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Abstract—We present a reliable and robust monocular naviga-
tion system for an autonomous vehicle. The proposed method is
computationally efficient, needs off-the-shelf equipment only and
does not require any additional infrastructure like radio beacons
or GPS. Contrary to traditional localization algorithms, which use
advanced mathematical methods to determine vehicle position,
our method uses a more practical approach. In our case, an
image-feature-based monocular vision technique determines only
the heading of the vehicle while the vehicle’s odometry is used to
estimate the distance traveled. We present a mathematical proof
and experimental evidence indicating that the localization error
of a robot guided by this principle is bound. The experiments
demonstrate that the method can cope with variable illumination,
lighting deficiency and both short- and long-term environment
changes. This makes the method especially suitable for deploy-
ment in scenarios which require long-term autonomous operation.

I. INTRODUCTION

A considerable progress in visual-based systems capable
of autonomous navigation of long routes can be observed
during the last decades. One can divide these navigation
systems to three groups [1]: map-less, map-based and map-
building based. Map-less navigation systems such as [2] rely
on recognition of the environment structure and use the current
image input to generate motion commands for a mobile robot.
Map-based navigation systems rely on user-created models of
the environment [3]. Map-building-based navigation systems
are able to build an environment map and use it for robot
navigation and localization. The mapping and localization
is usually performed simultaneously, resulting in so called
visual SLAM [4]. Another approach is to perform mapping
(typically by guiding the robot along the desired path) prior to
the autonomous navigation [5]. This technique (called ‘map-
and-replay’) is similar to the common practice in industrial
robotics, where a skilled operator guides a robot tip along a
desired trajectory, the robot records positions of its joints and
then performs the recorded movement repeatedly.

The articles [6], [7], [8], [9], [10] describe mobile robot
navigation systems based on the ‘map-and-replay’ principle.
In the article [8], a monocular camera is carried through an en-
vironment and a video is recorded. The recorded video is then
processed (in a matter of several minutes) and subsequently
used to guide a mobile robot along the same trajectory. Authors
of paper [9] present an even simpler form of navigation in a
learned map. Their method utilizes a map consisting of salient
image features remembered during a tele-operated drive. The
map is divided into several conjoined segments, each asso-
ciated with a set of visual features detected along it and a

milestone image indicating the segment end. When a robot
navigates a segment, its steering commands are calculated from
positions of the currently recognized and the already mapped
features. The robot moves forward with a constant speed until
it detects the segment end by means of comparing the mapped
segment’s last image with the current view. However, the
authors report low reliability of the segment end detection.

This paper presents a simple monocular ‘map-and-replay’
navigation system for an autonomous vehicle. The core of our
system is a simple, yet novel method of position estimation
based on monocular vision and odometry. Contrary to tradi-
tional localization methods, which use advanced mathematical
concepts to determine vehicle position, our method uses a more
practical approach. The monocular vision technique determines
heading of the vehicle only and leaves the traveled distance
estimation to odometry. We claim, that if the robot heading
is continuously adjusted to turn it towards the desired path,
its position error does not diverge even if the robot self-
localization is based solely on odometry. To prove the claim,
we outline a formal mathematical model of the proposed
navigation method and show that the robot position uncertainty
is bound for closed polygonal paths. Correctness of the mathe-
matical analysis is supported by experimental evidence, which
proves method robustness and stability in real-world scenarios.

The proposed navigation system is based on an off-the-
shelf equipment (camera and odometry) and standard image
processing algorithms. Since the visual information is used
for heading estimation only, the system is able to reliably
guide a robot while sensing only one image feature at a
time. This results not only in system’s robustness to variations
of the environment, but also in its computational efficiency.
Thus, the navigation method provides competitive properties
to traditional methods, which makes it suitable especially for
long-term operation. The method’s accuracy of 0.3 m surpasses
the precision of consumer-grade GPS systems.

II. NAVIGATION METHOD DESCRIPTION

The navigation system works in two steps: learning and
navigation. During the learning phase, a robot is guided by
an operator along a path consisting of straight-line segments
and creates a landmark map. Once the mapping is finished, the
robot can travel autonomously within the mapped environment.

