

 奈良先端科学技術⼤学院⼤学 学術リポジトリ

Nara Institute of Science and Technology Academic Repository: naistar

Title Using High-Rising Cities to Visualize Performance in Real-Time

Author(s)
Ogami, Katsuya; Kula, Raula Gaikovina; Hata, Hideaki; Ishio,

Takashi; Matsumoto, Kenichi

Citation
VISSOFT 2017 : 2017 IEEE Working Conference on Software

Visualization, 18-19 Sept. 2017, Shanghai, China

Issue Date 2017

Resource Version author

Rights

© 2017 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component

of this work in other works.

DOI 10.1109/VISSOFT.2017.25

URL http://hdl.handle.net/10061/12723

Using High-Rising Cities to Visualize
Performance in Real-Time

Katsuya Ogami∗, Raula Gaikovina Kula∗, Hideaki Hata∗, Takashi Ishio∗, Kenichi Matsumoto∗
∗Graduate School of Information Science

Nara Institute of Science and Technology, Nara, Japan
Email: {ogami.katsuya.ny7, raula-k, hata, ishio, matumoto}@is.naist.jp

Abstract—For developers concerned with a performance drop
or improvement in their software, a profiler allows a developer to
quickly search and identify bottlenecks and leaks that consume
much execution time. Non real-time profilers analyze the history
of already executed stack traces, while a real-time profiler
outputs the results concurrently with the execution of software,
so users can know the results instantaneously. However, a real-
time profiler risks providing overly large and complex outputs,
which is difficult for developers to quickly analyze. In this paper,
we visualize the performance data from a real-time profiler. We
visualize program execution as a three-dimensional (3D) city,
representing the structure of the program as artifacts in a city
(i.e., classes and packages expressed as buildings and districts)
and their program executions expressed as the fluctuating height
of artifacts. Through two case studies and using a prototype of
our proposed visualization, we demonstrate how our visualization
can easily identify performance issues such as a memory leak and
compare performance changes between versions of a program.
A demonstration of the interactive features of our prototype is
available at https://youtu.be/eleVo19Hp4k.

I. INTRODUCTION

The first Lehman law of software evolution [1] states
that ‘a system must be continually adapted or it becomes
progressively less satisfactory’. Furthermore, Lehman’s second
law states that ‘an evolving system increases its complexity
unless work is done to maintain or reduce it’. As such, devel-
opers concerned with performance are required to constantly
monitor the performance while evolving (i.e., making code
changes) their applications. Developers utilize profilers as a
means to quickly search and identify performance issues such
as bottlenecks and memory leaks, which may consume the
execution time of their applications.

State–of–the–art profilers profile application performance at
a specific snapshot of an application. According to an online
report [2] in 2015, VirtualVM1 and JProfiler2 are compre-
hensive profilers for applications that run on the Java Virtual
Machine (JVM). Both tools offer application developers the
ability to properly profile their code execution, collect and
browse thread dumps and heap dumps, while gathering various
statistics about the internals of the JVM.

Although comprehensive, we identify two drawbacks when
using profilers such as VirtualVM and JProfiler. The first is the
delay that exists between the execution of the program, logging
of the execution stack traces and then profiling the results for

1https://visualvm.github.io/
2https://www.ej-technologies.com/products/jprofiler/overview.html

Fig. 1. A screenshot of VirtualVM showing program execution at a particular
snapshot in time. Performance is visualized by a horizontal bar chart.

a specific snapshot. Since profilers require time to process the
information from an execution log, there is a delay between the
actual running of the code and the analysis of its profile. The
time taken to collect the data between executions can quickly
become tedious and time-consuming for developers, especially
if there are many different scenarios that the developer would
like immediate feedback on performance while executing their
application. The second drawback is the design and presenta-
tion of user interfaces provided by these tools. As shown in
Figure 1, the typical screen presented by these tools are in
the form of a horizontal bar chart. Although intuitive, in this
example, other important information such as the relationship
between the different components are not easily visible in a
single interface.

