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ABSTRACT 

 

Machine-Vision-Based Pose Estimation System Using Sensor Fusion for Autonomous 

Satellite Grappling 

 

Andrés Felipe Velásquez Escandón 

When capturing a non-cooperative satellite during an on-orbit satellite servicing 

mission, the position and orientation (pose) of the satellite with respect to the 

servicing vessel is required in order to guide the robotic arm of the vessel towards 

the satellite. The main objective of this research is the development of a machine 

vision-based pose estimation system for capturing a non-cooperative satellite.  The 

proposed system finds the satellite pose using three types of natural geometric 

features: circles, lines and points, and it merges data from two monocular cameras 

and three different algorithms (one for each type of geometric feature) to increase 

the robustness of the pose estimation.  It is assumed that the satellite has an interface 

ring (which is used to attach a satellite to the launch vehicle) and that the cameras 

are mounted on the robot end effector which contains the capture tool to grapple 

the satellite. The three algorithms are based on a feature extraction and detection 

scheme to provide the detected geometric features on the camera images that belong 

to the satellite, which its geometry is assumed to be known. Since the projection of 

a circle on the image plane is an ellipse, an ellipse detection system is used to find 

the 3D-coordinates of the center of the interface ring and its normal vector using its 

corresponding detected ellipse on the image plane.  The sensor and data fusion is 

performed in two steps.  In the first step, a pose solver system finds pose using the 

conjugate gradient method to optimize a cost function and to reduce the re-

projection error of the detected features, which reduces the pose estimation error.  

In the second step, an extended Kalman filter merges data from the pose solver and 

the ellipse detection system, and gives the final estimated pose. The inputs of the 

pose estimation system are the camera images and the outputs are the position and 

orientation of the satellite with respect to the end-effector where the cameras are 

mounted. Virtual and real simulations using a full-scale realistic satellite-mockup 

and a 7DOF robotic manipulator were performed to evaluate the system 

performance. Two different lighting conditions and three scenarios each with a 

different set of features were used. Tracking of the satellite was performed 

successfully. The total translation error is between 25 mm and 50 mm and the total 

rotation error is between 2 deg and 3 deg when the target is at 0.7 m from the end 

effector. 
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1 INTRODUCTION 

The interest in the development of technical capabilities for on-orbit satellite servicing has been increasing 

recently due to its potential of increasing the life cycle of a satellite considerably at lower cost than launching 

a new satellite [1]. The life of a satellite can prematurely end due to mechanical failures and on-orbit 

anomalies, such as dead batteries, faulty sensors, undeployed solar panels, etc. Additionally, several fully 

functional satellites are retired due to exhausted fuel resources.  

There are three main technical difficulties that need to be considered for an on-orbit satellite servicing 

mission and that define the main components of the mission. They are described in the following paragraphs. 

Unmanned Mission.  For economical reasons the mission has to be unmanned and robots have to perform 

the different activities of the servicing process:  approach, capture, accessing the fuel tank valve, refueling 

and sealing the valve, etc.. 

Non-cooperative Satellite.  Satellites that were not designed with servicing capabilities are known as non-

cooperative satellites, and current satellite belong to this category. They do not have grasping or docking ports, 

sensors or visual clues to assist the approach and grasping.  Additionally it is not easy to access, unseal and 

reseal the fuel valve and battery compartments.    

Autonomous mission. Due to the time delay in communications between Low Earth Orbit (LEO) and 

ground a human will not be able to operate a robotic arm accurately and capture the satellite.  The robots are 

required to capture the target satellite autonomously to avoid collisions or chasing the satellite without 

grasping it. 

 

There have been space missions developed to demonstrate the technology required for on-orbit servicing, 

JAXA’s ETS VII, in 1999, performed the first autonomous capture of a satellite using a robotic arm [2], [3]. 

In 2007 DARPA’s OrbitalExpress used a cooperative satellite to test the approach, capture, docking and 

servicing operations [4]. In both mission the target satellite was developed specifically for the mission. 

Although cooperative satellites were used in these missions, the results provided insights and useful details 

and requirements towards the development of an actual servicing mission. Current efforts related to the 

development of the on-orbit servicing include the NASA’s Robotic Refueling Mission (RRM) [1], which has 

performed several servicing activities including refueling on the International Space Station. Current 

developments towards the servicing of non-cooperative satellites include the DLR’s DEOS [5] and MDA’s 
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Space Infrastructure Servicing (SIS).   In addition to space missions, there are several ground testing facilities 

created to develop the satellite serving concept [6], [5], they use robotic arms to simulate the motion of the 

servicer and the target satellite, and simulate the light conditions on space, which allows them to evaluate the 

performance of the pose estimation, navigation and control systems along with the tools involved in the 

capture and servicing process.   

 

During a typical conceptual servicing mission [6] the servicing vessel approaches the target satellite using 

the vessel propulsion system.  The vessel is equipped with several robotics arms which are used to capture 

and hold the satellite and perform the different servicing tasks.  When the satellite is within the working range 

of the robotic arm (a few meters from the vessel), the close proximity operations begin and the robotic arm is 

deployed to capture and secure the satellite (see Figure 1). After this step the servicing operations can be 

performed, which may include refueling, battery replacement, etc. 

 

 

Figure 1.  Capture phase of an on-orbit servicing mission 
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The current robotic manipulators used in the industry for assembly, welding and painting are capable of 

perform the majority of activities associated with the servicing mission.  Work on the use of non-cooperative 

targets has already been addressed by several authors [6].   Similarly, work on autonomous robotic operations 

has been performed in the field of underwater robotics for example.  

Although the previous technical issues have been individually addressed still there is work to do when 

considering the entire on-orbit servicing mission and when adding the restrictions of the space environment. 

One important system that is required for a successful mission, specifically during the capture phase is the 

pose estimation system; it gives the position and orientation of the satellite to the robot controller, so it can 

compute the trajectory to grasp the satellite. The lack of docking aids of a non-cooperative satellite makes 

difficult the pose estimation problem.  Machine vision based pose estimation system has been proposed to 

perform this task [2], [7], [8], [9], [3]. 

To determine the pose of a non-cooperative satellite using machine vision systems, the pose estimation 

system needs to be able to use satellite natural geometric features as clues/markers for the pose estimation.     

Although artificial satellites have common geometric features (thrusters, interface ring, straight edges, etc.) 

they are not standardized and were not designed for servicing activities.  Additionally, satellites are usually 

covered with MLI (Multi-Layer Insulation) which is a highly reflective material with textures (see Figure 2), 

that complicates the recognition of the features by the machine vision system.  

The interface ring has been proposed as a possible location for grasping the satellite [1], [3] since it is easily 

accessible and has the appropriate structural properties. The function of an interface ring is to attach the 

satellite to the launching vehicle, and they are a fairly common feature in several satellites. 
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Figure 2. Satellite Multi-Layer Insulation (MLI) 

 

The current research focuses on the development and evaluation of a machine vision based pose estimation 

system. The proposed system estimates the pose using three particular geometric features: corners/points, 

rectilinear edges and circles; and using data from two monocular cameras which are mounted on the robot 

end-effector.   It is assumed that the satellite has an interface ring, and it is the target of one of the cameras.  

The system is intended for autonomous on-orbit satellite servicing missions where it will provide the position 

and orientation of a non-cooperative satellite with respect to the end-effector of a robotic manipulator during 

the capture phase of the mission, i.e. in the close proximity operations. The capture tool is mounted on the end 

effector. 

Data from the two cameras is processed by three different algorithms, each one using a particular type of   

geometric features (circles, lines, points).  The three algorithms (known as ellipse, line and point detector) are 

based on a feature extraction and detection scheme, to provide the geometric features on the camera images 

that correspond to the features of interest in the satellite.  These features are known as the detected features 

and they are the output of each one of the three algorithms.  It is assumed that the geometry of the features of 

interest in the satellite is known.  

The outcome of each algorithm is merged using a system called the pose solver system which finds pose 

using the conjugate gradient method to optimize a cost function and to reduce the re-projection error of the 

detected features.  Additionally, since the projection of a circle on the image plane is an ellipse, a system 
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known as EDS for ellipse detection system is used to find the 3D-coordinates of the center of the interface 

ring and its normal vector using its corresponding detected ellipse on the image plane of one of the cameras.  

The pose obtained by the pose solver system and by EDS is given to an extended Kalman filter to obtain the 

final estimated pose.  The pose is given in terms of a homogeneous transformation matrix. 

 

The evaluation of the pose estimation system was performed using virtual simulations and experimental 

testing. The virtual simulator was implement in C++ and uses a CAD model of an actual weather satellite, in 

this case the pose estimation system uses the synthetic images generated by the virtual simulator. The virtual 

simulator was used to generate different types of motions between the target and the satellite, to test the system 

under controlled conditions, and to evaluate the effect of external disturbances such as lens distortion, image 

noise, camera calibration errors, etc.   

The experimental testing was performed at the West Virginia Robotic Technology Center (WVRTC), using 

a full scale satellite mockup of the same weather satellite used in the virtual simulator, the mockup has highly 

realistic details including the interface ring and the MLI wrap.  The cameras are mounted on the end-effector 

of a 7DOF robotic manipulator, which was used to generate the relative motion between the satellite and the 

cameras. The estimated pose is compared against the ground truth, obtained using a laser tracker system, 

which has a submillimeter accuracy. Testing was conducted using three different scenarios, each one with a 

different set of geometric features, and using two different light conditions. Different types of maneuvers were 

performed to simulate the relative motion between the satellite and the end-effector, these include translations, 

rotations and approaches.  The relative distance target-satellite was maintained between 1.5m and 0.7m. 
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2 ON ORBIT SATELLITE SERVICING 

This section describes common aspects of missions and on-ground testing related to autonomous satellite 

capture using machine vision based pose estimation systems.   

2.1 Satellite Capture Missions 

Two space missions that successfully performed autonomous satellite capture are the Engineering Test 

Satellite No. 7 or ETS-VII from JAXA in 1997 and the Orbital Express from NASA in 2007.  Both missions 

performed tests on satellite capture. 

The ETS-VII mission used two satellites (chaser and target).  The chaser satellite had a 6-DOF robotic arm 

with a hand-eye camera.  The target satellite had visual markers and a handle to facilitate the grasping 

operation of the robotic arm. 

The Orbital Express mission had a similar configuration: a target satellite called NEXTSat and chaser 

satellite called ASTRO with a 6-DOF robotic arm.  The NEXTSat was captured using two techniques: direct 

capture, where a capture mechanism (a gripper directly attached to the satellite body) is used to mate the two 

satellites and free-flying capture where a robotic arm is used to capture the satellite. There are three main 

phases in a satellite capture mission [6] : 

Long-range rendezvous.  The chaser satellite approaches the target satellite so the distance between them 

varies from a few kilometers to a few hundred meters. The chaser satellite is guided by navigational systems 

(GPS, radar, star tracker, etc.).  The vision system is not used in this phase 

Short-Range Rendezvous.  The distance between satellites changes from a few hundred meters to a few 

meters.  The satellite has to be guided by on-board sensors that directly measure the relative distance and 

attitude of the target (radar, lidar, and machine-vision). 

Capture.  The distance between satellites is of the order of meters, so the robotic arm of the chaser satellite 

can approach the target satellite and grapple it at a predefined point.  Guidance is based on machine vision 

systems and the relative attitude between satellites is such that the grapping point is in the working zone of 

the robotic arm and the features used by the vision system are in the field of view (FOV) of the sensors, 

manipulation of the robotic arm may be required in order to have the features in the sensor FOV.  Fly-around 

inspections can be performed before attempting capture. 

This chapter focuses on the machine vision systems used for pose estimation during the capture phase. 

During this phase the vision system has to provide the relative pose of the two satellites with a predefined 

accuracy and sampling rate.  
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Besides actual space mission several ground test have been performed by several researchers to evaluate 

vision systems (as early as 1989, [10]).  Correct simulation of the on-orbit conditions is required to perform 

this task.  Some important aspects related to simulation and testing of vision based pose estimation systems 

for satellite capture are considered below. 

 

2.2 Grasping Point 

The spot to grasp and hold the target satellite must have enough structural strength to support the forces 

applied during contact with the robotic arm, and during the servicing operations.  On the ETS_VII a handle 

was used. The NEXTSat from the Orbital express mission had a grapple fixture.  In both cases cooperative 

satellites were used.  On non-cooperative satellites two spots may satisfy the above requirement: the interface 

ring and the apogee thruster [11], [12].  In this work the interface ring is used. 

 

2.3 Vision Sensors 

The sensors can be catalogued as 2D or 3D sensor.  Monocular cameras (vision or infrared cameras) can 

be considered as 2D sensor. Stereo cameras, LIDAR and LADAR systems are 3D sensors.   

Monocular cameras are frequently used to extract features on the target surface.  3D sensors find 3D point-

clouds belonging to the target surface. 

Sensors can be mounted on the robotic arm end-effector. Reference [13] incorporates an additional 

supervising camera that is mounted in manipulator base.  This camera has the function of monitoring the 

lightning conditions and the motion of the robotic arm. 

Several types of sensors can be used simultaneously with a data fusion system that gives a better estimation 

of the pose.  

 

2.4 Markers and Features on the Satellite  

When a satellite has feature specifically design for machine vision system, such as reflectors, lights or 

fiducial markers, it is referred as a cooperative target.  A non-cooperative satellite does not have these devices 

and a machine vision system has to use the target natural features in order to determine its pose.  If a hand eye 

camera is used the features should be close to the grasping point, to avoid them to be out of sensor FOV as 

the end-effector approaches the grasping point, an alternative is to use an additional camera mounted in 

different location.  Reference [3] uses the interface ring of the target satellite as a feature to track. 
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2.5 Simulation of the Satellite Motion  

Due to several external disturbances (gravitation torque, solar wind, Earth magnetic field) a satellite with 

a non-operating attitude control system will have random motions (rotations, wobbling).  It is important to 

characterize and simulate this motion in order to test a vision system, and evaluate if the sampling rate and 

accuracy of the vision system are appropriated.  

Reference [6] uses a robotic arm to simulate the target satellite motion, it consists of a rotation imposed to 

an elliptic translation.  A similar configuration is used by [14] to test an algorithm to estimate the dynamics 

of a satellite mockup based on a vision system. 

 

2.6 Simulation of the Lightning Conditions 

There are three main light sources on orbit that can affect the performance of the vision system: the sun, 

the Earth albedo (diffuse light) and the reflection of the satellite components.  The intensity of these sources 

varies with time, and the frequency of this variation depends on the specific orbit of the satellite.  

Proper simulation of these conditions is required in order to correctly test the vision system, especially 

when using feature extraction based techniques. Since satellites are covered with MLI (Multi-Layer 

Insulation) which is a highly specular reflective material, the satellite mockup used for simulation should be 

covered with MLI, and include similar external features (form and material) such as thrusters, antennas, etc. 

The testing setup used in Reference [15] uses an Earth albedo reflector and a moving light source to 

simulate the sunlight and its direction changes. Reference [3] reports variation of the illumination factor on-

orbit from zero to several hundreds of thousands lux.  
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3 MACHINE VISION-BASED POSE ESTIMATION SYSTEMS 

This section shows the classification, trends, description and main characteristics of existing algorithms for 

machine vision based pose estimation systems. 

 

3.1 Classification of Machine Vision based pose estimation systems. 

Pose estimation is not mandatory to control the position of a robotic arm with respect to a given target. 

Image based visual servoing (IMVS) [16] can also be used to accomplish this task. In IMVS the robot is 

controlled according to how an object or a feature appears in the camera image, with no pose being computed. 

The robot controller is in closed loop with the vision system using a signal that is related to the difference 

between what should be observed vs. what is being observed, a control law tries to minimize that difference.  

On the contrary in object based visual servoing (OBVS) the robot controller requires the pose of the target to 

be able to approach it.   

Machine vision based pose estimation systems can be classified according to how the pose is computed, 

and two categories are established: feature based systems and CAD model based systems. In feature based 

systems pose is estimated using correspondences between image features and object features.  In CAD model 

based systems pose is determined by minimizing error between an image and the projection of a CAD model 

of the object in the image plane.   Figure 3 and Figure 4 show the basic general scheme of these approaches, 

which are described below. 

The CAD model based method generates a projection of the model according to an assumed pose creating 

a virtual image, and then it extracts the features (edges, points, lines, ellipses, etc.) of that virtual image.  

Additionally features from the real camera image are also extracted.  Features of both real and virtual images 

are compared and matched.  If the matching error is larger than a threshold the assumed pose is modified and 

the process repeated, if not the assumed pose is declared as the estimated pose.  The matching error is usually 

computed as the sum of the distances between the respective virtual and real features.  

The feature based approach extract features from the camera image, and then it relates those features with 

3D features that are defined in terms of their internal geometry, as an example: the coordinates of a set of 

points, the diameter and center location of a circle.  Once the features have been matched the pose is calculated 

using analytic, probabilistic or optimization methods. 
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Figure 3.  Typical Model-based approach (from [17]) 

 

 

Figure 4.  Typical feature-based approach 

 

Table 1 classifies pose estimation systems of several references that are considered relevant for this 

research. It can be seen that systems based on point features are the widely used.  Table 2, from Reference 

[17], shows a comparison of the two approaches according to five criteria, it can be concluded from that table 

that the CAD model based approach is more robust but less accurate, and requires more information about the 

target  and computation power than the feature based approach.   
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Table 1. Machine vision based pose estimation systems classification 

CAD Model Based Edges/Pixels/Gradient (images) [18], [19], [20], [21],  [22]* 

Feature Extraction Points [23], [24], [25]* 

Lines [7]* 

Multiple  Features [26], [27], [28] 

 

Feature Based Points [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], 

[39], [40], [41], [42], [43], [44], [45], [46], [47], [48], 

[49], [50], [51], [52], [53], [54], [55], [56]*, [8]*, [57]*, 
[58], [59] 

Lines [60], [61], [62], [63], [64], [65], [66] , [67], [9]* 

Circles [68], [69], [70], [71], [72] , [73], [74] 

Multiple  Features [75], [76], [77], [78], [79] 

*satellite capture application 

 

Table 2.  Comparison of feature based and CAD model based approaches. (From [17]) 

Comparison Items Pose Estimation Approaches 

Feature based Model based 

Accuracy average worst 

Complexity least most 

Request for input average lowest 

Anti-noise average best 

Cost time least most 

 

According to Reference [17] there are three trends in the development of new pose estimation systems: the 

use of higher quality images, fusion of different approaches (CAD model base and Feature based) and 

integration of the several process in the algorithm, since some of them use the same information, for example 

matching, feature extraction and pose calculation all of them required the knowledge of the target geometry 

and are related to the previous time pose. 

 

3.2 CAD Model Based Methods 

This section is an overview of the CAD model based systems; it shows the main aspect of the references 

presented in Table 1.  

Reference [18] uses edges and the shading of the image to match the CAD model with the image and a 

non-linear least squares method and data fusion to estimate pose.  Reference [19] work on a pixel level, using 

pixel attributes to match the image and the CAD model, attribute can be colors, or local texture features. It 

defines and minimizes an illumination-invariant distance between the image and the projected 3D model to 

find pose. Reference [20] uses edges to match the model and Lie group algebra to describe the edge motion 

in geometric terms, and uses a least square method to estimate the target motion. Reference [22] also uses 
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edges and is based on the Lie group technique.  Reference [21] uses edges and neural networks to estimate 

the pose, which requires the use of training images.  Reference [23] uses an off-line learning process to define 

feature point that will be used to solve the matching problem during the run time.  Reference [24]  uses points 

and genetic algorithms to solve the matching/pose problem.  Reference [25] uses feature points with high 

intensity gradients and redefines the point matching problem as multi-class classification problem; it matches 

the extracted points during run-time with points extracted during a training phase; the training phase is 

performed using random views of the CAD model.  Reference [7] uses a CAD model of the target made of 

lines, extracts image edges and match them with the projection of the CAD model using the previous time 

pose, then it uses the Moving Edge Algorithm which creates sample points in the projected lines and after that 

it searches at each sample point along the direction orthogonal to the projected line until it finds a 

correspondent point on the image; the new pose is defined as the one that minimizes the distance between the 

correspondent point and the projected lines.  Reference [26] uses lines and points and a non-linear optimization 

method to find pose, it uses RANSAC for 2D-3D point correspondence and the Moving Edge algorithm for 

line matching, additionally it uses and M-estimator to improve accuracy and robustness in the pose. The 

method of Reference [27] extracts segments from the image and classifies them as lines or elliptical curves, 

then merges them into lines and ellipses respectively; it then groups extracted features and relates them to 3D 

objects (circles and 3D corners),  pose is estimated using points and ellipses are just used for evaluating 

matching errors.   

 

3.3 Pose Estimation System based on Points 

Pose estimation systems that use points can be classifies in two types: systems that assumed the matching 

or correspondence problem is solved, [37]- [54], and system that deal with it [58] [59].  The correspondence 

problem is the correct identification of the object features and their corresponding projected features in the 

image plane.  When the points are correctly matched, several methods can be used to determine pose: 

analytical, probabilistic [41] [29] (particle filter) and optimization methods. 

