1,190 research outputs found

    Cortical spatio-temporal dimensionality reduction for visual grouping

    Full text link
    The visual systems of many mammals, including humans, is able to integrate the geometric information of visual stimuli and to perform cognitive tasks already at the first stages of the cortical processing. This is thought to be the result of a combination of mechanisms, which include feature extraction at single cell level and geometric processing by means of cells connectivity. We present a geometric model of such connectivities in the space of detected features associated to spatio-temporal visual stimuli, and show how they can be used to obtain low-level object segmentation. The main idea is that of defining a spectral clustering procedure with anisotropic affinities over datasets consisting of embeddings of the visual stimuli into higher dimensional spaces. Neural plausibility of the proposed arguments will be discussed

    Electromagnetic Propagation Prediction Inside Aircraft Cabins

    Get PDF
    Electromagnetic propagation models for signal strength prediction within aircraft cabins are essential for evaluating and designing a wireless communication system to be implemented onboard aircraft. There are many commercially available software packages for predicting wireless system performance in conventional indoor environments. It is of interest to examine the available software to determine if the aircraft\u27s electromagnetic environment (EME) can be modeled successfully without developing an aircraft specific prediction tool. EnterprisePlanner ®, a registered product of Wireless Valley Communications, Incorporated, was selected for the present effort. The performance of the prediction model was evaluated through a comparison with field measurements taken on the aircraft. It was concluded that the prediction model can accurately predict power propagation throughout the cabin. This prediction tool can enhance researchers\u27 understanding of power propagation within aircraft cabins and will aid in future research

    Qualia: The Geometry of Integrated Information

    Get PDF
    According to the integrated information theory, the quantity of consciousness is the amount of integrated information generated by a complex of elements, and the quality of experience is specified by the informational relationships it generates. This paper outlines a framework for characterizing the informational relationships generated by such systems. Qualia space (Q) is a space having an axis for each possible state (activity pattern) of a complex. Within Q, each submechanism specifies a point corresponding to a repertoire of system states. Arrows between repertoires in Q define informational relationships. Together, these arrows specify a quale—a shape that completely and univocally characterizes the quality of a conscious experience. Φ— the height of this shape—is the quantity of consciousness associated with the experience. Entanglement measures how irreducible informational relationships are to their component relationships, specifying concepts and modes. Several corollaries follow from these premises. The quale is determined by both the mechanism and state of the system. Thus, two different systems having identical activity patterns may generate different qualia. Conversely, the same quale may be generated by two systems that differ in both activity and connectivity. Both active and inactive elements specify a quale, but elements that are inactivated do not. Also, the activation of an element affects experience by changing the shape of the quale. The subdivision of experience into modalities and submodalities corresponds to subshapes in Q. In principle, different aspects of experience may be classified as different shapes in Q, and the similarity between experiences reduces to similarities between shapes. Finally, specific qualities, such as the “redness” of red, while generated by a local mechanism, cannot be reduced to it, but require considering the entire quale. Ultimately, the present framework may offer a principled way for translating qualitative properties of experience into mathematics

    AutoGraff: towards a computational understanding of graffiti writing and related art forms.

    Get PDF
    The aim of this thesis is to develop a system that generates letters and pictures with a style that is immediately recognizable as graffiti art or calligraphy. The proposed system can be used similarly to, and in tight integration with, conventional computer-aided geometric design tools and can be used to generate synthetic graffiti content for urban environments in games and in movies, and to guide robotic or fabrication systems that can materialise the output of the system with physical drawing media. The thesis is divided into two main parts. The first part describes a set of stroke primitives, building blocks that can be combined to generate different designs that resemble graffiti or calligraphy. These primitives mimic the process typically used to design graffiti letters and exploit well known principles of motor control to model the way in which an artist moves when incrementally tracing stylised letter forms. The second part demonstrates how these stroke primitives can be automatically recovered from input geometry defined in vector form, such as the digitised traces of writing made by a user, or the glyph outlines in a font. This procedure converts the input geometry into a seed that can be transformed into a variety of calligraphic and graffiti stylisations, which depend on parametric variations of the strokes

