
Analyzing Feature Implementation  
by Visual Exploration  

of Architecturally-Embedded Call-Graphs 
Johannes Bohnet 
University of Potsdam 

Hasso-Plattner-Institute 
Prof.-Dr.-Helmert-Str. 2-3 
14482 Potsdam, Germany 

bohnet@hpi.uni-potsdam.de 

Jürgen Döllner 
University of Potsdam 

Hasso-Plattner-Institute 
Prof.-Dr.-Helmert-Str. 2-3 
14482 Potsdam, Germany 

doellner@hpi.uni-potsdam.de 
 
 

ABSTRACT 
Maintenance, reengineering, and refactoring of large and complex 
software systems are commonly based on modifications and 
enhancements related to features. Before developers can modify 
feature functionality they have to locate the relevant code 
components and understand the components’ interaction. In this 
paper, we present a prototype tool for analyzing feature 
implementation of large C/C++ software systems by visual 
exploration of dynamically extracted call relations between code 
components. The component interaction can be analyzed on 
various abstraction levels ranging from function interaction up to 
interaction of the system with shared libraries of the operating 
system. The user visually explores the component interaction 
within a multiview visualization system consisting of various 
textual and a graphical 3D landscape view. During exploration the 
3D landscape view supports the user firstly in deciding early 
whether a call relation is essential for understanding the feature 
and, secondly, in finding starting points for fine-grained feature 
analysis using a top-down approach.  

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging – 
Tracing, D.2.7 [Software Engineering]: Distribution, 
Maintenance, and Enhancement – Restructuring, reverse 
engineering, and reengineering, H.5.2 [Information Interfaces 
and Presentation]: User Interfaces – Graphical user interfaces 
(GUI), I.5.3 [Pattern Recognition]: Clustering – Algorithms 

General Terms 
Design, Experimentation, Human Factors, Measurement, 
Verification 

Keywords 
Dynamic Analysis, Dynamic Slicing, Feature Analysis, Program 
Comprehension, Reverse Engineering, Software Visualization 

1. INTRODUCTION 
As stated in [32] “year after year the lion's share of effort goes 
into modifying and extending preexisting systems, about which 
we know very little”. Requests for software changes are often 
expressed by end users in terms of features, i.e. an observable 
behavior that is triggered by user interaction. Requesting feature 
changes concerns bug fixes or enhancements of feature functiona-
lity and is a key concept for maintaining, reengineering, and 
refactoring large and complex software systems. To implement 
these new requirements, software developers have to translate the 
feature change requests to changes in code components and their 
interaction behavior. The term component is used here in a more 
general way than that defined by the Unified Modeling Language 
(UML) [31] which describes it as an autonomous, modular unit 
within a system or subsystem that has well-defined interfaces and 
is replaceable within its environment. Here the term refers to a 
structural unit of source code of any level of abstraction and 
includes functions, classes, subsystems, and systems. 

Before converting feature change requests to code changes, first 
developers have to identify the components that implement the 
feature functionality. Subsequently, they need to understand how 
these components interact. After that, they can finally modify the 
code and implement new functionality. Analyzing feature 
implementation is particularly difficult where legacy systems are 
concerned, as the existing documentation often differs 
substantially from the as-is system design due to the long 
evolution period [7]. Hence, in many cases the only reliable 
documentation on a legacy system is the source code itself which 
may consist of more than 1.000.000 lines of code (LOC). 

Program slicing [34] is a common approach for reducing the 
search space the user has to inspect in order to be able to 
understand a specific functionality. Static slicing reduces a soft-
ware system implementation to all statements that may directly or 
indirectly influence a set of variables at a specific code position 
(backward slice) or to all statements that may be influenced by a 
specific code statement (forward slice) [10]. Dynamic slicing 
further narrows the search space by only taking into account the 
statements that actually do affect a specific program state based 
on a given input [1]. Profiling techniques can extract dynamic call 
relationship among functions. These light-weight slices do not 
cover variable accesses as static slicing techniques typically do 
[7]. However, dynamic call-graph extraction techniques can 
reveal some call relations that are difficult to identify by static 
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analysis as they are defined at runtime [4]. Event driven systems, 
for instance, often used for graphical user interfaces (GUI) or 
network communications, are based on dynamic callback 
mechanisms. Furthermore, object-oriented programming 
paradigms such as polymorphism and dynamic binding make the 
understanding of static call sequences more difficult.  