Reference [38] discusses different types of probabilistic methods.  In Reference [54] a least median of 

squares estimator and an M-estimator are used to handle outliers and increase robustness.  Reference [41] also 

uses least median of squares to estimate pose.   

The minimum number of points to determine pose is three, when more points are used the solution can be 

more robust and estimation methods are used.  Reference [50] uses 3 points and Reference [51] uses 4 points 

to compute pose. 
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3.4 Pose Estimation System based on Lines 

The perspective projection of a 3D line segment in the image plane is a 2D line segment (except when the 

segment is orthogonal to the image plane).   Some systems assumed the matching problem solved and others 

show methods to correctly identify the 2D-3D pair of lines.  Analytical [63] [64] [65], probabilistic [66] 

(Particle filter based) and optimization methods [62] are used.  A minimum number of three a lines are required 

to determined pose, more lines increase robustness and estimation methods can be used. 

 

3.5 Pose Estimation System based on Circles 

The perspective projection of a 3D circular feature is an ellipse (it will be a circle if the image and the plane 

of the circular feature are parallel).  Even in the case that there is just one elliptical feature in the image, when 

using and ellipse extractor there will be more than one extracted ellipse due to false detections and noise in 

the extractor.  According to this the correspondence problem for circular features also has to be considered. 

Once the correct match is found method analytical methods [69] [70] can be used to find the 3D pose 

(center location and normal vector) of the circular feature, these methods require the knowledge of the ellipse 

geometric properties (major and minor axes, center and orientation angle).  When just one ellipse is used to 

compute pose there are two possible solutions for this problem and additional information is required, 

Reference [71]  deals with this problem.  

 

3.6 Pose Estimation System based on Several Features 

Some systems combine different types of features to improve their robustness and flexibility, Reference 

[26] uses lines and points with an M-estimator,  Reference [27] uses lines and ellipses while Reference [28] 

can use points, lines and ellipses. Reference [75] uses a probabilistic method with points, lines and linear 

contours of cylinders. Reference [76] uses lines and points with a probabilistic method to find pose, then it 

uses the Kanade-Lucas-Tomasi tracker between two image frames to predict boundary locations and uses 

lines for improving the estimation.  Reference [77]  uses a general approach to find pose using the minimal 

number of lines and points required to define pose: three points, two points and one line, one point and two 

lines and three lines.  Reference [78] uses lines and circles on a plane (a Hockey rink) and pose is defined and 

calculated in terms of the homography.  Reference [79] shows how to calculate pose using rectangular, circular 

and triangular features. 
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There are some basic functions that are common for several pose estimation systems; these are described 

in the following sections. 

 

3.7 Features Extraction Methods 

Edges, points, lines and ellipses are common image features that are used by several pose estimation 

systems.  Edges can be extracted using Canny [76] [8] and Sobel [21] edge detection.    

Several methods to extract points on an image are used: Harris [33] [23] [26] [36] , Susan [36], minimum 

eigenvalues [80]. Reference [36] compares the performance of the Harris and Susan corner detector. 

Line extraction is usually performed using the Hough transform [76] [8].   

Since the projection of 3D circular feature in the image plane is an ellipse, ellipse extraction is required.  It 

can be performed using the method described in [81], or by using the binary edge map and performing ellipse 

fitting, as in done in References [27] [74].  Reference [68] extracts blobs and uses their mean and covariance 

matrix to check if they are ellipses or not. 

 

3.8 Feature Matching Methods 

A pose estimation system usually has two operating modes: initialization and tracking. During initialization 

the object pose and its projection in the image are completely unknown, heavy computations methods, not 

practical for real time, are used in order to solve the matching problem and determine pose. Another option is 

user initialization [28] [36], where the user manually selects the correct corresponding features in the image 

or defines the initial transformation matrix, sometimes just an approximated value is enough.   

When the image acquisition and processing is performed with a satisfactory frame rate (around 5Hz) or 

when the target moves at a moderate speed with respect to the camera, the motion of the features in the image 

plane are of the order of a few pixels; this can help to solve the matching problem during the tracking mode, 

since the features remain close between two consecutive frames.  In this mode a different, faster, algorithm is 

used, or the same used for initialization providing a faster convergence rate.  Optical flow [17] is widely used 

for tracking small motions such as inter-frame motions.  

The pose estimation problem and matching problem are closely related each other, usually they need to be 

solved simultaneously, since the solution of one requires the solution of the other, and sometimes it is difficult 

to differentiate if an algorithm is used for matching or for pose estimation. 

RANSAC (Random Sample Consensus) [82] [9] [26] [76] is a popular method used to solve the matching 

problem; it is a probabilistic method based on random hypothesis, sometimes taken as the standard robust 
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estimator in computer vision. Genetic algorithms have also been used [24] [46], Reference [46] compares its 

results to RANSAC.  Reference [59] uses nonlinear mean shift clustering and also compares its result to 

RANSAC. Reference [56] uses SoftPOSIT which is an optimization method based on an iterative pose and 

iterative correspondence assignment approach. 

In the case of small number of circular features the matching problem can be simplified by just checking 

the size of the ellipse and its location, provided low noise in the ellipse extraction process. 

 

3.9 Data Fusion 

Data fusion can be used to integrate information from several cameras [55] [8], several features (see Table 

1 for references) or several algorithms [83].  Reference [8] uses two cameras to see different parts of the same 

feature on a satellite; due to the size of the feature one camera is not capable of having the entire feature on 

view at close distance. Data and sensor fusion is usually performed using a Kalman filtering [29] [36]. 

One main problem when using several cameras is the calibration.  Errors in the extrinsic calibration of the 

cameras can lead to bias errors in the pose estimation system.  References [22] [55] [84] deal with the camera 

calibration problem. 

 

3.10 Motion Model 

Kalman filter approaches usually require a camera-target motion model. A popular model is the constant 

velocity model [32] [60] [66], which assumes that the motion of the target with respect to the camera occurs 

with a constant angular and translational velocity.  This model is usually described using Euler angles [32]  or 

quaternions [60].  The advantage of using quaternions is that they describe the monition unambiguously. The 

constant velocity motion model using quaternions will be used in this research. 
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4 RELATED WORK AND CONTRIBUTIONS 

4.1 Related Work 

This section show work related to machine vision based pose estimation systems intended to be used for 

satellite capture.  In reference [85]  a virtual simulation is used to evaluate a pose estimation system intended 

for satellite servicing; the system uses a monocular camera and tracks the interface ring and one edge of the 

satellite.  It reports pose estimation errors of 5 cm and 2 deg when the distance target/service vehicle is 5m; 

tests using real images were not performed.  The virtual simulation uses only a basic satellite model (no end-

effector model) with no realistic details that make difficult the performance of a vision system, such as 

occlusion of the interface ring by other components (end-effector, heat shield) or the MLI and its reflections.  

Additionally the system is not evaluated at close proximities to the target where some of the used features can 

be totally or partially out of the camera view, as an example the interface ring will appear as an elliptic arc in 

the camera view. 

  

Reference [7] proposes a model based pose estimation system using a monocular camera. It find pose using 

the moving edge technique to align the edges of a CAD model with the camera image. The evaluation of the 

system was performed using synthetic images and real images from a 1/50 scale model of a satellite.  The 

camera is mounted on a 6DOF robotic manipulator to simulate motions, ground truth is obtained using the 

robot position.  Test were performed at distances larger than 124m (scaled up distance) from the satellite.  The 

authors report translation errors of less than 10cm (0.08%) and rotation errors of less than 5deg.  This system 

uses a complete view of the satellite, including its solar panels, which can be easy to detect by a machine 

vision system, but during close proximity operations these features can be out of the camera view.  

Additionally the satellite scale model lacks the realistic details mentioned above which affect negatively the 

performance of the machine vision system. 

 

 

GNFIR (Goddard Natural Feature Image Recognition) [86] is a machine vision base pose estimation system 

that have been considered for satellite servicing missions of non-cooperative satellites.  It is part of the Argon 

system which is a set of sensors (two cameras, a flash lidar and a flight computer) designed for rendezvous 

and docking of spacecraft. Argon was developed in the Satellite Servicing Capabilities Office (SSCO) at the 

Goddard Space Flight Center (GSFC).  GNFIR is a model based pose estimation system that extracts image 
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features and match them with a 3D model of the target defined as a set edges, it is based on the algorithm 

described in Reference [20]. GNFIR was evaluated in  [86]  using robotic manipulators to perform approaches 

to a satellite mockup, the target-camera relative distance during testing was varied between 10m and 2m.  The 

reported translation errors are 29cm in range, 1.5cm in transverse translation, and rotation errors of 5.3deg in 

roll and 9.1deg in transverse attitude when tracking a non-static target with rotation rates lower than 

0.5deg/sec. Test were performed at two different light conditions.  No close proximity tests were reported. 

 

The NRL’s FREND (Front End Robotic Enabling Neat-Term Demonstrator) is a DARPA project 

developed to study the capture of non-cooperative satellites for on-orbit servicing.  Testing was performed 

using a robotic manipulator and a satellite mockup.  It uses a Lidar system to obtain 6DOF pose and a machine 

vision system with three cameras on the robot end effector, which also contains the capture tool. The machine 

vision system is used to correct the pose error of the lidar system and to guide the robot during final approach. 

The machine vision only operates when the capture tool is within 20cm to 1.5cm from the target and is 

designed to track the interface ring or small features such as bolt holes.  The accuracy of the system is ±2cm 

noise (2σ) and bias at 20cm, and ±0.25cm noise and bias at 1.5cm.   

 

4.2 Contributions 

The principal contribution of this research is the development of a machine vision based pose estimation 

system intended to be used at close proximities of a non-cooperative satellite, where close proximities means 

relative distances of less than 2m between the target and the end-effector where the cameras are located.  The 

system uses different types of geometric features and data from several cameras. Realistic conditions that 

appear at close proximities are simulated, such occlusions, partial views of the target and reflections from the 

satellite’s MLI. 

Another important contribution is the study of the effect of the system parameters in the pose error.  

Particularly parameters such as the lens distortion and camera calibration errors are considered. 
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5 GENERAL DESCRIPTION OF THE PROPOSED POSE ESTIMATION SYSTEM 

This chapter presents the proposed pose estimation system, its main components, the definition of relative 

pose and the algorithm flowchart. 

5.1 System Components 

The main components of the pose estimation system are the end-effector, the two cameras and the capture 

tool as presented in Figure 5.  The end-effector and the cameras are represented by their corresponding 

reference frames.  

 

 

Figure 5.  Hardware components of the pose estimation system 

 

The target satellite is also represented by a reference frame as can be seen in Figure 6.   A simplified view 

of the end-effector and the satellite that shows only their corresponding reference frames is presented in Figure 

7.  
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Figure 6. End-effector and satellite. 

 

 

 

Figure 7. Reference frames of the end-effector and the satellite. 
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The task of the pose estimation system is to find the pose of the satellite reference frame w.r.t. the end-

effector reference frame.  In this research it is assumed that the satellite (and the satellite mockup used for the 

experimental testing) has an interface ring (see Figure 6) and that it is being tracked by camera-1. Camera-2 

tracks other types of features. 

5.2 Relative Pose  

The relative 6DOF pose between the two references frames (end-effector and target satellite) is defined 

using a translation vector, 

 
𝑡𝑇/𝐸 = [

𝑥
𝑦
𝑧
] (1) 

and a rotation matrix,  

 
𝑅𝑇/𝐸 
𝐸 = 𝑅𝑇/𝐸 = [

𝑟11 𝑟12
𝑟21 𝑟22

𝑟13
𝑟23

𝑟31 𝑟32 𝑟33
] (2) 

where the subscript 𝑇/𝐸 means “target w.r.t end-effector”.  The superscript 𝐸 in 𝑅𝑇/𝐸 
𝐸  indicates that the 

rotation matrix is expressed in the end-effector frame and is usually avoided, except in cases such as 𝑅𝑇/𝐸 
𝑇  

which means “rotation matrix of the end-effector w.r.t to the target expressed in the target frame” or when a 

third frame is involved. 

The rotation matrix and translation vector can be combined in a homogeneous transformation matrix:  

 

𝑇𝑇/𝐸 
𝐸 = 𝑇𝑇/𝐸 = [

𝑟11 𝑟12
𝑟21 𝑟22

𝑟13 𝑥
𝑟23 𝑦

𝑟31
0

𝑟32
0

𝑟33
0

𝑧
1

] (3) 

 

The rotation matrix can be expressed in terms of the unit quaternion, 

 𝑞 = 𝑞0 + �⃑� = 𝑞0 + 𝑞1𝐼 + 𝑞2𝐽 + 𝑞3�⃑⃑⃑� (4) 

and the transformation matrix between the frames can be expressed as: 

 

𝑇𝑇/𝐸 =

[
 
 
 
𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2       2(𝑞1𝑞2 − 𝑞0𝑞3)

     2(𝑞0𝑞3 + 𝑞1𝑞2) 𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2

2(𝑞0𝑞2 + 𝑞1𝑞3)     𝑥

2(𝑞2𝑞3 − 𝑞0𝑞1)      𝑦

     2(𝑞1𝑞3 − 𝑞0𝑞2)
0

     2(𝑞0𝑞1 + 𝑞2𝑞3)
0

𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

0

𝑧
1]
 
 
 

 (5) 

 

To summarize, there are four references frames involved in the pose estimations problem (see Figure 6): 

 E : End effector frame, it is the main frame, the output of the pose estimation is defined in this 

frame. 
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 C1: Camera-1 frame. It is a standard camera frame (z-axis aligned with the focal axis).  The position 

of this frame with respect to the end-effector frame is constant and is determined experimentally 

using a camera extrinsic calibration algorithm. 

 C2 : Camera-2 frame. Similar to camera-1 frame. 

 T : Target Frame, the objective of the pose estimation system is to determine the pose of this frame 

with respect to the end-effector frame. 

 

5.3 Algorithm General Description  

The main algorithm flowchart is present in Figure 8. It has the following main subsystems: image 

acquisition (2), feature extraction (2), feature detection (2), pose solver, circle pose calculation and an 

extended Kalman filter.   They are described in the following sections. 

The pose estimation system uses the target features to estimate pose. It is assumed that the geometry of 

these features are known. At each iteration (i.e. each captured image) the system needs to identify the projected 

features on each camera image corresponding to the features of interest in the target or features to track, as 

shown in Figure 9. It is assumed that Camera-1 is tracking a circle, or its corresponding projected feature 

which is an ellipse.  The feature identification is achieved by using the feature extraction system and the 

feature detection system. They give the detected features which are an estimation of the projected image 

features.  Once the features have been identified, the circle pose calculator system uses the detected ellipse to 

find the 3D-position of the circle center and its normal vector.  A the same time the Pose Solver finds pose 

using the conjugate gradient method to optimize a cost function and to reduce the re-projection error of the 

detected features, which reduces the pose estimation error.  Finally, an extended Kalman filter merges data 

from the pose solver and the ellipse detection system to give the final estimated pose.  From Figure 8 it can 

be seen that the ellipse detection system or EDS [87], [88] is immersed in the flowchart.  EDS is a standalone 

pose estimation system for circles, it was developed at the WVRTC and it uses some of the components of 

the propose pose estimation system. 
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Figure 8.  Main algorithm flowchart 
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Figure 9. Target features and projected features  

 

5.3.1 Image Acquisition 

In this step the images from the cameras are acquired and converted to OpenCV matrices.  Each image has 

three channels, each channel representing the image components in the RGB color space. 

 

5.3.2 Feature Extraction 

The inputs of the feature extraction system are the acquired color images.  A particular channel of the image 

is selected according to the feature of interest, this is performed in in order increase the contrast between the 

features of interest and the background, as an example: when detecting the interface ring the blue channel is 

used since it has a better contrast between the ring and the MLI. The single channel images are then processed 

by a canny edge detector (from OpenCV) to find the edge binary map.  
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The Feature Extraction subsystem uses the edge binary map to extract the geometric features on the image 

that are of the same type of a particular feature of interest.  There are three different types of feature of interest: 

points/corners, line segments and ellipses (projection of circles in the image plane).  If the particular of interest 

is a circle, then the feature extraction system will extract all the ellipses on the image.   

As can be seen from Figure 8 there are two modules of the feature extraction system, one for each camera. 

The system can work with at least one circular feature for camera-11 and then just one feature extraction 

module is used, or it can work with the three different type of feature for each camera.  

 Point/corner Extraction is used when the features to track are corners or very small objects like bolt heads 

or holes.  The Minimum Eigenvalue Method (from OpenCV) is used; it gives the coordinates, in pixels, of the 

extracted corners.   

Line Extraction is used when straight edges are tracked, the Hough transform is used to perform line 

extraction (from OpenCV), which gives the coordinates, in pixels, of the two extreme points of each of the 

extracted line segments.   

When tracking a circular feature, since its projection on the image plane is an ellipse, the Fast Ellipse 

Extractor algorithm [81] from the LTI library is used, it gives the geometric parameters of the extracted 

ellipses: coordinates of the center, the length of the major semi-axis and minor semi-axis in the image plane, 

all in pixels, and the angle of rotation of the ellipse, in radians. Additionally points that belong to ellipses 

(ellipse points) are also extracted. 

As can be seen from the flowchart of Figure 8 the feature extraction system uses the EKF’s estimated pose, 

which is used to limit the extraction to a particular region of interest (ROI) in the image and improve the 

extraction process. 

The outputs of the feature extraction system are sets of extracted features, each set is associated with a 

particular feature of interest in the target.  

 

 

5.3.3 Detection  

 

The sets of extracted features may contain the true features (the ones that are being tracked and correspond 

to real feature in the satellite) and false features that can be due to noise, occlusion, shadows, reflections or 

real features that are not used for tracking.  The function of the detection system is to solve the correspondence 

problem and separate (if present) the true features from the false features and inform when the track of a 

                                                 

1 only 5DOF pose will be obtained 
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particular feature is lost.   The inputs of the Detection system are the predicted pose from the Extended Kalman 

filter, the geometry of the target features and the extracted features.  

The Detection system (see Figure 10) uses the pin-hole model to project the geometry of a target feature in 

the image plane using the predicted transformation matrix given by the EKF, then the obtained projected 

feature, known as the reference feature, is compared with the set of corresponding extracted features, the best 

match is declared as the detected features, and they are the output of the detection system.   The comparison 

is performed using a cost function, where the cost represent the distance of the extracted feature to the 

reference feature.  Features with a cost larger than a threshold are ignored.  The threshold is dynamic and is 

computed using a moving average filter over the cost of the last 10 detected features.   In the case of points 

and lines several extracted features can be declared as detected features, and an additional step is performed 

where they are averaged to find a unique detected feature. 

 

 

Figure 10.  Detector flowchart 

 

As an example the projection of a circular feature of the target in the image plane is an ellipse.  The ellipse 

extractor will give several ellipses. To compare the extracted vs. the reference ellipses the following cost 

function, J, can be used, 

 𝐽𝑖 = (𝑎𝑟𝑒𝑓 − 𝑎𝑖)
2
+ (𝑏𝑟𝑒𝑓 − 𝑏𝑖)

2
+ (𝑥𝑟𝑒𝑓 − 𝑥𝑖)

2
+ (𝑦𝑟𝑒𝑓 − 𝑦𝑖)

2
 (6) 
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Where 𝑎 and 𝑏 are the length of the ellipse major and minor semi-axis respectively and (𝑥, 𝑦) are the 

coordinates of the ellipse center.  The subscripts “𝑟𝑒𝑓” and “𝑖” refers to the geometric parameters of the 

reference ellipse and extracted ellipses, respectively.  The extracted ellipse with the smallest value of the cost 

function is then declared as the detected ellipse.  An upper limit for the minimum value of the cost function 

can be used to declare loss of track of the circular feature. 

The detected ellipse is given to the circle pose calculation system to find the 3D-position of the circle center 

and its normal vector.  The detection system also gives the detected ellipse points, which are points that are 

close to the reference ellipse. The set of detected ellipse points in addition to the detected lines and corners 

are given to the pose solver. 

 

5.3.4 Circle Pose Calculation and EDS 

The circle pose calculation system finds the pose of the circle in the target using the ellipse corresponding 

to its projection on the image plane. Having the geometric parameters of the detected ellipse (which is an 

estimation of the actual projected ellipse), the coefficients (A, B, C, D, E and F ) of the quadratic equation of 

the detected ellipse: 

 𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷𝑥𝑧 + 𝐸𝑦𝑧 + 𝐹𝑧2 = 0 (7) 

are found analytically.  Using these coefficients and the method described in [69]  the 3D-coordinates of the 

circle center and its normal vector can be found analytically.  It is important to note that the method proposed 

in [69] has to possible solution, but the duality is solved by comparing the two solution with the reference 

solution given by the EKF’s estimated transformation matrix. 

 

5.3.5 Pose Solver 

The pose solver uses all the detected features from each camera to find pose.  It is achieved by minimizing 

a cost function that related the distance between the detected features and the reference features.  The detected 

features are given by the feature detection system.  The concept of the pose solve is presented in Figure 11 

and described below. 
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Figure 11. Pose solver concept 

 

Using an assumed transformation matrix between the target and the end-effector, the reference features are 

obtained using the pin-hole model to project the target features in the corresponding camera image.  The 

assumed transformation matrix is a small modification of the EKF’s estimated transformation matrix at the 

previous time.  The reference features are compared with the detected features to find the cost corresponding 

to the particular assumed transformation matrix. Several assumed matrices are used in an iterative process 

until the maximum allowed number of iterations are reached or until the cost is lower than a specified value.  

