and can be used to visualize
execution traces with animated arrows moving along the tubes.
CrocoCosmos [16] creates a universe-like visualization of
software components by a force-directed layout technique based
on static software metrics. Similarly, JST [12] creates a software
component universe by parsing Java source code and applying
metrics. In the case of both approaches, the user explores the data
by applying standard navigation techniques of a VRML browser.
As our approach proposes, some visualization techniques use the
landscape metaphor for presenting software systems structure and
behavior. Zhou et al. [37] visualizes message flows in massively
parallel supercomputers. Boxes regularly positioned on a plane
represent processors and are connected by arcs. Balzer et al. [2]
map the architecture of Java programs as nested box and sphere
shapes positioned on a plane. Relations between components are
represented by connecting arcs. This differs from our approach in
that no self-organizing layout for encoding information on
component relations is used.

3. ARCHITECTURALLY-EMBEDDED
CALL-GRAPHS

Our prototype tool enables the user to analyze a dynamically
extracted function call graph on higher-level abstractions, i.e. as
class-class, subsystem-subsystem, or system-shared library call re-
lations. By abstracting from functions to higher-level components,
the number of interacting components the user has to inspect is re-
duced significantly. Depending on the analyzed feature, a function
trace log may consist of more than 10.000 interacting functions.

Starting at a high level of abstraction, the user first analyzes how
the system interacts with shared libraries of the OS in order to
gain a rough understanding of the system’s behavior. Then the
user refines the analysis and explores the interaction behavior of
those subcomponents of interest until the low-level function call
abstraction is reached. This top-down approach helps the user to
find low-level entry points for further fine-grained analysis as it
reduces the search space the user has to examine.

42

Vice versa, a bottom-up approach can prove useful for an early
identification of function calls of little interest. During the low-
level step-by-step analysis from one function to another, the user
is supported in his/her efforts to determine which call relation to
follow. As each function belongs to a specific higher-level
component, the user can refrain from further analyzing a function
call if the target function belongs to a higher-level component that
he/she earlier classified as being negligible for understanding
feature functionality. Such a high-level component might be a
subsystem that encapsulates IO functionality while the user is
trying to understand the feature of coloring text in a word
processor application.

The analysis process with the prototype tool is divided into three
steps (see Figure 1):

1) In a semi-automated step a model of the system architecture
is created (above class abstraction). An initial model is
automatically recovered from the directory structure of the
source code and can be manually refined by the user.

2) The user first identifies a scenario, i.e. a sequence of user
interactions that triggers the feature execution, and second
applies a logging mechanism while executing the scenario.
For this, the regular executable file compiled with debug
information can be used. No code instrumentation is
necessary.
The tool automatically analyzes the logged function call
relations and embeds them into the architecture model.
Function interactions are aggregated to interactions of
higher-level components (function interaction, class
interaction, subsystem interaction, system/shared library
interaction) creating an architecturally-embedded call-graph.

3) The architecturally-embedded call-graph is visualized by an
interactive multiview system. A combination of
synchronized textual and graphical views enables the user to
efficiently explore the call-graph. Two textual views focus
on communicating the hierarchical structure of the
architecture and on providing comprehensive information on
the components and their call relations. The graphical view
focuses on visualizing both the hierarchical structure and the
call relations of components within this structure. With its
clustering layout technique the graphical view supports the
user in visually finding strongly coupled components, i.e.
components with a high number of control flow transfers
from one to another.

3.1 Architecture Model
A variety of tools exist that automatically recover low-level
models of the static structure from the source code [3, 11]. The
term low-level refers to models up to class level abstraction. If the
analyzed software system makes use of further mechanisms for
structuring code units (e.g. C++/Java: namespace/package

keyword), an automated extraction of these high-level structures
can be carried out automatically. The use of naming conventions
as well as organizing related source files into one directory are
other ways of combining classes to composite code units. The
latter method, source file structuring, is commonly used in large
software systems.

Our approach maps the directory structure of source files to a
hierarchical model of subsystem components. Typically the user
has additional architectural knowledge of the system and can
refine the model. After this, the user integrates the subsystem
components into a model that describes the highest-level
components, i.e. the system itself and shared libraries of the OS.
These system components correspond to ELF objects on Linux-OS
(Executable and Linking Format).

