23 research outputs found

    Threshold adaptation and XOR accumulation algorithm for objects detection

    Get PDF
    Object detection, tracking and video analysis are vital and energetic tasks for intelligent video surveillance systems and computer vision applications. Object detection based on background modelling is a major technique used in dynamically objects extraction over video streams. This paper presents the threshold adaptation and XOR accumulation (TAXA) algorithm in three systematic stages throughout video sequences. First, the continuous calculation, updating and elimination of noisy background details with hybrid statistical techniques. Second, thresholds are calculated with an effective mean and gaussian for the detection of the pixels of the objects. The third is a novel step in making decisions by using XOR-accumulation to extract pixels of the objects from the thresholds accurately. Each stage was presented with practical representations and theoretical explanations. On high resolution video which has difficult scenes and lighting conditions, the proposed algorithm was used and tested. As a result, with a precision average of 0.90% memory uses of 6.56% and the use of CPU 20% as well as time performance, the result excellent overall superior to all the major used foreground object extraction algorithms. As a conclusion, in comparison to other popular OpenCV methods the proposed TAXA algorithm has excellent detection ability

    Refinement network for unsupervised on the scene foreground segmentation

    Get PDF
    Unsupervised learning represents one of the most interesting challenges in computer vision today. The task has an immense practical value with many applications in artificial intelligence and emerging technologies, as large quantities of unlabeled images and videos can be collected at low cost. In this paper, we address the unsupervised learning problem in the context of segmenting the main foreground objects in single images. We propose an unsupervised learning system, which has two pathways, the teacher and the student, respectively. The system is designed to learn over several generations of teachers and students. At every generation the teacher performs unsupervised object discovery in videos or collections of images and an automatic selection module picks up good frame segmentations and passes them to the student pathway for training. At every generation multiple students are trained, with different deep network architectures to ensure a better diversity. The students at one iteration help in training a better selection module, forming together a more powerful teacher pathway at the next iteration. In experiments, we show that the improvement in the selection power, the training of multiple students and the increase in unlabeled data significantly improve segmentation accuracy from one generation to the next. Our method achieves top results on three current datasets for object discovery in video, unsupervised image segmentation and saliency detection. At test time, the proposed system is fast, being one to two orders of magnitude faster than published unsupervised methods. We also test the strength of our unsupervised features within a well known transfer learning setup and achieve competitive performance, proving that our unsupervised approach can be reliably used in a variety of computer vision tasks.During the development of this work the first author was a visitor at TOSHIBA Cambridge Research Lab. This work has been carried out with the support of this lab and project TEC2016-75976-R, by the Ministerio de Economia, Industria y Competitividad and the European Regional Development Fund.Peer ReviewedPostprint (published version

    Background Subtraction Methods in Video Streams: A Review

    Get PDF
    Background subtraction is one of the most important parts in image and video processing field. There are some unnecessary parts during the image or video processing, and should be removed, because they lead to more execution time or required memory. Several subtraction methods have been presented for the time being, but find the best-suited method is an issue, which this study is going to address. Furthermore, each process needs to the specific subtraction technique, and knowing this issue helps researchers to achieve faster and higher performance in their research. This paper presents a comparative study of several existing background subtraction methods which have been investigated from simple background subtraction to more complex statistical techniques. The goal of this study is to provide a view of the strengths and drawbacks of the widely used methods. The methods are compared based on their memory requirement, the computational time and their robustness of different videos. Finally, a comparison between the existing methods has been employed with some factors like computational time or memory requirements. It is also hoped that this analysis helps researchers to address the difficulty of selecting the most convenient method for background subtraction

    Deep background subtraction of thermal and visible imagery for redestrian detection in videos

    Get PDF
    In this paper, we introduce an efficient framework to subtract the background from both visible and thermal imagery for pedestrians’ detection in the urban scene. We use a deep neural network (DNN) to train the background subtraction model. For the training of the DNN, we first generate an initial background map and then employ randomly 5% video frames, background map, and manually segmented ground truth. Then we apply a cognition-based post-processing to further smooth the foreground detection result. We evaluate our method against our previous work and 11 recently widely cited method on three challenge video series selected from a publicly available color-thermal benchmark dataset OCTBVS. Promising results have been shown that the proposed DNN-based approach can successfully detect the pedestrians with good shape in most scenes regardless of illuminate changes and occlusion problem

    Background Modeling to Detect Foreground Objects Based on ANN and Spatio-Temporal Analysis

    Get PDF
    corecore