In the latter case the pose solution is found. 

The previously described process is only the concept, since no criteria is established to modify the 

transformation matrix, and there are infinity ways to modify the matrix.  To avoid this problem the 

minimization is performed using the conjugated gradient method, it minimizes the cost function using the 

gradient of the cost function.  This method requires that the cost function has to be expressed in terms of the 

modified transformation matrix and obtain its gradient, this is described in Chapter 9. 
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5.3.6 Extended Kalman Filter 

  An extended Kalman filter (EKF) is used to obtain the estimated posed using the information given by 

the pose solver and the ellipse detection system.  An extended Kalman filter is used due to the non-linearities 

of the system. Chapter 10 describes the EKF in more detail. 

 

The following chapters describe the main components of the pose estimation system, the description is 

focused on the particular application of this research, i.e. estimating the pose of a satellite that has an interface 

ring. 
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6 FEATURE EXTRACTION SYSTEM 

The feature extraction system has three components: the ellipse extraction system, the line extraction 

system and the point extraction system.  The following sections describe each component.   

6.1 Ellipse Extraction 

The input of this subsystem is the color image of the target, which is this case is a satellite mockup with 

the interface ring.  The task of the system is to identify all the ellipses that are on the image. To achieve that 

purpose the Fast Ellipse Extractor (FEE) algorithm described in [81] is used. The input of the algorithm is the 

binary edge map of the image and the outputs are the geometric parameters of the extracted ellipses (see Figure 

12), which are the coordinates of the center (𝑥, 𝑦) in the image plane, the length of the major semi-axis (𝑎), 

the length of the minor semi-axis (𝑏), all in pixels, and the angle of rotation of the ellipse, in radians.  

 

 

Figure 12. Ellipse geometric parameters 

 

To obtain a clean edge map that the ellipse extractor can used, some standard image processing techniques 

are used, as can be seen in Figure 13.  Using the color image (step 1 of Figure 13) the blue channel is selected 

(step 2), since it provides a better contrast between the interface ring and the MLI background.  Next the canny 

edge detector is applied over the blue channel to find the binary edge map (step 3), which is the input of the 

FEE algorithm. The image in step 4 shows the extracted ellipses, and as can be seen not all of them correspond 

to actual circular features in the scene.  The image corresponding to step 5 shows the extracted ellipse points.   
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 The FEE algorithm extracts line segments from the edge map, they are formed by at least two adjacent 

pixels, and next, adjacent segments are merged to create lines. The adjacent lines are then combined to create 

circular arcs.   These arcs are represented by the coordinates of their center and their initial and final points.  

Extended arcs, which are elliptical arcs, are created by grouping arcs. Finally ellipses are formed by at least 

one extended arc. At each step several thresholds are defined to decide if an object is qualified to be part of a 

higher level object. 

Besides the ellipse geometric parameters, any information related to the lower level objects can be 

accessed; of particular interest are the coordinates of arc endpoints, which are referred as the extracted points 

and are also an output of the Ellipse Extraction subsystem, they can be seen in step number 5 of Figure 13. 
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Figure 13.  Image processing operations in the ellipse extraction system 

1. Color image

2. Blue channel

3. Edge map

5. Extracted ellipse points4. Extracted ellipses
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6.2 Line Extraction 

The input of the line extraction subsystem is the color image of the target acquired by the camera.  The 

system has to extract all the lines that are on the image. This is achieved using the Hough transform algorithm 

from the OpenCV library. The algorithm provides the coordinated of extreme points of the extracted lines.  

The coordinates of each point are expressed in pixels w.r.t the image top left corner.  The input of the OpenCV 

Hough transform is the edge map of the image. 

In order to obtain an adequate edge map and to limit the line extraction to a particular region, the image 

processing techniques presented in Figure 14 are applied, where it is assumed that the borders of the white 

squared pad corresponding to the thruster base are the features of interest.  Using the color image (step 1 of 

Figure 14) the blue channel is selected (step 2), since it provides a better contrast between the white pad and 

the MLI background.  After that, an image thresholding is performed (step 3) where the pixels of the image 

with an intensity lower than a threshold value are given a value of zero (black) otherwise they are given a 

value of 255 (white).  Next a mask is generated (step 4) using the previous time pose estimated by the EFK.  

The mask is applied over the thresholded image (step 5) to find the region of interest.  Next the canny edge 

detector is applied over the ROI (step 6) and finally the OpenCV Hough transform is applied (step 7) to extract 

the lines on the image.  As it can be seen there are several lines for each side of the pad.  All these lines are 

the output of the line extraction system. 
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Figure 14. Image processing operations in the line extraction system 

1. Color image 2. Blue channel

3. Thresholded image4. Mask

5. Region of interest 6. Edge map

7. Extracted lines
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6.3 Point Extraction 

The input of the point extraction subsystem is the color image of the target acquired by the camera.  The 

system extracts all the isolated points and corners that are on the image. This is achieved by using the OpenCV 

function goodFeaturesToTrack. The function’s input is a binary or gray-scale image (not an edge map) and it 

provides the coordinates the extracted pints in pixels and w.r.t the image top left corner.   

Figure 15 shows the image processing techniques performed in the point extraction system, where it is 

assumed that the corners of the white pad corresponding to the AOC thruster are the features of interest.  Using 

the color image (step 1 of Figure 15) the blue channel is selected (step 2), since it provides a better contrast 

between the white pad and the MLI background.  After that, an image thresholding is performed (step 3) where 

the pixels of the image with an intensity lower than a threshold value are given a value of zero (black) 

otherwise they are given a value of 255 (white).  Next a mask is generated (step 4) using the previous time 

pose estimated by the EFK.  The mask is applied over the thresholded image (step 5) to find the region of 

interest.  Finally the OpenCV goodFeaturesToTrack function is applied (step 6) to extract the corners on the 

image.  As it can be seen there are several point around the actual corner of the pad and points that represents 

other features.  All these points are the output of the point extraction system. 
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Figure 15. Image processing operations in the point/corner extraction system 

 

As can be noted form the previous images, there are several extracted features, some of them correspond 

to actual features of interest on the target, and others are actual features on the target but are not features of 

interest, finally there are feature that are noise or wrong result from the extraction system, nevertheless all 

these features are passes to the detection system which will estimated the extracted features that correspond 

to the features of interest on the target. 

 

  

1. Color image 2. Blue channel

3. Thresholded image4. Mask

5. Region of interest

6. Extracted points
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7 FEATURE DETECTION SYSTEM 

The feature detection system has three subsystems: the ellipse detection system, the line detection system 

and the point detection system.  The following sections describe each subsystem.   

 

7.1 Ellipse-Curve and Ellipse-Point detection 

The ellipse detection system has two subsystems, the ellipse-curve detection and the ellipse-point detection 

system, which are described in the following sections. 

 

7.1.1 Ellipse-Curve Detection 

As depicted in Figure 16, the main function of the ellipse-curve detection system is to find the ellipse from 

the set of extracted ellipses (green ellipses on Figure 16 ) that best match the projection of the circular feature 

of interest, in this case the interface ring, this projected ellipse is known as the reference ellipse (red ellipse) 

and the best match is declared as the detected ellipse (blue ellipse).  The system uses the EKF’s estimated 

transformation matrix at the previous time and the pin-hole model to project the circular feature on the image 

plane and obtain the reference ellipse.   It is assumed that the geometry of the ring is known. 
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Figure 16. Reference ellipse (red), detected ellipse (blue) and extracted ellipses (green) 

 

To selected the best match the detection system uses a cost function in term of the geometric parameters 

(𝑎: major semi-axis, 𝑏: minor semi-axis, 𝑥; center x-coordinate and  𝑦: center y-coordinate) of the ellipses, 

the proposed cost function is: 

 𝐽𝑖,𝐸 = 𝑤𝑎(𝑎𝑟𝑒𝑓−𝑎𝑖)
2
+ 𝑤𝑏(𝑏𝑟𝑒𝑓−𝑏𝑖)

2
+ 𝑤𝑥(𝑥𝑟𝑒𝑓−𝑥𝑐𝑖)

2
+𝑤𝑦(𝑦𝑟𝑒𝑓−𝑦𝑐𝑖)

2
 (8) 

where the variables with subscript "𝑟𝑒𝑓" indicates the geometric parameters of the reference ellipse, the 

subscript "𝑖" refers to the geometric parameter extracted ellipses, 𝑤𝑎, 𝑤𝑏, 𝑤𝑥 and 𝑤𝑦 are the associated 

weights. The ellipse with the smallest value of the cost function (𝐽𝑚𝑖𝑛,𝐸) is then declared as the detected ellipse, 

and its geometry parameters are the output of the ellipse detection system.  

An additional requirement is that the ellipses with a value of the cost function larger that a threshold are 

ignored.  The value of the threshold is dynamic and is computed as the average of the cost of the ten previous 

best matched ellipses.  

 

7.1.2 Ellipse-Points Detection 

In addition to the extracted ellipses the system also uses the ellipse points, which are points that belong to 

ellipses.  Figure 17 and Figure 18 show the features associated with the ellipse-point detection system.  The 
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main function of this system is to detect the points from the set of extracted ellipse-points (green points on 

Figure 17) that are closer to the reference ellipse (red ellipse), the points that are closer to the reference ellipse 

are declared as the detected ellipse-points (blue points) and are the output of the system.  The reference ellipse 

is obtained as described in the previous section. 

 

 

Figure 17. Camera-1 image. Reference ellipse (red), detected ellipse points (blue) and extracted ellipse points (green) 

 

 

Figure 18.  Camera-2 image. Reference ellipse (red), detected ellipse points (blue) 
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To find the detected ellipse-points the detection system uses a cost function which is defined in terms of 

the coefficients of the quadratic equation of the reference ellipse.  The proposed cost function is: 

 

 
𝐽𝑖,𝐸𝑃 =

(𝐴𝑢2 + 𝐵𝑢𝑣 + 𝐶𝑣2 + 𝐷𝑢 + 𝐸𝑣 + 𝐹)2

0.25(𝑓𝑥 + 𝑓𝑦)
2
𝐴𝐵

 
(9) 

where (𝑢𝑖 , 𝑣𝑖) are the coordinate of the extracted points under evaluation, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹 are the 

coefficients of the reference ellipse equation, 𝑓𝑥 and 𝑓𝑦 are the camera intrinsic parameters corresponding to 

the focal distance.  Clearly if an extracted point belongs to the reference ellipse the value of its cost function 

is zero. The points with a value of the cost function smaller than a threshold are declared as the detected 

ellipse-points and as in the previous case the value of the threshold is dynamic and is computed as the average 

of the cost of the ten previous best matched points.    

 

The coefficients of the reference ellipse equation in terms of transformation matrix can be found 

analytically, the procedure to obtain them is outline below. 

 A point 𝑃(𝑥𝑃 𝑇⁄ , 𝑦𝑃 𝑇⁄ , 𝑧𝑃 𝑇⁄ )  that belongs to a circle in the target satisfies the following equation  

 (𝑦𝑃 𝑇⁄ − 𝑌𝐶)
2
+ (𝑧𝑃 𝑇⁄ − 𝑍𝐶)

2
= 𝑟2 (10) 

where it is assumed that the center is on a plane parallel to the YZ-plane and its center is located at 

𝐶(𝑋𝑐, 𝑌𝑐, 𝑍𝑐).  The circle radius is 𝑟.  The same point expressed in the camera frame is, 

 

𝑃 = [

𝑥
𝑦
𝑧
1

]

𝑃 𝐶⁄

= 𝑇𝑇 𝐶⁄ [

𝑥
𝑦
𝑧
1

]

𝑃 𝑇⁄

 (11) 

where  𝑇𝑇 𝐶⁄  is the trasformtin matrix between the target and the camera that is traking the circle.  Next, the 

pin-hole model is used to find the projection (𝑢, 𝑣) of the circle point in the camera image plane, 

 

{
 
 

 
 𝑢 = 𝑓𝑥

𝑥𝑃 𝐶⁄

𝑧𝑃 𝐶⁄
+ 𝑐𝑥

 

𝑣 = 𝑓𝑦
𝑦𝑃 𝐶⁄

𝑧𝑃 𝐶⁄
+ 𝑐𝑦

 (12) 

where 𝑓𝑥 , 𝑐𝑥, 𝑓𝑦 and 𝑐𝑦 are the intrinsic parameters of the camera. Substituting equation (11) in Equation (12) 

an explicit expression for  𝑦𝑃 𝑇⁄  and 𝑧𝑃 𝑇⁄  can be obtained, which has the form, 
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{
𝑦𝑃 𝑇⁄ = 𝑥𝑃 𝑇⁄ (𝑢, 𝑣, 𝑥𝑃 𝑇⁄ , 𝑇𝑇 𝐶⁄ )

𝑧𝑃 𝑇⁄ = 𝑦𝑃 𝑇⁄ (𝑢, 𝑣, 𝑥𝑃 𝑇⁄ , 𝑇𝑇 𝐶⁄ )
 (13) 

 

 Since the 𝑃(𝑥𝑃 𝑇⁄ , 𝑦𝑃 𝑇⁄ , 𝑧𝑃 𝑇⁄ ) belong to the target circle, then, if the previous expression is used in Equation 

(10), an expression for the equation of the projected ellipse can be found,  

 𝐴𝑢2 + 𝐵𝑢𝑣 + 𝐶𝑣2 + 𝐷𝑢 + 𝐸𝑣 + 𝐹 = 0 (14) 

where  𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹 are the coefficients of the ellipse equation in the image plane, these coefficients are 

function of the transformation matrix (𝑇𝑇 𝐶⁄ ), camera intrinsic parameters and the 𝑥𝑃 𝑇⁄ = 𝑋𝑐 coordinate, the 

last two elements are constant, while the transformation matrix changes with time (due to relative motion), as 

an example the coefficient 𝐴, can be expressed as, 

 𝐴 = 𝐴(𝑇𝑇 𝐶⁄ ) (15) 

 

7.2 Line Detector 

As presented in Figure 19 the main function of the line detector system is to identify the lines from the set 

of extracted lines (green points on step 1 of Figure 19) that are closer to reference lines (red lines). In the 

example of Figure 19 two lines of the borders of the white pad are being used as a feature of interest, and their 

corresponding corner.  The lines that are closer to the reference lines are declared as the detected lines (blue 

lines in step 2).  The reference lines are obtained using the EKF’s estimation transformation matrix at the 

previous time to project the lines of interest (3D-lines of the target) on the image plane, these projections are 

the reference lines.   It is assumed that the geometry of the lines in the target is known. 

As can be seen in Figure 19 there are several detected lines for each reference line, an additional step is to 

fit all these lines in one line for each reference line, these lines are declared as the fitted lines and are the 

output of the line detection system.  
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Figure 19.  Images of the operation of the line detector 

 

1. Extracted lines

2. Detected lines 

3. Fitted lines 
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To find the detected lines the detection system uses a cost function which is defined in terms of the 

coefficients of the reference line equation.  The proposed cost function is: 

 
𝐽𝑖,𝐿 =

|𝐴𝐿𝑢𝑖1 + 𝐵𝐿𝑣𝑖1 + 𝐶𝐿|

𝐴𝐿 + 𝐵𝐿
+
|𝐴𝐿𝑢𝑖2 + 𝐵𝐿𝑣𝑖2 + 𝐶𝐿|

𝐴𝐿 + 𝐵𝐿
 (16) 

where 𝑢𝑖1, 𝑣𝑖1, 𝑢𝑖2 and 𝑣𝑖2 are the coordinates of the points that define the extracted line under evaluation, 𝐴𝐿, 

𝐵𝐿, and 𝐶𝐿 are the coefficients of the reference line equation, 

 𝐴𝐿𝑢 + 𝐵𝐿𝑣 + 𝐶𝐿 = 0 (17) 

these coefficients are function of the transformation matrix. 

This proposed cost functions represents the square of the Euclidean distance between the reference line 

and the points of the extracted line.  Note that if an extracted line match the reference line the value of its cost 

function is zero. The extracted lines with a value of the cost function smaller than a threshold are declared as 

the detected lines and as in the previous case the value of the threshold is dynamic and is computed as the 

average of the cost of the ten previous best matched lines. 

The coefficient of the 2D-line equation can be expressed in terms of the transformation matrix using the 

following procedure. An arbitrary point, 𝑃𝑡, belonging to a 3D-line of the target is describes by, 

 𝑃𝑡(𝑡) = 𝑉𝐿𝑡 + 𝑃𝐿 (18) 

where 𝑉𝐿 is a vector parallel to the 3D-line in the target and 𝑃𝐿 is a point on that line, and 𝑡 is the parameter 

of the equation and can take any real value. The previous two vectors can be expressed in the camera frame 

using the transformation matrix, 

 

𝑉𝐿 = [

𝑣𝑥
𝑣𝑦
𝑣𝑧
0

]

𝐿 𝐶⁄

= 𝑇𝑇 𝐶⁄ [

𝑣𝑥
𝑣𝑦
𝑣𝑧
0

]

𝐿 𝑇⁄

 (19) 

and, 

 

𝑃𝐿 = [

𝑥
𝑦
𝑧
1

]

𝐿 𝐶⁄

= 𝑇𝑇 𝐶⁄ [

𝑥
𝑦
𝑧
1

]

𝐿 𝑇⁄

 (20) 

then the components of the point 𝑃𝑡, w.r.t. the camera frame can be expressed as, 

 

{

𝑥𝐿/𝐶 = 𝑣𝑥𝐿/𝐶𝑡 + 𝑥𝐿/𝐶
𝑦𝐿/𝐶 = 𝑣𝑦𝐿/𝐶𝑡 + 𝑦𝐿/𝐶
𝑧𝐿/𝐶 = 𝑣𝑧𝐿/𝐶𝑡 + 𝑧𝐿/𝐶

 (21) 

 

Using the pin-hole it is obtained, 
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{
 
 

 
 𝑢 = 𝑓𝑥

𝑥𝐿/𝐶

𝑧𝐿/𝐶
+ 𝑐𝑥

 

𝑣 = 𝑓𝑦
𝑦𝐿/𝐶

𝑧𝐿/𝐶
+ 𝑐𝑦

 (22) 

 

The projection of the 3D-line is also a line in the image plane (plane 𝑢𝑣), which has the following equation, 

 𝐴𝐿𝑢 + 𝐵𝐿𝑣 + 𝐶𝐿 = 0 (23) 

 

The expression for the line equation coefficients can be found using three different and arbitrary values for 

the parameter 𝑡 of Equation (22).  After that, it can be seen that the coefficients are function of the 

transformation matrix between the target and the particular camera, 

 

{

𝐴𝐿 = 𝐴𝐿(𝑇𝑇 𝐶⁄ )

𝐵𝐿 = 𝐵𝐿(𝑇𝑇 𝐶⁄ )

𝐶𝐿 = 𝐶𝐿(𝑇𝑇 𝐶⁄ )
 (24) 

 

7.3 Point Detector 

As presented in Figure 20 the main function of the point detector system is to identify the points from the 

set of extracted points (green points in Figure 20) that are closer to reference points (red points). In the example 

of Figure 20 one of the corners of the white pad is the feature of interest.  The extracted points that are closer 

to the reference points are declared as the detected points (blue points).  The reference point is obtained using 

the EKF’s estimation transformation matrix at the previous time to project the point of interest (3D-point on 

the target) on the image plane, this projection is the reference point.   It is assumed that the geometry of the 

point in the target is known. 

If there are several detected points, an additional step is to average all these points in one point, and this is 

declared as the fitted point and is the output of the point detection system.  
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Figure 20. Reference point (red), detected point (blue) and extracted points (green) 

 

To find the detected points the detection system uses a cost function which is defined in terms of the 

coordinates of the reference point.  The proposed cost function is: 

 𝐽𝑖,𝑃 = (𝑢𝑟𝑒𝑓 − 𝑢𝑖)
2 + (𝑣𝑟𝑒𝑓 − 𝑣𝑖)

2 (25) 

where 𝑢𝑖 and 𝑣𝑖 are the coordinates of the extracted point under evaluation, 𝑢𝑟𝑒𝑓 and 𝑣𝑟𝑒𝑓 are the coordinates 

of the reference point. This cost functions represents the square of the Euclidean distance between the 

reference point and an extracted point.  The points with a value of the cost function smaller than a threshold 

are declared as the detected points and as in the previous case the value of the threshold is dynamic and is 

computed as the average of the cost of the ten previous best matched points.    