In a similar way as proposed by Murphy et al. [22], the user
finally defines how to integrate the function information from the
dynamic analysis into the model by pattern matching with regular
expressions (see section 3.2). So the model of system and
subsystem components is brought to completion by function and
class components later. Figure 2 shows the metamodel. All the
models consist of a directed, acyclic graph of layered components.
The root node, representing the runtime environment, is backed up

extraction of
architecture model

(subsystem/system)

identification of
feature-executing

scenario

function call logging
during

scenario execution

visualization

source code
C/C++

linux executable
with debug information

architecture model

combining
models

function call graph

architecturally-embedded
call-graph

prerequisites

analysis of
component interaction

visualization of
component
interaction

interaction

1 2

3

Figure 1: Overview of the semi-automated analysis process

of feature analysis. The user-symbol indicates activities
with user interaction.

is part of
* 1

is part of

is part of

{xor}* 1
is part of

* 1
is part of

calls

*
1

* 1
environmentsystem

component
subsystem
component

class
component

function
component

calls calls calls

Figure 2: Metamodel. Function call relations from dynamic trace log are

aggregated to call relations of higher-level components.

43

by various layers of system, subsystem, class, and function
components.

For reasons of clarity we illustrate the analysis process of our
prototype tool by means of a feature analysis of the commercial
geographic information system (GIS) tool LandXplorer Studio
(LDX) from 3D Geo GmbH [15]. LandXplorer Studio is an
interactive, dynamic 3D visualization system for geodata. The
C++ source code consists of approximately 700.000 LOC. Figure
3 shows the architecture model of LDX in the OS environment.
The feature we analyze is the insertion of a textual label into the
geovirtual environment.

3.2 Tracing Scenario Execution
Logging function calls of a software system during runtime
permits to recapitulate the internal system behavior once a
specific feature has been executed. This dynamic technique
overcomes some of the limitations of static source code analysis
techniques as it gives a holistic picture of the analyzed system
within the runtime environment. Function calls to and from shared
libraries can be detected, which is important when analyzing
features that are triggered by event driven GUIs. What is more,
this technique solves typical comprehension problems during
static analysis due to dynamic binding and polymorphism.
Additionally, on the basis of dynamic analysis the user has
information on how often a function call is executed. This metric
allows for assessing qualitatively the coupling strength between
functions and, by this, for differentiating between calls used for
initializing or for implementing an algorithm core [30].

In contrast to most static approaches, function call logging as a
dynamic technique reflects only one specific execution and is
therefore incomplete. Another disadvantage of this technique is
that it does not detect interaction based on shared data. Moreover,
the system behavior is always affected, as the logging mechanism
needs to add additional instructions to the system that produce the
log entries. This is either done before compile time by source code
instrumentation or after building the executable file by binary
code instrumentation [24]. A common technique for integrating
the logging mechanism in Java applications is to address the Java
Platform Debugger Architecture (JPDA) [13]. With this no code
instrumentation is necessary. For C/C++ applications running on
Linux-OS a similar logging mechanism can be implemented by
introducing a layer between the application and the kernel. This
layer intercepts the Linux system calls and logs the application
behavior without the need for code instrumentation. However, all
dynamic analysis techniques slow the analyzed system down.
Depending on the amount of logged information, the analyzed
system can register a change in behavior. If the user analyzes
realtime behavior, the loss in performance is crucial. However,
other behavior can also be affected. At worst, the system will no
longer react to user interaction properly.

We use Callgrind [33] to log function calls during runtime.
Callgrind is a profiling tool based on Valgrind [23], which is a
suite of tools for debugging and profiling Linux applications.

Valgrind works as layer between the Linux kernel and the
application as described above. Hence, no code instrumentation is
necessary. Callgrind is a light-weight profiling tool that does not
log the full sequence of function calls but summarizes call
relations and reconstructs the call-graph from the summaries. The
logging mechanism is enabled and disabled interactively by the
user, allowing only those function calls to be logged that are
executed during feature execution.