Along with the technique of extracting analysis data, an important 
usability aspect for an analysis tool is how to communicate the 
results to the user. Established visualization techniques for call-
graph exploration are simple 2D graph drawings or just the user 
guidance through the textual representation of the source code. 
Some approaches abstract from the function level and visualize 
the interaction of selected classes, e.g. by creating UML sequence 
diagrams [9, 18, 29]. A prerequisite for this technique is that the 
user has a basic understanding of the feature implementation and 
knows the classes of interest. Additionally, UML sequence 
diagrams are limited to a small number of interacting classes. 

In this paper we present a prototype tool for analyzing feature 
implementation by abstracting a dynamically extracted function 
call graph to call-graphs of higher-level components of the 
hierarchical software architecture, i.e. class, subsystem, and 
system components. The user explores this architecturally-
embedded call-graph within an interactive multiview visualization 
system. Prerequisites for the analysis of a software system are 
firstly, the availability of the source code written in C/C++ and, 
secondly, an executable file that is compiled with debug 
information and can be executed under a GNU/Linux operating 
system (OS). The tool has been tested with software systems 
consisting of over a million LOC. 

The tool guides the user during the call-graph exploration task. 
The user can analyze the call relations on different levels of 
abstractions, i.e. function interaction, class interaction, subsystem 
interaction, and interaction of the system with shared libraries of 
the OS. Provided with the opportunity of switching between 
abstraction levels, the user receives (a) support with finding 
specific functions as entry points for further fine-grained function 
level analysis (top-down approach) and (b) is given support with 
fast excluding function calls that are not likely to be helpful when 
trying to understand the feature implementation. This assessment 
is based on the higher-level component of which the function is a 
part. 

2. RELATED WORK 
Wilde et al. introduced Software Reconnaissance [35, 36], a 
technique for locating feature implementation based on a 
comparison of traces from test cases with and without feature 
execution. The analyzed source code needs to be instrumented. 
With TraceGraph [17] Lukoit et al. facilitate the Software 
Reconnaissance analysis process by providing a visualization 
technique that displays source file, subroutine, or lines-of-code 
activity, color encoded per time interval. Contrary to our 
approach, no component relationship is shown. Other research on 
locating feature implementation is based on Program Dependency 
Graphs [26] which are extracted by static analysis. RIPPLES [4] 
supports the user during manual exploration of a dependency 
graph by 2D graph visualization. The user decides whether a 
component, i.e. function, basic block, or statement, is relevant for 
the feature and adds it to the search graph that finally represents 
the feature implementation. In contrast to our approach, no 
decision hint by embedding the functions into a high-level 

structure is given. Eisenbarth et al. [7] first compare dynamic 
execution traces, which depend on a set of features, by applying 
concept analysis to find out to which feature a computational unit 
contributes. Later the user identifies additional feature specific 
units by exploring the statically extracted dependency graph. Our 
approach, which suggests the embedding of functions into the 
system architecture, is orthogonal to the described techniques 
above and can, accordingly, be combined with them. Furthermore, 
our user-supporting visualization technique may be used as 
visualization front-end. 

A variety of visualization techniques are used to facilitate reverse 
engineering tasks. Some are based on the SeeSoft technique [5] of 
displaying LOC metrics as color encoded miniaturized source 
code lines, e.g. Tarantula [14], Gammatella [25], Bee/Hive [28]. 
sv3D [19] extends the technique to 3 dimensions. Other 
techniques, such as ours, are based on graph visualization. The 
Rigi [21] reverse engineering environment displays the 
hierarchical software architecture as a 2D layout of nested boxes 
with connecting straight lines. SHriMP [20] enhances Rigi views 
by means of elaborate navigation and exploration techniques and 
is used for visualizing statically analyzed Java programs. 
CodeCrawler [6] calculates various software metrics and encodes 
them in box shapes of simple graphs. Several graph visualizing 
techniques use virtual reality techniques: NV3D [27] displays 
nested cubes connected by tubes and can be used to visualize 
execution traces with animated arrows moving along the tubes. 
CrocoCosmos [16] creates a universe-like visualization of 
software components by a force-directed layout technique based 
on static software metrics. Similarly, JST [12] creates a software 
component universe by parsing Java source code and applying 
metrics. In the case of both approaches, the user explores the data 
by applying standard navigation techniques of a VRML browser. 
As our approach proposes, some visualization techniques use the 
landscape metaphor for presenting software systems structure and 
behavior. Zhou et al. [37] visualizes message flows in massively 
parallel supercomputers. Boxes regularly positioned on a plane 
represent processors and are connected by arcs. Balzer et al. [2] 
map the architecture of Java programs as nested box and sphere 
shapes positioned on a plane. Relations between components are 
represented by connecting arcs. This differs from our approach in 
that no self-organizing layout for encoding information on 
component relations is used.  