The reference point is obtained using the pin-hole model to project a target point, 𝑃(𝑥, 𝑦, 𝑧), in the image 

plane of the image, 

 
𝑃𝑃 = [

𝑥
𝑦
𝑧
1

]

𝑃 𝐶⁄

= 𝑇𝑇 𝐶⁄ [

𝑥
𝑦
𝑧
1

]

𝑃 𝑇⁄

 (26) 

to obtain, 
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{
 
 

 
 𝑢 = 𝑓𝑥

𝑥𝑃/𝐶

𝑧𝑃/𝐶
+ 𝑐𝑥

 

𝑣 = 𝑓𝑦
𝑦𝑃/𝐶

𝑧𝑃/𝐶
+ 𝑐𝑦

 (27) 

 

As can be seen from (26) and (27) each coordinate is function of the transformation matrix, 

 

{

𝑢 = 𝑢(𝑇𝑇 𝐶⁄ )
 

𝑣 = 𝑣(𝑇𝑇 𝐶⁄ )
 (28) 

 

 

  



46 

 

 

8 CIRCLE POSE CALCULATOR. 

The feature detection system gives the geometric parameters of the detected ellipse to the pose circle 

calculator.  As presented in Figure 21 the function of this system is to obtain the 3D-coordinates of the center 

(�⃗�𝐶 in Figure 21) and the normal vector �⃗⃑⃑�𝐶 of the circle which projection correspond to the given detected 

ellipse.   

 

 

Figure 21.  Detected ellipse and circle pose 

 

To achieve this, the system uses the geometric parameters of the detected ellipse to find the coefficient of 

the ellipse equation. Using the coefficients of the detected ellipse the circle pose (center position and normal 

vector) is obtained using the method proposed in [69].  

The first step in the method is to find the equation of the elliptical cone that pass through the ellipse on the 

focal plane (see Figure 23) and has its vertex at the focal point.  This equation is expressed with respect to the 

camera frame and it can be obtained using the ellipse equation.  In the second step, the equation of the cone 

is represented with respect to a new reference frame, where the equation of the elliptical cone has the canonical 

form (see Figure 24). In the third step the plane that intersects the cone forming a circle of the same diameter 

of the circle on the target (interface ring).  Since there are two possible planes that satisfy this condition, they 

will generate two possible solution for the circle pose, i.e. two normals and two center positions (see Figure 
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22). In the final step the obtained solutions are transformed back to the original frame. The unique solution is 

obtained by comparing the two normals with EKF estimation (the reference normal is the first column of the 

rotation matrix of the target w.r.t. the camera). The normal closer to the reference, along with its corresponding 

position vector, are declared as the circle pose solution. 

 

 

 
 

Figure 22. Canonical reference frame and two intersecting planes. 

 

 

8.1 Coefficients of the Ellipse Equation in Terms of the Geometric Parameters 

The coefficients, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹 of the ellipse quadratic equation, 

 𝐴𝑢2 + 𝐵𝑢𝑣 + 𝐶𝑣2 + 𝐷𝑢 + 𝐸𝑣 + 𝐹 = 0 (29) 

can be obtained using the geometric parameters of the ellipse.  The following are the equations that show these 

relationship. Let 𝑎, 𝑏, 𝑥, 𝑦 and 𝜃 be the geometric parameters of the detected ellipse, as presented in Figure 12: 

major semi-axis, minor semi-axis, center x-coordinate, center y-coordinate and orientation angle respectively.  

The coefficients of the ellipse equation can be expressed in terms of these parameter, as follows, 

 𝐴 = 𝑎2 + (𝑏2 − 𝑎2)𝑐𝑜𝑠(𝜃)2 (30) 

 

 𝐵 = 2(𝑏2 − 𝑎2)𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜃) (31) 
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 𝐶 = 𝑏2 + (𝑎2 − 𝑏2)𝑐𝑜𝑠(𝜃)2 (32) 

 

 𝐷 = −2𝑎2𝑥 + 2𝑦(𝑎2 − 𝑏2)𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜃) + 2𝑥(𝑎2 − 𝑏2)𝑐𝑜𝑠(𝜃)2 (33) 

 

 𝐸 = −2𝑏2𝑦 + 2𝑥(𝑎2 − 𝑏2)𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜃) − 2𝑦(𝑎2 − 𝑏2)𝑐𝑜𝑠(𝜃)2 (34) 

and, 

𝐹 = −𝑎2𝑏2 + 𝑏2𝑦2 + 𝑎2𝑥2 + (−𝑎2𝑥2 + 𝑎2𝑦2 + 𝑏2𝑥2 − 𝑏2𝑦2)𝑐𝑜𝑠(𝜃)2 + (−2𝑎2𝑥𝑦 + 2𝑏2𝑥𝑦)𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 (35) 

 

8.2 Center and Normal of the Circle 

Using the coefficients of the ellipse equation, the 3D-position vector and the normal vector of the circle 

that has the detected ellipse as its projection in the image plane can be found using the method present in [69]. 

The expressions for these vectors are obtained using the procedure described below.  Let the quadratic 

equation of an ellipse in the camera focal plane (𝑢′𝑣′ - plane) be: 

 𝐴𝑢′2 + 𝐵𝑢′𝑣′ + 𝐶𝑣′
2
+ 𝐷𝑢′ + 𝐸𝑣′ + 𝐹 = 0 (36) 

 

 
Figure 23. Camera pin-hole model and ring projection. 
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where (𝑢′, 𝑣′) are the coordinate of the ellipse with respect to the intersection of the focal axis with the image 

plane, as presented in Figure 23.  The equation of the cone with its vertex at the focal point and that passes 

through the ellipse in the image plane is, 

 𝐴𝑐𝑥
2 + 𝐵𝑐𝑥𝑦 + 𝐶𝑐𝑦

2 + 𝐷𝑐𝑥𝑧 + 𝐸𝑐𝑦𝑧 + 𝐹𝑐𝑧
2 = 0 (37) 

 

At the focal plane, 𝑧 = 𝑓𝑐, thus 

 𝐴𝑐𝑥
2 + 𝐵𝑐𝑥𝑦 + 𝐶𝑐𝑦

2 + 𝐷𝑐𝑓𝑐𝑥 + 𝐸𝑐𝑓𝑐𝑦 + 𝐹𝑐𝑓𝑐
2 = 0 (38) 

then the relationship between the cone equation and the ellipse equation can be found, 

 𝐴 = 𝑓𝑐
2𝑎, 𝐵 = 𝑓𝑐

2𝑏, 𝐶 = 𝑓𝑐
2𝑐, 𝐷 = 𝑓𝑐𝑑, 𝐸 = 𝑓𝑐𝑒, 𝐹 = 𝑓 (39) 

 

The cone equation can be written as 

 

[
𝑥
𝑦
𝑧
]

𝑇

𝑄 [
𝑥
𝑦
𝑧
] = 0 (40) 

where, 

 

𝑄 =

[
 
 
 
 
 𝐴

𝐵

2

𝐷

2
𝐵

2
𝐶

𝐸

2
𝐷

2

𝐸

2
𝐹]
 
 
 
 
 

 (41) 

 

To represent the cone equation in a standard canonical form a diagonalizing matrix 𝑃 for 𝑄 is used, 

 

𝑃−1𝑄𝑃 = 𝐷 = [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] (42) 

then, 

 

[
𝑥′
𝑦′

𝑧′

]

𝑇

𝑃−1𝑄𝑃 [
𝑥′
𝑦′

𝑧′

] = 0 (43) 

where 𝑥′, 𝑦′ and 𝑧′ represent of the cone in the new frame where the cone has the standard form (see Figure 

24), 

 𝜆1𝑥′
2 + 𝜆2𝑦′

2 + 𝜆3𝑧′
2 = 0 (44) 
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Figure 24. Cone and canonical reference frame 

 

Assuming a cone aligned with the z–axis, 

 |𝜆1|𝑥′
2 + |𝜆2|𝑦′

2 − |𝜆3|𝑧′
2 = 0 (45) 

  

The following is the procedure to find 𝑃 propose in [69].  Let 𝑒1, 𝑒2, 𝑒3 be the column vectors of 𝑃, 

 𝑃 = [𝑒1, 𝑒2, 𝑒3] (46) 

 

The matrix P can be obtained using the eigenvalues ( 𝜇1, 𝜇2, 𝜇3 ) of the matrix 𝑄 and its normalized 

eigenvectors (𝑓1, 𝑓2, 𝑓3). The difference between 𝜆1, 𝜆2, 𝜆3 and 𝜇1, 𝜇2, 𝜇3 is the order, the difference between 

the coloums of the diagonalizing matrix and the eigenvectors of 𝑄 is also the order and the direction by a 

factor of ±1.  To match the eigenvalues the following conditions are used. 

Since the cone opens along the z-axis then 𝜆1 and 𝜆2 must have the same sign, and it is different from the 

sign of 𝜆3, then, 

 𝜆3 = 𝜇𝑑 (47) 

where, 

 

𝜇𝑑 = {

𝜇1 𝑖𝑓 𝑠𝑖𝑔𝑛(𝜇2) = 𝑠𝑖𝑔𝑛(𝜇3) 

𝜇2 𝑖𝑓 𝑠𝑖𝑔𝑛(𝜇1) = 𝑠𝑖𝑔𝑛(𝜇3)

𝜇3 𝑖𝑓 𝑠𝑖𝑔𝑛(𝜇1) = 𝑠𝑖𝑔𝑛(𝜇2)
 (48) 

canonical

reference

frame
z'

cone
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and the direction of the eigenvector 𝑒3 is along the positive direction of the z-axis, then 

 
𝑒3 = {

𝑓𝑑  𝑖𝑓 𝑓𝑑  ∙ [0 0 1]
𝑇 > 0 

−𝑓𝑑  𝑖𝑓 𝑓𝑑  ∙ [0 0 1]
𝑇 < 0

 (49) 

 

To find the two remaining eigenvalues (denoted as 𝜔1 and 𝜔2 with the corresponding eigenvectors �⃑�1 and �⃑�2 

respectively) reference [69] assumed that, 

 |𝜆1| > |𝜆2| (50) 

then, 

 
𝜆2 = {

𝜔1 𝑖𝑓|𝜔1| < |𝜔2|  

𝜔2 𝑖𝑓|𝜔2| < |𝜔1|
 (51) 

and, 

 
𝑒2 = {

�⃑�1 𝑖𝑓|𝜔1| < |𝜔2|

�⃑�2 𝑖𝑓|𝜔2| < |𝜔1|
 (52) 

 

The third eigenvector is computed as the cross product of the two identified eigenvectors, 

 𝑒1 = 𝑒2 × 𝑒3 (53) 

 

Using the obtained eigenvectors the matrix 𝑄 can be normalized and the cone can be expressed in the 

canonical form, and rest of the four steps described above can be performed.  The two solutions of the circle 

center (𝑥𝐶,1, 𝑦𝐶,1, 𝑧𝐶,1) with respect to the camera frame can be obtained (see [69] for details) and they are 

presented below.  The first solution for the circle center is, 

 

𝑥𝐶,1 = 𝑒1𝑥𝑟√
|𝜆3|(|𝜆1| − |𝜆2|)

|𝜆1|(|𝜆1| + |𝜆3|)
+ 𝑒3𝑥𝑟√

|𝜆1|(|𝜆2| + |𝜆3|)

|𝜆3|(|𝜆1| + |𝜆3|)
 (54) 

 

 

𝑦𝐶,1 = 𝑒1𝑦𝑟√
|𝜆3|(|𝜆1| − |𝜆2|)

|𝜆1|(|𝜆1| + |𝜆3|)
+ 𝑒3𝑦𝑟√

|𝜆1|(|𝜆2| + |𝜆3|)

|𝜆3|(|𝜆1| + |𝜆3|)
 (55) 

 

 

𝑧𝐶,1 = 𝑒1𝑧𝑟√
|𝜆3|(|𝜆1| − |𝜆2|)

|𝜆1|(|𝜆1| + |𝜆3|)
+ 𝑒3𝑧𝑟√

|𝜆1|(|𝜆2| + |𝜆3|)

|𝜆3|(|𝜆1| + |𝜆3|)
 (56) 

 

The first solution for the circle normal (𝑛𝑥,1, 𝑛𝑦,1, 𝑛𝑧,1) is, 
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𝑛𝑥,1 = 𝑒1𝑥√
|𝜆1| − |𝜆2|

|𝜆1| + |𝜆3|
− 𝑒3𝑥√

|𝜆2| + |𝜆3|

|𝜆1| + |𝜆3|
 (57) 

 

 

𝑛𝑦,1 = 𝑒1𝑦√
|𝜆1| − |𝜆2|

|𝜆1| + |𝜆3|
− 𝑒3𝑦√

|𝜆2| + |𝜆3|

|𝜆1| + |𝜆3|
 (58) 

 

 

𝑛𝑧,1 = 𝑒1𝑧√
|𝜆1| − |𝜆2|

|𝜆1| + |𝜆3|
− 𝑒3𝑧√

|𝜆2| + |𝜆3|

|𝜆1| + |𝜆3|
 (59) 

 

The second solution for the circle center (𝑥𝐶,2, 𝑦𝐶,2, 𝑧𝐶,2) is, 

 

𝑥𝐶,2 = −𝑒1𝑥𝑟√
|𝜆3|(|𝜆1| − |𝜆2|)

|𝜆1|(|𝜆1| + |𝜆3|)
+ 𝑒3𝑥𝑟√

|𝜆1|(|𝜆2| + |𝜆3|)

|𝜆3|(|𝜆1| + |𝜆3|)
 (60) 

 

 

𝑦𝐶,1 = −𝑒1𝑦𝑟√
|𝜆3|(|𝜆1| − |𝜆2|)

|𝜆1|(|𝜆1| + |𝜆3|)
+ 𝑒3𝑦𝑟√

|𝜆1|(|𝜆2| + |𝜆3|)

|𝜆3|(|𝜆1| + |𝜆3|)
 (61) 

 

 

𝑧𝐶,1 = −𝑒1𝑧𝑟√
|𝜆3|(|𝜆1| − |𝜆2|)

|𝜆1|(|𝜆1| + |𝜆3|)
+ 𝑒3𝑧𝑟√

|𝜆1|(|𝜆2| + |𝜆3|)

|𝜆3|(|𝜆1| + |𝜆3|)
 (62) 

 

The second solution for the circle normal (𝑛𝑥,2, 𝑛𝑦,2, 𝑛𝑧,2) is, 

 

𝑛𝑥,2 = −𝑒1𝑥√
|𝜆1| − |𝜆2|

|𝜆1| + |𝜆3|
− 𝑒3𝑥√

|𝜆2| + |𝜆3|

|𝜆1| + |𝜆3|
 (63) 

 

 

𝑛𝑦,2 = −𝑒1𝑦√
|𝜆1| − |𝜆2|

|𝜆1| + |𝜆3|
− 𝑒3𝑦√

|𝜆2| + |𝜆3|

|𝜆1| + |𝜆3|
 (64) 

 

 

𝑛𝑧,2 = −𝑒1𝑧√
|𝜆1| − |𝜆2|

|𝜆1| + |𝜆3|
− 𝑒3𝑧√

|𝜆2| + |𝜆3|

|𝜆1| + |𝜆3|
 (65) 
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where, 

 
𝑒1 = [

𝑒1𝑥
𝑒1𝑦
𝑒1𝑧
] (66) 

 

 
𝑒2 = [

𝑒2𝑥
𝑒2𝑦
𝑒2𝑧
] (67) 

 

 
𝑒3 = [

𝑒3𝑥
𝑒3𝑦
𝑒3𝑧
] (68) 

When the circle is parallel to the image plane the solution are the same and 𝜆1 = 𝜆2. 

 

 

  



54 

 

 

9 POSE SOLVER 

The function of the pose solver is to fuse information from the two cameras and from the different detected 

features that are tracked. This is achieved by minimizing a cost function that represent the distance between 

the detected features and some reference features corresponding to the projection of the target features when 

the target in located w.r.t the end-effector according to an assumed transformation matrix. The assumed 

position that minimizes the cost function has to be determined and is the output of the pose solver system.  As 

can be seen in Figure 25, the assumed transformation matrix (𝑇𝑇 𝐸⁄ ,𝑘+1) is a small variation (Δ𝑇𝑘) of the EKF 

estimated transformation matrix at the previous time (𝑇𝑇 𝐸⁄ ,𝑘). 

 

 

Figure 25.  Matrices relating the assumed pose and the estimated pose 

 

The variation matrix Δ𝑇𝑘, can be expressed in term of the Euler angles and a translation vector as follows,  

 

Δ𝑇𝑘 =

[
 
 
 
𝑐𝑜𝑠𝜓∆𝑐𝑜𝑠∆𝜃 −𝑠𝑖𝑛∆𝜓𝑐𝑜𝑠∆𝜑 + 𝑐𝑜𝑠∆𝜓𝑠𝑖𝑛∆𝜃𝑠𝑖𝑛∆𝜑
𝑠𝑖𝑛∆𝜓𝑐𝑜𝑠∆𝜃 𝑐𝑜𝑠∆𝜓𝑐𝑜𝑠∆𝜑 + 𝑠𝑖𝑛∆𝜓𝑠𝑖𝑛∆𝜃𝑠𝑖𝑛∆𝜑

𝑠𝑖𝑛∆𝜓𝑠𝑖𝑛∆𝜑 + 𝑐𝑜𝑠∆𝜓𝑠𝑖𝑛∆𝜃𝑐𝑜𝑠∆𝜑 Δ𝑥
−𝑠𝑖𝑛∆𝜑𝑐𝑜𝑠∆𝜓 + 𝑠𝑖𝑛∆𝜓𝑠𝑖𝑛∆𝜃𝑐𝑜𝑠∆𝜑 Δ𝑦

−𝑠𝑖𝑛∆𝜃                   𝑐𝑜𝑠∆𝜃 𝑠𝑖𝑛∆𝜑                      
0 0

                   𝑐𝑜𝑠∆𝜃𝑐𝑜𝑠∆𝜑                         Δ𝑧
0 1 ]

 
 
 
 (69) 

where ∆𝜑, ∆𝜓 and ∆𝜃 are the Euler angles that represent the rotation component of the variation matrix and 

Δ𝑥, Δ𝑦 and Δ𝑧 the components of the translation vector.  A vector containing these six variables is known as 

pose solver vector, 𝑋𝑃𝑆, i.e., 
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 𝑋𝑃𝑆 = [Δ𝜑 Δ𝜃 Δ𝜓 Δ𝑥 Δ𝑦 Δ𝑧] (70) 

 

The definition of the variation matrix using pose solver vector is implemented in order to facilitate the process 

of obtaining the gradient required to perform the minimization process. Then the minimization process will 

find a pose vector that will minimize the cost function.  Having the vector, it is possible to obtain the variation 

matrix using Equation (70). 

The pose vector represents the change in the target position with respect to the previous target position, 

this change can be due to actual motion between the target and the end-effect or due to noise/errors in the 

estimation process or both.  It is assumed that the current unknown pose is close to the previous pose, so the 

values of the pose vector are small. 

  The reference features are compared with the detected features to find the cost corresponding to the 

particular assumed transformation matrix.  All the inputs of the pose solver are 2D-points in the image plane 

representing the detected features of each camera.  As an example if Camera-1 is tracking a circle and Camera-

2 is tacking two lines a one corner, the inputs of the pose solver system are: 

 A set of points belonging to an ellipse (circle of Camera-1) 

 Two sets of points, each set with two points (2 lines of Camera-2) 

 One point (Corner of Camera-2) 

Then the cost function is expressed in terms of these points, which are constant during the iterative process 

of the minimization routine. They only change when a new image is acquired or equivalently at each execution 

step of the pose estimation system. 

The variation matrix Δ𝑇𝑘
∗, that minimizes the cost function is obtained using the conjugated gradient 

method, which requires the computation of the gradient of the cost function.  This requires that the cost 

function has to be expressed in terms of the modified transformation matrix and obtain its gradient, the next 

sections show how this is achieved. 

The relation between the matrices of Figure 25 can be expresses as, 

 𝑇𝑇 𝐸⁄ ,𝑘+1 = Δ𝑇𝑘𝑇𝑇 𝐸⁄ ,𝑘 (71) 

this is the assumed position of the target w.r.t. the end-effector.  The target can also be expressed with respect 

to a camera using the following expression, 

 𝑇𝑇 𝐶⁄ ,𝑘+1 = 𝑇𝑇 𝐶⁄ 𝑇𝑇 𝐸⁄ ,𝑘+1 = 𝑇𝑇 𝐶⁄ Δ𝑇𝑘 𝑇𝑇 𝐸⁄ ,𝑘 (72) 
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The previous expression is needed since the cost function uses the features projected in the image plane of 

the cameras and the properties of the features are function of this matrix.   

The output of the pose solver system is the quaternion, [𝑞0 𝑞1 𝑞2 𝑞3]∗, and the translation vector, 

[𝑥 𝑦 𝑧]∗, corresponding to the transformation matrix 𝑇𝑇 𝐸⁄ ,𝑘+1
∗ , that minimizes the cost function, which is 

obtained as, 

 𝑇𝑇 𝐸⁄ ,𝑘+1
∗ = Δ𝑇𝑘

∗𝑇𝑇 𝐸⁄ ,𝑘 (73) 

then, 

 𝑋𝑜𝑢𝑡 = [𝑞0 𝑞1 𝑞2 𝑞3 𝑥 𝑦 𝑧]𝑇 (74) 

is the output of the pose solver system.  The next section shows the cost function for each type of feature 

(ellipses, lines and points) and the definition of each cost function in terms of the pose vector. 