Figure 1 (step 2) illustrates the process of extracting the call-graph
for a specific feature of the analyzed software system. To begin
with, the user identifies a scenario that triggers feature execution.
Then the user executes the sequence of user interactions while the
logging mechanism is applied. Finally the log file is analyzed
automatically and the graph of function calls reconstructed.

Next, the function call graph is embedded within the architecture
model of the system. Figure 2 shows the metamodel of the
resulting model. Each function is mapped to a function
component. The full function name permits to reconstruct the
function’s parent class. Global or C functions are wrapped by
dummy classes. Each class is mapped to a class component. By
pattern matching with regular expressions the class components
are assigned to subsystem components. The expressions relate to
the debug information of the classes’ functions. Available debug
information per function is the function name, the file where it is
implemented, and the ELF object it belongs to.

Function call relations are aggregated to class call relations and
integrated into the model. The aggregating step is done for each
layer of the model up to the system component level, so that the
model finally contains one call-graph for each abstraction level
describing the interaction behavior between the components of
this level: from function interaction to interaction of the analyzed
system with shared libraries of the OS. Depending on the feature
executed, such an architecturally-embedded call-graph consists
typically of more than 10.000 components and several million call
relations when analyzing a +100kLOC software system.

4. VISUALIZATION & EXPLORATION
An important usability aspect for an analysis tool is how the tool
communicates the analysis results to the user. Our prototype tool
uses a multiview visualization system for presenting the
architecturally-embedded call-graph. It consists of 3 views:
2 textual and 1 graphical (Figure 4). The combination of views
enables the user to effectively explore both the hierarchical
system architecture and the call relations embedded within this
hierarchy. The views are synchronized, so that a selection of a
specific component in one view updates the other views which
show complementary information on the component selected.

4.1 Textual Views
The two textual views are (a) the hierarchy view and (b) the detail
view. The hierarchy view ensures rapid navigating within the
system architecture and gives information on architectural aspects
such as a list of all subsystems, or a list of all classes of a specific

<<environment>>

<<system>>
ldxvrs

<<system>>
libqt

<<system>>
libc

<<system>>
libstdc++

<<system>>
libGL

<<system>>
libX11

<<subsystem>>
vrsal

<<subsystem>>
vrscg

<<subsystem>>
vrsx3d

<<subsystem>>
ldxglib

<<subsystem>>
ldxgts

<<subsystem>>
ldxxml

<<subsystem>>
ldxcity

<<subsystem>>
ldxcore

Figure 3: Architecture model of LandXplorer Studio (LDX).

44

subsystem. The detail view provides extensive information on a
single component, e.g. the number of descendants (all components
in the subtree), the number of direct subcomponents, a list of
interacting components, or call relations with a specific
component.

The user explores the call-graph by selecting out- or in-calls (see
section 4.2) in the detail view. The result of view synchronization
means that the focus of all views moves on to the next component.
In this way, the user can follow a certain execution path in the
call-graph.

4.2 3D Landscape View
The 3D landscape view portrays graphically both the hierarchical
structure of the components and the call relations between them
and enables the user to explore them using elaborate navigation
techniques. It provides overview-like information that helps to
decide where to step next in the call-graph without the need for an
exhaustive analysis of textual views. The 3D landscape view is
synchronized with the textual views. Hence, selecting a
component in the 3D landscape view updates the other views,
which provide detailed textual information on the component
selected. The 3D landscape view gives visual cues in respect of
various aspects of the architecturally-embedded call-graph:

Hierarchical Structure: Components are represented by flat, 3-
dimensional, nested box shapes that are placed on a plane.
Subcomponents are represented by miniaturized box shapes that
are stacked on the parent component representation. All
components of any specific hierarchy level are illustrated in the
same color so that the user is able to appreciate the hierarchical
structure and easily identify the hierarchy level of any one specific
component. A discussion of such landscape-like visualizations is
given in section 4.2.2.

Component Activity: The size of a box shape depends on the
component’s number of descendants. In this way, the user is able
to easily identify the components that consist of many active
functions during feature execution.

Component Coupling: Component interaction means that a
function, which is part of one component, calls a function of
another component, i.e. the control flow goes beyond one
component to another (transgression). A high number of incidents
of transgression means that two components are collaborating

intensively. This coupling strength is mapped in the physical
distance of the component representations. So the user can
intuitively assess component collaboration. A detailed description
of the layout algorithm is given in section 4.2.1.