In this paper, we propose a three dimensional cities (com-
monly known as CodeCity) visualization to show performance
in real-time to address these drawbacks. As shown in Figure
2, our proposed visualization (i) profiles in real-time, thus
instantaneously updates the visualization while the application
is running and (ii) depicts the underlying structure of the
application with performance, thus providing a sense of the re-
lationship between the different components in the application.
To evaluate the practicality and usefulness of our visualization,
we present two case studies in which we (i) identify a potential
performance issues (i.e., threads that are not properly killed)
and (ii) depict performance during software maintenance (i.e.,

Fig. 2. Our prototype is a CodeCity visualization that shows real-time feedback on the performance of a‘Tetris’ game. Fluctuations on the high-rise buildings
indicate performance executions based on the user interactions of a target program (i.e., user interaction of the Graphical User Interface (GUI).)

performance and refactoring activities).
The paper is organized as follows. Section II presents the

state–of–the–art and related work. Section III presents the
visualization design and details while Sections IV and V
presents the evaluation and case studies used to demonstrate
the practicality and usefulness of our visualization. We discuss
aspects such as the generality, visual scalability, ease of use
and practicallity in Section VI. We then finally conclude the
paper in Section VII.

II. STATE OF THE ART

In this section, we introduce the background and literature
related to performance profilers. We first introduce two per-
formance profilers that are popular in industry. We then cover
related literature in terms of the visualization of performance.

A. Existing Tools in Practice

VirtualVM is the state–of–the–art performance profiler that
has a feature of recording snapshots, as seen in Figure 1.
According to the offical website, VisualVM is ‘an All-in-One
Java Troubleshooting tool that takes advantage of several com-
mand line tools that are bundled with the Java Development
Kit (JDK) distribution, and presents the information about
the Java process performance’. Besides being a lightweight
monitoring tool, VirtualVM offers application developers the
ability to properly profile their code execution, collect and
browse thread dumps and heap dumps, while gathering various
statistics about the internals of the JVM.

Another very popular performance profiling tool reported
to be extensively used in industry is JProfiler. The official
documentation state that ‘JProfiler is a comprehensive profiler

for Java SE and Java EE applications with plugins for all
major IDEs, which provides enhanced analysis of the collected
profile data’. As with VirtualVM, JProfiler also provides CPU
and memory profiling.

As shown in Figure 2, our visualization depicts the structure
of software as different artifacts in CodeCity. We highlight two
main differences between our proposed visualization against
existing tools. The first is the real-time feedback from the
visualization. Both VirtualVM and JProfiler rely on logged
data of executed program stack traces as either thread of heap
dumps. In our proposed method, we eliminate the process
required to record and process the data collected in a stack
trace. As shown in the figure, the visualization dynamically
records as an application program is run. This is especially
advantageous for a user that requires instant feedback, possibly
reducing the time needed to profile several snapshots of the
application.

The second difference between our proposed visualization
and existing tools is inclusion of the program structure in
the visualization, that provides insights into design aspects of
the application. As shown in Figure 1, the VirtualVM User
Interface does not show the relationship between the called
methods. JProfiler does show a call graph view, where the
methods are represented by colored rectangles that provide
instant visual feedback about where the slow code resides
in the method call chains, hence, making bottlenecks easier
to find. However, a large software system with hundreds
of methods may generate call graph that is too complex to
comprehend and aesthetically unpleasing for users.

B. Related Work

The most related work is the ‘Performance Evolution
Blueprint’ [3] and ‘Visualizing dynamic metrics with profiling
blueprints’ [4]. In these two works, Bergel and colleagues
propose a profiling blueprint as a visualization that helps iden-
tify and remove performance bottlenecks. Furthermore, the
evolution blueprint evaluates performance during the evolution
of the program. Similarly, Bezemer et al, propose ‘Differential
Frame Graphs’ to understanding software performance regres-
sions between two profiles [5]. Different to this work, our
visualization considers the performance fluctuations that occur
while running a single program version.

Many profiling tools and approaches utilize the call method
relationship to describe the ‘design’ of a program. For ex-
ample, a circular bundle [6] view visualizes the method
call relationship. Zinsight [7] visualizes event statistics and
frequent method call patterns. To reduce complexity, in this
work, the circular bundle includes an interactive timeline, in
which a user can customize and select a specific runtime
snapshot size.