 

9.1 Ellipse Cost Function 

The cost function for ellipses is defined in the same way as the cost function of the ellipse-point detection, 

 
𝐽𝑖,𝐸 =

(𝐴𝑢2 + 𝐵𝑢𝑣 + 𝐶𝑣2 + 𝐷𝑢 + 𝐸𝑣 + 𝐹)2

0.25(𝑓𝑥 + 𝑓𝑦)
2
𝐴𝐵

 
(75) 

where (𝑢, 𝑣) are the coordinate of the detected points, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹 are the coefficients of the ellipse 

equation, 𝑓𝑥 and 𝑓𝑦 are the camera intrinsic parameters corresponding to the focal distance.  The detected 

ellipse points are constant during the minimization processes.  The coefficients of the ellipse equation are 

obtained as the projection of the target circle in the camera image plane using the transformation matrix 

𝑇𝑇 𝐶⁄ ,𝑘+1, and then these coefficients change during each iteration of the minimization since they are function 

of the pose vector, as an example, 

 𝐴 = 𝐴(Δ𝜑, Δ𝜃, Δ𝜓, Δ𝑥, Δ𝑦, Δ𝑧) (76) 

This can be obtained using expressions (15), (72) and (69).  This also implies that the cost function can be 

expressed in term of the pose vector, 

𝐽𝑖,𝐸 = 𝐽𝑖,𝐸(Δ𝜑, Δ𝜃, Δ𝜓, Δ𝑥, Δ𝑦, Δ𝑧) 

 

9.2 Line Cost Function 

The cost function for lines is defined in the same way as the cost function of the line detection, 

 
𝐽𝑖,𝐿 = (

𝐴𝐿𝑢𝑖1 + 𝐵𝐿𝑣𝑖1 + 𝐶𝐿
𝐴𝐿 + 𝐵𝐿

)
2

+ (
𝐴𝐿𝑢𝑖2 + 𝐵𝐿𝑣𝑖2 + 𝐶𝐿

𝐴𝐿 + 𝐵𝐿
)
2

 (77) 
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where 𝑢𝑖1, 𝑣𝑖1, 𝑢𝑖2 and 𝑣𝑖2 are the coordinate of the two points defining the detected line, 𝐴𝐿, 𝐵𝐿, and 𝐶𝐿 are 

the coefficients of the equation of the projected line, obtained using the modified matrix 𝑇𝑇 𝐶⁄ ,𝑘+1.  As the 

ellipses cost function this function is also function of the pose vector.  This can be seen from equations (24), 

(72) and (69).  

9.3 Point Cost Function 

The cost function for points is defined in the same way as the cost function of the point detection, 

 𝐽𝑖,𝑃 = (𝑢𝑃 − 𝑢𝑖)
2 + (𝑣𝑃 − 𝑣𝑖)

2 (78) 

where 𝑢𝑖 and 𝑣𝑖 are the coordinates of the detected points, 𝑢𝑃 and 𝑣𝑃 are the coordinates of the projected 

points, obtained using the modified matrix 𝑇𝑇 𝐶⁄ ,𝑘+1.  As the line cost function this function is also function of 

the pose vector. This can be seen from equations (28), (72) and (69). 

All the previous cost functions were define in the same way as it was done in the detection system and they 

are related to the distance between the detected features (expressed as points) and the projected target features 

in the image plane, where the projection is performed using the pin-hole model and the assumed 

transformation matrix.  A total cost function is used, it represents the sum of the individual cost functions.  As 

can be noted from the previous equations all the individual cost functions are function of the variation matrix 

or the pose vector. 

 

9.4 Total Cost Function 

The total cost function is the weighted sum of the total number of features. The weights are defined for 

each type of features of each camera, and since it can be possible to have several features of the same type for 

one camera, then the weight will affect them equally.  The expression for the total cost function is,  

 𝐽 = 𝑤𝐸,1𝐽𝐸,1 + 𝑤𝐿,1𝐽𝐿,1 + 𝑤𝑃,1𝐽𝑃,1 + 𝑤𝐸,2𝐽𝐸,2 +𝑤𝐿,2𝐽𝐿,2 + 𝑤𝑃,2𝐽𝑃,2 (79) 

where 𝑤𝐸,1, 𝑤𝐿,1 and 𝑤𝑃,1 are the weight for the cost function of the ellipses, lines and points in camera-1 

respectively.    The corresponding values for camera-2 are for 𝑤𝐸,2, 𝑤𝐿,2 and 𝑤𝑃,2. Assuming that there are 

𝑁𝐸,1 ellipse, 𝑁𝐿,1 lines and 𝑁𝑃,1ppoints for camera-1 and being  𝑁𝐸,2, 𝑁𝐿,2, 𝑁𝑃,2 the corresponding number of 

features for camera-2, the individual cost functions are defined as, 

 

𝐽𝐸,1 =
1

𝑁𝐸,1
∑𝐽𝑖,𝐸

𝑁𝐸,1

𝑖=1

 (80) 

this is the total cost function for the ellipses in Camera-1.  The term 
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𝐽𝐿,1 =
1

𝑁𝐿,1
∑𝐽𝑖,𝐿

𝑁𝐿,1

𝑖=1

 (81) 

is the total cost function for the lines in camera-1, and, 

 

𝐽𝑃,1 =
1

𝑁𝑃,1
∑𝐽𝑖,𝑃

𝑁𝑃,1

𝑖=1

 (82) 

is the total cost function for the points in camera-1, 𝐽𝐸,2 , 𝐽𝐿,2 and 𝐽𝑃,2 are defined in a similar way.  

Equation (79) can be expressed explicitly in terms of the components of the pose vector 𝑋𝑃𝑆 and then its 

gradient can be found, as required by the conjugate gradient method, which is used to find the pose that 

minimizes the total cost function. The weight of the cost function are useful to give more importance to a 

particular feature, as example if a feature is difficult to detect or is occluded at certain condition a low weight 

can be used. 

As was mentioned before all the individual functions are function of the pose vector, then the minimization 

process of the total cost function will serve as data fusion system of all the information provided by each 

camera and each algorithm. The data/sensor occurs since all the values of the cost function during the 

minimization process are considered together and simultaneously. 

9.5 Conjugate Gradients Method 

The cost function described above is a nonlinear function of the pose vector, 𝑋𝑃𝑆 =

[𝜑 𝜃 𝜓 𝑥 𝑦 𝑧],  its gradient ∇⃑⃑⃑𝐽 is,  

 
∇⃑⃑⃑𝐽 = [

𝜕𝐽

𝜕𝜑

𝜕𝐽

𝜕𝜃

𝜕𝐽

𝜕𝜓

𝜕𝐽

𝜕𝑥

𝜕𝐽

𝜕𝑦

𝜕𝐽

𝜕𝑧
]
𝑇

 (83) 

and its hessian 𝐻(𝐽) is, 
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𝐻(𝐽) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕2𝐽

𝜕𝜑2
𝜕2𝐽

𝜕𝜑𝜕𝜃

𝜕2𝐽

𝜕𝜑𝜕𝜓

𝜕2𝐽

𝜕𝜑𝜕𝑥

𝜕2𝐽

𝜕𝜑𝜕𝑦

𝜕2𝐽

𝜕𝜑𝜕𝑧

𝜕2𝐽

𝜕𝜑𝜕𝜃

𝜕2𝐽

𝜕𝜃2
𝜕2𝐽

𝜕𝜃𝜕𝜓

𝜕2𝐽

𝜕𝜃𝜕𝑥

𝜕2𝐽

𝜕𝜃𝜕𝑦

𝜕2𝐽

𝜕𝜃𝜕𝑧

𝜕2𝐽

𝜕𝜑𝜕𝜓

𝜕2𝐽

𝜕𝜃𝜕𝜓

𝜕2𝐽

𝜕𝜓2
𝜕2𝐽

𝜕𝜓𝜕𝑥

𝜕2𝐽

𝜕𝜓𝜕𝑦

𝜕2𝐽

𝜕𝜓𝜕𝑧

𝜕2𝐽

𝜕𝜑𝜕𝑥

𝜕2𝐽

𝜕𝜃𝜕𝑥

𝜕2𝐽

𝜕𝜓𝜕𝑥

𝜕2𝐽

𝜕𝑥2
𝜕2𝐽

𝜕𝑥𝜕𝑦

𝜕2𝐽

𝜕𝑦2

𝜕2𝐽

𝜕𝜑𝜕𝑦

𝜕2𝐽

𝜕𝜃𝜕𝑦

𝜕2𝐽

𝜕𝜓𝜕𝑦

𝜕2𝐽

𝜕𝑥𝜕𝑦

𝜕2𝐽

𝜕𝑦2
𝜕2𝐽

𝜕𝑦𝜕𝑧

𝜕2𝐽

𝜕𝜑𝜕𝑧

𝜕2𝐽

𝜕𝜃𝜕𝑧

𝜕2𝐽

𝜕𝜓𝜕𝑧

𝜕2𝐽

𝜕𝑥𝜕𝑧

𝜕2𝐽

𝜕𝑦𝜕𝑧

𝜕2𝐽

𝜕𝑧2 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (84) 

 

and they can be obtained since the cost function is known.  This makes possible the use of the conjugate 

gradient optimization method.  The outline of the nonlinear conjugate gradients algorithm is presented in 

Table 3, where, 

𝑖: is a counter for the number of iteration 

𝑟: represent the residiual, equal to −∇⃑⃑⃑𝐽 

𝑑: is the search directon, constructed by conjugation of the residuals 

𝛼: is the step length in the search direction and is computed using the Newton-Raphson to minimize 𝐽 (line 

search) 

𝑖𝑚𝑎𝑥: is the maximum allowed number of iteration in the conjugate gradient method. 

𝜀: is the error tolerance of the conjugate gradient method, it terminates when |𝑟𝑖| < 𝜀|𝑟0| 

𝑗𝑚𝑎𝑥: is the maximum allowed number of iteration in the Newton Rapshon method. 

𝛾: is the error tolerance of the Newton Rapshon method. 

 

Having the gradient and the hessian the conjugate gradient method can be performed, it does not require 

computation of the value of the cost function.  The next section presents an example of the conjugate gradient 

method.  
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Table 3.  Outline of the conjugate gradient method 

Initialization Main loop 
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9.6 Pose Solver Example 

To observe the performance of the pose solver an example with artificial data is presented.  It is assumed 

that the relative target end-effector location is as in Figure 6, camera-1 and camera-2 are tracking two 

concentric circles (interface ring inner and outer diameters), additionally camera-2 is tracking two lines and 

one point.   The initial relative position of the target w.r.t end effector is: 
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 𝑋𝑇 𝐸⁄ ,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 = [90° −90° 0 0 0.6 0.75] (85) 

this position corresponds to the previous time estimation in the pose estimation system, for the purposes of 

this example it is considered as the actual previous position. It is assumed that the target moved -50mm along 

its x-axis, 50mm along its y-axis, 50mm along its z-axis and rotated 10deg along its z-axis, then the new 

position is, 

 𝑋𝑇 𝐸⁄ ,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = [90° −90° 10° −0.05 0.55 0.7] (86) 

this vector corresponds to the current pose, which is unknown to the pose estimation system and the pose 

solver will estimate it by minimizing the cost function using the nonlinear conjugate gradient method.  Figure 

26 shows the features as observed by the camera at the previous and current position. 

 

  

Figure 26.  Features in the image plane as seen by the cameras at the previous and current pose.  Left: camera-1, right: 

camera-2.  Previous-time view in black, current-time view in blue. 

 

The previous time pose vector, 𝑋𝑇 𝐸⁄ ,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, is used in the initialization of the pose solver in addition with 

the position of the detected features (ellipses, lines, points) in the image corresponding to the current position, 

in this example it is assumed that they are the actual features and are detected correctly, i.e. without noise or 

cases of false detection.  

The results for 24 iterations are presented in Figure 27 and Figure 28. Figure 27 shows how the value of 

the cost function changes with the iterations. Figure 28 show how the pose estimation error (see Chapter 11) 

changes with the iterations.  The case for iteration 0 correspond to the initial position, where the rotation error 

is equivalent to the assumed motion (10 deg) and the translation error is √502 + 502 + (−50)2 = 86.6𝑚𝑚, 

as presented in Figure 28.  Table 4 shows the projected features in the image plane as seen by the camera after 

each iteration of the pose solver.  
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Figure 27.  Cost function of each feature as a function of the iteration number 
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Figure 28.  Pose error as a function of the iteration number 
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Table 4.  Projected feature in the image plane for iteration number 1, 4 and 24. 

Iteration Camera 1 view Camera 2 view 

1 

  

4 

  

24 

  

 

From the previous images it can be observed that after four iterations the post error and the value of the 

cost function have decreased considerably, although there are some noticeable differences between the 

detected and the projected features as can be seen in Table 4. 

The computer algebra system Maple was used to obtain the optimized C++ code which gives the gradient 

and hessian of the total cost function.   
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10 EXTENDED KALMAN FILTER 

The extended Kalman filter is used to merge the information form the circle pose calculator and the pose 

solver systems.  A discrete Kalman filter is used.  The following sections describe the details of the 

implementation of the Kalman filter for this particular application. 

10.1 Motion Model and State Vector 

A motion model between the satellite and the end-effector (and the cameras) is required in order to 

implement the Kalman filter.  In this case a discrete constant velocity model is used and a sampling time of 

∆𝑡 is used.  It is assumed that the relative motion of the target w.r.t the end effector is a translation with 

constant velocity 𝑉𝑇/𝐸 and a rotation with constant angular velocity 𝜔𝑇/𝐸.   The components of these velocities 

are defined below, 

 
𝑉𝑇/𝐸,𝑘 = [

𝑣𝑥,𝑘
𝑣𝑦,𝑘
𝑣𝑧,𝑘

] (87) 

and, 

 
𝜔𝑇/𝐸,𝑘𝑇
 = [

𝜔𝑥,𝑘
𝜔𝑦,𝑘
𝜔𝑧,𝑘

] (88) 

 

Note that the angular velocity is expressed in the target frame.  The motion model can be expressed as a 

function 𝑓 of the state vector 𝑋𝑘 and the process noise 𝑤𝑘.  The function 𝑓 relates the change of the state 

vector betwee the time 𝑡 + ∆𝑡 and 𝑡, or equivalent between the step 𝑘 + 1 and 𝑘, this is expressed as, 

 X𝑘+1 = 𝑓(𝑋𝑘, 𝑤𝑘) (89) 

where, 

 𝑋 = [𝜔𝑥 𝜔𝑦 𝜔𝑧 𝑞0 𝑞1 𝑞2 𝑞3 �̇� �̇� �̇� 𝑥 𝑦 𝑧]𝑇 (90) 

and, 𝑞0, 𝑞1, 𝑞2, 𝑞3 are the components of the quaternion representing the rotation of the target w.r.t the end-

effector and 𝑥, 𝑦, 𝑧 are the position of the target origin with respect to the end-effector i.e. the translation 

vector.   Note that the transformation matrix, 𝑇𝑇/𝐸, of the target wrt the end effector can be expressed in terms 

of the quaternions and the translation vector, as was expressed in Equation (5). 

The process noise 𝑤 is due to unknown disturbances that differ from the constant velocity model such as 

motion oscillations, vibrations, or unknown inputs such as applied acceleration in the end-effector.  The 

components of the process noise vector are,  

 𝑤 = [𝑤𝜔𝑥 𝑤𝜔𝑦 𝑤𝜔𝑧 𝑤𝑞0 𝑤𝑞1 𝑤𝑞2 𝑤𝑞3 𝑤�̇� 𝑤�̇� 𝑤�̇� 𝑤𝑥 𝑤𝑦 𝑤𝑧] (91) 
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It is assumed that the process noise is white with zero-mean and covariance 𝑄, 

 𝑤𝑘 ∼ (0, 𝑄) (92) 

 

The expression for 𝑓(𝑋𝑘, 𝑤𝑘) can be found using the constant velocity assumption. The following 

paragraphs show the procedure to obtain 𝑓.   

The constant velocity model implies that, 

 
{

𝑣𝑥,𝑘+1 = 𝑣𝑥,𝑘
𝑣𝑦,𝑘+1 = 𝑣𝑦,𝑘
𝑣𝑧,𝑘+1 = 𝑣𝑧,𝑘

 (93) 

and for the angular velocity,  

 
{

𝜔𝑥,𝑘+1 = 𝜔𝑥,𝑘
𝜔𝑦,𝑘+1 = 𝜔𝑦,𝑘
𝜔𝑧,𝑘+1 = 𝜔𝑧,𝑘

 (94) 

 

Using the x-component of the translation velocity and the definition of velocity, 

 
𝑣𝑥,𝑘 =

𝑑𝑥

𝑑𝑡
⇒ ∫ 𝑑𝑥

𝑥𝑘+1

𝑥𝑘

= ∫ 𝑣𝑥,𝑘𝑑𝑡
𝑡+∆𝑡

𝑡

⇒ 𝑥𝑘+1 = 𝑣𝑥,𝑘∆𝑡 + 𝑥𝑘 (95) 

doing the same for the y and z components of the velocity, it is obtained, 

 

{

𝑥𝑘+1 = 𝑣𝑥,𝑘∆𝑡 + 𝑥𝑘
𝑦𝑘+1 = 𝑣𝑦,𝑘∆𝑡 + 𝑦𝑘
𝑧𝑘+1 = 𝑣𝑧,𝑘∆𝑡 + 𝑧𝑘

 (96) 

 

To obtain the expression for the quaternion, the concept of the transition quaternion is used.  A transition 

quaternion, 𝒑, can be used to related two different quaternions, which in this case are 𝒒𝒌+𝟏 and 𝒒𝒌, 

 𝒒𝒌+𝟏 = 𝒒𝒌𝒑 (97) 

 

The component of the transition quaternion are, 

 

𝒑 = [

𝑝0
𝑝1
𝑝2
𝑝3

] (98) 

which can be expressed in terms of the rotation angle 𝜃/2 around the unit vector of component (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) 

between the two quaternions, 
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𝒑 =

[
 
 
 
 
 
 

𝑐𝑜𝑠𝜃

𝑢𝑥𝑠𝑖𝑛 (
𝜃

2
)

𝑢𝑦𝑠𝑖𝑛 (
𝜃

2
)

𝑢𝑧𝑠𝑖𝑛 (
𝜃

2
)]
 
 
 
 
 
 

 (99) 

Assuming that the rotation angle  𝜃/2 is equal to 𝜔∆𝑡/2, with 𝜔 = 𝜔𝑇/𝐸,𝑘𝑇
  

 

𝒑 =

[
 
 
 
 
 
 

𝑐𝑜𝑠𝜃

𝑢𝑥𝑠𝑖𝑛 (
𝜃

2
)

𝑢𝑦𝑠𝑖𝑛 (
𝜃

2
)

𝑢𝑧𝑠𝑖𝑛 (
𝜃

2
)]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑐𝑜𝑠(𝜔∆𝑡)

𝑢𝑥𝑠𝑖𝑛 (
𝜔∆𝑡

2
)

𝑢𝑦𝑠𝑖𝑛 (
𝜔∆𝑡

2
)

𝑢𝑧𝑠𝑖𝑛 (
𝜔∆𝑡

2
)
]
 
 
 
 
 
 

 (100) 

and assuming an small rotation between the two quaternions (i.e. 𝜔∆𝑡 is small), 

 

𝒑 =

[
 
 
 
 
 
 

1

𝑢𝑥
𝜔∆𝑡

2

𝑢𝑦
𝜔∆𝑡

2

𝑢𝑧
𝜔∆𝑡

2 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
1

𝜔𝑥
∆𝑡

2

𝜔𝑦
∆𝑡

2

𝜔𝑧
∆𝑡

2 ]
 
 
 
 
 
 

 (101) 

  

The transition quaternion can be expressed in the expanded matrix form as, 

 

𝑝 =

[
 
 
 
 
 
 
 1 −𝜔𝑥

∆𝑡

2
−𝜔𝑦

∆𝑡

2
−𝜔𝑧

∆𝑡

2

𝜔𝑥
∆𝑡

2
1 −𝜔𝑧

∆𝑡

2
𝜔𝑦
∆𝑡

2

𝜔𝑦
∆𝑡

2
𝜔𝑧
∆𝑡

2
1 −𝜔𝑥

∆𝑡

2

𝜔𝑧
∆𝑡

2
−𝜔𝑦

∆𝑡

2
𝜔𝑥
∆𝑡

2
1 ]

 
 
 
 
 
 
 

 (102) 

And the quaternion 𝒒𝒌 as, 

 

𝑞𝑘 = [

𝑞0 −𝑞1 −𝑞2 −𝑞3
𝑞1 𝑞0 −𝑞3 𝑞2
𝑞2 𝑞3 𝑞0 −𝑞1
𝑞3 −𝑞2 𝑞1 𝑞0

] (103) 

 

Then using equations (101) and (103) in (97) it is obtained, 



68 

 

 

𝑞𝑘+1 = [

𝑞0 −𝑞1 −𝑞2 −𝑞3
𝑞1 𝑞0 −𝑞3 𝑞2
𝑞2 𝑞3 𝑞0 −𝑞1
𝑞3 −𝑞2 𝑞1 𝑞0

]

[
 
 
 
 
 
 
1

𝜔𝑥
∆𝑡

2

𝜔𝑦
∆𝑡

2

𝜔𝑧
∆𝑡

2 ]
 