Interaction Partners: The textual detail view provides a list of
partner components that are connected to a specific component by
an out-call (control flow transgression from the specific
component to another) or by an in-call (vice versa). In the 3D
landscape view all out- and in-calls are visualized as being
component connecting arcs. Because the components are depicted
as nested box shapes, the user can easily determine whether a call
relation is taken place within the same parent component. The line
strength of the arcs relate to the number of calls between two
components.

Starting Point for Analysis: In-call arcs are marked in yellow
and out-call arcs in black. This distinction is used at the beginning
of the analysis process to find a starting point for the call-graph
analysis. Commonly, a feature is triggered by a callback based
GUI. The user can visually detect the relevant out-calls from the
GUI library by its color.

4.2.1 Component Coupling Layout Algorithm
We use an energy-based layout technique to visualize the amount
of coupling strength between components, i.e. the number of
instances of control flow transgression. The position of each
component is incrementally updated based on the force that the
component experiences in its energy field. This force 2RF ∈ is
the negative gradient of the 2-dimensional, scalar energy field

RRE →2: [8]: EF −∇= .

The energy field of each component is composed of three energy
terms (see Figure 5):

The Attraction Energy describes the component coupling and is
proportional to the number of incidents of transgression between
two components.
The Repulsion Energy describes a general repulsion between
components. It ensures the optimal usage of layout space and
avoids collisions between components.
The Layout Space Constraint Energy guarantees that
subcomponent positions are restricted to the dimension of the
parent component.

hierarchy view

detail view

3D landscape view

Figure 4: The multiview visualization system consists of a hierarchy tree view, a detail view,

and a 3D landscape view.

45

For each component a layout of all its subcomponents is
calculated by minimizing their energy values. The layout reflects
clusters of strongly coupled groups of subcomponents. However,
these clusters can only reflect interaction between subcomponents
of the same parent component, because the nested structure
forbids a physically close layout of subcomponents with different
parent components.

An extension of the algorithm gives the user a visual cue for
identifying subcomponent interaction that transgresses the parent
component limits. During the layout calculation of a parent
component’s subcomponents, all subcomponents of different
parent components receive temporary positions on the same
parent component as well. They are assigned a fixed position at
the parent component’s border in the direction of their proper
parent component. During the layout calculation, these virtual
subcomponents may attract real subcomponents. Figure 6
illustrates the resulting effect. Some subcomponents are grouped
at the border of the parent component. From a global perspective
the user can visually identify them as subcomponents that interact
with subcomponents of a certain other parent component.

4.2.2 3D Landscape Visualization
The algorithm we present produces 2-dimensional layouts. By
embedding the 2D layouts within a 3D visualization we create a
landscape-like 2½D visualization, i.e. a 3D visualization with the
majority of information encoded in 2 dimensions; however, the
user makes use of all 3 dimensions for exploring the information
space. A lot of research has been done on the advantages and
drawbacks of 2D and 3D visualizations, respectively [19].
2½D visualizations seem to combine some of the advantages of
both 2D and 3D visualizations, however, avoiding the drawbacks.
When drawing complex graphs, two major drawbacks of 2D
visualizations are the limited display space and the problem of
edge crossings. 3D visualizations can overcome these drawbacks
by enlarging the display space by the third dimension. However,
the opportunity to build dense visualizations may lead to a high
spatial complexity and to obscuring effects. A further drawback of
3D visualizations is that the user becomes easily disoriented while
exploring the information space. In other words, the user loses
his/her sense of the current position in the information space and
fails to recognize regions already explored.

3D landscape visualizations permit the use of spatially simple 2D
layouts that can be enhanced by additional geometries, thereby

exploiting the third dimension. We use this technique to visualize
component connecting arcs. Furthermore, the density of
3D landscape visualizations can continuously be adjusted by the
user by tilting the viewing angle onto the landscape. Orientation
and navigation tasks are facilitated when compared with fully 3-
dimensional visualizations. Thanks to the landscape metaphor,
users can rely on their spatial interpretation and navigation skills
gained from real world experiences.

