83 research outputs found

    MOTION CONTROL SIMULATION OF A HEXAPOD ROBOT

    Get PDF
    This thesis addresses hexapod robot motion control. Insect morphology and locomotion patterns inform the design of a robotic model, and motion control is achieved via trajectory planning and bio-inspired principles. Additionally, deep learning and multi-agent reinforcement learning are employed to train the robot motion control strategy with leg coordination achieves using a multi-agent deep reinforcement learning framework. The thesis makes the following contributions: First, research on legged robots is synthesized, with a focus on hexapod robot motion control. Insect anatomy analysis informs the hexagonal robot body and three-joint single robotic leg design, which is assembled using SolidWorks. Different gaits are studied and compared, and robot leg kinematics are derived and experimentally verified, culminating in a three-legged gait for motion control. Second, an animal-inspired approach employs a central pattern generator (CPG) control unit based on the Hopf oscillator, facilitating robot motion control in complex environments such as stable walking and climbing. The robot\u27s motion process is quantitatively evaluated in terms of displacement change and body pitch angle. Third, a value function decomposition algorithm, QPLEX, is applied to hexapod robot motion control. The QPLEX architecture treats each leg as a separate agent with local control modules, that are trained using reinforcement learning. QPLEX outperforms decentralized approaches, achieving coordinated rhythmic gaits and increased robustness on uneven terrain. The significant of terrain curriculum learning is assessed, with QPLEX demonstrating superior stability and faster consequence. The foot-end trajectory planning method enables robot motion control through inverse kinematic solutions but has limited generalization capabilities for diverse terrains. The animal-inspired CPG-based method offers a versatile control strategy but is constrained to core aspects. In contrast, the multi-agent deep reinforcement learning-based approach affords adaptable motion strategy adjustments, rendering it a superior control policy. These methods can be combined to develop a customized robot motion control policy for specific scenarios

    Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    Get PDF
    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. They can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a walking robot is a challenging task. In this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a biomechanical walking robot. The turning information is transmitted as descending steering signals to the locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations as well as escaping from sharp corners or deadlocks. Using backbone joint control embedded in the locomotion control allows the robot to climb over small obstacles. Consequently, it can successfully explore and navigate in complex environments

    Comparative Study of Different Methods in Vibration-Based Terrain Classification for Wheeled Robots with Shock Absorbers

    Get PDF
    open access articleAutonomous robots that operate in the field can enhance their security and efficiency by accurate terrain classification, which can be realized by means of robot-terrain interaction-generated vibration signals. In this paper, we explore the vibration-based terrain classification (VTC), in particular for a wheeled robot with shock absorbers. Because the vibration sensors are usually mounted on the main body of the robot, the vibration signals are dampened significantly, which results in the vibration signals collected on different terrains being more difficult to discriminate. Hence, the existing VTC methods applied to a robot with shock absorbers may degrade. The contributions are two-fold: (1) Several experiments are conducted to exhibit the performance of the existing feature-engineering and feature-learning classification methods; and (2) According to the long short-term memory (LSTM) network, we propose a one-dimensional convolutional LSTM (1DCL)-based VTC method to learn both spatial and temporal characteristics of the dampened vibration signals. The experiment results demonstrate that: (1) The feature-engineering methods, which are efficient in VTC of the robot without shock absorbers, are not so accurate in our project; meanwhile, the feature-learning methods are better choices; and (2) The 1DCL-based VTC method outperforms the conventional methods with an accuracy of 80.18%, which exceeds the second method (LSTM) by 8.23%