The image processing method which detects salient objects
in the robot’s field of view is a critical part of the navigation
system because it is the only mechanism which the robot
employs to reduce its position uncertainty. We have decided to
use Speeded Up Robust Features (SURF) [11], [12] to identify
features in the image. However, the system has been tested with
other feature extraction algorithms as well [13].978-1-4799-2722-7/13/$31.00 c©2013 IEEE



A. Mapping phase

During this phase, the robot is driven through the environ-
ment by an human operator in a turn-move manner and creates
a map, which consists of a sequence of straight segments. Each
segment is described by the initial robot orientation α, the
segment length s, and the feature set L. The set L consists
of salient features detected in images captured by the robot’s
forward looking camera. Each feature l ∈ L is associated with
its SURF descriptor, the image coordinates where it has been
spotted for the first and last time and the robot distance from
the segment start at these time instants.

The mapping algorithm maintains three sets of features: a
set of tracked features T , a set of currently detected features
S and a set of saved features L. Each time a picture is
processed by the SURF algorithm, the set S is populated and
correspondences between the sets S and T are established. The
descriptions (image coordinates and the current robot position)
of the associated features in the set T are then updated based
on the data of their counterparts in the set S. The un-associated
features in the set T , i.e. features which have been tracked but
are not visible any more, are added to the set L. Similarly, the
unmatched features in S , i.e. features seen for the first time,
are added to the set T . When the mapping is terminated by the
operator, the features in T are added to L. Thus, each feature
in the set L is described not only by the SURF descriptor, but
also by its image coordinates and values of the robot odometric
counter in moments of its first and last occurrence.

B. Navigation phase

During autonomous navigation, the robot maintains con-
stant forward speed until its odometry indicates that its distance
from the segment start is equal to the segment length. The
algorithms retrieves the features which were visible at the
same position from the map and matches them to the visible
ones. The horizontal displacement (in image coordinates) of
the expected and detected features’ positions is then used to
determine the robot steering speed.

First, a relevant set of features U is retrieved from the
set of mapped features L. The set U contains features that
were detected in the mapping phase at the same robot distance
from the segment start. For each feature in the set U , the best
matching feature in the set S (features detected in the current
image) is found. A difference in horizontal image coordinates
of the paired features is then computed and added to a set H.
After that, the most frequent value h of the set H is found
by histogram voting and the robot’s steering speed ω is set
proportionally to h. Thus, the robot is steered to keep the
features at their expected image coordinates. The current on-
board camera image, positions of the detected and expected
features, established correspondences and histogram are logged
and displayed on a GUI, see Figure 1. A detailed description
of the algorithm is given in [14].

C. Embedded realization

While the process of heading estimation by histogram
voting is fairly simple and computationally inexpensive, the
SURF algorithm requires significant computational resources.
The CPU version of the algorithm takes about 1300 ms
(on an Intel Core2Duo2.0GHz and 1024×768 pixel image)

Fig. 1: Robot GUI during navigation phase

and provides about 1000 features. The GPU version of the
SURF algorithm [11] is more efficient due to massive parallel
processing - detection of 1000 features takes about 40 ms (on
the nVidia Quadro NVS 320M). Even though these methods
are applicable, their main drawback is that they require a
complete PC, which might be simply too large or power
consuming to be used with smaller robots. That is why we have
created a small-sized FPGA-based device, which is capable to
extract the SURF features while consuming significantly less
power [15].

III. NAVIGATION STABILITY

In this section, we show how the heading correction
influences the overall position error. At first, we introduce a
model of robot position uncertainty and show, how it changes
as the robot moves along one path segment. After that, we will
extend the model for more segments and show that if the robot
traverses a closed path repeatedly, its position error does not
diverge.