    Human Metaphase Chromosome Analysis using Image Processing

    Get PDF
    Development of an effective human metaphase chromosome analysis algorithm can optimize expert time usage by increasing the efficiency of many clinical diagnosis processes. Although many methods exist in the literature, they are only applicable for limited morphological variations and are specific to the staining method used during cell preparation. They are also highly influenced by irregular chromosome boundaries as well as the presence of artifacts such as premature sister chromatid separation. Therefore an algorithm is proposed in this research which can operate with any morphological variation of the chromosome across images from multiple staining methods. The proposed algorithm is capable of calculating the segmentation outline, the centerline (which gives the chromosome length), partitioning of the telomere regions and the centromere location of a given chromosome. The algorithm also detects and corrects for the sister chromatid separation artifact in metaphase cell images. A metric termed the Candidate Based Centromere Confidence (CBCC) is proposed to accompany each centromere detection result of the proposed method, giving an indication of the confidence the algorithm has on a given localization. The proposed method was first tested for the ability of calculating an accurate width profile against a centerline based method [1] using 226 chromosomes. A statistical analysis of the centromere detection error values proved that the proposed method can accurately locate centromere locations with statistical significance. Furthermore, the proposed method performed more consistently across different staining methods in comparison to the centerline based approach. When tested with a larger data set of 1400 chromosomes collected from a set of DAPI (4\u27,6-diamidino-2-phenylindole) and Giemsa stained cell images, the proposed candidate based centromere detection algorithm was able to accurately localize 1220 centromere locations yielding a detection accuracy of 87%

    Multi-scale active shape description in medical imaging

    Get PDF
    Shape description in medical imaging has become an increasingly important research field in recent years. Fast and high-resolution image acquisition methods like Magnetic Resonance (MR) imaging produce very detailed cross-sectional images of the human body - shape description is then a post-processing operation which abstracts quantitative descriptions of anatomically relevant object shapes. This task is usually performed by clinicians and other experts by first segmenting the shapes of interest, and then making volumetric and other quantitative measurements. High demand on expert time and inter- and intra-observer variability impose a clinical need of automating this process. Furthermore, recent studies in clinical neurology on the correspondence between disease status and degree of shape deformations necessitate the use of more sophisticated, higher-level shape description techniques. In this work a new hierarchical tool for shape description has been developed, combining two recently developed and powerful techniques in image processing: differential invariants in scale-space, and active contour models. This tool enables quantitative and qualitative shape studies at multiple levels of image detail, exploring the extra image scale degree of freedom. Using scale-space continuity, the global object shape can be detected at a coarse level of image detail, and finer shape characteristics can be found at higher levels of detail or scales. New methods for active shape evolution and focusing have been developed for the extraction of shapes at a large set of scales using an active contour model whose energy function is regularized with respect to scale and geometric differential image invariants. The resulting set of shapes is formulated as a multiscale shape stack which is analysed and described for each scale level with a large set of shape descriptors to obtain and analyse shape changes across scales. This shape stack leads naturally to several questions in regard to variable sampling and appropriate levels of detail to investigate an image. The relationship between active contour sampling precision and scale-space is addressed. After a thorough review of modem shape description, multi-scale image processing and active contour model techniques, the novel framework for multi-scale active shape description is presented and tested on synthetic images and medical images. An interesting result is the recovery of the fractal dimension of a known fractal boundary using this framework. Medical applications addressed are grey-matter deformations occurring for patients with epilepsy, spinal cord atrophy for patients with Multiple Sclerosis, and cortical impairment for neonates. Extensions to non-linear scale-spaces, comparisons to binary curve and curvature evolution schemes as well as other hierarchical shape descriptors are discussed
    corecore