    Investigation of energy efficiency of hexapod robot locomotion

    Get PDF
    Disertacijoje nagrinėjamos vaikščiojančių robotų energijos sąnaudų problemos jiems judant lygiu ir nelygiu paviršiumi. Pagrindinis tyrimo objektas yra vaikščiojančio roboto valdymo, aplinkos atpažinimo bei kliūčių išvengimo žinomoje aplinkoje metodas. Energijos sąnaudų minimizavimas leistų praplėsti vaikščiojančių robotų pritaikymą ir veikimo laiką. Pagrindinis darbo tikslas – sukurti energijos sąnaudų minimizavimo metodus vaikščiojantiems robotams ir sukurti aplinkos atpažinimo ir klasifikavimo metodus bei ištirti šešiakojo roboto energijos sąnaudas jiems judant žinomoje aplinkoje. Šie metodai gali būti taikomi vaikščiojantiems daugiakojams robotams. Darbe sprendžiami šie uždaviniai: šešiakojo roboto eisenos parinkimas atsižvelgiant į energijos sąnaudas, paviršiaus kliūčių aptikimo ir perlipimo metodų sudarymas ir jų efektyvumo palyginimas. Taip pat sprendžiami uždaviniai, kurie siejasi su pėdų trajektorijos generavimo metodo kūrimu bei kliūčių dydžio ir tankio įtaka roboto energijos sąnaudoms. Disertaciją sudaro įvadas, trys skyriai, bendrosios išvados, naudotos literatūros ir autoriaus publikacijų disertacijos tema sąrašai. Įvade aptariama tiriamoji problema, darbo aktualumas, aprašomas tyrimų objektas, formuluojamas darbo tikslas bei uždaviniai, aprašoma tyrimų metodika, darbo mokslinis naujumas, darbo rezultatų praktinė reikšmė, ginamieji teiginiai. Įvado pabaigoje pristatomos disertacijos tema autoriaus paskelbtos publikacijos ir pranešimai konferencijose bei disertacijos struktūra. Pirmasis skyrius skirtas literatūros apžvalgai. Jame pateikta mobiliųjų robotų energetinio efektyvumo bei energijos sąnaudų matavimo, skaičiavimo ir optimizavimo metodų analizė. Antrajame skyriuje pateiktas energetiškai efektyvaus judėjimo metodikos sudarymas vaikščiojantiems robotams. Šiame skyriuje pateiktas šešiakojo roboto matematinio ir fizinio modelių sudarymas, nelygaus paviršiaus klasifikavimo modelio sudarymas bei taktilinio kliūčių aptikimo bei perlipimo metodų sudarymas. Skyriaus gale pateikiamos išvados. Trečiajame skyriuje tiriamos energijos sąnaudų priklausomybės nuo roboto eisenos bei judėjimo parametrų, kliūčių aptikimo ir perlipimo tikslumas priklausomai nuo kliūčių skaičiaus roboto kelyje, taip pat kliūčių dydžio ir tankio įtaka roboto energijos sąnaudoms. Disertacijos tema paskelbti 9 straipsniai: keturi – Clarivate Analytics Web of Science duomenų bazės leidiniuose, turinčiuose citavimo rodiklį, trys – Clarivate Analytics Web of Science duomenų bazės „Conference Proceedings“ leidiniuose ir du – kituose recenzuojamuose mokslo leidiniuose. Disertacijos tema perskaityti 7 pranešimai konferencijose Lietuvoje bei kitose šalyse

    Analytical Workspace, Kinematics, and Foot Force Based Stability of Hexapod Walking Robots

    Get PDF
    Many environments are inaccessible or hazardous for humans. Remaining debris after earthquake and fire, ship hulls, bridge installations, and oil rigs are some examples. For these environments, major effort is being placed into replacing humans with robots for manipulation purposes such as search and rescue, inspection, repair, and maintenance. Mobility, manipulability, and stability are the basic needs for a robot to traverse, maneuver, and manipulate in such irregular and highly obstructed terrain. Hexapod walking robots are as a salient solution because of their extra degrees of mobility, compared to mobile wheeled robots. However, it is essential for any multi-legged walking robot to maintain its stability over the terrain or under external stimuli. For manipulation purposes, the robot must also have a sufficient workspace to satisfy the required manipulability. Therefore, analysis of both workspace and stability becomes very important. An accurate and concise inverse kinematic solution for multi-legged robots is developed and validated. The closed-form solution of lateral and spatial reachable workspace of axially symmetric hexapod walking robots are derived and validated through simulation which aid in the design and optimization of the robot parameters and workspace. To control the stability of the robot, a novel stability margin based on the normal contact forces of the robot is developed and then modified to account for the geometrical and physical attributes of the robot. The margin and its modified version are validated by comparison with a widely known stability criterion through simulated and physical experiments. A control scheme is developed to integrate the workspace and stability of multi-legged walking robots resulting in a bio-inspired reactive control strategy which is validated experimentally

