5 research outputs found

    Visual-tactile sensory map calibration of a biomimetic whiskered robot

    Get PDF
    © 2016 IEEE. We present an adaptive filter model of cerebellar function applied to the calibration of a tactile sensory map to improve the accuracy of directed movements of a robotic manipulator. This is demonstrated using a platform called Bellabot that incorporates an array of biomimetic tactile whiskers, actuated using electro-active polymer artificial muscles, a camera to provide visual error feedback, and a standard industrial robotic manipulator. The algorithm learns to accommodate imperfections in the sensory map that may be as a result of poor manufacturing tolerances or damage to the sensory array. Such an ability is an important pre-requisite for robust tactile robotic systems operating in the real-world for extended periods of time. In this work the sensory maps have been purposely distorted in order to evaluate the performance of the algorithm

    Feed-forward selection of cerebellar models for calibration of robot sound source localization

    Get PDF
    We present a responsibility predictor, based on the adaptive filter model of the cerebellum, to provide feed-forward selection of cerebellar calibration models for robot Sound Source Localization (SSL), based on audio features extracted from the received audio stream. In previous work we described a system that selects the models based on sensory feedback, however, a drawback of that system is that it is only able to select a set of calibrators a-posteriori, after action (e.g. orienting a camera toward the sound source after a position estimate is made). The responsibility predictor improved the system performance compared to that without responsibility prediction. We show that a trained responsibility predictor is able to use contextual signals in the absence of ground truth to successfully select models with a performance approaching that of a system with full access to the ground truth through sensory feedback

    Calibration of sound source localisation for robots using multiple adaptive filter models of the cerebellum

    Get PDF
    The aim of this research was to investigate the calibration of Sound Source Localisation (SSL) for robots using the adaptive filter model of the cerebellum and how this could be automatically adapted for multiple acoustic environments. The role of the cerebellum has mainly been identified in the context of motor control, and only in recent years has it been recognised that it has a wider role to play in the senses and cognition. The adaptive filter model of the cerebellum has been successfully applied to a number of robotics applications but so far none involving auditory sense. Multiple models frameworks such as MOdular Selection And Identification for Control (MOSAIC) have also been developed in the context of motor control, and this has been the inspiration for adaptation of audio calibration in multiple acoustic environments; again, application of this approach in the area of auditory sense is completely new. The thesis showed that it was possible to calibrate the output of an SSL algorithm using the adaptive filter model of the cerebellum, improving the performance compared to the uncalibrated SSL. Using an adaptation of the MOSAIC framework, and specifically using responsibility estimation, a system was developed that was able to select an appropriate set of cerebellar calibration models and to combine their outputs in proportion to how well each was able to calibrate, to improve the SSL estimate in multiple acoustic contexts, including novel contexts. The thesis also developed a responsibility predictor, also part of the MOSAIC framework, and this improved the robustness of the system to abrupt changes in context which could otherwise have resulted in a large performance error. Responsibility prediction also improved robustness to missing ground truth, which could occur in challenging environments where sensory feedback of ground truth may become impaired, which has not been addressed in the MOSAIC literature, adding to the novelty of the thesis. The utility of the so-called cerebellar chip has been further demonstrated through the development of a responsibility predictor that is based on the adaptive filter model of the cerebellum, rather than the more conventional function fitting neural network used in the literature. Lastly, it was demonstrated that the multiple cerebellar calibration architecture is capable of limited self-organising from a de-novo state, with a predetermined number of models. It was also demonstrated that the responsibility predictor could learn against its model after self-organisation, and to a limited extent, during self-organisation. The thesis addresses an important question of how a robot could improve its ability to listen in multiple, challenging acoustic environments, and recommends future work to develop this ability
    corecore