3. ARCHITECTURALLY-EMBEDDED 
CALL-GRAPHS 

Our prototype tool enables the user to analyze a dynamically 
extracted function call graph on higher-level abstractions, i.e. as 
class-class, subsystem-subsystem, or system-shared library call re-
lations. By abstracting from functions to higher-level components, 
the number of interacting components the user has to inspect is re-
duced significantly. Depending on the analyzed feature, a function 
trace log may consist of more than 10.000 interacting functions. 

Starting at a high level of abstraction, the user first analyzes how 
the system interacts with shared libraries of the OS in order to 
gain a rough understanding of the system’s behavior. Then the 
user refines the analysis and explores the interaction behavior of 
those subcomponents of interest until the low-level function call 
abstraction is reached. This top-down approach helps the user to 
find low-level entry points for further fine-grained analysis as it 
reduces the search space the user has to examine. 
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Vice versa, a bottom-up approach can prove useful for an early 
identification of function calls of little interest. During the low-
level step-by-step analysis from one function to another, the user 
is supported in his/her efforts to determine which call relation to 
follow. As each function belongs to a specific higher-level 
component, the user can refrain from further analyzing a function 
call if the target function belongs to a higher-level component that 
he/she earlier classified as being negligible for understanding 
feature functionality. Such a high-level component might be a 
subsystem that encapsulates IO functionality while the user is 
trying to understand the feature of coloring text in a word 
processor application. 

The analysis process with the prototype tool is divided into three 
steps (see Figure 1): 

1) In a semi-automated step a model of the system architecture 
is created (above class abstraction). An initial model is 
automatically recovered from the directory structure of the 
source code and can be manually refined by the user. 

2) The user first identifies a scenario, i.e. a sequence of user 
interactions that triggers the feature execution, and second 
applies a logging mechanism while executing the scenario. 
For this, the regular executable file compiled with debug 
information can be used. No code instrumentation is 
necessary. 
The tool automatically analyzes the logged function call 
relations and embeds them into the architecture model. 
Function interactions are aggregated to interactions of 
higher-level components (function interaction, class 
interaction, subsystem interaction, system/shared library 
interaction) creating an architecturally-embedded call-graph. 

3) The architecturally-embedded call-graph is visualized by an 
interactive multiview system. A combination of 
synchronized textual and graphical views enables the user to 
efficiently explore the call-graph. Two textual views focus 
on communicating the hierarchical structure of the 
architecture and on providing comprehensive information on 
the components and their call relations. The graphical view 
focuses on visualizing both the hierarchical structure and the 
call relations of components within this structure. With its 
clustering layout technique the graphical view supports the 
user in visually finding strongly coupled components, i.e. 
components with a high number of control flow transfers 
from one to another. 

3.1 Architecture Model  
A variety of tools exist that automatically recover low-level 
models of the static structure from the source code [3, 11]. The 
term low-level refers to models up to class level abstraction. If the 
analyzed software system makes use of further mechanisms for 
structuring code units (e.g. C++/Java: namespace/package 

keyword), an automated extraction of these high-level structures 
can be carried out automatically. The use of naming conventions 
as well as organizing related source files into one directory are 
other ways of combining classes to composite code units. The 
latter method, source file structuring, is commonly used in large 
software systems. 

Our approach maps the directory structure of source files to a 
hierarchical model of subsystem components. Typically the user 
has additional architectural knowledge of the system and can 
refine the model. After this, the user integrates the subsystem 
components into a model that describes the highest-level 
components, i.e. the system itself and shared libraries of the OS. 
These system components correspond to ELF objects on Linux-OS 
(Executable and Linking Format). 

In a similar way as proposed by Murphy et al. [22], the user 
finally defines how to integrate the function information from the 
dynamic analysis into the model by pattern matching with regular 
expressions (see section 3.2). So the model of system and 
subsystem components is brought to completion by function and 
class components later. Figure 2 shows the metamodel. All the 
models consist of a directed, acyclic graph of layered components. 
The root node, representing the runtime environment, is backed up 
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Figure 1: Overview of the semi-automated analysis process 

of feature analysis. The user-symbol indicates activities 
with user interaction. 
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Figure 2: Metamodel. Function call relations from dynamic trace log are 

aggregated to call relations of higher-level components. 
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by various layers of system, subsystem, class, and function 
components.  