 
 
 
 
 

 (104) 

performing the multiplication it is obtained, 

 

𝑞𝑘+1 = [

𝑞0,𝑘+1
𝑞1,𝑘+1
𝑞2,𝑘+1
𝑞3,𝑘+1

] =

[
 
 
 
 
 
 
 𝑞0,𝑘 +

∆𝑡

2
(−𝜔𝑥𝑞1 − 𝜔𝑦𝑞2 −𝜔𝑧𝑞3)

𝑞1,𝑘 +
∆𝑡

2
(𝜔𝑥𝑞0 − 𝜔𝑦𝑞3 + 𝜔𝑧𝑞2)

𝑞2,𝑘 +
∆𝑡

2
(𝜔𝑥𝑞3 + 𝜔𝑦𝑞0 − 𝜔𝑧𝑞1)

𝑞3,𝑘 +
∆𝑡

2
(−𝜔𝑥𝑞2 + 𝜔𝑦𝑞1 +𝜔𝑧𝑞0)]

 
 
 
 
 
 
 

 (105) 

 

Note that the angular velocities are expressed in the target frame.  Now all the components of X𝑘+1 in terms 

of have X𝑘 been found, and they expressed below, 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
𝜔𝑥,𝑘+1
𝜔𝑦,𝑘+1
𝜔𝑧,𝑘+1
𝑞0,𝑘+1
𝑞1,𝑘+1
𝑞2,𝑘+1
𝑞3,𝑘+1
𝑣𝑥,𝑘+1
𝑣𝑦,𝑘+1
𝑣𝑧,𝑘+1
𝑥𝑘+1
𝑦𝑘+1
𝑧𝑘+1 ]

 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜔𝑥,𝑘
𝜔𝑦,𝑘
𝜔𝑧,𝑘

𝑞0,𝑘 +
∆𝑡

2
(−𝜔𝑥𝑞1 − 𝜔𝑦𝑞2 − 𝜔𝑧𝑞3)

𝑞1,𝑘 +
∆𝑡

2
(𝜔𝑥𝑞0 − 𝜔𝑦𝑞3 + 𝜔𝑧𝑞2)

𝑞2,𝑘 +
∆𝑡

2
(𝜔𝑥𝑞3 + 𝜔𝑦𝑞0 − 𝜔𝑧𝑞1)

𝑞3,𝑘 +
∆𝑡

2
(−𝜔𝑥𝑞2 + 𝜔𝑦𝑞1 + 𝜔𝑧𝑞0)

𝑣𝑥,𝑘
𝑣𝑦,𝑘
𝑣𝑦,𝑘
𝑥𝑘
𝑦𝑘
𝑧𝑘 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (106) 

 

The previous equation does not include noise, introducing the noise as linear addition to the state vector, 

the expression for function 𝑓 is finally obtained, 
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𝑋𝑘+1 = 𝑓(𝑋𝑘, 𝑤(𝑡)) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜔𝑥,𝑘 +𝑤𝜔𝑥
𝜔𝑦,𝑘 +𝑤𝜔𝑦
𝜔𝑧,𝑘 +𝑤𝜔𝑧

𝑞0,𝑘 +
∆𝑡

2
(−𝜔𝑥𝑞1 − 𝜔𝑦𝑞2 − 𝜔𝑧𝑞3) + 𝑤𝑞0

𝑞1,𝑘 +
∆𝑡

2
(𝜔𝑥𝑞0 − 𝜔𝑦𝑞3 + 𝜔𝑧𝑞2) + 𝑤𝑞1

𝑞2,𝑘 +
∆𝑡

2
(𝜔𝑥𝑞3 + 𝜔𝑦𝑞0 −𝜔𝑧𝑞1) + 𝑤𝑞2

𝑞3,𝑘 +
∆𝑡

2
(−𝜔𝑥𝑞2 + 𝜔𝑦𝑞1 + 𝜔𝑧𝑞0) + 𝑤𝑞3

𝑣𝑥,𝑘 + 𝑤𝑣𝑥
𝑣𝑦,𝑘 + 𝑤𝑣𝑦
𝑣𝑦,𝑘 + 𝑤𝑣𝑧
𝑥𝑘 + 𝑤𝑥
𝑦𝑘 + 𝑤𝑦
𝑧𝑘 + 𝑤𝑧 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (107) 

 

Notice that the quaternions have to be normalized after each time this expression is used since it adds noise 

to the quaternions. 

 

10.2 Observation Process  

The state variables are observable indirectly through the sensors (cameras) and their algorithms.  The data 

given by the pose solver is a full 6DOF pose vector (translation and rotation), while the data given by the 

circle pose calculator represents 5DOF pose only (circle center and normal). The output vector 𝑌 of the 

Kalman filter is a random vector which include the mentioned measurements, which can be defined in terms 

of the state vector, this is expresses as: 

 𝑌𝑘 = ℎ𝑘(𝑋(𝑡), 𝑣𝑘) (108) 

where 𝑣 is the measurement noise vector.  The following sections show the equations of the outputs in terms 

of the state variables, where it is specifically assumed that Camera-1 is tracking the interface ring. 

 

10.2.1 Circle Center 

The position of the circle center, 𝑃,  in the target frame is given by, 

 𝑋𝑃/𝑇 = [𝑥𝐶 𝑦𝐶 𝑧𝐶 1]𝑇 (109) 
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Using the transformation matrix 𝑇𝑇/𝐸, the position of the same point with respect to the end-effector frame is, 

 𝑋𝑃/𝐸 = 𝑇𝑇/𝐸𝑋𝑃/𝑇 (110) 

and then the same point can be expressed in the camera-1 frames as, 

 𝑋𝑃/𝐶1 = 𝑇𝐸/𝐶1𝑋𝑃/𝐸 = 𝑇𝐸/𝐶1𝑇𝑇/𝐸𝑋𝑃/𝑇 (111) 

where 𝑇𝐸/𝐶1 is the transformation matrix of the end-effector w.r.t the Camera-1, this is matrix is constant since 

the cameras are fixed w.r.t the end effector. 

10.2.2 Circle Normal 

Since the normal vector, 𝑁, of the target circle is a free vector, it is expressed in the target frame as, 

 𝑁𝑁/𝐸 = [𝑛𝑥 𝑛𝑦 𝑛𝑧 0]𝑇 (112) 

 

Using the transformation matrix 𝑇𝑇/𝐸, the normal vector can be expressed w.r.t the end-effector frame as, 

 𝑁𝑁/𝐸 = 𝑇𝑇/𝐸𝑁𝑁/𝑇 (113) 

and then the same vector can be expressed in the camera-1 frames as, 

 𝑁𝑁/𝐶1 = 𝑇𝐸/𝐶1𝑁𝑁/𝐸 = 𝑇𝐸/𝐶1𝑇𝑇/𝐸𝑁𝑁/𝑇 (114) 

Since the transformation matrix of the target w.r.t. the end effector can be expressed in terms of the 

quaternions and the translation vector used in the state vector, then these two measurements (circle center and 

normal vector) can be expressed in terms of the state vector, specifically in terms of the quaternion and the 

translation vector. 

 

10.2.3 Pose Vector 

The output of the pose solver system is a vector of seven components corresponding to the quaternion 

[𝑞0 𝑞1 𝑞2 𝑞3]𝑇  and a translation vector [𝑥 𝑦 𝑧]𝑇, corresponding to the pose of the target w.r.t the 

end-effector,  

 𝑋𝑃𝑆 = [𝑞0 𝑞1 𝑞2 𝑞3 𝑥 𝑦 𝑧] (115) 

As can be seen it is directly expressed in terms of the state vector components. 

 

In addition to the previous defined measurements the angular and translational velocities are included in 

the output vector, although they are not directly measured, they are assumed to be zero, this is to avoid that 

the estimated velocities make the target drift away from the camera view, which affects negatively the 

performance of the feature detector system.  
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10.2.4 Output Vector 

 Collecting all the previous defined outputs, the observation vector, 𝑌, is, 

 

𝑌𝑘 = ℎ𝑘(𝑋𝑘, 𝑣𝑘) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑛𝑥
𝑛𝑦
𝑛𝑧
𝑥𝐶
𝑦𝐶
𝑧𝐶
𝜔𝑥,𝑚
𝜔𝑦,𝑚
𝜔𝑧,𝑚
𝑞0,𝑚
𝑞1,𝑚
𝑞2,𝑚
𝑞3,𝑚
𝑣𝑥,𝑚
𝑣𝑥,𝑚
𝑣𝑥,𝑚
𝑥𝑚
𝑦𝑚
𝑧𝑚 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ 𝑣𝑘 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑛𝑥 + 𝑣𝑛𝑥
𝑛𝑦 + 𝑣𝑛𝑥
𝑛𝑧 + 𝑣𝑛𝑥
𝑥𝐶 + 𝑣𝑥𝑐
𝑦𝐶 + 𝑣𝑦𝑐
𝑧𝐶 + 𝑣𝑧𝑐
𝜔𝑥,𝑚 + 𝑣𝜔𝑥
𝜔𝑦,𝑚 + 𝑣𝜔𝑦
𝜔𝑧,𝑚 + 𝑣𝜔𝑧
𝑞0,𝑚 + 𝑣𝑞0
𝑞1,𝑚 + 𝑣𝑞1
𝑞2,𝑚 + 𝑣𝑞2
𝑞3,𝑚 + 𝑣𝑞3
𝑣𝑥,𝑚 + 𝑣𝑣𝑥
𝑣𝑥,𝑚 + 𝑣𝑣𝑦
𝑣𝑥,𝑚 + 𝑣𝑣𝑧
𝑥𝑚 + 𝑣𝑥𝑚
𝑦𝑚 + 𝑣𝑦𝑚
𝑧𝑚 + 𝑣𝑧𝑚 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (116) 

 

where,𝑣𝑘 is the measurement noise which is assumed to be a discrete time white noise with zero-mean and 

covariance 𝑅𝑘, 

 𝑣𝑘 ∼ (0, 𝑅𝑘) (117) 

 

10.3 Extended Kalman Filter Equations 

As mentioned before an extended Kalman filter is used due to the non-linearity of the motion model and 

the observation process.  The discrete time version of the extended Kalman filter is used since it facilitates the 

software implementation. The following are the Extended Kalman Filter equations [89]. 

The system equations are defined as, 

 

{
 

 
𝑋𝑘+1 = 𝑓𝑘(𝑋𝑘, 𝑤𝑘)
𝑌𝑘 = ℎ𝑘(𝑋𝑘, 𝑣𝑘)

𝑤𝑘 ∼ (0, 𝑄)

𝑣𝑘 ∼ (0, 𝑅)

 (118) 

 

The system matrices are computed as, 
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{
 
 
 
 

 
 
 
 𝐹𝑘 =

𝜕𝑓𝑘
𝜕𝑥
|
�̂�𝑘
+

𝐿𝑘 =
𝜕𝑓𝑘
𝜕𝑤

|
�̂�𝑘
+

𝐻𝑘 =
𝜕ℎ𝑘
𝜕𝑥

|
�̂�𝑘
−

𝑀𝑘 =
𝜕ℎ𝑘
𝜕𝑣

|
�̂�𝑘
−

 (119) 

 

The above matrices are evaluated at the current stated estimate.  The system state and its covariance matrix 

are initialized (𝑘 = 0) using the following expressions, 

 �̂�0
+ = 𝐸[𝑋0] (120) 

and, 

 𝑃0
+ = 𝐸[(𝑋0 − �̂�0

+)(𝑋0 − �̂�0
+)] (121) 

 

Since the initial pose is unknown a value is assumed, which is close to the actual value. After initialization 

the following steps are performed for the subsequent operation of the Kalman filter and the pose estimation 

system, where 𝑘 = 1,2, … 

 

Step 1: The state estimate and the covariance matrix are integrated from time (k)+ to time (k+1)- using the 

following equations: 

 𝑃k+1
− = 𝐹𝑘𝑃k

+𝐹k
T + 𝐿𝑘𝑄𝐿k

T (122) 

and, 

 �̂�𝑘+1 = 𝑓𝑘(�̂�𝑘
+, 0) (123) 

 

The initial values for this integration are �̂� 
 = �̂�𝑘

+ and �̂� 
 = �̂�𝑘

+ and after the integration the values for �̂� 
 =

�̂�𝑘+1
−  and �̂� 

 = �̂�𝑘+1
−  will be obtained. 

 

Step 2: The measurements 𝑌𝑘 are used at time k to improve the estimated values, 

 𝐾𝑘 = 𝑃𝑘+1
− 𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘+1
− 𝐻𝑘

𝑇 +𝑀𝑘𝑅𝑀𝑘
𝑇)−1 (124) 

 

 �̂�𝑘
+ = �̂�𝑘+1

− +𝐾𝑘(𝑌𝑘 − ℎ𝑘(�̂�𝑘+1
− , 0)) (125) 
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 𝑃𝑘
+ = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘

−(𝐼 − 𝐾𝑘𝐻𝑘)
𝑇 + 𝐾𝑘𝑀𝑅M𝐾𝑘

𝑇 (126) 

 

In the previous expression the superscript “–“ indicates the a priori estimate and “+” indicates the a 

posteriori.  The a priori estimate is found using all the measurements before time k, thus �̂�𝑘
− indicates the 

estimate of 𝑋𝑘
  before using the measurements at time k, and �̂�𝑘

+after using it. 
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11 METHODOLOGY FOR THE EVALUATION OF THE PROPOSED SYSTEM  

Virtual simulations and experimental testing were used to evaluate the performance of the pose estimation 

system. There are two types of test for each case: static and dynamic.  In the static tests there is no relative 

motion between the end effector and the target (satellite).  In the dynamic tests different types of motions are 

generated between the two objects.  In each case the relative pose is estimated continuously during the test.  

The different test are described in this chapter.  

One important parameter in the evaluation is the pose estimation error, it represents the difference between 

the estimated pose and the actual pose given by the ground truth.  It has two components, the translation error 

and the rotation error.   

 

 

Figure 29.  Estimated pose and ground truth 

 

The translation error is defined as,  

 𝑇𝑟𝑎𝑛𝑠𝑒𝑟𝑟 = √(𝑥𝑡𝑟𝑢 − 𝑥𝑒𝑠𝑡)2 + (𝑦𝑡𝑟𝑢 − 𝑦𝑒𝑠𝑡)2 + (𝑧𝑡𝑟𝑢 − 𝑧𝑒𝑠𝑡)2 (127) 

where 𝑥𝑒𝑠𝑡, 𝑦𝑒𝑠𝑡 and 𝑧𝑒𝑠𝑡 are the components of the estimated translation vector and 𝑥𝑡𝑟𝑢, 𝑦𝑡𝑟𝑢 and 𝑧𝑡𝑟𝑢 are the 

components of the translation vector of the ground truth. 

To compute the rotation error, 𝑅𝑜𝑡𝑒𝑟𝑟, for a full 6DOF pose, first the rotation matrix 𝑅𝑒𝑟𝑟 is computed     

 𝑅𝑒𝑟𝑟 = 𝑅𝑡𝑟𝑢𝑅𝑒𝑠𝑡
−1  (128) 

<T   >truth
T

T    /Test truth

<E>

Estimated pose

Actual pose

<T  >est

T
T/E,est

T
T/E,truth
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where 𝑅𝑒𝑠𝑡 is the estimated rotation matrix, 𝑅𝑡𝑟𝑢 is the rotation matrix of the ground truth. Then, 𝑅𝑒𝑟𝑟 is 

converted to Euler angles (𝜑𝑒𝑟𝑟, 𝜃𝑒𝑟𝑟 and 𝜓𝑒𝑟𝑟) and the rotation error is, 

 𝑅𝑜𝑡𝑒𝑟𝑟 = √𝜑𝑒𝑟𝑟2 + 𝜃𝑒𝑟𝑟2 + 𝜓𝑒𝑟𝑟2  (129) 

 

In the case of a 5DOF pose (center position of the interface ring and normal vector to ring plane), the 

rotation error is determined as, 

 𝑅𝑜𝑡𝑒𝑟𝑟 = 𝑎𝑠𝑖𝑛(‖𝑅𝑡𝑟𝑢(1: 3,1)   × 𝑅𝑒𝑠𝑡(1: 3,1)  ‖) (130) 

where 𝑅𝑡𝑟𝑢(1: 3,1)  and 𝑅𝑒𝑠𝑡(1: 3,1) correspond to the normal vector of the interface ring expressed in the 

end-effector frame (ground truth and estimated respectively), the 5DOF rotation error is the magnitude of the 

angle between the ground truth and estimated normal vectors.   

 

In the virtual simulations and experimental tests three different scenarios were used.  Each scenario 

corresponds to a different set of geometric features.  The number of features used in each scenario is low, with 

a maximum of four features, in order to test the system under non-optimal conditions.  The use of more features 

tends to favor the performance of the system, and in real application the number of available features can be 

limited.  The three scenario are defined in the next section. 

 

11.1 Testing Scenarios 

The first scenario is presented in Figure 30, where both cameras are tracking the interface ring and only 

one type of geometric feature is used: ellipses.  In this case only 5DOF pose can be obtained. 
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Figure 30. Testing Scenario 1 

 

The second scenario can be seen in Figure 31.  In this case camera-1 is tracking the interface ring and 

camera-2 is tracking one border of the satellite panel, thus only two types of features are used: ellipse and 

lines.  A full 6DOF pose can be obtained. 

 

 

 

Figure 31. Testing Scenario 2 

 

Interface ring

(Cam 1 and Cam2)

Interface ring

(Cam 1)
border

(Cam 2)
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The third scenario is presented in Figure 32, where camera-1 is tracking the interface ring and camera-2 is 

tracking two borders of the pad of the AOC thruster and the corner formed by those two borders.  In this case 

all the three types of geometric feature that the system is able to handle are used. 

 

Figure 32. Testing Scenario 3 

 

The next sections describe the virtual simulations and the experimental testing that are used to evaluate the 

system performance under the scenarios previously described. 

Each one of the performed test began with a similar initial position (see Figure 33) of the target w.r.t. the 

end effector, the main difference was the z-component (𝑍𝑇/𝐸) of the relative position.  The results of the tests 

are reported with its corresponding value of 𝑍𝑇/𝐸.  The Euler angles and the translation vector that define the 

initial position w.r.t the end effector are presented in Table 5. 

Interface ring

(Cam 1)

AOC thruster base,

one corner, two borders

(Cam 2)
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Figure 33. Initial nominal position 

 

Table 5. Initial nominal position 

𝜑𝑇/𝐸  𝜃𝑇/𝐸  𝜓𝑇/𝐸  𝑋𝑇/𝐸  𝑌𝑇/𝐸  𝑍𝑇/𝐸  

86.5deg -87.2deg 4.7deg 0.00m 0.47m variable 

 

 

11.2 Virtual Testing 

 The objective of the virtual testing is to find the effect of the system parameters in the pose estimation 

error under controlled conditions. As an example, the virtual simulator can generated image without distortion 

or with a known amount of distortion, which makes possible the evaluation of the effect of the image distortion 

in the pose error.  Additionally the image noise in the virtual simulation can be eliminated, and test the system 

under ideal conditions, i.e. in the absence of effects such as unfavorable light condition, reflections, 

occlusions, detection of wrong features, etc.  The virtual simulator is described in the next section 

 

11.2.1 Virtual Simulator 

The virtual simulator generates synthetic images of the target and its features corresponding to the views 

of the system cameras i.e. using the intrinsic and extrinsic parameters of the actual cameras.  In the simulator 

a virtual model of the satellite and the end effector are used as can be seen in Figure 34, the same satellite was 

ZT/E

End-effector

Y

Z

Mockup

(Target)
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used in the experimental test. The cameras are located with respect to the end-effector reproducing the same 

conditions used in the experimental test and the views are generated using the virtual camera with the same 

intrinsic parameters as the cameras used in the experimental testing.  The pose between the target and the end 

effector in the virtual simulator can be controlled easily, and different types of motions can be generated, such 

as rotations along each axis, translations, approaches, precession, etc. 

 

 

Figure 34.  CAD model mode of the virtual simulator.  Top left: camera-1 view, top right: camera-2 view, bottom: 

external view 

 

The generated synthetic images can be used by the pose estimation system to estimate the pose of the target.  

Since the relative position of the target satellite and the end-effector are known, then they can be used as the 

ground truth data to compute the pose estimation error. 
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The virtual simulator can generate two types of images: solid images using a CAD-model (as in Figure 34) 

and binary images using a wireframe model as in Figure 35. The CAD model of the satellite was provided by 

NASA’s GSFC.  Two different wireframe models are used, in wireframe mode-1 (Figure 35) the interface 

ring is observed in camera-1 as a single circle, using only the outer diameter.  In wireframe model-2 (Figure 

36) the inner and outer diameters of the interface ring are used in the camera-1 view. 

 

  
Camera-1 Camera-2 

Figure 35. Camera views of the wireframe model 1 of the virtual simulator 

 

  
Camera-1 Camera-2 

Figure 36. Camera views of the wireframe model 2 of the virtual simulator 

 

Figure 37 show the detected and reference features by the pose estimation system when using the virtual 

simulator with wireframe model-1. Figure 38 show the edge map (from canny edge detector) of the images 

generated using the CAD model images.  Figure 39 shows the extracted, detected and reference features of 

the pose estimation system when using the images generated by the virtual simulator when using the CAD 

model. 
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Camera-1 Camera-2 

Figure 37. Reference features (red), detected features (blue) and extracted features (green) obtained using the pose 

estimation system with the images of the virtual simulator in the wireframe model 1 mode. 

