204 research outputs found

    Trajectory Approximation of Video Based on Phase Correlation for Forward Facing Camera

    Full text link
    In this paper, we introduce an innovative approach for extracting trajectories from a camera sensor in GPS-denied environments, leveraging visual odometry. The system takes video footage captured by a forward-facing camera mounted on a vehicle as input, with the output being a chain code representing the camera's trajectory. The proposed methodology involves several key steps. Firstly, we employ phase correlation between consecutive frames of the video to extract essential information. Subsequently, we introduce a novel chain code method termed "dynamic chain code," which is based on the x-shift values derived from the phase correlation. The third step involves determining directional changes (forward, left, right) by establishing thresholds and extracting the corresponding chain code. This extracted code is then stored in a buffer for further processing. Notably, our system outperforms traditional methods reliant on spatial features, exhibiting greater speed and robustness in noisy environments. Importantly, our approach operates without external camera calibration information. Moreover, by incorporating visual odometry, our system enhances its accuracy in estimating camera motion, providing a more comprehensive understanding of trajectory dynamics. Finally, the system culminates in the visualization of the normalized camera motion trajectory

    Improved Fourier Mellin Invariant for Robust Rotation Estimation with Omni-cameras

    Full text link
    Spectral methods such as the improved Fourier Mellin Invariant (iFMI) transform have proved faster, more robust and accurate than feature based methods on image registration. However, iFMI is restricted to work only when the camera moves in 2D space and has not been applied on omni-cameras images so far. In this work, we extend the iFMI method and apply a motion model to estimate an omni-camera's pose when it moves in 3D space. This is particularly useful in field robotics applications to get a rapid and comprehensive view of unstructured environments, and to estimate robustly the robot pose. In the experiment section, we compared the extended iFMI method against ORB and AKAZE feature based approaches on three datasets showing different type of environments: office, lawn and urban scenery (MPI-omni dataset). The results show that our method boosts the accuracy of the robot pose estimation two to four times with respect to the feature registration techniques, while offering lower processing times. Furthermore, the iFMI approach presents the best performance against motion blur typically present in mobile robotics.Comment: 5 pages, 4 figures, 1 tabl

    Applications of Two Dimensional Fractional Fourier-Mellin Transform to Differential Equations

    Full text link
    Integral transforms play wide and important role in mathematical physics, theoretical physics. Fourier-Mellin transform is used in fields like electronics, agriculture, medical etc.nbspIt has applications as registration of images, watermarks, invariant pattern recognition, preprocessing of images.nbspIn this paper we have obtained the differential operator and and and*. Using it we have solved the differential equation of the type . Also an application of two-dimensional fractional Fourier-Mellin transform to differential equation is presented

    Plenoptic Signal Processing for Robust Vision in Field Robotics

    Get PDF
    This thesis proposes the use of plenoptic cameras for improving the robustness and simplicity of machine vision in field robotics applications. Dust, rain, fog, snow, murky water and insufficient light can cause even the most sophisticated vision systems to fail. Plenoptic cameras offer an appealing alternative to conventional imagery by gathering significantly more light over a wider depth of field, and capturing a rich 4D light field structure that encodes textural and geometric information. The key contributions of this work lie in exploring the properties of plenoptic signals and developing algorithms for exploiting them. It lays the groundwork for the deployment of plenoptic cameras in field robotics by establishing a decoding, calibration and rectification scheme appropriate to compact, lenslet-based devices. Next, the frequency-domain shape of plenoptic signals is elaborated and exploited by constructing a filter which focuses over a wide depth of field rather than at a single depth. This filter is shown to reject noise, improving contrast in low light and through attenuating media, while mitigating occluders such as snow, rain and underwater particulate matter. Next, a closed-form generalization of optical flow is presented which directly estimates camera motion from first-order derivatives. An elegant adaptation of this "plenoptic flow" to lenslet-based imagery is demonstrated, as well as a simple, additive method for rendering novel views. Finally, the isolation of dynamic elements from a static background is considered, a task complicated by the non-uniform apparent motion caused by a mobile camera. Two elegant closed-form solutions are presented dealing with monocular time-series and light field image pairs. This work emphasizes non-iterative, noise-tolerant, closed-form, linear methods with predictable and constant runtimes, making them suitable for real-time embedded implementation in field robotics applications