For reasons of clarity we illustrate the analysis process of our 
prototype tool by means of a feature analysis of the commercial 
geographic information system (GIS) tool LandXplorer Studio 
(LDX) from 3D Geo GmbH [15]. LandXplorer Studio is an 
interactive, dynamic 3D visualization system for geodata. The 
C++ source code consists of approximately 700.000 LOC. Figure 
3 shows the architecture model of LDX in the OS environment. 
The feature we analyze is the insertion of a textual label into the 
geovirtual environment. 

3.2 Tracing Scenario Execution 
Logging function calls of a software system during runtime 
permits to recapitulate the internal system behavior once a 
specific feature has been executed. This dynamic technique 
overcomes some of the limitations of static source code analysis 
techniques as it gives a holistic picture of the analyzed system 
within the runtime environment. Function calls to and from shared 
libraries can be detected, which is important when analyzing 
features that are triggered by event driven GUIs. What is more, 
this technique solves typical comprehension problems during 
static analysis due to dynamic binding and polymorphism. 
Additionally, on the basis of dynamic analysis the user has 
information on how often a function call is executed. This metric 
allows for assessing qualitatively the coupling strength between 
functions and, by this, for differentiating between calls used for 
initializing or for implementing an algorithm core [30].  

In contrast to most static approaches, function call logging as a 
dynamic technique reflects only one specific execution and is 
therefore incomplete. Another disadvantage of this technique is 
that it does not detect interaction based on shared data. Moreover, 
the system behavior is always affected, as the logging mechanism 
needs to add additional instructions to the system that produce the 
log entries. This is either done before compile time by source code 
instrumentation or after building the executable file by binary 
code instrumentation [24]. A common technique for integrating 
the logging mechanism in Java applications is to address the Java 
Platform Debugger Architecture (JPDA) [13]. With this no code 
instrumentation is necessary. For C/C++ applications running on 
Linux-OS a similar logging mechanism can be implemented by 
introducing a layer between the application and the kernel. This 
layer intercepts the Linux system calls and logs the application 
behavior without the need for code instrumentation. However, all 
dynamic analysis techniques slow the analyzed system down. 
Depending on the amount of logged information, the analyzed 
system can register a change in behavior. If the user analyzes 
realtime behavior, the loss in performance is crucial. However, 
other behavior can also be affected. At worst, the system will no 
longer react to user interaction properly.  

We use Callgrind [33] to log function calls during runtime. 
Callgrind is a profiling tool based on Valgrind [23], which is a 
suite of tools for debugging and profiling Linux applications. 

Valgrind works as layer between the Linux kernel and the 
application as described above. Hence, no code instrumentation is 
necessary. Callgrind is a light-weight profiling tool that does not 
log the full sequence of function calls but summarizes call 
relations and reconstructs the call-graph from the summaries. The 
logging mechanism is enabled and disabled interactively by the 
user, allowing only those function calls to be logged that are 
executed during feature execution. 

Figure 1 (step 2) illustrates the process of extracting the call-graph 
for a specific feature of the analyzed software system. To begin 
with, the user identifies a scenario that triggers feature execution. 
Then the user executes the sequence of user interactions while the 
logging mechanism is applied. Finally the log file is analyzed 
automatically and the graph of function calls reconstructed.  

Next, the function call graph is embedded within the architecture 
model of the system. Figure 2 shows the metamodel of the 
resulting model. Each function is mapped to a function 
component. The full function name permits to reconstruct the 
function’s parent class. Global or C functions are wrapped by 
dummy classes. Each class is mapped to a class component. By 
pattern matching with regular expressions the class components 
are assigned to subsystem components. The expressions relate to 
the debug information of the classes’ functions. Available debug 
information per function is the function name, the file where it is 
implemented, and the ELF object it belongs to.  

Function call relations are aggregated to class call relations and 
integrated into the model. The aggregating step is done for each 
layer of the model up to the system component level, so that the 
model finally contains one call-graph for each abstraction level 
describing the interaction behavior between the components of 
this level: from function interaction to interaction of the analyzed 
system with shared libraries of the OS. Depending on the feature 
executed, such an architecturally-embedded call-graph consists 
typically of more than 10.000 components and several million call 
relations when analyzing a +100kLOC software system. 