A. A Model of Robot Movement

Let us define the position and heading of the mobile robot
as x, y, ϕ. Assume that the robot was taught a straight path,
which starts at coordinate origin and leads in the direction
of the x-axis. Let us assume, that the robot is heading
approximately in the direction of the segments, so it can detect
some previously mapped features. Let the navigation algorithm
assume the robot location to be at (0, 0), but the real robot
position is (ax, ay), where the values of (ax, ay) are small
compared to the segment length. The displacement of the
robot causes the image features to appear not at their expected
positions. Rather than that, the features would be shifted to the
right side of the image for ay > 0 or vice versa. This will be
reflected by the result of the histogram voting, which will steer
the robot towards the segment axis. Larger robot displacement
will cause larger displacement of the image features which
will result in stronger heading correction calculated by the
histogram voting method. Thus, we can estimate the robot
heading ϕ by the formula ϕ ≈ −ky, where k is a positive
nonzero constant. On the contrary, the robot forward speed
controller maintains a constant speed vk until the robot has
traveled the distance equal to the segment length and therefore,
the robot initial position (ax, ay) does not affect the distance
the robot travels. Assuming that the robot heading ϕ is small,
we can state that dx/dt = vk and dy/dt = vkϕ = −vkky.



Solving these differential equations with boundary conditions
x(0) = ax, y(0) = ay allows us to compute the robot position:

x(t) = ax + vkt, y(t) = aye
−vkkt. (1)

Taking into account that the time t to traverse a segment of
length s is t = s/vk we can calculate the robot position (bx, by)
after it traverses the entire segment as:

bx = ax + s, by = aye
−ks. (2)

Equation (2) would hold for an error-less odometry and
noiseless camera. Considering the camera and odometry noise,
the Equation (2) will be rewritten to(

bx
by

)
=

(
1 0
0 e−sk

)(
ax
ay

)
+

(
sυ
ξ

)
, (3)

where υ is a random variable drawn from the Gaussian
distribution with the mean equal to 1 and the variance equal to
ε and ξ is a random variable of the Gaussian distribution with
the zero mean and the variance τ . A compact form of (3) is

b = Ma + s. (4)

For an arbitrarily oriented segment, one can rotate the coordi-
nate system by the rotation matrix R (the initial robot position
in the rotated coordinate system will be Ra), apply (4) and
then rotate the result back by RT. Thus, Equation (4) can be
rewritten as

b = RT (MRa + s) = RTMRa + RTs. (5)

Using (5), the robot position b at the end of the segment can
be computed from its starting position a. Equations (5) and
(1) allow us to calculate how the robot position error evolves
as the robot traverses the intended path.

B. Position Error

Let the robot position a be a random variable drawn from
a two-dimensional normal distribution with the mean â and
the covariance matrix A. Since equation (5) has only linear
and absolute terms, the position b will constitute a normal
distribution with a covariance matrix B. Let a = â+ã, where
ã is a random variable of a normal distribution with a zero
mean and covariance A. Assuming the same notation for b
and s, equation (5) can be rewritten as

b̃ = RTMR(â + ã) + RT(̂s + s̃)− b̂. (6)

Substituting RTMRâ + RTŝ for b̂, equation (6) becomes

b̃ = RTMRã + RTs̃, (7)

where ã, b̃, s̃ are Gaussian random variables with zero mean.
The ã and b̃ represent the robot position error at the start and
end of the traversed segment. To obtain the covariance matrices
of random variables a and b, equation (7) can be rewritten as

b̃b̃T = (RTMRã + RTs̃)(RTMRã + RTs̃)T.

Assuming s̃ and ã are independent and uncorrelated,

b̃b̃T = RTMRããTRTMTR + RTs̃s̃TR,

which rewritten in terms of covariance matrices is

B = NANT + T, (8)

where N = RTMR and T = RTSR. Equation (8) allows
determination of the robot position uncertainty after traversing
one path segment.

C. Traversing multiple segments

Let the robot path is a closed polygonal chain consisting
of n segments denoted by numbers from 0 to n − 1. Let a
segment i be oriented in the direction αi and its length be si.
Let the robot positions at the start and end of the ith segment
are ai and bi respectively. The segments are joined, so bi =
ai+1 and the Equation (8) for the ith traveled segment is

Ai+1 = NiAiN
T
i + Ti.

