28,165 research outputs found

    Sources of Computer Metaphors for Visualization and Human-Computer Interaction

    Get PDF
    This chapter is devoted to finding sources for metaphors of computer visualization and human-computer interaction. Computer metaphor is considered the basic idea for the development of interfaces, visualization views, and scenarios of visualization and interaction. Global metaphors map the main design idea. These ideas depend on global events and changes in society, art, and science. In the “pre-computer” era, such ideas formed the basics of cartography, engineering drawings, and drawing function graphs on the Cartesian plane. When designing visualization and interactive systems, computer metaphors use “magic features” beside analogies with daily life. Nowadays ideas of visualization are often based on “gamification.” This approach presupposes creating tools that provide software engineers with an interface similar to that of computer games. In this chapter, ideas drawn upon fairy tales, science fiction books, fantasy films, and other similar spheres are considered as sources of computer metaphors. Such metaphors are very interesting when designing visualization systems based on virtual reality

    ASTRAL PROJECTION: THEORIES OF METAPHOR, PHILOSOPHIES OF SCIENCE, AND THE ART O F SCIENTIFIC VISUALIZATION

    Get PDF
    This thesis provides an intellectual context for my work in computational scientific visualization for large-scale public outreach in venues such as digitaldome planetarium shows and high-definition public television documentaries. In my associated practicum, a DVD that provides video excerpts, 1 focus especially on work I have created with my Advanced Visualization Laboratory team at the National Center for Supercomputing Applications (Champaign, Illinois) from 2002-2007. 1 make three main contributions to knowledge within the field of computational scientific visualization. Firstly, I share the unique process 1 have pioneered for collaboratively producing and exhibiting this data-driven art when aimed at popular science education. The message of the art complements its means of production: Renaissance Team collaborations enact a cooperative paradigm of evolutionary sympathetic adaptation and co-creation. Secondly, 1 open up a positive, new space within computational scientific visualization's practice for artistic expression—especially in providing a theory of digi-epistemology that accounts for how this is possible given the limitations imposed by the demands of mapping numerical data and the computational models derived from them onto visual forms. I am concerned not only with liberating artists to enrich audience's aesthetic experiences of scientific visualization, to contribute their own vision, but also with conceiving of audiences as co-creators of the aesthetic significance of the work, to re-envision and re-circulate what they encounter there. Even more commonly than in the age of traditional media, on-line social computing and digital tools have empowered the public to capture and repurpose visual metaphors, circulating them within new contexts and telling new stories with them. Thirdly, I demonstrate the creative power of visaphors (see footnote, p. 1) to provide novel embodied experiences through my practicum as well as my thesis discussion. Specifically, I describe how the visaphors my Renaissance Teams and I create enrich the Environmentalist Story of Science, essentially promoting a counter-narrative to the Enlightenment Story of Science through articulating how humanity participates in an evolving universal consciousness through our embodied interaction and cooperative interdependence within nested, self-producing (autopoetic) systems, from the micro- to the macroscopic. This contemporary account of the natural world, its inter-related systems, and their dynamics may be understood as expressing a creative and generative energy—a kind of consciousness-that transcends the human yet also encompasses it

    Using High-Rising Cities to Visualize Performance in Real-Time

    Get PDF
    For developers concerned with a performance drop or improvement in their software, a profiler allows a developer to quickly search and identify bottlenecks and leaks that consume much execution time. Non real-time profilers analyze the history of already executed stack traces, while a real-time profiler outputs the results concurrently with the execution of software, so users can know the results instantaneously. However, a real-time profiler risks providing overly large and complex outputs, which is difficult for developers to quickly analyze. In this paper, we visualize the performance data from a real-time profiler. We visualize program execution as a three-dimensional (3D) city, representing the structure of the program as artifacts in a city (i.e., classes and packages expressed as buildings and districts) and their program executions expressed as the fluctuating height of artifacts. Through two case studies and using a prototype of our proposed visualization, we demonstrate how our visualization can easily identify performance issues such as a memory leak and compare performance changes between versions of a program. A demonstration of the interactive features of our prototype is available at https://youtu.be/eleVo19Hp4k.Comment: 10 pages, VISSOFT 2017, Artifact: https://github.com/sefield/high-rising-city-artifac