 

  

Camera-1 Camera-2 

Figure 38.  Edge map of the camera views of the virtual simulator in CAD model mode 

 

  

Camera-1 Camera-2 

Figure 39 . Reference features (red), detected features (blue) and extracted features (green) obtained using the pose 

estimation system with the images of the virtual simulator in the CAD model mode. 
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11.2.2 Software Configuration 

The virtual simulator is implemented in C++ using OpenGL.  The implementation of the virtual simulation 

when coupled with the pose estimation system is presented in Figure 40.  The OpenGL frames are converted 

to OpenCV images and given to the pose estimation system. The resolution of the generated images is 

640×480p. A data logger system saves all the relevant variables, such as the estimated pose and the ground 

truth.  As can be seen there are two threads that run simultaneously, they run the feature extraction and 

detection systems for each camera.  Figure 41 shows the implementation of the individual feature extraction 

and feature detection subsystems in each threat, i.e. showing the ellipse, line and point extraction and detection 

subsystems.   The system is running on a Linux desktop with two quad-core Xeon processors and 4GB of 

Ram.  

 

Figure 40. Flowchart of the implement code of the virtual simulator and the pose estimation system  
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Figure 41. Flowchart of the implement code of feature extraction and detection system  

 

11.2.3 Testing Procedure 

Two types of virtual tests were performed: static tests and dynamic tests.  In the static tests the relative 

position between the end effector and the target was held constant.  The wireframe model-1 and Scenrio-3 

were used for the static tests.  For these test the distance between the target and the end effector was 0.8 

meters. There are two types of static tests.   

 

11.2.3.1 Effects of Camera Parameters 

The objective of these tests is to observe how the pose error is affected by the error in the extrinsic and 

intrinsic parameters of the cameras.  This is important since the pin-hole model is used in the pose estimation 

system and the estimated pose is function of the camera intrinsic parameters (𝑐𝑥, 𝑐𝑦, 𝑓𝑥, 𝑓𝑦) and image 

distortion.  The estimated pose is also function of the camera extrinsic parameters since the pose is specified 

w.r.t the end effector.  In addition, the camera parameters are obtained experimentally and are subjected to 

measurement errors. The nominal values of the camera parameters are presented in Table 6, the extrinsic 

parameters correspond to the Euler angles and the translation vector of the camera frames w.r.t. the end 

effector frame.   

Table 6. Intrinsic and extrinsic parameters of the cameras 

Parameter Camera 1 Camera 2 

Intrinsic 

Parameters 
𝑓𝑥 162.157 472.332 

𝑓𝑦 162.003 472.732 

𝑐𝑥 321.272 312.882 

𝑐𝑦 240.417 242.175 

Extrinsic 

Parameters 
𝜑𝐶/𝐸 -0.2169 rad -0.0177 rad 

𝜃𝐶/𝐸 0.0763 rad 0.0870 rad 

𝜓𝐶/𝐸 0.2168 rad -1.2183 rad 

𝑋𝐶/𝐸 -0.0573 m 0.0580 m 

𝑌𝐶/𝐸 0.1835 m -0.1589 m 

𝑍𝐶/𝐸 0.0692 m 0.1392 m 

 

To test the effect of the parameters, each parameter is modified one at a time, w.r.t. the nominal values of 

each camera, by an additive known value, which represents the parameter error.  These “erroneous” value is 

given to the subsystems of the pose estimation system to estimate the pose.  The images are generated using 
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the correct values of the camera parameters.  All the parameter for each camera are modified, one at a time 

and the pose estimation error is compute.  As an example, if the parameter 𝑓𝑥 = 300 of camera-1 is being 

tested then a value of 𝑓𝑥 = 300 + ∆𝑓𝑥 = 300 + 10 = 310 is given to the pose estimation system (it does not 

know that the true value of 300) while the virtual image for camera-1 is generated using the value of 300.  For 

each parameter of each camera five different values are used.   

  The effect of the camera radial distortion is evaluated using an image with a known amount of distortion.  

The distorted image is generated using the following radial distortion transformation,  

 

{
𝑥𝑢 = 𝑥𝑑(1 + 𝐾(𝑥𝑑

2 + 𝑦𝑑
2))

𝑦𝑢 = 𝑦𝑑(1 + 𝐾(𝑥𝑑
2 + 𝑦𝑑

2))
 (131) 

where 𝑥𝑑 and 𝑦𝑑 are the pixel coordinates in the distorted image (w.r.t. the center of the image), 𝑥𝑢 and 𝑦𝑢 are 

the coordinated of the corresponding pixel in the undistorted image. 𝐾 is the distortion coefficient, which is 

computed as, 

 
𝐾 =

𝑑

(0.5 + 𝑑)3𝑉𝑝𝑖𝑥
2  (132) 

where 𝑉𝑝𝑖𝑥 is the image vertical resolution in pixels and 𝑑 is the amount of distortion, as an example 𝑑 = 0.03 

for a 3% distortion. Figure 42 shows a representation of the terms in the previous equation. 

 

 

Figure 42. Image barrel distortion 

11.2.3.2 Effect of Relative Pose 

These tests show the effect of the relative pose in the pose estimation error.  In this case different relative 

poses between the target and the end effector are used to find the pose error. The poses are generated by 
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rotating and translating the target along each of the axis of its reference frame starting from the nominal 

position, as presented in Figure 43 and in Figure 44.  For each axis five different translations and five different 

rotations are performed. Motions along each axis are performed individually one at a time.  These are static 

tests and the tests start with the system at the altered position, i.e. there is no motion during the tests. 

11.2.3.3 Dynamic 6DOF Tests 

There are two type of dynamic tests, the 6DOF motions tests and the approach tests.  The 6DOF tests are 

performed using the virtual simulator with the CAD-model and starting from an initial position where the 

target is at 1.2m from the end effector. Scenario number three is used for this test. During these tests rotations 

and translations of the target are performed along each of the axis of its reference frame, as presented in Figure 

43 and in Figure 44. Table 7 shows the values of the rotation angle and the displacement for each motion. As 

an example, when performing a typical maneuver such as a translation along the x-axis of the target, the 

system starts at the initial nominal position-2, it stays there for about 20 seconds, then it moves 20cm along 

the x-axis, it waits 20 seconds at the new position, then it returns to the original position and waits there for 

20 seconds, finalizing the test. This is done for each axis with rotation and translations, one at a time. 

 

Figure 43.  Target translation movements during virtual testing. 
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Figure 44.  Target rotation movements during virtual testing. 

 

Table 7. Target motions for virtual testing 

Motion Value 

x-translation 0.2m 

y-translation 0.2m 

z-translation 0.2m 

x-rotation -20deg 

y-rotation -20deg 

z-rotation -20deg 

 

11.2.3.4 Approach Tests 

The second type of dynamic tests are the approach tests, in this case the system starts from an initial  

position where the target is at 1.6m from the end effector, and it approaches the target until they are at 0.7m 

from each other.  These tests are performed with the CAD model, the wireframe model-1 and the wireframe 

model-2 and using the three scenarios.  A test using a modified scenario-3 is performed, where the base of the 

heat shield of the apogee thruster is used instead of the interface ring.   Additionally a non-calibrated camera 

is used, where it is assumed that virtual camera-1 has an error in an extrinsic parameter of 5 deg, i.e. there is 

a rotation error of 5 deg in the position of the camera with respect to the end-effector.  The virtual image is 

generated with the correct camera position but the pose estimation system uses the “erroneous” camera 

position. 
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During all the tests all the data generated by of the pose estimation system including its internal parameter 

and variables is logged. Table 8 summarizes the virtual tests. 

 

Table 8.  Virtual tests 

Test classification Test variables 

Scenario Model 

Target-

End 

effector 

distance 

# runs 

Static Tests 

Effect of 

parameters 

Camera-1 parameters: 

𝑐𝑥1, 𝑐𝑦1, 𝑓𝑥1, 𝑓𝑦1, 𝐾1 
3 

Wireframe 

1 
0.8m 

25 (5 per 

parameter) 

Camera-2 parameters: 

𝑐𝑥2, 𝑐𝑦2, 𝑓𝑥2, 𝑓𝑦2, 𝐾2 
3 

Wireframe 

1 
0.8m 

25 (5 per 

parameter) 

Effect of 

parameters 

Camera-1 position 

changes: 

rot-x, rot-y, rot-z 

trans-x, trans-y, trans-z 

3 
Wireframe 

1 
0.8m 

30 (5 per 

parameter) 

Camera-2 position 

changes: 

rot-x, rot-y, rot-z 

trans-x, trans-y, trans-z 

3 
Wireframe 

1 
0.8m 

30 (5 per 

parameter) 

Effect of 

position 

Target position 

changes: 

rot-x, rot-y, rot-z 

trans-x, trans-y, trans-z 

3 
Wireframe 

1 
0.8m 

30 (5 per 

position) 

Dynamic tests 

6DOF motions 

Target motions: 

rot-x, rot-y, rot-z 

trans-x, trans-y, trans-z 

3 
Wireframe 

1 
1.2m 

6 (1 per 

motion) 

Approach tests 

Calibrated cam 
1,2,3 

CAD -

model 
1.6 - 0.7m 

3 (1 per 

scenario) 

Calibrated cam 
3 

Wireframe 

1 
1.6 - 0.7m 1 

Calibrated cam 
3 

Wireframe 

2 
1.6 - 0.7m 1 

Calibrated Modified 3:  

heat shield 

base instead of 

ring 

CAD-model 1.6 - 0.7m 1 

Uncalibrated cam 
3 

CAD -

model 
1.6 - 0.7m 1 

Uncalibrated cam 
3 

Wireframe 

2 
1.6 - 0.7m 1 

 Total runs 154 

 

11.3 Experimental Testing 

Experimental tests using a realistic satellite mockup were performed.  The satellite mockup was provided 

by NASA’s GSFC and the tests were conducted at the WVRCT facilities.  The satellite is based on an existing 

weather satellite.  The objective of the experimental testing is to evaluate the pose estimation system under 

realistic conditions.  These conditions make difficult the performance of the system due to image noise, image 



88 

 

distortion, calibration errors in the cameras, light reflections, low contrast between the satellite components 

and the features of interest; and textures in the surface of the satellite components that creates false edges in 

the image. The following section describes the experimental setup and the different types of test that were 

performed. 

 

11.3.1 Experimental Setup 

A schematic view of the experimental setup is presented in Figure 45, and the actual view of the setup at 

the WRTC facilities is presented in Figure 46.  The main components of the setup are described below. 

 

 Satellite mockup. It replicates the front panel of an actual weather satellite, where the interface 

ring is located. It is covered with actual satellite MLI. It is important to use this component as real 

as possible since it create several reflections and textures that complicate the performance of the 

machine vision base pose estimation system. The diameter of the interface ring is 1m approximately 

and it is a machined component made of an aluminum alloy. It has an apogee thruster and four 

AOC thruster, each thruster has its own heat shield.  It is important to replicate these elements since 

they can create occlusions over the features of interest. 

 End effector. The end effector contains the two cameras and the capture tool and it is attached to 

a robotic manipulator.  It is important to include all the component of the end effector since they 

can create occlusions of the target in the camera views. 

 Robotic manipulator.  This 7DOF manipulator is used to simulate the relative motions between 

the target and the end effector since the target is fixed during the tests.  It is a Motoman SIA50D.   

The readings from the robot joints are used to calculate the relative motion.   

 Camera-1.  This camera is tracking the interface ring, it has a wide angle lens to maximize the 

view of the ring at close distances. The properties of the camera are presented in Table 9.  It is 

mounted on the end-effector as presented in Figure 47.   

 Camera-2.  This camera has a regular angle lens. It tracks the features on the mockup that were 

defined on each testing scenario. Its properties are presented in Table 9.  It is mounted on the end-

effector as presented in Figure 47.  

 Laser tracker. A Leica laser tracker system (Model AT901) is used to obtain the ground truth.  It 

tracks a device installed on the mockup to find 6DOF pose with a submillimeter accuracy. 

 Spot light.  The spot light is used to test the system at low light conditions. 
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The intrinsic parameters of the cameras were obtained using the OpenCV camera calibration functions and 

a checkerboard.  The extrinsic calibration (camera position and orientation w.r.t the end effector-frame) was 

performed using known robot motions and a pose estimation system based on concentric circles. Camera 

intrinsic and extrinsic parameters were presented in Table 6.  

 

Table 9. Camera specifications 

Camera-1 and Camera-2 

Model Sony XCD-SX90CR 

Max resolution 1280 by 960 

Max frame rate 30 fps 

Digital Interface IEEE 1394b-2002 x 2 

Sensor size 1/3” 

Lens of Camera-1 

Model Theia MY125M 

HFOV for 1/3” sensor 125deg 

Distortion less than 3% barrel distortion 

Lens of Camera-2 

Model Kowa LM3NCM 

HFOV for 1/3” sensor 70deg 

Distortion 0.4% 
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Figure 45.  Schematic view of the experimental setup 
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Figure 46.  Experimental setup at the WVRTC facility 
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Figure 47. Location of cameras on the end-effector (schematic view) 

 

11.3.2 Hardware and Software Configuration 

During the experimental testing video from the two cameras, the readings form the laser tracking system 

and the robot position is recorded. The system is evaluated in an offline process using all the gathered data.    

The flowchart of this version of the pose estimation system that reads videos is presented in Figure 48.  It was 

implemented in C++, the only difference with the implementation used during the virtual test is that this 

version takes the images from a video, while the former uses images generated by the virtual simulator.  

Although the video is captured at 1280×960p they are resized to 640×480p.  A data logger system saves all 

the relevant variables, such as the estimated pose and the ground truth, which is computed using information 

from the laser tracker and the robot joints.  As can be seen there are two threads that run simultaneously, they 

run the feature extraction and detection systems for each camera.  Figure 41 shows the implementation of the 

feature extraction and feature detection subsystems in each threat, i.e. showing the ellipse, line and point 

extraction and detection subsystems.   The system was implemented on a Linux desktop with two quad-core 

Xeon 2.8GHz processors and 4GB of RAM.  
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Figure 48. Flowchart of the implement code of the virtual simulator and the pose estimation system  

 

11.3.3 Testing Procedure 

Two types of experimental test are performed: static tests and dynamic tests.  In the static tests the relative 

position between the end effector and the target is held constant.  Tests were performed under two different 

light conditions: full light and low light and using the three scenarios previously defined.  The details of each 

type of test are described in the following sections. 

 

11.3.3.1 Tests for Static Pose Error 

The first type of static tests, known as test for static pose error, are performed with the target at two different 

positions from the end-effector:  1.5m and 1.2m.  The tests are performed at two different lighting conditions 
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and for the three scenarios. The lens iris and focus were in the same position during all the tests.  During the 

tests data was collected for about 20 seconds. 

 

11.3.3.2 Effect of initial conditions 

The second type of static tests are intended to determine the effect of the initial conditions.  In this case the 

initial condition that the EKF requires for initialization is modified by a small perturbation to make it different 

from the actual pose of the target.  This test is performed for scenario-2 under low light condition and with 

the target at 1.2m from the end effector. Six different perturbations are used for the initial position of the 

target, each one corresponding to translations and rotations along each axis of the target frame. A value of 

40cm was used for the translation perturbation and a value of 30deg for the rotation (20 deg for rot-z). As an 

example, for testing perturbation in the x-component, the target initial position is translated along its x-axis 

an amount of 20cm, and this modified position is given to the EKF, although the actual target is always at the 

same nominal position. 

 

11.3.3.3 Dynamic 6DOF Tests 

The first type of dynamic tests are the 6DOF tests, the initial position of the target during these tests was 

1.2m, from the end effector and the three scenarios were used. During these tests rotations and translations of 

the end effector were performed along each axis of its reference frame. The target was held fixed. Figure 43 

and in Figure 44 illustrate the motions performed. Table 10 shows the values of the rotation angle and the 

displacement for each motion.  As an example, when performing a typical maneuver such as a translation 

along the x-axis of the end-effector, the system starts at the initial nominal position, it stays there for about 20 

seconds, then it moves 20cm along the x-axis, it waits 20 seconds at the new position, then it returns to the 

original position and waits there for 20 seconds, finalizing the test. This is done for each axis with rotation 

and translations, one at a time. 
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Figure 49.  End-effector translation movements during experimental testing. 

 

 
Figure 50.  Target rotation movements during experimental testing. 

 

Table 10. End effector motions for experimental testing 

Motion Value 

X-translation 0.2m 

Y-translation 0.15m 

Z-translation 0.2m 

X-rotation 20deg 

Y-rotation 20deg 

Z-rotation 20deg 
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11.3.3.4 Approach Tests 

The second type of dynamic tests are the approach tests, in this case the system starts from a position where 

the target is at 1.5m from the end effector, and it approaches the target until they are at 0.7m from each other.  

These tests are performed at two lightning conditions and using the three scenarios. 

 

During all the test all the data generated by the pose estimation system including its internal parameter and 

variables is logged. Table 11 summaries the experimental tests. 

 
Table 11.  Experimental tests 

Test classification Test Variables 

Scenario 
Light 

conditions 

Target-

End 

effector 

distance 

# runs 

Static 

Tests 

Static Pose 

error 

 
1,2,3 

Full and 

Low 

1.5m and 

0.7m 
12 

Effect of 

initial 

conditions 

Target initial condition 

perturbation: 

rot-x, rot-y, rot-z 

trans-x, trans-y, trans-z 

2 Low 1.2m 
6 (1 per 

perturbation) 

Dynamic 

tests 

6DOF 

motions 

Target motions: 

rot-x, rot-y, rot-z 

trans-x, trans-y, trans-z 

1,2,3 
Full and 

Low 
1.2m 36 

Approach 

tests 

 
1,2,3 

Full and 

Low 

1.5 - 

0.7m 
6 

    Total runs  60 
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12 TESTING RESULTS 

The results of the test described in the previous chapter are presented in the following sections. Screenshots 

of the camera views are also presented. 

12.1  Virtual Testing 

The results of the virtual tests are presented in the following sections. 

12.1.1 Effects of Camera Parameters in the Pose Estimation Error 

The rotation and translation error as a function of the camera parameter error for these tests are presented 

in Figure 51 through Figure 54.  Each point in the figures represents and average of the data taken during the 

particular test. 
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Figure 51. Effect of the camera-1 parameters in the translation error 
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Figure 52. Effect of the camera-1 parameters in the rotation error 
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Figure 53. Effect of the camera-2 parameters in the translation error 
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Figure 54. Effect of the camera-2 parameters in the rotation error 
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12.1.2 Effect of Relative Pose in the Pose Estimation Error  

The results for these tests are presented in Figure 55, which shows the rotation and translation error as a 

function of the target displacement w.r.t the nominal position.  Each point in the figures represents and average 

of the data taken during the particular test. 

 

Figure 55. Effect of the relative pose in the system accuracy 
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12.1.3 Dynamic 6DOF Tests 

Figure 56 shows the results for these tests, where the estimated and actual target displacement are shown 

for each one of the maneuvers.  The displacement is expressed in the target frame as it is plotted against the 

simulation time.  The variable corresponding to the performed valued is presented for each case, as an example 

if the maneuver is a translation along the target x-axis, then the estimated displace along that direction is 

plotted.  Screenshots of the camera views for the initial and extreme positions of each maneuver are presented 

in Table 12 and in Table 13.   The screenshots also show the detected and reference features. 

 

Figure 56. Virtual tracking tests  

0 20 40 60 80 100
-0.1

0

0.1

0.2

0.3

simulation time, sec


x
, 

m

Translation along x-axis

 

 

est

truth

0 20 40 60 80 100
-0.1

0

0.1

0.2

0.3

simulation time, sec


y
, 

m

Translation along y-axis

 

 

est

truth

0 20 40 60 80 100
-0.1

0

0.1

0.2

0.3

simulation time, sec


z
, 

m

Translation along z-axis

 

 

est

truth

0 50 100 150
-30

-20

-10

0

10

simulation time, sec




, 
d
e
g

Rotation around x-axis

 

 

est

truth

0 50 100 150
-30

-20

-10

0

10

simulation time, sec



, 

d
e
g

Rotation around y-axis

 

 

est

truth

0 50 100 150
-20

-15

-10

-5

0

5

simulation time, sec




, 
d
e
g

Rotation around z-axis

 

 

est

truth

Motion of the Target wrt Target Initial Position
Scenario 3 - Cad model - Z

 T/E
= 1.2m



104 

 

 

Table 12.  Detected (blue) and reference (red) features at the extreme positions during the rotations of the virtual 

tracking tests 

 Rotations 

Scenario 3 - ZTE = 1.2m 

Motion Camera 1 Camera 2 

Home 

  
Rot-X 

  
Rot-Y 

  
Rot-Z 
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Table 13.  Detected (blue) and reference (red) features at the extreme positions during the translations of the virtual 

tracking tests 

 Translations 

 Scenario 3 - ZTE = 1.2m 

Motion Camera 1 Camera 2 

Home 

  
Trans-X 

  
Trans-Y 

  
Trans-Z 
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12.1.4 Approach Tests 

Figure 57 shows the actual values of the z-component of the distance between the target and the end-

effector during the approach, which is the same for all the approach tests. Figure 58 shows the rotation and 

translation error for the tests performed using the CAD model and the three scenarios. Figure 59 shows a 

comparison between the translation errors of the tests performed using the three scenarios. Figure 60 shows a 

comparison of the translation error obtained when using the CAD model and the wireframe model-2, these 

comparison is presented for both the calibrated and the uncalibrated camera. Figure 61 shows the components 

x, y and z of the translation error when using the CAD model with the calibrated camera. Figure 62 shows the 

screenshots of the camera views and the detected features when using the base of the heat shield of the apogee 

thruster. Figure 63 shows a comparison of the translation error when using the CAD model with the interface 

ring, the CAD model with the heat shield base and the wireframe models 1 and 2. 