The robot position uncertainty after traversing the entire path
consisting of the n segments will be

An = N̆A0N̆T + T̆,

where

N̆ =

0∏
j=n−1

Nj and T̆ =

n−1∑
j=0

 j∏
k=n−1

NkTj

n−1∏
k=j

NT
k

.
If the robot traverses the entire path k-times, its position
uncertainty can be calculated in a recursive way by

A(k+1)n = N̆AknN̆T + T̆. (9)

which has the form of Lyapunov discrete equation. Therefore,
the covariance matrix Akn is bound for k → +∞ if all
eigenvalues of N̆ lie within a unit circle and T̆ is symmetric.

Since matrix Si is constructed as diagonal, Ti = RT
i SiRi

is symmetric and T̆ is symmetric as well.

As every Ni equals to RT
i MiRi, its eigenvalues are equal

to the diagonal of Mi and eigenvectors are columns of Ri.
Therefore, each matrix Ni is positive-definite and symmetric.
Since the dominant eigenvalue of every Ni is one, eigenvalues
of N̆ are smaller or equal to one. The dominant eigenvalue of
N̆ is equal to one if and only if the dominant eigenvalues
of products Ni+1Ni equal 1 for all i. However, dominant
eigenvalue of a product Ni+1Ni equals 1 only if the dominant
eigenvectors of both Ni and Ni+1 are linearly dependent,
which corresponds to collinearity of ith and (i+1)th segment.
Thus, the dominant eigenvalue n̆ of the matrix N̆ equals 1 if
and only if all path segments are rotated in the same direction,
i.e. the entire robot path is a straight line. In any other case,
the dominant eigenvalue n̆ is lower than 1 and Equation (9)
has a finite solution. This means that if the robot travels the
trajectory repeatably, its position uncertainty Akn does not
diverge. A detailed analysis of the matrix N̆ spectral radius is
presented in [16] and [14].

�

IV. DISCUSSION OF THE STABILITY ASSUMPTIONS

The described model of the robot position uncertainty
leading to the navigation stability proof stands on several
assumptions, which might not always be met in a real situation.
First of all, the robot position error, odometry noise υ and
camera noise ξ might not have a Gaussian distribution as
assumed by the mathematical model. Moreover, the heading
correction calculated by the histogram voting might fail in
some situations. Besides, the odometry is usually considered
as unreliable for long term navigation due to its drift. In
this section, we discuss the practical aspects of the heading
correction and the odometry error in our navigation system.



A. Incorrect Correspondences

In order to correct the robot heading, we assume that
a number of reliable correspondences between the mapped
and currently detected features have been established. This
assumption might not be met because of four factors: view-
point changes caused by differences in expected and real
robot position, variable illumination due to unstable weather
conditions, feature deficiency due to lack of light and naturally
occurring seasonal environment changes.

The difference between the expected and real position of
the robot leads to different viewpoints of the currently seen and
previously learned scene. This affects not only feature image
positions, but also their descriptors. However, the viewpoint
changes are not significant in our case, because the vehicle
keeps itself close to the path it learned before. Moreover,
most image feature descriptors are designed to be robust to
viewpoint changes.

Varying daytime illumination, which is caused by weather
conditions and changing position of the sun causes a significant
amount of the image features to be detected in places of
shadows rather than real objects. These features are often
matched with those of the map, which causes contamination
of the set H with values not corresponding to actual robot
heading.

Moreover, the sheer lack of daylight causes the number of
detected image features to be too low to establish the robot
position properly.

Another significant factor threatening the correct corre-
spondences are naturally occurring seasonal variations, which
simply change the environment appearance rendering any map
obsolete. This effect is especially significant in non-urban
environments, where the natural vegetation grows over time.