4. VISUALIZATION & EXPLORATION 
An important usability aspect for an analysis tool is how the tool 
communicates the analysis results to the user. Our prototype tool 
uses a multiview visualization system for presenting the 
architecturally-embedded call-graph. It consists of 3 views: 
2 textual and 1 graphical (Figure 4). The combination of views 
enables the user to effectively explore both the hierarchical 
system architecture and the call relations embedded within this 
hierarchy. The views are synchronized, so that a selection of a 
specific component in one view updates the other views which 
show complementary information on the component selected. 

4.1 Textual Views 
The two textual views are (a) the hierarchy view and (b) the detail 
view. The hierarchy view ensures rapid navigating within the 
system architecture and gives information on architectural aspects 
such as a list of all subsystems, or a list of all classes of a specific 
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<<system>>
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<<subsystem>>
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<<subsystem>>
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<<subsystem>>
ldxcity

<<subsystem>>
ldxcore  

Figure 3: Architecture model of LandXplorer Studio (LDX). 
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subsystem. The detail view provides extensive information on a 
single component, e.g. the number of descendants (all components 
in the subtree), the number of direct subcomponents, a list of 
interacting components, or call relations with a specific 
component. 

The user explores the call-graph by selecting out- or in-calls (see 
section 4.2) in the detail view. The result of view synchronization 
means that the focus of all views moves on to the next component. 
In this way, the user can follow a certain execution path in the 
call-graph.  

4.2 3D Landscape View 
The 3D landscape view portrays graphically both the hierarchical 
structure of the components and the call relations between them 
and enables the user to explore them using elaborate navigation 
techniques. It provides overview-like information that helps to 
decide where to step next in the call-graph without the need for an 
exhaustive analysis of textual views. The 3D landscape view is 
synchronized with the textual views. Hence, selecting a 
component in the 3D landscape view updates the other views, 
which provide detailed textual information on the component 
selected. The 3D landscape view gives visual cues in respect of 
various aspects of the architecturally-embedded call-graph: 

Hierarchical Structure: Components are represented by flat, 3-
dimensional, nested box shapes that are placed on a plane. 
Subcomponents are represented by miniaturized box shapes that 
are stacked on the parent component representation. All 
components of any specific hierarchy level are illustrated in the 
same color so that the user is able to appreciate the hierarchical 
structure and easily identify the hierarchy level of any one specific 
component. A discussion of such landscape-like visualizations is 
given in section 4.2.2. 

Component Activity: The size of a box shape depends on the 
component’s number of descendants. In this way, the user is able 
to easily identify the components that consist of many active 
functions during feature execution.  

Component Coupling: Component interaction means that a 
function, which is part of one component, calls a function of 
another component, i.e. the control flow goes beyond one 
component to another (transgression). A high number of incidents 
of transgression means that two components are collaborating 

intensively. This coupling strength is mapped in the physical 
distance of the component representations. So the user can 
intuitively assess component collaboration. A detailed description 
of the layout algorithm is given in section 4.2.1. 

Interaction Partners: The textual detail view provides a list of 
partner components that are connected to a specific component by 
an out-call (control flow transgression from the specific 
component to another) or by an in-call (vice versa). In the 3D 
landscape view all out- and in-calls are visualized as being 
component connecting arcs. Because the components are depicted 
as nested box shapes, the user can easily determine whether a call 
relation is taken place within the same parent component. The line 
strength of the arcs relate to the number of calls between two 
components.  

Starting Point for Analysis: In-call arcs are marked in yellow 
and out-call arcs in black. This distinction is used at the beginning 
of the analysis process to find a starting point for the call-graph 
analysis. Commonly, a feature is triggered by a callback based 
GUI. The user can visually detect the relevant out-calls from the 
GUI library by its color.  

4.2.1 Component Coupling Layout Algorithm 
We use an energy-based layout technique to visualize the amount 
of coupling strength between components, i.e. the number of 
instances of control flow transgression. The position of each 
component is incrementally updated based on the force that the 
component experiences in its energy field. This force 2RF ∈  is 
the negative gradient of the 2-dimensional, scalar energy field 

RRE →2:  [8]: EF −∇= . 