5. CONCLUSIONS
When large and complex software systems are concerned, features
represent core elements in maintenance processes and, therefore,
developers need to identify the code components that implement a
specific feature and to understand how the components interact.
The dynamic extraction of function call-graphs during feature
execution is of great assistance to developers when working on
these processes. Typically, a call-graph is explored by stepping
from function to function deciding each time whether a function
contributes to the feature functionality or not. Our approach facili-
tates this decision-making by abstracting the function interaction
to interaction of higher-level components, i.e. class-class,
subsystem-subsystem, and system-shared library. Furthermore,
the technique presented provides an intuitive, interactive multi-
view visualization that allows developers to explore these high-
level call-graphs directly. Thus, analyzing architecturally-em-
bedded call-graphs appear to be an effective approach to gaining a
better understanding of essential aspects of complex software
systems and to speeding up related reverse engineering tasks.

We plan to perform user studies to evaluate our approach and to
identify improvements such as an more elaborate use of color and
shape geometry in the visualization, e.g. for encoding additional
profiling information like performance data. Furthermore, we plan
to consider the ideas proposed in [7, 36] such as analyzing
multiple execution traces to identify those code components that
dedicate mainly to only one specific feature. Additionally, our
future research aims at integrating the prototype tool into an IDE
to provide a seamless transition to source code representation.

REFERENCES
[1] Agrawal, H., Horgan, J. R. Dynamic program slicing. In

Proc. of the ACM Conf. on Programming Language Design
and Implementation, 1990, 246-256.

en
er

gy

x,y

layout space constraint energy

en
er

gy

x,y

repulsion energy

en
er

gy

x,y

attraction energy

Figure 5: The three energy terms for energy-based

component layout calculation.

Figure 6: The layout provides visual cues for identifying
subcomponent interaction that transgresses the parent
component. Some classes of the ldxmap subsystem are
likely interacting with classes of the vrsvrs subsystem.

46

[2] Balzer, M., Noack, A., Deussen, O., Lewerentz, C. Software
Landscapes: Visualizing the Structure of Large Software
Systems. In Proc. of the IEEE TCVG Symposium on
Visualization, 2004, 261-266.

[3] Borland Together, www.borland.com/together.
[4] Chen, K., Rajich, V. RIPPLES: tool for change in legacy

software. In Proc. of the IEEE Int’l Conf. on Software
Maintenance, 2001, 230-239.

[5] Eick, S. C., Steffen, J. L., Sumner Jr., E. E. Seesoft - A Tool
for Visualizing Line Oriented Software Statistics. In IEEE
Trans. on Software Engineering, 18, 11, 1992, 957-968.

[6] Demeyer, S., Ducasse, S., Lanza, M. A Hybrid Reverse
Engineering Approach Combining Metrics and Program
Visualization. In IEEE Working Conf. on Reverse
Engineering, 1999, 175-186.

[7] Eisenbarth, T., Koschke, R., Simon, D. Locating Features in
Source Code. In IEEE Trans. on Software Engineering, 29,
3, 2003, 210-224.

[8] Feynman, R. P., Leighton, R. B., Sands, S. The Feynman
Lectures on Physics. Addison-Wesley, 2005.

[9] Gestwicki, P., Jayaraman, B. Methodology and architecture
of JIVE. In Proc. of the ACM Symposium on Software
visualization, 2005, 95-104.

[10] Horwitz, S., Reps, T., Binkley, D. Interprocedural slicing
using dependence graphs. In Proc. of the ACM Conf. on
Programming Language Design and Implementation, 1988,
35-46.

[11] IBM Rational Software, www.ibm.com/software/rational.
[12] Irwin, W., Churcher, N. Object oriented metrics: Precision

tools and configurable visualisations. In Proc. of the IEEE
Symposium on Software Metrics, 2003, 112-123.

[13] Java Platform Debugger Architecture, java.sun.com.
[14] Jones, J. A., Harrold, M. J., Stasko, J. Visualization of Test

Information to Assist Fault Localization. In Proc. of the
IEEE Int’l Conf. on Software Engineering, 2002, 467-477.

[15] LandXplorer Studio, 3D Geo GmbH, www.3dgeo.de.
[16] Lewerentz, C., Simon, F. Metrics-Based 3D Visualization of

Large Object-Oriented Programs. In Proc. of the IEEE Int’l
Workshop on Visualizing Software for Understanding and
Analysis, 2002, 70-80.