Much like VirtualVM and JProfiler, many profiling tools
have been based on capture and profiling a snapshot of a
running program [8], [9]. However, there has been other
work that have attempted close to real-time profiling. In these
works, the snapshots are referred to as phases, with phase
detection approaches are proposed to split an execution trace
into smaller phases corresponding to features in an execution.
For example, Watanabe et al. [10] proposed a technique to
identify phases based on active objects. Other work used
key characteristics to highlight the phases. Voigt et al. [11]
proposed a plot to visualize active objects in an execution
trace. Medini et al. [12] proposed an effective algorithm that
extract meaningful labels for detected phases. For a real-time
profiler, Reiss [13] proposed a technique to compare active
methods between a pair of consecutive time slots. An impor-
tant aspect of runtime monitoring and feedback is the overhead
efficiency when profiling. There exists work [14] that exploits
hardware performance counters to reduce runtime overhead
for profiling. Furthermore, to understand how time spent for
an interaction of methods, De Pauw et al. [15] proposed to
use a customized UML sequence diagram whose time axis
represents a real time. Using detected phases, a developer can
focus on a part of an execution trace. In our work, we create a
fixed-time frame that provides a instantaneous feedback while
a program in running. Yamaguchi et al. [16] proposed to
visualize the behavior of distributed processes. Their algorithm
achieves an automatic, stable layout of rectangles representing
hierarchical data elements. Our method is dependent on the
package structure of a program to achieve a stable layout.

III. VISUALIZATION DESIGN

A. Cities Metaphor

Wettel et. al [17] introduce CodeCity as an integrated
environment for software analysis, in which software systems
are visualized as interactive, navigable 3D cities. The classes

Building elevation

Package

Class

Method

Fig. 3. Typical layout of a district in the city.

are represented as buildings in the city, while their packages
are depicted as the districts in which the buildings reside. The
visible properties of the city artifacts depict a set of chosen
software metrics, as in the polymetric views of CodeCrawler.
The CodeCity metaphor has been the inspiration in numer-
ous visualization scenarios of software. Early work include
been Santos et al. [18], who proposed cities for visualizing
information for network monitoring and later Panas et al.
[19] proposed a similar idea for software production. Early
researchers who actually implemented the city metaphor, [20],
[21] represented classes are districts and the methods are
buildings.

We settled on a City metaphor, because is offers a clear
notion of the locality and as explained by Wettel, ‘supports
orientation and features a structural complexity that is not
oversimplified’. As shown by Wettel and Lanza [22], the
CodeCity visualization can be leveraged to visually localize
design problems. We believe that this can be useful feature
when profiling the performance of a program. Moreover, we
map the height of an artifact (i.e., such as a building) to
provide a visual impression of the performance the artifact
has in relation to the current executed functions of a program.
In our visualization, we conjecture that performance peaks and
fluctuations are easily identified by the ‘high-risers’ in the city.

B. Mapping Performance to the City

The visualization is divided into two levels of analysis gran-
ularity. Firstly, to intuitively express the structural properties
of a software, we use the district localization. The second level
of mapping is the height of the buildings. The key point of
the visualization is that the ‘high-rise’ buildings can be easily
detected by the user.

1) District Design: The district design has the main ob-
jective of depicting the structure of a software system. Figure
3 depicts the typical layout of the district. As shown, every
method is represented by standard uniform square-sized plot
building. Furthermore, methods are grouped according to the
class (i.e,. classes are mapped to the same orange block).

A() B()

C()

main()

in
vo

ke
 m

ai
n(

)

in
vo

ke
 B

()

in
vo

ke
 C

()

e
xi

t
C

()
:

re
tu

rn
 A

()

ex
it

A
()

: r
et

u
rn

 m
ai

n
()

ex
it

B
()

: r
e

tu
rn

 m
ai

n
()

in
vo

ke
 A

()

Fig. 4. Example of how we calculate the height of a building. In Figure 4, we first show an example of an event EL where methods main(), A(), C()
and B() are executed during time-frame L.

Within in the same block, the grouped methods are ordered
alphabetically by their names. Finally, classes are then grouped
according to their packages. (i.e., common classes are grouped
into the green district). The visualization is also able to group
according to sub-packages within a package.

It is important to note that in the visualization that the
packages and classes are ordered according to the number
of methods contained. For example, the largest package with
the most methods will be aligned at the bottom left of the
visualization. The rationale is that the users will be able to
easily understand the performance in relation to structure of
the program.