The energy field of each component is composed of three energy 
terms (see Figure 5): 

The Attraction Energy describes the component coupling and is 
proportional to the number of incidents of transgression between 
two components. 
The Repulsion Energy describes a general repulsion between 
components. It ensures the optimal usage of layout space and 
avoids collisions between components. 
The Layout Space Constraint Energy guarantees that 
subcomponent positions are restricted to the dimension of the 
parent component.  

hierarchy view

detail view

3D landscape view

 
Figure 4: The multiview visualization system consists of a hierarchy tree view, a detail view,  

and a 3D landscape view. 
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For each component a layout of all its subcomponents is 
calculated by minimizing their energy values. The layout reflects 
clusters of strongly coupled groups of subcomponents. However, 
these clusters can only reflect interaction between subcomponents 
of the same parent component, because the nested structure 
forbids a physically close layout of subcomponents with different 
parent components. 

An extension of the algorithm gives the user a visual cue for 
identifying subcomponent interaction that transgresses the parent 
component limits. During the layout calculation of a parent 
component’s subcomponents, all subcomponents of different 
parent components receive temporary positions on the same 
parent component as well. They are assigned a fixed position at 
the parent component’s border in the direction of their proper 
parent component. During the layout calculation, these virtual 
subcomponents may attract real subcomponents. Figure 6 
illustrates the resulting effect. Some subcomponents are grouped 
at the border of the parent component. From a global perspective 
the user can visually identify them as subcomponents that interact 
with subcomponents of a certain other parent component. 

4.2.2 3D Landscape Visualization 
The algorithm we present produces 2-dimensional layouts. By 
embedding the 2D layouts within a 3D visualization we create a 
landscape-like 2½D visualization, i.e. a 3D visualization with the 
majority of information encoded in 2 dimensions; however, the 
user makes use of all 3 dimensions for exploring the information 
space. A lot of research has been done on the advantages and 
drawbacks of 2D and 3D visualizations, respectively [19]. 
2½D visualizations seem to combine some of the advantages of 
both 2D and 3D visualizations, however, avoiding the drawbacks. 
When drawing complex graphs, two major drawbacks of 2D 
visualizations are the limited display space and the problem of 
edge crossings. 3D visualizations can overcome these drawbacks 
by enlarging the display space by the third dimension. However, 
the opportunity to build dense visualizations may lead to a high 
spatial complexity and to obscuring effects. A further drawback of 
3D visualizations is that the user becomes easily disoriented while 
exploring the information space. In other words, the user loses 
his/her sense of the current position in the information space and 
fails to recognize regions already explored. 

3D landscape visualizations permit the use of spatially simple 2D 
layouts that can be enhanced by additional geometries, thereby 

exploiting the third dimension. We use this technique to visualize 
component connecting arcs. Furthermore, the density of 
3D landscape visualizations can continuously be adjusted by the 
user by tilting the viewing angle onto the landscape. Orientation 
and navigation tasks are facilitated when compared with fully 3-
dimensional visualizations. Thanks to the landscape metaphor, 
users can rely on their spatial interpretation and navigation skills 
gained from real world experiences. 

5. CONCLUSIONS 
When large and complex software systems are concerned, features 
represent core elements in maintenance processes and, therefore, 
developers need to identify the code components that implement a 
specific feature and to understand how the components interact. 
The dynamic extraction of function call-graphs during feature 
execution is of great assistance to developers when working on 
these processes. Typically, a call-graph is explored by stepping 
from function to function deciding each time whether a function 
contributes to the feature functionality or not. Our approach facili-
tates this decision-making by abstracting the function interaction 
to interaction of higher-level components, i.e. class-class, 
subsystem-subsystem, and system-shared library. Furthermore, 
the technique presented provides an intuitive, interactive multi-
view visualization that allows developers to explore these high-
level call-graphs directly. Thus, analyzing architecturally-em-
bedded call-graphs appear to be an effective approach to gaining a 
better understanding of essential aspects of complex software 
systems and to speeding up related reverse engineering tasks.  

We plan to perform user studies to evaluate our approach and to 
identify improvements such as an more elaborate use of color and 
shape geometry in the visualization, e.g. for encoding additional 
profiling information like performance data. Furthermore, we plan 
to consider the ideas proposed in [7, 36] such as analyzing 
multiple execution traces to identify those code components that 
dedicate mainly to only one specific feature. Additionally, our 
future research aims at integrating the prototype tool into an IDE 
to provide a seamless transition to source code representation.  
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