[17] Lukoit, K., Wilde, N., Stowell, S., Hennessey, T.
TraceGraph: Immediate Visual Location of Software
Features. In Proc. of the IEEE Int’l Conf. on Software
Maintenance, 2000, 33-39.

[18] Malloy, B. A., Power, J. F. Exploiting UML dynamic object
modeling for the visualization of C++ programs. In Proc. of
the ACM Symposium on Software Visualization, 2005, 105-
114.

[19] Marcus, A., Feng, L., Maletic, J. I. Comprehension of
Software Analysis Data Using 3D Visualization. In Proc. of
the IEEE Int’l Workshop on Program Comprehension, 2003,
105-114.

[20] Michaud, J., Storey, M. A., Müller, H. Integrating
Information Sources for Visualizing Java Programs. In Proc.

of the IEEE Int’l Conf. on Software Maintenance, 2001, 250-
259.

[21] Müller, H. A., Tilley, S. R., Wong, K. Understanding
software systems using reverse engineering technology
perspectives from the Rigi project. In Proc. of the Centre for
Advanced Studies on Collaborative research: software
engineering, 1, 1993, 217-226.

[22] Murphy, G. C., Notkin, D., Sullivan, K. Software Reflexion
Models: Bridging the Gap between Source and High-Level
Models. In Proc. of the ACM Symposium on the Foundations
of Software Engineering, 1995, 18-28.

[23] Nethercote, N., Seward, J. Valgrind: A Program Supervision
Framework. In Electronic Notes in Theoretical Computer
Science, 89, 2, Elsevier Science Publishers, 2003.

[24] Nethercote, N. Dynamic Binary Analysis and
Instrumentation. Ph.D. Thesis, University of Cambridge,
2004.

[25] Orso, A., Jones, J., Harrold, M. J. Visualization of Program-
Execution Data for Deployed Software. In Proc. of the ACM
Symposium on Software Visualization, 2003, 67-76.

[26] Ottenstein, K. J., Ottenstein, L. M. The program dependence
graph in a software development environment. In ACM
SIGPLAN Notices, 19, 5, 1984, 177-184.

[27] Parker, G., Franck, G., Ware, C. Visualization of Large
Nested Graphs in 3D: Navigation and Interaction. In Journal
of Visual Languages and Computing, 9, 3, 1998, 299-317.

[28] Reiss, S. P. Bee/Hive: A Software Visualization Back End.
In Proc. of ICSE Workshop on Software Visualization, 2001,
44-48.

[29] Souder, T., Mancoridis, S., Salah, M. Form: A Framework
for Creating Views of Program Executions. In Proc. of IEEE
Int’l Conf. on Software Maintenance, 2001, 612-621.

[30] Stroulia, E, Systä, T. Dynamic analysis for reverse
engineering and program understanding. In ACM SIGAPP
Applied Computing Review, ACM Press, 2002, 8-17.

[31] Unified Modeling Language, www.uml.org.
[32] Waters, R. G., Chikofsky, E. Reverse engineering: progress

along many dimensions. In Communications of the ACM, 37,
5, 1994, 22-25.

[33] Weidendorfer, J., Kowarschik, M., Trinitis, C. A Tool Suite
for Simulation Based Analysis of Memory Access Behavior.
In Int’l Conf. on Computational Science ICCS, 2004.

[34] Weiser, M. Program Slicing. In Proc. of the IEEE Int’l Conf.
on Software Engineering, 1981.

[35] Wilde, N., Gomez, J., Gust, T., Strasburg, D. Locating user
functionality in old code. In Int’l Conf. on Software
Maintenance, 1992, 200-205.

[36] Wilde, N., Scully, M. C. Software reconnaissance: mapping
program features to code. In Journal of Software
Maintenance: Research and Practice, 7, 1, 1995, 49-62.

[37] Zhou, C., Summers, K. L., Caudell, T. P. Graph visualization
for the analysis of the structure and dynamics of extreme-
scale supercomputers. In Proc. of the ACM Symposium on
Software visualization, 2003, 143-149.

47