2) Building Design: As shown in Figure 4, our building
elevation is based on a sequence of events within a fixed-
time frame. Consider that E represents all events during the
execution of a program. Let L be a fixed-time frame of interest.
Hence, we are interested in a subset of E, EL that contains
all events that have been executed within the time-frame of L.
For example, in Figure 4, methods main(), A(), C() and
B() have been executed time-frame of L. Our algorithm uses
sequences of executed time events (i.e., t1, t2...ti) where i is
the number of time events within EL:

L = ti − t0

As shown in Figure 4, there are six events that occur during
the EL, hence, L = (t6 − t0). Each event consists of (i)
timestamp, (ii) executed methods M (iii) action. The action is
described as either a invoke or exit and return action.
These properties of an event are used to identify all events
that occurred during the execution of method m. For each

method m, we now compute the accumulated execution time
Time(m) for the method as:

Time(m) =
∑

{i∈EL|M(ei)=m}

ti+1 − ti

For example, for the method A(), the executed time is
calculated as Time(A()) = (t2− t1)+(t4− t3). Using L, we
then normalize the executed time relative to the EL. Therefore,
we calculate for m:

Elevation(m) =
Time(m)

L

Using the example in Figure 4, the height of the mapped
building for method A() is calculated as follows:

Elevation(A()) =
(t2 − t1) + (t4 − t3)

(t6 − t0)

where the elevation of method A() is calculated by using
only the time when A() was invoked (i.e., we subtract the
time when C() is invoked from when A() was invoked). We
then normalize this over the total time-frame L.

C. Technical Implementation

A prototype of our visualization was developed using the
game engine Unity3 and implemented in the Java program-
ming language. Unity is a 3D game engine that can render

3Unity at https://unity3d.com/

three-dimensional visualizations. For the prototype, our main
consideration is how the executions was captured (through
logging). Specifically, we discuss some of the main technical
considerations when implementing the logging of executions
and the handling of Java threads.

1) Logging of method executions: To record execution time
for each method, we use bytecode instrumentation. We use
the Java ASM4 library, which is a bytecode analyzer to
inspect methods in any loaded classes of an executed Java
program. This is done by injecting logging code at the entry
and the exit of the methods that invoke other methods (i.e.,
caller methods). Specifically, the injection is performed just
before the assembly code of a return or exception
throw. It is important to note that our approach of bytecode
instrumentation is unable to inject logging code into methods
protected by licenses or in cases of when the bytecode is
unavailable (native methods). Execution time of those methods
are in the execution time of their callers. Our prototype is
able to exclude packages if required. However, due to the
design, the execution time of these excluded methods are still
indirectly included in the caller method execution time.

The obtained sequences of events (i.e., EL) and their
execution times are then transmitted in close to real-time batch
via a Transmission Control Protocol (TCP) to our visualizer.
The visualizer is implemented with Unity (version 5.5.0f3)5.
Each method is assigned a unique ID. All information such
as the method names are sent in one transmission. We set the
fixed-time frame of L at 3 seconds as it provides the most real-
time experience, with trade-offs with the TCP and interface
between the profiler and the user GUI of the executed program.

2) Handling of multi-threaded executions: Java uses
threads to handle the concurrency that occurs within a pro-
gram. Our prototype is able to handle each thread indepen-
dently as a sequence of events EL. In cases of multiple-threads
accessing the same method, the longest executed time logged
will be used as executed time of that method. At this stage, it
is possible for a lag in the logging process to delay the event
sequence.

D. Real-time Interaction Properties

A key highlight of our prototype is a dynamic analysis and
feedback on performance in real-time (i.e., as a program is
being executed). As shown in Figure 2, we see that a target
program (i.e., ‘tetris’ game application) is running simultane-
ously with our profiling visualization prototype. Therefore, all
game input such as Graphical User Interfaces (GUI) keystrokes
and other user interactions are visualized in real-time.

Figure 5 presents a screenshot of a zoomed image of a
method, in this case, a constructor of void <init>(int,
int, java,lang.String). As illustrated, the tooltip
also shows the name of the method (i.e., Method Name),
the elevation height (i.e., %) and the number of threads (i.e.,
Thread Num) that have executed the method.

4http://asm.ow2.org/)
5https://unity3d.com/

Fig. 5. Zoomed representation of our prototype. Upon the mouseover, we can
see the (i) method name (ii) elevation and (iii) thread num of the method.

To manage the layout of the city, we determined the sizes
of the packages relative to the metric number of classes and
methods. Hence, the default aspect ratios for our package
and class constructs. Since the visualization is real-time,
aesthetically, our intention is for simplicity so that users are
quick to identify and focus on the changes in performance of
the methods.