    Simulation and Visualization of Thermal Metaphor in a Virtual Environment for Thermal Building Assessment

    Get PDF
    La référence est présente sur HAL mais est incomplÚte (il manque les co-auteurs et le fichier pdf).The current application of the design process through energy efficiency in virtual reality (VR) systems is limited mostly to building performance predictions, as the issue of the data formats and the workflow used for 3D modeling, thermal calculation and VR visualization. The importance of energy efficiency and integration of advances in building design and VR technology have lead this research to focus on thermal simulation results visualized in a virtual environment to optimize building design, particularly concerning heritage buildings. The emphasis is on the representation of thermal data of a room simulated in a virtual environment (VE) in order to improve the ways in which thermal analysis data are presented to the building stakeholder, with the aim of increasing accuracy and efficiency. The approach is to present more immersive thermal simulation and to project the calculation results in projective displays particularly in Immersion room (CAVE-like). The main idea concerning the experiment is to provide an instrument of visualization and interaction concerning the thermal conditions in a virtual building. Thus the user can immerge, interact, and perceive the impact of the modifications generated by the system, regarding the thermal simulation results. The research has demonstrated it is possible to improve the representation and interpretation of building performance data, particularly for thermal results using visualization techniques.Direktorat Riset dan Pengabdian Masyarakat (DRPM) Universitas Indonesia Research Grant No. 2191/H2.R12/HKP.05.00/201

    From piles to tiles: designing for overview and control in case handling systems

    Get PDF
    Poor overview and control of workload in electronic case handling systems is a potential health risk factor which affects the users. Case handling systems must therefore be designed to give the users a better overview and maximum control over their workload. In an earlier study, we developed a prototype interface for managing cases, based on the piles metaphor. This paper introduces a second prototype, which is designed to incorporate the findings of an evaluation of the piles metaphor prototype. In this second prototype cases are visualized as “tiles”, reflecting the number and complexity of the cases. This paper also describes some the results of the evaluation of the tiles prototype

    Troping the Enemy: Metaphor, Culture, and the Big Data Black Boxes of National Security

    Get PDF
    This article considers how cultural understanding is being brought into the work of the Intelligence Advanced Research Projects Activity (IARPA), through an analysis of its Metaphor program. It examines the type of social science underwriting this program, unpacks implications of the agency’s conception of metaphor for understanding so-called cultures of interest, and compares IARPA’s to competing accounts of how metaphor works to create cultural meaning. The article highlights some risks posed by key deficits in the Intelligence Community\u27s (IC) approach to culture, which relies on the cognitive linguistic theories of George Lakoff and colleagues. It also explores the problem of the opacity of these risks for analysts, even as such predictive cultural analytics are becoming a part of intelligence forecasting. This article examines the problem of information secrecy in two ways, by unpacking the opacity of “black box,” algorithm-based social science of culture for end users with little appreciation of their potential biases, and by evaluating the IC\u27s nontransparent approach to foreign cultures, as it underwrites national security assessments

    The design-by-adaptation approach to universal access: learning from videogame technology

    Get PDF
    This paper proposes an alternative approach to the design of universally accessible interfaces to that provided by formal design frameworks applied ab initio to the development of new software. This approach, design-byadaptation, involves the transfer of interface technology and/or design principles from one application domain to another, in situations where the recipient domain is similar to the host domain in terms of modelled systems, tasks and users. Using the example of interaction in 3D virtual environments, the paper explores how principles underlying the design of videogame interfaces may be applied to a broad family of visualization and analysis software which handles geographical data (virtual geographic environments, or VGEs). One of the motivations behind the current study is that VGE technology lags some way behind videogame technology in the modelling of 3D environments, and has a less-developed track record in providing the variety of interaction methods needed to undertake varied tasks in 3D virtual worlds by users with varied levels of experience. The current analysis extracted a set of interaction principles from videogames which were used to devise a set of 3D task interfaces that have been implemented in a prototype VGE for formal evaluation
    • 

    corecore