The advantage of our method is that it works even in cases,
when most of the features are matched incorrectly. The reason
for that lies in the determination of the heading correction from
the established correspondences. The robustness of the method
can be demonstrated by the following example:

Consider a situation, when the robot enter an area that has
completely changed since the mapping phase. The established
correspondences will be random and thus the set H will
contain random, uniformly distributed numbers. Therefore the
histogram, which is used to estimate the modus of H, will
have its bins filled approximately equally. Now consider, that
the scene has not changed completely and a small portion
of the correspondences is correct. Each correctly established
correspondence increases the value of the bin, which represents
the robot’s true heading deviation. Therefore the chance that
the correct heading is established increases with each correct
correspondence. Thus, only small portion of the correctly es-
tablished correspondences is sufficient for reliable navigation.
Another advantage of histogram voting is that it produces robot
heading estimation even in an extreme case of just one visible
image feature.

B. Odometry Error

An odometry is usually regarded as suitable only for short-
term localization because its error is cumulative. However, the

odometry error is caused mainly by the fact that the robot head-
ing cannot be determined precisely. If the odometry is used to
measure the traveled distance only, its precision is much higher.
Moreover, the odometric error is mostly systematic, which
can be solved by calibration. The accumulation of odometric
errors can be prevented by using more advanced localization
methods at locations, which are not likely to contain wrong
correspondences or by taking into consideration the nature of
the localization error when planning the robot path [17]. In our
navigation method, the odometry is used only for estimation
of the traveled distance along (relatively short) straight line
segments and therefore its cumulative error is not an issue.
The experiments in [14] show that the proposed method is
stable even when using an optical odometry with 10% non-
systematic error.

V. EXPERIMENTAL EVALUATION

This section provides an overview of experimental eval-
uation of the navigation method verifying its reliability and
robustness. The performed experiments show that the navi-
gation method can deal with illumination variations, feature
deficiency, seasonal and long-term environment changes. The
evaluation method is based on experiments in which the robot
has to traverse a previously taught closed path several times.
Every time the robot finished one path loop, its distance
relative to path start was measured. The accuracy of the
navigation method is then calculated as a Root Mean Square
(RMS) of these distances like in article [9].

A. Robustness to variable outdoor illumination

The navigation system performance was tested in two all-
day experiments. The robot path was 1023 m long and went
through variable nonflat terrain consisting mostly of dirtroads
and footpaths. The path was learned in the morning and the
robot has autonomously traversed it until evening. During
the day, the weather has changed from light rain to sunny,
which had a significant impact on the environment appearance.
Despite the variable lighting conditions, the robot has traversed
the path six times with 0.26 m accuracy. One week later, the
experiment (without the mapping phase) was repeated with
accuracy of 0.31 m. To illustrate on the test, the various parts
of the environment during the robot autonomous navigation
are shown in the Figure 2.

B. Robustness to feature deficiency

Due to the system principle, it should be able to operate
in an environment which contains only a low number of
landmarks. To verify this assumption, we have taught the robot
a 300 m long path on paved roads in a residential area. The
path has been taught at midnight so more than 90% of the
mapped landmarks were streetlamps and illuminated windows,
see Figure 3. Due to lack of light, the on-board camera iris
has been fully opened and the camera exposure time has been
set to a fixed value 0.37 s.

After the path has been learned, the robot has been placed
1.5 m away from the path start and requested to traverse it
ten times. On the contrary to day experiments, in which the
robot typically used 150-300 landmarks for navigation, during
night, the typical number of detected landmarks was 2. The
robot has traversed 3 km with the accuracy of 0.32 m.



(a) Footpath in a wood.

(b) Crossing a wooden bridge. (c) Allday experiment path.

(d) Climbing a grassy steep.

(e) Traversing an open area.

(f) Asphalt road.

(g) Pond dam dirtroad.

Fig. 2: The one-day experiment path and terrain examples.

(a) The most SURF populated view. (b) Approaching car (c) Streetlamp alley (d) Typical night view

Fig. 3: Views from the robot camera during the night experiment.