An important aspect of our proposed visualization, which
cannot be shown in the paper, is the constant fluctuation
of executed building heights during the real-time dynamic
execution of the target program. The fluctuations are caused
by both (i) the dynamic user interactions with the target
program and (ii) the fixed time-frame L. A video that demon-
strates these dynamic fluctuating buildings is available at
https://youtu.be/eleVo19Hp4k.

IV. EVALUATION

We study two real world cases to evaluate our prototype.
Our goal of the case studies is to demonstrate the practicality
and usefulness of our proposed visualization. The requirement
criteria for our case study was as follows: (i) should be a Java
application that can be compiled and executed as a binary jar
file, (ii) should have sufficient commit messages so that the
history could be analyzed and (iii) have a sufficient code base
that can be visualized as a city. Furthermore, it was preferable
for the program to have a GUI to allow for more user
interaction. In the end, we decided that a gaming application
is suitable as most games have various GUI. The classic game
‘Tetris’ was selected due to its simple functionality and
ease of keystrokes that would dynamically be displayed in our
prototype. After a systematic search (i.e., using the GitHub
search function), the end result was a selection a Java version
of Tetris6 from five other tetris programs implemented in Java.
The main deciding factors included the code change history

6The website is available at https://github.com/exal99/Tetris

TABLE I
CASE ONE: SUMMARY OF PROGRAM ATTRIBUTES DURING THE

IDENTIFICATION OF A MULTI-THREADING LEAK

Commit Date Oct 7, 2016

of Packages 8
of Classes 24
of Lines of Code 1681

(i.e., 103 commits) and the program size (i.e., number of
packages and lines of code).

V. CASE STUDIES

We introduce two case studies that were used in our
experiments. The first case study is a demonstration of how the
building height can be used to highlight sections in the code
that are highly executed. We also would like to show how this
simple but effective indicator of some potential performance
issues in the source code.

The second case study is a demonstration of how we utilize
the structure of the CodeCity metaphor to depict evolutionary
changes in the target program. Specifically, we would like to
show how the prototype is able identify structural changes
that have over two versions of the target program. We also
show and discuss how performance is affected by these code
changes.

A. Case One: Analysis of Performance with Multi-Threading

The first case study demonstrates how our prototype is able
to identify and monitor issues related to multi-threading and
memory consumption in a software program.

Table I describes the source code snapshot of the latest
version of the target program (last modified Oct 2016). The
table shows that our target program consists of 8 packages,
24 classes and 1,681 lines of code. We find that the target
program has a run() method is the interface that is intended
to be executed by a thread.

Figure 6 clearly shows a highly executed method (i.e.,
run()), with a high elevation (100%). We notice that this
building has no fluctuation in height and it constantly at
100% height. Furthermore, the height of this building does
not fluctuate, even when the user has ended a game and starts
a new game.

As shown in Figure 6, we can see that there is 16 threads
created for the run() method. This corresponds with the
user interaction (i.e., user has restarted the game 16 times).
Furthermore, the source code reveals that the run() method
is comprised of a loop that creates a new thread each time a
new game is created by a user.

TABLE II
CASE TWO: DISTRICT CHANGES BASED ON REFACTORING ACTIVITIES

Before After
Commit Date Oct 5, 2016 Oct 5, 2016

Classes 24 24
Lines of Code 1681 1682

Changed Packages 8
Changed files 22
Added Lines of Code 59
Deleted Lines of Code 58

1 @Override
2 p u b l i c vo id run () {
3 b o o l e a n r u n n i n g = t r u e ;
4 w h i l e (i s A l i v e () && ! i s I n t e r r u p t e d () && r u n n i n g)

{
5 . . .
6 } e l s e {
7 s aveHighSco re () ;
8 r o o t . remove (g r a p h i c s) ;
9 r o o t . add (new Sta r tMenu (game , second , r o o t ,

s c o r e , a r g s)) ;
10 r o o t . r e v a l i d a t e () ;
11 . . .
12 t r y {
13 j o i n () ;
14 } c a t c h (I n t e r r u p t e d E x c e p t i o n e) {
15 e . p r i n t S t a c k T r a c e () ;
16 }
17 . . .
18 }
19 }
20

Listing 1. Code Snippet showing the join() method in the
MainSinglePlayerThread class

Listing 1 shows the snippet of the portion of the
code that allows prior threads to remain alive (i.e.,
MainSinglePlayerThread class). We are unsure of the
developer’s intention, however, we find that the run()
method does not implement any management of the thread-
ing. Potentially, this performance issue may result in a
OutOfMemoryExceptions if these pool of threads are
large enough, that will cause the application to crash. Due
to the nature of the application (i.e., gaming application)
and amount of memory consumed by each thread, we could
assume that this issue may not have a significant impact on
the usual performance of the application. However, is a design
concern as ‘programmers can typically get into trouble sizing
data structures such as threads, understanding per-entry costs,
and managing the lifetimes of these structures’ [23] .

