643 research outputs found

    RGB-D datasets using microsoft kinect or similar sensors: a survey

    Get PDF
    RGB-D data has turned out to be a very useful representation of an indoor scene for solving fundamental computer vision problems. It takes the advantages of the color image that provides appearance information of an object and also the depth image that is immune to the variations in color, illumination, rotation angle and scale. With the invention of the low-cost Microsoft Kinect sensor, which was initially used for gaming and later became a popular device for computer vision, high quality RGB-D data can be acquired easily. In recent years, more and more RGB-D image/video datasets dedicated to various applications have become available, which are of great importance to benchmark the state-of-the-art. In this paper, we systematically survey popular RGB-D datasets for different applications including object recognition, scene classification, hand gesture recognition, 3D-simultaneous localization and mapping, and pose estimation. We provide the insights into the characteristics of each important dataset, and compare the popularity and the difficulty of those datasets. Overall, the main goal of this survey is to give a comprehensive description about the available RGB-D datasets and thus to guide researchers in the selection of suitable datasets for evaluating their algorithms

    Augmented Virtuality Data Annotation and Human-in-the-Loop Refinement for RGBD Data in Industrial Bin-Picking Scenarios

    Get PDF
    Beyond conventional automated tasks, autonomous robot capabilities aside to human cognitive skills are gaining importance. This comprises goods commissioning and material supply in intralogistics as well as material feeding and assembly operations in production. Deep learning-based computer vision is considered as enabler for autonomy. Currently, the effort to generate specific datasets is challenging. Adaptation of new components often also results in downtimes. The objective of this paper is to propose an augmented virtuality (AV) based RGBD data annotation and refinement method. The approach reduces required effort in initial dataset generation to enable prior system commissioning and enables dataset quality improvement up to operational readiness during ramp-up. In addition, remote fault intervention through a teleoperation interface is provided to increase operational system availability. Several components within a real-world experimental bin-picking setup serve for evaluation. The results are quantified by comparison to established annotation methods and through known evaluation metrics for pose estimation in bin-picking scenarios. The results enable to derive accurate and more time-efficient data annotation for different algorithms. The AV approach shows a noticeable reduction in required effort and timespan for annotation as well as dataset refinement

    Sliding Mode Control (SMC) of Image‐Based Visual Servoing for a 6DOF Manipulator

    Get PDF
    The accuracy and stability are two fundamental concerns of the visual servoing control system. This chapter presents a sliding mode controller for image‐based visual servoing (IBVS) which can increase the accuracy of 6DOF robotic system with guaranteed stability. The proposed controller combines proportional derivative (PD) control with sliding mode control (SMC) for a 6DOF manipulator. Compared with conventional proportional or SMC controller, this approach owns faster convergence and better disturbance rejection ability. Both simulation and experimental results show that the proposed controller can increase the accuracy and robustness of a 6DOF robotic system

    Machine-Vision-Based Pose Estimation System Using Sensor Fusion for Autonomous Satellite Grappling

    Get PDF
    When capturing a non-cooperative satellite during an on-orbit satellite servicing mission, the position and orientation (pose) of the satellite with respect to the servicing vessel is required in order to guide the robotic arm of the vessel towards the satellite. The main objective of this research is the development of a machine vision-based pose estimation system for capturing a non-cooperative satellite. The proposed system finds the satellite pose using three types of natural geometric features: circles, lines and points, and it merges data from two monocular cameras and three different algorithms (one for each type of geometric feature) to increase the robustness of the pose estimation. It is assumed that the satellite has an interface ring (which is used to attach a satellite to the launch vehicle) and that the cameras are mounted on the robot end effector which contains the capture tool to grapple the satellite. The three algorithms are based on a feature extraction and detection scheme to provide the detected geometric features on the camera images that belong to the satellite, which its geometry is assumed to be known. Since the projection of a circle on the image plane is an ellipse, an ellipse detection system is used to find the 3D-coordinates of the center of the interface ring and its normal vector using its corresponding detected ellipse on the image plane. The sensor and data fusion is performed in two steps. In the first step, a pose solver system finds pose using the conjugate gradient method to optimize a cost function and to reduce the re-projection error of the detected features, which reduces the pose estimation error. In the second step, an extended Kalman filter merges data from the pose solver and the ellipse detection system, and gives the final estimated pose. The inputs of the pose estimation system are the camera images and the outputs are the position and orientation of the satellite with respect to the end-effector where the cameras are mounted. Virtual and real simulations using a full-scale realistic satellite-mockup and a 7DOF robotic manipulator were performed to evaluate the system performance. Two different lighting conditions and three scenarios each with a different set of features were used. Tracking of the satellite was performed successfully. The total translation error is between 25 mm and 50 mm and the total rotation error is between 2 deg and 3 deg when the target is at 0.7 m from the end effector

    Enhanced Image-Based Visual Servoing Dealing with Uncertainties

    Get PDF
    Nowadays, the applications of robots in industrial automation have been considerably increased. There is increasing demand for the dexterous and intelligent robots that can work in unstructured environment. Visual servoing has been developed to meet this need by integration of vision sensors into robotic systems. Although there has been significant development in visual servoing, there still exist some challenges in making it fully functional in the industry environment. The nonlinear nature of visual servoing and also system uncertainties are part of the problems affecting the control performance of visual servoing. The projection of 3D image to 2D image which occurs in the camera creates a source of uncertainty in the system. Another source of uncertainty lies in the camera and robot manipulator's parameters. Moreover, limited field of view (FOV) of the camera is another issues influencing the control performance. There are two main types of visual servoing: position-based and image-based. This project aims to develop a series of new methods of image-based visual servoing (IBVS) which can address the nonlinearity and uncertainty issues and improve the visual servoing performance of industrial robots. The first method is an adaptive switch IBVS controller for industrial robots in which the adaptive law deals with the uncertainties of the monocular camera in eye-in-hand configuration. The proposed switch control algorithm decouples the rotational and translational camera motions and decomposes the IBVS control into three separate stages with different gains. This method can increase the system response speed and improve the tracking performance of IBVS while dealing with camera uncertainties. The second method is an image feature reconstruction algorithm based on the Kalman filter which is proposed to handle the situation where the image features go outside the camera's FOV. The combination of the switch controller and the feature reconstruction algorithm can not only improve the system response speed and tracking performance of IBVS, but also can ensure the success of servoing in the case of the feature loss. Next, in order to deal with the external disturbance and uncertainties due to the depth of the features, the third new control method is designed to combine proportional derivative (PD) control with sliding mode control (SMC) on a 6-DOF manipulator. The properly tuned PD controller can ensure the fast tracking performance and SMC can deal with the external disturbance and depth uncertainties. In the last stage of the thesis, the fourth new semi off-line trajectory planning method is developed to perform IBVS tasks for a 6-DOF robotic manipulator system. In this method, the camera's velocity screw is parametrized using time-based profiles. The parameters of the velocity profile are then determined such that the velocity profile takes the robot to its desired position. This is done by minimizing the error between the initial and desired features. The algorithm for planning the orientation of the robot is decoupled from the position planning of the robot. This allows a convex optimization problem which lead to a faster and more efficient algorithm. The merit of the proposed method is that it respects all of the system constraints. This method also considers the limitation caused by camera's FOV. All the developed algorithms in the thesis are validated via tests on a 6-DOF Denso robot in an eye-in-hand configuration
    corecore