C. Robustness to short-term environment changes

To verify if the navigation system is able to cope with
short-term environment changes, we have performed a one
year experiment. In this experiment, the robot was required
to traverse a 50 m long path in a park environment using one
month old map. This test has been performed repeatedly (on a
monthly basis) from November 2009 to October 2010. During
this time period, the environment has varied significantly,
mainly due to seasonal changes in foliage, see Figure 4.
Despite of these changes, the system was able to traverse the
path every time with an average accuracy of 0.28 m.

D. Robustness to seasonal environment changes

To examine the map decay effects due to seasonal changes,
the robot has taken extra snapshots every month at five
key locations of the path it traversed in the aforementioned
scenario1. While the locations have been almost identical,
the robot heading has been slightly different every time. The
histogram voting scheme of the algorithm presented was used
to estimate the relative heading of the robot between all images
taken at the same location. If the estimation has differed more
than by 2 degrees from the ground truth, it was considered
incorrect and vice versa. In this way, we have verified if
a map created during a particular month can be used for
navigation of the robot during another month. The success rate
of the algorithm in estimating the true robot heading between
individual months is shown in Table I.

Note, that the all the fields next to the diagonal indicate a
100% success rate, which means, that one-month old map is

1The dataset capturing seasonal variations is available online at [18]

TABLE I: Heading estimation success rate [%] amongst maps
created at individual months

No foliage Foliage
Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Nov 100 100 60 100 100 100 40 40 80 60 40 80
Dec 100 100 100 100 100 100 100 60 100 80 100 60
Jan 80 100 100 100 100 100 80 40 20 20 40 40
Feb 80 100 100 100 100 100 60 60 60 40 80 60
Mar 80 100 100 100 100 100 40 40 60 40 80 60
Apr 100 100 100 100 100 100 100 80 40 60 60 40
May 60 80 60 80 20 100 100 100 100 100 100 100
Jun 40 80 40 40 60 40 100 100 100 100 100 80
Jul 60 80 20 40 60 40 100 100 100 100 100 80
Aug 60 80 60 60 40 60 100 100 100 100 100 80
Sep 60 80 80 60 60 40 100 100 100 100 100 100
Oct 60 60 60 60 80 20 100 100 100 100 100 100

suitable for visual based navigation performed by our method.
Also note, that the most of the 100% success rate is contained
in two square areas around the diagonal from November
to April and May to August. This means, that the seasonal
changes during these months are not so significant and an
autonomous robot operating outdoors throughout the entire
year would require just two environment maps.

E. Robustness to long-term environment changes

On April 2011 and March 2012, we have let the robot
autonomously navigate the same path again using the maps
created during the years 2009 and 2010. Prior to running
the navigation algorithm, the robot has matched its currently
perceived features to every map from the dataset. The resulting
histograms of horizontal feature displacements were evaluated



(a) November 2009 (b) December 2009 (c) January 2010 (d) February 2010

(e) March 2010 (f) April 2010 (g) May 2010 (h) June 2010

(i) July 2010 (j) August 2010 (k) September 2010 (l) October 2010

Fig. 4: The robot’s view of the same scene on different months during the long-term experiment.

in terms of their entropy [19], [14] and the map, which
produced a histogram with the lowest entropy was selected.
After that, the navigation method used the selected map to
traverse the learned path. Both times, the robot was able to
complete the path 20 times with an average precision of 0.26 m
and 0.34 m.

VI. CONCLUSION

A navigation system based on monocular camera and an
odometry was presented in this paper. The method utilizes a
map of the environment that is created by the mobile robot
prior the autonomous navigation. During the autonomous na-
vigation, a camera input is used to establish the robot heading
and odometry is used to measure the traveled distance. The
robot heading is estimated simply by performing a histogram
voting method on a set horizontal position differences of
previously mapped and currently detected SURF features.
The theoretical analysis indicates that this kind of navigation
keeps the robot position error bound. The experimental results
not only confirm that, but also demonstrate the method’s
robustness to landmark deficiency, variable illumination and
seasonal environment changes. These properties make the
method especially suitable for long-term navigation of mobile
robots in outdoor environments.
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