One possible fix to manage this concurrency issue, is to kill
each thread every time a game has ended, especially for this
single player mode. Subsequently, the program should start a
new thread each time a new game is created. To remedy this
issue, we have contacted the developer with our recommended
solution7.

7We have raised a pull-request at https://github.com/exal99/Tetris/pull/3

Fig. 6. A high-rise building indicates a performance issue. In this example, we find that the high riser is caused by a thread leak with multiple-threading.
We find that the method invokes a new thread each time the user restarts for a new game.

B. Case Two: Analysis of Performance in an Evolving City

The second case study demonstrates how our prototype is
able to model any structural changes as the program evolves.
Concretely, we show the performance when a set of refactoring
operations have been applied to a newer version of the soft-
ware. This example show be able to show that the refactorings
have no effect on the performance of the application.

Table II describes the source code snapshots between a
refactoring commit on the source code (5th October 2016)8.
We can see in the table that although the commit resulted
in 1 additional line of code, there was code changes to 22
files we 59 added lines and 58 deletion. Upon the inspection
of difference in the source code, we find that the commit
included the integration of the main package, which involved
importing (i.e., using the import keyword) new package struc-
tures. According to the commit message, the developers were
‘Made all packegase subpackeges to prepare
for the ai’.

Figure 7 shows how our prototype able to detect and show
these changes in the source code structure as landscapes
changes of the district. As shown in Figure 7a, before the
refactoring, we find that there are nine districts in the city.
The biggest district shown in the figure represents the third-
party library, Ini4j9, which is a simple Java API for handling
configuration files in Windows .ini format. As highlighted in

8The commit is accessible at https://github.com/exal99/Tetris/commit/
925883f60f2dc2e57bd42ccf990637c89843ff8e

9website at http://ini4j.sourceforge.net/

the figure, we observe that the classes related to the user
interface (i.e., gui packages) are clearly in different locations
compared to the game packages.

Later in Figure 7b, after the refactoring, the structure of
the city has changed. Under closer inspection of the code, we
observe that the developer had introduced a new main class
(i.e., main.java) and main package into the program. In
the newer version, we find that all the game packages and
classes have been merged into the the newer main.game
packages. As shown in the Figures, these set of refactoring
operations have no impact on performance.

Although this trivial example has no apparent impact on
performance, it is a useful case to demonstrate how our
prototype is able to depict changes in the program ‘design’
structure between two versions of a program.

VI. DISCUSSION

In this section, we discuss implications of our results.
Specifically, we discussing the implications in terms of the
generality, visual scalability, ease of use, practicality and
potential future avenues such as additional scenarios for a user.

A. Generality

In our case study, we performed our experiments on a
Java application. Currently our implementation is limited to
executable Java bytecode binaries. However, we believe that
this visualization can be extended to other programming
languages.

(a) District design layout before refactoring operations were applied to some methods

(b) District design layout after refactoring operations were applied to some methods

Fig. 7. Evolution of the district structure of the city that reflect refactoring activities applied to the target program.

B. Visual Scalability

Indeed our visual design takes advantage of the CodeCity
metaphor to depict program structure and identify performance
issues. However, the visualization as yet does not fully realize
the other aesthetic features such as color and aspect ratio. In
a real-time situation, however, we did consider whether or
not other features would be more distracting and information
overload. Therefore, our future plan would be to slowly add
other useful elements to the visual design, while keeping the
user engaged.

With the scalability, prior works show how the cities
metaphor can be used to analyze massive software projects.
In this example, we used a simple example with a single
third-party library included. However we believe that the
visualization is scalable to larger code bases. For future work,
we would like to experiment with larger projects that have
much more complex structures than our current case study.

C. Ease of Use

The CodeCity visualization has been popularly used in
both the research community and the industry alike. With
just elevation to represent performance, we conjecture that
the visualization is both intuitive and very simple to use. To
validate our claims, a user case study of our tool is needed
and this is envisioned as a future extension of this work.