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Development of a Quadruped Robot and Parameterized Stair-Climbing Behavior

    Get PDF
    Stair-climbing is a difficult task for mobile robots to accomplish, particularly for legged robots. While quadruped robots have previously demonstrated the ability to climb stairs, none have so far been capable of climbing stairs of variable height while carrying all required sensors, controllers, and power sources on-board. The goal of this thesis was the development of a self-contained quadruped robot capable of detecting, classifying, and climbing stairs of any height within a specified range. The design process for this robot is described, including the development of the joint, leg, and body configuration, the design and selection of components, and both dynamic and finite element analyses performed to verify the design. A parameterized stair-climbing gait is then developed, which is adaptable to any stair height of known width and height. This behavior is then implemented on the previously discussed quadruped robot, which then demonstrates the capability to climb three different stair variations with no configuration change

    Posture control of a low-cost commercially available hexapod robot for uneven terrain locomotion

    Get PDF
    Legged robots hold the advantage on uneven and irregular terrain, where they exhibit superior mobility over other terrestrial, mobile robots. One of the fundamental ingredients in achieving this exceptional mobility on uneven terrain is posture control, also referred to as attitude control. Many approaches to posture control for multi-legged robots have been taken in the literature; however, the majority of this research has been conducted on custom designed platforms, with sophisticated hardware and, often, fully custom software. Commercially available robots hardly feature in research on uneven terrain locomotion of legged robots, despite the significant advantages they pose over custom designed robots, including drastically lower costs, reusability of parts, and reduced development time, giving them the serious potential to be employed as low-cost research and development platforms. Hence, the aim of this study was to design and implement a posture control system on a low-cost, commercially available hexapod robot – the PhantomX MK-II – overcoming the limitations presented by the lower cost hardware and open source software, while still achieving performance comparable to that exhibited by custom designed robots. For the initial controller development, only the case of the robot standing on all six legs was considered, without accounting for walking motion. This Standing Posture Controller made use of the Virtual Model Control (VMC) strategy, along with a simple foot force distribution rule and a direct force control method for each of the legs, the joints of which can only be position controlled (i.e. they do not have torque control capabilities). The Standing Posture Controller was experimentally tested on level and uneven terrain, as well as on a dynamic balance board. Ground truth measurements of the posture during testing exhibited satisfactory performance, which compared favourably to results of similar tests performed on custom designed platforms. Thereafter, the control system was modified for the more general case of walking. The Walking Posture Controller still made use of VMC for the high-level posture control, but the foot force distribution was expanded to also account for a tripod of ground contact legs during walking. Additionally, the foot force control structure was modified to achieve compliance control of the legs during the swing phase, while still providing direct force control during the stance phase, using the same overall control structure, with a simple switching strategy, all without the need for torque control or modification of the motion control system of the legs, resulting in a novel foot force control system for low-cost, legged robots. Experimental testing of the Walking Posture Controller, with ground truth measurements, revealed that it improved the robot’s posture response by a small amount when walking on flat terrain, while on an uneven terrain setup the maximum roll and pitch angle deviations were reduced by up to 28.6% and 28.1%, respectively, as compared to the uncompensated case. In addition to reducing the maximum deviations on uneven terrain, the overall posture response was significantly improved, resulting in a response much closer to that observed on flat terrain, throughout much of the uneven terrain locomotion. Comparing these results to those obtained in similar tests performed with more sophisticated, custom designed robots, it is evident that the Walking Posture Controller exhibits favourable performance, thus fulfilling the aim of this study.Dissertation (MEng)--University of Pretoria, 2018.Mechanical and Aeronautical EngineeringMEngUnrestricte
    corecore