    Plenoptic Signal Processing for Robust Vision in Field Robotics

    Get PDF
    This thesis proposes the use of plenoptic cameras for improving the robustness and simplicity of machine vision in field robotics applications. Dust, rain, fog, snow, murky water and insufficient light can cause even the most sophisticated vision systems to fail. Plenoptic cameras offer an appealing alternative to conventional imagery by gathering significantly more light over a wider depth of field, and capturing a rich 4D light field structure that encodes textural and geometric information. The key contributions of this work lie in exploring the properties of plenoptic signals and developing algorithms for exploiting them. It lays the groundwork for the deployment of plenoptic cameras in field robotics by establishing a decoding, calibration and rectification scheme appropriate to compact, lenslet-based devices. Next, the frequency-domain shape of plenoptic signals is elaborated and exploited by constructing a filter which focuses over a wide depth of field rather than at a single depth. This filter is shown to reject noise, improving contrast in low light and through attenuating media, while mitigating occluders such as snow, rain and underwater particulate matter. Next, a closed-form generalization of optical flow is presented which directly estimates camera motion from first-order derivatives. An elegant adaptation of this "plenoptic flow" to lenslet-based imagery is demonstrated, as well as a simple, additive method for rendering novel views. Finally, the isolation of dynamic elements from a static background is considered, a task complicated by the non-uniform apparent motion caused by a mobile camera. Two elegant closed-form solutions are presented dealing with monocular time-series and light field image pairs. This work emphasizes non-iterative, noise-tolerant, closed-form, linear methods with predictable and constant runtimes, making them suitable for real-time embedded implementation in field robotics applications

    Correlation Flow: Robust Optical Flow Using Kernel Cross-Correlators

    Full text link
    Robust velocity and position estimation is crucial for autonomous robot navigation. The optical flow based methods for autonomous navigation have been receiving increasing attentions in tandem with the development of micro unmanned aerial vehicles. This paper proposes a kernel cross-correlator (KCC) based algorithm to determine optical flow using a monocular camera, which is named as correlation flow (CF). Correlation flow is able to provide reliable and accurate velocity estimation and is robust to motion blur. In addition, it can also estimate the altitude velocity and yaw rate, which are not available by traditional methods. Autonomous flight tests on a quadcopter show that correlation flow can provide robust trajectory estimation with very low processing power. The source codes are released based on the ROS framework.Comment: 2018 International Conference on Robotics and Automation (ICRA 2018

    Novel Camera Architectures for Localization and Mapping on Intelligent Mobile Platforms

    Get PDF
    Self-localization and environment mapping play a very important role in many robotics application such as autonomous driving and mixed reality consumer products. Although the most powerful solutions rely on a multitude of sensors including lidars and camera, the community maintains a high interest in developing cost-effective, purely vision-based localization and mapping approaches. The core problem of standard vision-only solutions is accuracy and robustness, especially in challenging visual conditions. The thesis aims to introduce new solutions to localization and mapping problems on intelligent mobile devices by taking advantages of novel camera architectures. The thesis investigates on using surround-view multi-camera systems, which combine the benefits of omni-directional measurements with a sufficient baseline for producing measurements in metric scale, and event cameras, that perform well under challenging illumination conditions and have high temporal resolutions. The thesis starts by looking into the motion estimation framework with multi-perspective camera systems. The framework could be divided into two sub-parts, a front-end module that initializes motion and estimates absolute pose after bootstrapping, and a back-end module that refines the estimate over a larger-scale sequence. First, the thesis proposes a complete real-time pipeline for visual odometry with non-overlapping, multi-perspective camera systems, and in particular presents a solution to the scale initialization problem, in order to solve the unobservability of metric scale under degenerate cases with such systems. Second, the thesis focuses on the further improvement of front-end relative pose estimation for vehicle-mounted surround-view multi-camera systems. It presents a new, reliable solution able to handle all kinds of relative displacements in the plane despite the possibly non-holonomic characteristics, and furthermore introduces a novel two-view optimization scheme which minimizes a geometrically relevant error without relying on 3D points related optimization variables. Third, the thesis explores the continues-time parametrization for exact modelling of non-holonomic ground vehicle trajectories in the back-end optimization of visual SLAM pipeline. It demonstrates the use of B-splines for an exact imposition of smooth, non-holonomic trajectories inside the 6 DoF bundle adjustment, and show that a significant improvement in robustness and accuracy in degrading visual conditions can be achieved. In order to deal with challenges in scenarios with high dynamics, low texture distinctiveness, or challenging illumination conditions, the thesis focuses on the solution to localization and mapping problem on Autonomous Ground Vehicle(AGV) using event cameras. Inspired by the time-continuous parametrizations of image warping functions introduced by previous works, the thesis proposes two new algorithms to tackle several motion estimation problems by performing contrast maximization approach. It firstly looks at the fronto-parallel motion estimation of an event camera, in stark contrast to the prior art, a globally optimal solution to this motion estimation problem is derived by using a branch-and-bound optimization scheme. Then, the thesis introduces a new solution to handle the localization and mapping problem of single event camera by continuous ray warping and volumetric contrast maximization, which can perform joint optimization over motion and structure for cameras exerting both translational and rotational displacements in an arbitrarily structured environment. The present thesis thus makes important contributions on both front-end and back-end of SLAM pipelines based on novel, promising camera architectures
    • …
    corecore