D. Practicality

Since current tools require a snapshot window, we conjec-
ture that most profiling is specifically targets towards scripted
sequences in a program. We discovered that an advantages
of the real-time profiling is the ability to run the program un-
scripted, thus potentially capturing these unexpected sequences
while running a program. This is especially beneficial for
gaming applications that have complex GUI implementations.

Through case scenario executions of the prototype, we were
able to demonstrate some of the useful applications of our
visualization. However, in this study, we did not consider
other considerations such as the overhead costs and delay
with multi-threading. This may become an issue with multiple
threads with a large scale system. As future work, we plan to
measure the overheads using benchmarks such as the DaCapo
Benchmark [24].

E. Additional Scenarios and Future Work

In this paper, we present only two cases of how our
visualization can be leveraged to show issues of (i) handling
multi-threading and (ii) impact of refactoring activities. We
believe that there is still many other scenarios that are needed
to be tested. Below is are two scenarios that we would like to
explore:
• evaluating scenarios that include large-scale target pro-

grams with complex GUI implementations.
• identification and differentiation of concurrent executions

(i.e., multiple threads execution over the same method).
A possibility would be tracking each individual thread
and using visualization properties such as color.

Additionally, it would be beneficial to receive feedback from
practitioners. Such feedback would allow us to make future
improvements. We should consider these future enhancements
to our proposed solution as future work. Compared to the
related works that have used the CodeCity metaphor, our
proposed visualization has not used many of the other aspects
such as color, shape and area density properties. Therefore,
as future work, we would like to investigate and utilize these
properties to provide complementary information that a user
may find useful.

VII. CONCLUSION

In this paper, we present a visualization tool that is used to
profile performance of a program in real-time that is based
on the CodeCity visualization. Our key is to demonstrate
the usefulness and practicality of this visualization. Using a
prototype, we illustrate through case studies of a real-world
implementation of a gaming application to identify (i) analysis
of a potential thread leakage and (ii) the performance in an
evolving city. For future work, we plan to further explore how
the other city attributes could be utilized to enrich the profiling
of performance for software applications.

ACKNOWLEDGMENT

This work has been supported by JSPS KAKENHI Grant
Number 16H05857 and JP26280021.

REFERENCES

[1] M. M. Lehman, “Laws of software evolution revisited,” in Proceedings
of the 5th European Workshop on Software Process Technology, ser.
EWSPT ’96. London, UK, UK: Springer-Verlag, 1996, pp. 108–124.
[Online]. Available: http://dl.acm.org/citation.cfm?id=646195.681473

[2] S. Maple. (2015) Top 5 Java profilers revealed: Real world data
with VisualVM, JProfiler, Java Mission Control, YourKit and Custom
tooling. [Online]. Available: https://zeroturnaround.com/rebellabs/top-
5-java-profilers-revealed-real-world-data-with-visualvm-jprofiler-java-
mission-control-yourkit-and-custom-tooling/

[3] J. P. S. Alcocer, A. Bergel, S. Ducasse, and M. Denker, “Performance
evolution blueprint: Understanding the impact of software evolution on
performance,” in 2013 First IEEE Working Conference on Software
Visualization (VISSOFT), Sept 2013, pp. 1–9.

[4] A. Bergel, R. Robbes, and W. Binder, Visualizing Dynamic Metrics with
Profiling Blueprints. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 291–309. [Online]. Available: http://dx.doi.org/10.1007/978-
3-642-13953-6 16

[5] C. P. Bezemer, J. Pouwelse, and B. Gregg, “Understanding software
performance regressions using differential flame graphs,” in 2015 IEEE
22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), March 2015, pp. 535–539.

[6] D. Holten, B. Cornelissen, and J. J. van Wijk, “Trace visualization using
hierarchical edge bundles and massive sequence views,” in 2007 4th
IEEE International Workshop on Visualizing Software for Understanding
and Analysis, June 2007, pp. 47–54.

