6,238 research outputs found

    ARK: Autonomous mobile robot in an industrial environment

    Get PDF
    This paper describes research on the ARK (Autonomous Mobile Robot in a Known Environment) project. The technical objective of the project is to build a robot that can navigate in a complex industrial environment using maps with permanent structures. The environment is not altered in any way by adding easily identifiable beacons and the robot relies on naturally occurring objects to use as visual landmarks for navigation. The robot is equipped with various sensors that can detect unmapped obstacles, landmarks and objects. In this paper we describe the robot's industrial environment, it's architecture, a novel combined range and vision sensor and our recent results in controlling the robot in the real-time detection of objects using their color and in the processing of the robot's range and vision sensor data for navigation

    Simple yet stable bearing-only navigation

    Get PDF
    This article describes a simple monocular navigation system for a mobile robot based on the map-and-replay technique. The presented method is robust and easy to implement and does not require sensor calibration or structured environment, and its computational complexity is independent of the environment size. The method can navigate a robot while sensing only one landmark at a time, making it more robust than other monocular approaches. The aforementioned properties of the method allow even low-cost robots to effectively act in large outdoor and indoor environments with natural landmarks only. The basic idea is to utilize a monocular vision to correct only the robot's heading, leaving distance measurements to the odometry. The heading correction itself can suppress the odometric error and prevent the overall position error from diverging. The influence of a map-based heading estimation and odometric errors on the overall position uncertainty is examined. A claim is stated that for closed polygonal trajectories, the position error of this type of navigation does not diverge. The claim is defended mathematically and experimentally. The method has been experimentally tested in a set of indoor and outdoor experiments, during which the average position errors have been lower than 0.3 m for paths more than 1 km long

    Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps

    Full text link
    Visual robot navigation within large-scale, semi-structured environments deals with various challenges such as computation intensive path planning algorithms or insufficient knowledge about traversable spaces. Moreover, many state-of-the-art navigation approaches only operate locally instead of gaining a more conceptual understanding of the planning objective. This limits the complexity of tasks a robot can accomplish and makes it harder to deal with uncertainties that are present in the context of real-time robotics applications. In this work, we present Topomap, a framework which simplifies the navigation task by providing a map to the robot which is tailored for path planning use. This novel approach transforms a sparse feature-based map from a visual Simultaneous Localization And Mapping (SLAM) system into a three-dimensional topological map. This is done in two steps. First, we extract occupancy information directly from the noisy sparse point cloud. Then, we create a set of convex free-space clusters, which are the vertices of the topological map. We show that this representation improves the efficiency of global planning, and we provide a complete derivation of our algorithm. Planning experiments on real world datasets demonstrate that we achieve similar performance as RRT* with significantly lower computation times and storage requirements. Finally, we test our algorithm on a mobile robotic platform to prove its advantages.Comment: 8 page

    MOMA: Visual Mobile Marker Odometry

    Full text link
    In this paper, we present a cooperative odometry scheme based on the detection of mobile markers in line with the idea of cooperative positioning for multiple robots [1]. To this end, we introduce a simple optimization scheme that realizes visual mobile marker odometry via accurate fixed marker-based camera positioning and analyse the characteristics of errors inherent to the method compared to classical fixed marker-based navigation and visual odometry. In addition, we provide a specific UAV-UGV configuration that allows for continuous movements of the UAV without doing stops and a minimal caterpillar-like configuration that works with one UGV alone. Finally, we present a real-world implementation and evaluation for the proposed UAV-UGV configuration

    Visual servoing of a car-like vehicle - an application of omnidirectional vision

    Get PDF
    In this paper, we develop the switching controller presented by Lee et al. for the pose control of a car-like vehicle, to allow the use of an omnidirectional vision sensor. To this end we incorporate an extension to a hypothesis on the navigation behaviour of the desert ant, cataglyphis bicolor, which leads to a correspondence free landmark based vision technique. The method we present allows positioning to a learnt location based on feature bearing angle and range discrepancies between the robot's current view of the environment, and that at a learnt location. We present simulations and experimental results, the latter obtained using our outdoor mobile platform

    Monocular navigation for long-term autonomy

    Get PDF
    We present a reliable and robust monocular navigation system for an autonomous vehicle. The proposed method is computationally efficient, needs off-the-shelf equipment only and does not require any additional infrastructure like radio beacons or GPS. Contrary to traditional localization algorithms, which use advanced mathematical methods to determine vehicle position, our method uses a more practical approach. In our case, an image-feature-based monocular vision technique determines only the heading of the vehicle while the vehicle's odometry is used to estimate the distance traveled. We present a mathematical proof and experimental evidence indicating that the localization error of a robot guided by this principle is bound. The experiments demonstrate that the method can cope with variable illumination, lighting deficiency and both short- and long-term environment changes. This makes the method especially suitable for deployment in scenarios which require long-term autonomous operation

    Characterization of image sets: the Galois Lattice approach

    Get PDF
    This paper presents a new method for supervised image classification. One or several landmarks are attached to each class, with the intention of characterizing it and discriminating it from the other classes. The different features, deduced from image primitives, and their relationships with the sets of images are structured and organized into a hierarchy thanks to an original method relying on a mathematical formalism called Galois (or Concept) Lattices. Such lattices allow us to select features as landmarks of specific classes. This paper details the feature selection process and illustrates this through a robotic example in a structured environment. The class of any image is the room from which the image is shot by the robot camera. In the discussion, we compare this approach with decision trees and we give some issues for future research

    Simultaneous localization and map-building using active vision

    No full text
    An active approach to sensing can provide the focused measurement capability over a wide field of view which allows correctly formulated Simultaneous Localization and Map-Building (SLAM) to be implemented with vision, permitting repeatable long-term localization using only naturally occurring, automatically-detected features. In this paper, we present the first example of a general system for autonomous localization using active vision, enabled here by a high-performance stereo head, addressing such issues as uncertainty-based measurement selection, automatic map-maintenance, and goal-directed steering. We present varied real-time experiments in a complex environment.Published versio

    Technical report on Optimization-Based Bearing-Only Visual Homing with Applications to a 2-D Unicycle Model

    Full text link
    We consider the problem of bearing-based visual homing: Given a mobile robot which can measure bearing directions with respect to known landmarks, the goal is to guide the robot toward a desired "home" location. We propose a control law based on the gradient field of a Lyapunov function, and give sufficient conditions for global convergence. We show that the well-known Average Landmark Vector method (for which no convergence proof was known) can be obtained as a particular case of our framework. We then derive a sliding mode control law for a unicycle model which follows this gradient field. Both controllers do not depend on range information. Finally, we also show how our framework can be used to characterize the sensitivity of a home location with respect to noise in the specified bearings. This is an extended version of the conference paper [1].Comment: This is an extender version of R. Tron and K. Daniilidis, "An optimization approach to bearing-only visual homing with applications to a 2-D unicycle model," in IEEE International Conference on Robotics and Automation, 2014, containing additional proof
    corecore