 

 

Figure 57.  Variation of the z-component of the position of the target w.r.t the end-effector during the approach of the 

virtual test 
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Figure 58.  Translation and rotation error during the approach of the virtual test 
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Figure 59.  Comparison of the translation error of each scenario during the approach of the virtual test 
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Figure 60.  Comparison of the translation error of the CAD model and the wireframe model 2 during the approach of 

the virtual test 
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Figure 61.  Components of the translation error during the approach of the virtual test 
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Figure 63.  Comparison of the translation error of the CAD model with the interface ring, the CAD model with the 

heat shield base and the wireframe models 1 and 2 during the approach of the virtual test 
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12.2 Experimental Testing 

This section show the result for the experimental tests that were described in the previous chapter.  The 

discussion of the obtained results is presented in the next chapter. 

 

12.2.1 Tests for Static Pose Error 

Figure 64 shows the rotation and translation error for the several conditions used in these tests: scenarios, 

relative distances and lighting conditions. Each bar in the figures represents and average of the data taken 

during the particular test. The small bar over the main bar represents the standard deviation of the data. Figure 

65 show the individual components (x, y and z) of the translation error. The radial, angular components of the 

translation error in the target frame (as described in Figure 66) are presented in Figure 67. 

 

 

Figure 64. Total pose error during the static experimental tests. 
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Figure 65. Components of the translation error during the static experimental tests. 
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Figure 66. Representation of the radial, angular and axial components of the translation error. 
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Figure 67. Radial, angular and axial components of the translation error during the static experimental tests. 
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12.2.2 Effect of Initial Conditions 

Figure 68 shows the translation and rotation error for these types of tests.  The pose error is plotted against 

the frame number of the captured video.  

 

 

Figure 68.  Translation error during the initial condition tests. 
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12.2.3 Dynamic 6DOF Tests 

Figure 71 through Figure 76 show the results for these tests, where the estimated and actual target 

displacement are shown for each one of the maneuvers. Although the end effector was moved the results are 

presented as the motion of the target with respect to the target initial position and it is expressed in the target 

frame, this can be seen in Figure 69.  An example is presented in Figure 70, where a rotation of the end effector 

around its y-axis is performed (left side of the figure). For an observer on the end-effector, it will appear that 

the target was moved (translated and rotated).  The plots shows the components of the target displacement 

that present a major change when the testing maneuver is performed, as an example when performing a 

translation along the end effector X-axis, the y-component of the target displacement is plotted (these can be 

seen from the relative position of the target w.r.t to the end effector).  Note that when performing rotations of 

the end effector target translation are observed from the end effector, as can be seen in the plots. 

 

 

 

Figure 69.  Target displacement w.r.t the initial position 
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Figure 70. Comparison of the relative motion w.r.t target frame (left) and w.r.t the end-effector frame (right) 

 

 Screenshots of the camera views at the initial and extreme positions of each maneuver are presented in 

Table 14 through Table 17 for scenario 3 at the two lighting conditions. Table 18 shows the screenshot of the 
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also show the detected and reference features. 
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Figure 71. Experimental tracking tests. Scenario 1 – Full light condition. 
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Figure 72. Experimental tracking tests. Scenario 2 – Full light condition. 
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Figure 73. Experimental tracking tests. Scenario 3 – Full light condition. 
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Figure 74. Experimental tracking tests. Scenario 1 – Low light condition. 
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Figure 75. Experimental tracking tests. Scenario 2 – Low light condition. 
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Figure 76. Experimental tracking tests. Scenario 3 – Low light condition. 
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Table 14.  Detected (blue) and reference (red) features at the extreme positions during the rotations of the experimental 

tracking tests – Full light condition 

 Rotations 

Full Light - Scenario 3 - ZTE = 1.2m 

Motion Camera 1 Camera 2 

Home 

  
RotX 

  
RotY 

  
RotZ 
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Table 15.  Detected (blue) and reference (red) features at the extreme positions during the translation of the 

experimental tracking tests – Full light condition 

 Translations 

Full Light - Scenario 3 - ZTE = 1.2m 

Motion Camera 1 Camera 2 

Home 

  
TransX 

  
TransY 

  
TransZ 
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Table 16.  Detected (blue) and reference (red) features at the extreme positions during the rotations of the experimental 

tracking tests – Low light condition 

 Rotations 

Low Light - Scenario 3 - ZTE = 1.2m 

Motion Camera 1 Camera 2 

Home 

  
RotX 

  
RotY 

  
RotZ 
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Table 17.  Detected (blue) and reference (red) features at the extreme positions during the translations of the 

experimental tracking tests – Low light condition 

 Translations 

Low Light - Scenario 3 - ZTE = 1.2m 

Motion Camera 1 Camera 2 

Home 

  
TransX 

  
TransY 

  
TransZ 
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Table 18.  Detected (blue) and reference (red) features at the home positions during the motions of the experimental 

tracking tests –Scenarios 1 and 2 – Full and low light conditions 

 Home Position-Full Light - ZTE = 1.2m 

 Camera 1 Camera 2 

Scenario1 

  
Scenario2 

  
 Home Position-Low Light - ZTE = 1.2m 

Scenario1 

  
Scenario2 
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12.2.4 Approach Tests 

Figure 77 shows the actual and estimated values of the z-component of the distance of the target w.r.t end-

effector during the approach, for the three scenarios.  Screenshots of the camera views at the initial and final 

positions of the approaches are presented in Table 19 through Table 22 for the three scenarios and the two 

light conditions. 

 

Figure 77.  Variation of the z-component of the position of the target w.r.t the end-effector during the approach of the 

experimental tests  
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Table 19.  Detected (blue) and reference (red) features at the initial positions during the approach of the experimental 

tests – Full light condition 

 

 Approach - Initial Position - Full Light - ZTE = 1.49m 

 Camera 1 Camera 2 

Scenario1 

  
Scenario2 

  
Scenario3 
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Table 20.  Detected (blue) and reference (red) features at the initial positions during the approach of the experimental 

tests – Low light condition 

 

 Approach - Initial Position - Low Light - ZTE = 1.49m 

 Camera 1 Camera 2 

Scenario1 

  
Scenario2 

  
Scenario3 
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Table 21.  Detected (blue) and reference (red) features at the final positions during the approach of the experimental 

tests – Full light condition 

 

 Approach - Final Position - Full Light - ZTE = 0.7m 

 Camera 1 Camera 2 

Scenario1 

  
Scenario2 

  
Scenario3 
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Table 22.  Detected (blue) and reference (red) features at the final positions during the approach of the experimental 

tests – Low light condition 

 

 Approach - Final Position - Low Light - ZTE = 0.7m 

 Camera 1 Camera 2 

Scenario1 

  
Scenario2 

  
Scenario3 

  
   

 

 



135 

 

12.2.5 Processing Time 

Table 23 shows the average processing time for each one of the main subsystems of the pose estimation 

system, when using the implementation presented in Figure 48.  The average was taken during an approach 

(700 measurements approx.) at full light condition and using Scenario 3. 

Table 23.  Average Processing Time of the Main Subsystems 

System Processing time % of total time* 

Extraction and Detection Camera-1 0.0871 sec 60.8 

Extraction and Detection Camera-2 0.0479 sec 33.4 

Pose Solver 0.0540 sec 37.7 

Circle Pose Calculator 0.0004 sec 0.3 

Extended Kalman Filter 0.0018 sec 1.3 

Total time 0.1433 sec*  
* Extraction and Detection for Camera-1 and for Camera-2 run in parallel 
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13 DISCUSSION 

This section present the analysis of the result presented in the previous chapter. The following sections 

show the discussion of each test result in the same order as they were presented. 

13.1 Virtual Tests 

13.1.1 Effects of Camera Parameters in the Pose Estimation Error 

As expected the errors in the intrinsic parameters increase the pose estimation error, and larger errors in 

the parameters implies larger pose error.  The extrinsic parameters have a stronger effect on the pose error.  

The error in the camera-1 parameters has a stronger effect than the ones of camera-2.  This is expected since 

the ellipse in the image of Camera-1 is used by the pose estimation and the circle pose calculator to find pose, 

in other words the ellipse provides more information to find the pose. 

The image distortion also has la larger effect on the camera-1, since the ellipse points are in the outer part 

of the image, where the radial distortion is larger. 

Since the camera parameter are obtained experimentally in a real system and due to the non-linearities 

present in a machine vision system (such as lens distortion) the measured parameters are subjected to 

measurement errors. Due to this, it was important to show that the pose estimation system can still work 

adequately with small errors in these parameters. 

 

13.1.2 Effects of Relative Pose in the Pose Estimation Error  

It can be seen from these tests that the pose estimation error varies slightly (less than 5mm and 1deg) with 

the range of relative positions used.  These small changes are expected due to the nonlinear effects in the 

system, specially the discretization of the shape of the features by the image pixels and the dependence of the 

estimated pose in the shape of the features.  Although these tests were performed using images without noise 

or distortions, they show that the mathematical model of the system is robust to these changes. 

 

13.1.3 Dynamic 6DOF Tests 

These tests show that the system is capable of tracking the target adequately for each one of the maneuver 

performed, the detected features always match the features of interests.  Some differences can be seen between 

the estimated and the actual pose.  Since these tests were performed using the CAD model and the relative 

distance was 1.2m, the system is not able to distinguish between the inner and outer edge of the interface ring, 

which generates pose errors (see Figure 78).  
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It can be seen that there are some small occlusions of the target features by the end effector and the heat 

shield of the apogee thruster, but they do not have any considerably influence in the detection of the features. 

 

 

Figure 78.  Ring inner and outer diameter miss-detection 

 

13.1.4 Approach Tests 

The pose error changes during an approach, being larger when the system is further away from the target, 

this can be attributed to the inability of the system to identify the inner and outer diameter of the interface ring 

and the image noise, since the test were performed using the CAD model.   

The error when using the uncalibrated camera is larger (as expected) that when using the calibrated camera, 

and the error is amplified the further away the end effector is from the target.   

For each scenario, the translation error is of the same order of magnitude and has the same trend w.r.t to 

the relative distance. 

When comparing the system using the CAD model and the wireframe model it can be seen that when using 

the wireframe model the translation error is smaller and it is almost constant during the approach.  This is due 

to the larger noise of the CAD model.  

For scenario 3 the larger component of the translation is the y-component.  The noisier component is the 

z-component which is related to the depth, and it is directly related to the size of the detected ellipse, which 

changes considerably due to the noise of the CAD model. 

When using the base of the heat shield a less noisy and more accurate estimated pose is obtained.  This is 

due to a more stable size of the detected ellipse.  As mentioned before the inner and outer diameter of the 

Inner

diameter

Camera-1 image

Detected ellipse

Outer diameter
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interface ring can be confused and the CAD model has a textured component around the ring to simulate the 

MLI which generates noised that affect the ellipse detector.  When using the wireframe model-1 (the interface 

ring is represented as a single circle) a more accurate estimation is obtained than when using all the models, 

and the error tends to be constant during the approach. 

13.2 Experimental Testing 

13.2.1 Tests for Static Pose Error 

 

The pose estimation error changes with the relative distance, the light condition and the scenario.  As a 

general trend it can be seen that the pose error, specially the translation error, is smaller when the system is 

closer to the target.  As in the case of the virtual simulation, this can be attributed to the discretization of the 

shape of the features by the image pixels (less pixels are used to represent a feature when the  distance is 

larger) which means that the detected features can be different from the features in the image corresponding 

to the actual target, the inability to distinguish between the inner and outer diameter of the ring, and the 

amplification of the camera calibration errors, as was presented with virtual simulations and the uncalibrated 

camera. 

In almost all the cases the low light condition have a smaller rotation error and smaller standard deviation.  

When using the low light conditions it was observed that the MLI reflections were reduced and less features 

were being extracted.  The standard deviation of the error are in the majority of the cases small when compared 

to the mean value of the error.  

It is difficult to observe general trends since each scenario is equivalent to a different type of sensor in the 

EKF, i.e. the noise covariance are different, the amount of information that it provide is different (number of 

degrees of freedom).  The EKF was also using a different noise matrix for each case. Nevertheless it can be 

said that the system is robust to the variations (target proximity to the target, light conditions and scenarios) 

since it stable and tracks the features correctly.  Each scenario has its own advantages in terms of accuracy 

and robustness to initial condition, tracking, etc., this will be discussed in Section 13.3.2. 

 

It is important to present the error in the target radial, angular and axial component in order to have a better 

idea of the magnitude of the error, especially when the interface ring is used as the feature to grasp.  It can be 

seen that the radial error is between 20 and 30mm when the system is at 0.7 from the target.  If this were the 

grasping position, the capture tool have to be able to handle a deviation of that magnitude, in addition to the 

axial error which is between 10 and 30mm. 
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13.2.2 Effect of Initial Conditions 

When initializing the system with a wrong initial condition, the ellipse corresponding to the interface ring 

was detected immediately, and it took  around 50 iterations (or image frames)  for the system to reach the 

correct state were all the detected features were matching correctly  their target counterpart.  Scenario-2 was 

used for these tests since its larger features (ring and panel border) were more robust to these variations.  When 

using Scenario-3, although the ring was being detected correctly, the pad borders and corner were being 

confused with false features in the MLI.  When using Scenario-1 the ring was being detected correctly in 

camerea-1, but the system was sometimes using the wrong normal and/or confusing the ring on camera-2 with 

MLI noise. 

 

13.2.3 Dynamic 6DOF Tests 

During these tests the system was always tracking correctly the corresponding features for each case, and 

it never lost track, in some cases with small occlusions by the heat shield and the apogee thruster. The system 

returned correctly to the initial condition after the corresponding maneuver was performed. There were some 

delays in the tracking, especially when performing rotations, they can be attributed to the system incapability 

to distinguish between the inner and the outer diameter of the ring (Figure 78).   It can be observed that when 

using Scenario-1 the system was unable to track rotations around the target x-axis when performing rotation 

around the Z-axis of the end effector. 

When performing rotations around the end effector the linear velocity of the target w.r.t to the end effector 

is not constant, which does not satisfy the constant velocity model of the EKF, nevertheless the system was 

able to track the target correctly. 

 

13.2.4 Approach Tests 

The system performed well during the approach test.  The pose error was larger when the system was far 

away and it was decreasing as it was getting closer to the target, as was also observed in the virtual tests.  The 

noise of the estimated pose was also considerably reduced. 

13.2.5 Processing Time 

The largest processing time was the corresponding to the extraction and detection system for camera-1, 

which has the ellipse extraction process.  This process runs in parallel with the camera-2 systems and it takes 

about 60% of the total time.  The pose solver takes around 38% of the total processing time. 
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13.3 General Discussion 

13.3.1 Effects of the light conditions 

The system performance was different for each light condition. With full light there were more extracted 

features, and the correct feature was extracted almost all the time, but more false features generated by the 

MLI were also extracted.  This can make the system detected a wrong feature in the case of abrupt change in 

the position. With low light there was less noise but the feature extraction of the correct feature was more 

intermittent.  In this condition abrupt changes in the position are more tolerable since there are less MLI 

artifact that can confuse the system.  In either case the system performed well and was always detecting the 

right features. 

The videos during the testing were taken with the same camera conditions (iris and focus) although it is a 

common practice to have machine vision systems with automatic systems that adjust the camera conditions 

according to the system requirements and operation conditions. 

 

13.3.2 Effects of the scenarios 

The system performed differently in each scenario. When using scenario-3 a smaller translation error was 

obtained, since the features provide more information and were more defined than the one of scenario 2.   

These features were not rigid, since they are flexible fabrics (see Figure 79), and then their dimension can 

vary or they are difficult to measure, in addition they are not straight lines as was assumed.  Scenario 2 is more 

robust to errors in the initial conditions since it feature is less affected by the MLI noise (the border used in 

from MLI).  In scenario 3 the pad was surrounded by MLI, then in a case of abrupt motion the system can 

track a MLI artifacts.  The main advantage of Scenario-1 is that it requires less information from the target, 

the main problem is that in the case of abrupt motions or wrong initial condition it can use the wrong normal. 

Another disadvantage is that only 5DOF pose if obtained since rotation around the target axial axis are not 

observable. 

In general, using more features has more advantages in terms of robustness and accuracy.  Note that only 

the interface was used for camera-1, but any additional feature could have been used.  Different features can 

also be used according to the relative distance between the objects, since it may occur that some features are 

only observed from certain distances. 
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Ellipses provide more information than lines, and lines provide more information than points.  It is also 

easier to track an ellipse than a line, and it is easier to track a line than a point. Especially in this application 

where the reflections created in the MLI can be incorrectly taken as detected features. Consequently it is 

recommended to use ellipses and lines in these cases. 

The EKF noise covariance matrix was different for scenario 3.  The noise covariance matrix has the form, 

 

𝑅 = 𝑑𝑖𝑎𝑔(𝑤𝑛𝑟1 𝑤𝑛𝑟2 𝑤𝑛𝑟3 𝑤𝑐𝑟4 𝑤𝑐𝑟5 𝑤𝑐𝑟6 𝑤𝜔𝑟7 𝑤𝜔𝑟8 𝑤𝜔𝑟9 𝑤𝑣𝑟10…
                      𝑤𝑣𝑟11 𝑤𝑣𝑟12 𝑤𝑞𝑟13 𝑤𝑞𝑟14 𝑤𝑞𝑟15 𝑤𝑞𝑟16 𝑤𝑝𝑟17 𝑤𝑝𝑟18 𝑤𝑝𝑟19)  

 (133) 

 

where 𝑟𝑖 , 𝑖 = 1. .15 are value that are common for all the scenarios, 𝑤𝑛 is the weight given to the noise 

associated to the normal vector, similarly 𝑤𝑐 is weight associated to the circle center, 𝑤𝜔 is the weight 

associated to angular velocity, 𝑤𝑣 is the weight associated to the linear velocity, 𝑤𝑞 is the weight associated 

to quaternion given by the pose solver, 𝑤𝑝 is the weight associated to target center given by the pose solver. 

The values of the weight for scenario 2 and 3 are equal each other but different than the values used for 

scenario 1.   The values for the weights and the 𝑟𝑖 values were obtained experimentally during the EKF 

calibration.  The calibration process was time consuming due to the fact that there are bias errors in the 

measurements and if their noise weights are not large enough the EKF will not be able to find a stable solution 

and will start to oscillate between possible states.  In the other hand if the weights are too large the EKF will 

tend to ignore that particular measurement and the response to changes in that measurement will be slow. 
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Figure 79. Target features.  Pad borders and MLI borders 

 

13.3.3 Virtual images vs. Experimental images 

The difference between virtual images and real images are the noise level, the distortion and the errors in 

the camera parameter (calibration errors). The noise is related to reflection and textures in the components of 

the target.  The distortion and errors in the parameters generates bias error in the estimated pose, meanwhile 

the noise can result in loss of track or tracking wrong features, especially when combined with calibration 
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errors.  The use of the blue channel when using the real images reduced the MLI noise and provided a cleaner 

edge map which made possible the detection of the correct features. 

Summarizing the main effects that explain the bias error in the pose estimation are:  

 Discretization of the feature shapes due to the image pixels 

 Inability to distinguish between the inner and outer diameter of the interface ring 

 Image distortion 

 Calibration errors in the cameras (intrinsic and extrinsic parameters) 

 Image noise (MLI reflections) 

 Occlusions (heat shield, end effector) 

 Features in the target are not rigid (except interface ring) 
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14 CONCLUSIONS 

 

 A machine vision based pose estimation system was designed, implemented and tested under 

several conditions at close proximities from the target.  The total translation error of the system is 

between 25 an 50mm and the total rotation error is between 2 and 3deg when the target is at 0.7 

from the target. 

 The system was able to track and to approach a full scale realistic mockup satellite with an interface 

ring separation system. 

 The system is robust to variations in the type of features to track (scenarios), variations in the light 

conditions, and variations in the relative position.  Robustness is defined in the sense that it keeps 

track of the target features along the range of parameters used and providing a stable pose 

estimation. 

 The system was also robust to variations in the initial conditions when using Scenario 2.  When 

using other scenarios the system may track wrong features. 

 The system is robust to small occlusions, such as the ones generated by the end effector and the 

heat shield. 

 The system was robust to errors in the camera calibration (extrinsic and intrinsic) 
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