[7] W. De Pauw and S. Heisig, “Zinsight: A visual and analytic
environment for exploring large event traces,” in Proceedings of
the 5th International Symposium on Software Visualization. New
York, NY, USA: ACM, 2010, pp. 143–152. [Online]. Available:
http://doi.acm.org/10.1145/1879211.1879233

[8] E. Blanton, D. Lessa, P. Arora, L. Ziarek, and B. Jayaraman, “Ji.fi:
Visual test and debug queries for hard real-time,” Concurrency and
Computation: Practice and Experience, vol. 26, no. 14, pp. 2456–2487,
2014. [Online]. Available: http://dx.doi.org/10.1002/cpe.3156

[9] W. D. Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. M. Vlissides,
and J. Yang, “Visualizing the execution of java programs,” in Revised
Lectures on Software Visualization, International Seminar. London,
UK, UK: Springer-Verlag, 2002, pp. 151–162. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647382.724791

[10] Y. Watanabe, T. Ishio, and K. Inoue, “Feature-level phase detection
for execution trace using object cache,” in Proceedings of International
Workshop on Dynamic Analysis, 2008, pp. 8–14.

[11] S. Voigt, J. Bohnet, and J. Dollner, “Object aware execution trace
exploration,” in 2009 IEEE International Conference on Software Main-
tenance, Sept 2009, pp. 201–210.

[12] S. Medini, G. Antoniol, Y.-G. Gueneuc, M. D. Penta, and P. Tonella,
“SCAN: an Approach to Label and Relate Execution Trace Segments,”
in WCRE 2012, 2012.

[13] S. P. Reiss, “Dynamic detection and visualization of software phases,”
in Proceedings of the Int’l Workshop on Dynamic Analysis, May 2005,
pp. 1–6.

[14] G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware
performance counters with flow and context sensitive profiling,”
SIGPLAN Not., vol. 32, no. 5, pp. 85–96, May 1997. [Online].
Available: http://doi.acm.org/10.1145/258916.258924

[15] W. D. Pauw, S. Krasikov, and J. F. Morar, “Execution patterns for
visualizing web services,” in Proceedings of SoftVis, 2006, pp. 37–45.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1148499

[16] Y. Yamaguchi and T. Itoh, “Visualization of distributed processes using
”data jewelry box” algorithm,” in Proceedings of Computer Graphics
International, July 2003, pp. 162–169.

[17] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities:
A controlled experiment,” in Proceedings of the 33rd International
Conference on Software Engineering, ser. ICSE ’11. New York, NY,
USA: ACM, 2011, pp. 551–560.

[18] C. Russo dos Santos, P. Gros, P. Abel, D. Loisel, N. Trichaud, and
J.-P. Paris, “Mapping information onto 3D virtual worlds,” in IV 2000,

IEEE International Conference on Information Visualization, 19-21
July 2000, London, UK, London, UNITED KINGDOM, 07 2000.
[Online]. Available: http://www.eurecom.fr/publication/616

[19] T. Panas, R. Berrigan, and J. Grundy, “A 3D metaphor for software
production visualization,” in Proceedings on Seventh International Con-
ference on Information Visualization, 2003. IV 2003., July 2003, pp.
314–319.

[20] C. Knight and M. Munro, “Virtual but visible software,” in Proceedings
of the International Conference on Information Visualisation, ser. IV
’00. Washington, DC, USA: IEEE Computer Society, 2000, pp. 198–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=518910.850420

[21] S. M. Charters, C. Knight, N. Thomas, and M. Munro, “Visualisation
for informed decision making; from code to components,” in
Proceedings of the 14th International Conference on Software
Engineering and Knowledge Engineering, ser. SEKE ’02. New
York, NY, USA: ACM, 2002, pp. 765–772. [Online]. Available:
http://doi.acm.org/10.1145/568760.568891

[22] R. Wettel and M. Lanza, “Visually localizing design problems with
disharmony maps,” in Proceedings of the 4th ACM Symposium on
Software Visualization, ser. SoftVis ’08. New York, NY, USA: ACM,
2008, pp. 155–164. [Online]. Available: http://doi.acm.org/10.1145/
1409720.1409745

[23] N. Mitchell and G. Sevitsky, “The causes of bloat, the limits of health,”
SIGPLAN Not., vol. 42, no. 10, pp. 245–260, Oct. 2007. [Online].
Available: http://doi.acm.org/10.1145/1297105.1297046

[24] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The
DaCapo benchmarks: Java benchmarking development and analysis,”
in OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-Oriented Programing, Systems, Languages, and

Applications. ACM Press, Oct. 2006, pp. 169–190.

	matsumoto20181031_Part3
	26_VISSOFT2017

