53 research outputs found

    Can you "read tongue movements"?

    Get PDF
    International audienceLip reading relies on visible articulators to ease audiovisual speech understanding. However, lips and face alone provide very incomplete phonetic information: the tongue, that is generally not entirely seen, carries an important part of the articulatory information not accessible through lip reading. The question was thus whether the direct and full vision of the tongue allows tongue reading. We have therefore generated a set of audiovisual VCV stimuli by controlling an audiovisual talking head that can display all speech articulators, including tongue, in an augmented speech mode, from articulators movements tracked on a speaker. These stimuli have been played to subjects in a series of audiovisual perception tests in various presentation conditions (audio signal alone, audiovisual signal with profile cutaway display with or without tongue, complete face), at various Signal-to-Noise Ratios. The results show a given implicit effect of tongue reading learning, a preference for the more ecological rendering of the complete face in comparison with the cutaway presentation, a predominance of lip reading over tongue reading, but the capability of tongue reading to take over when the audio signal is strongly degraded or absent. We conclude that these tongue reading capabilities could be used for applications in the domain of speech therapy for speech retarded children, perception and production rehabilitation of hearing impaired children, and pronunciation training for second language learner

    Viewing speech in action: speech articulation videos in the public domain that demonstrate the sounds of the International Phonetic Alphabet (IPA)

    Get PDF
    In this article, we introduce recently released, publicly available resources, which allow users to watch videos of hidden articulators (e.g. the tongue) during the production of various types of sounds found in the world’s languages. The articulation videos on these resources are linked to a clickable International Phonetic Alphabet chart ([International Phonetic Association. 1999. Handbook of the International Phonetic Association: A Guide to the Use of the International Phonetic Alphabet. Cambridge: Cambridge University Press]), so that the user can study the articulations of different types of speech sounds systematically. We discuss the utility of these resources for teaching the pronunciation of contrastive sounds in a foreign language that are absent in the learner’s native language

    Augmented Reality Talking Heads as a Support for Speech Perception and Production

    Get PDF

    Final Report to NSF of the Standards for Facial Animation Workshop

    Get PDF
    The human face is an important and complex communication channel. It is a very familiar and sensitive object of human perception. The facial animation field has increased greatly in the past few years as fast computer graphics workstations have made the modeling and real-time animation of hundreds of thousands of polygons affordable and almost commonplace. Many applications have been developed such as teleconferencing, surgery, information assistance systems, games, and entertainment. To solve these different problems, different approaches for both animation control and modeling have been developed

    CORTICAL DYNAMICS OF AUDITORY-VISUAL SPEECH: A FORWARD MODEL OF MULTISENSORY INTEGRATION.

    Get PDF
    In noisy settings, seeing the interlocutor's face helps to disambiguate what is being said. For this to happen, the brain must integrate auditory and visual information. Three major problems are (1) bringing together separate sensory streams of information, (2) extracting auditory and visual speech information, and (3) identifying this information as a unified auditory-visual percept. In this dissertation, a new representational framework for auditory visual (AV) speech integration is offered. The experimental work (psychophysics and electrophysiology (EEG)) suggests specific neural mechanisms for solving problems (1), (2), and (3) that are consistent with a (forward) 'analysis-by-synthesis' view of AV speech integration. In Chapter I, multisensory perception and integration are reviewed. A unified conceptual framework serves as background for the study of AV speech integration. In Chapter II, psychophysics testing the perception of desynchronized AV speech inputs show the existence of a ~250ms temporal window of integration in AV speech integration. In Chapter III, an EEG study shows that visual speech modulates early on the neural processing of auditory speech. Two functionally independent modulations are (i) a ~250ms amplitude reduction of auditory evoked potentials (AEPs) and (ii) a systematic temporal facilitation of the same AEPs as a function of the saliency of visual speech. In Chapter IV, an EEG study of desynchronized AV speech inputs shows that (i) fine-grained (gamma, ~25ms) and (ii) coarse-grained (theta, ~250ms) neural mechanisms simultaneously mediate the processing of AV speech. In Chapter V, a new illusory effect is proposed, where non-speech visual signals modify the perceptual quality of auditory objects. EEG results show very different patterns of activation as compared to those observed in AV speech integration. An MEG experiment is subsequently proposed to test hypotheses on the origins of these differences. In Chapter VI, the 'analysis-by-synthesis' model of AV speech integration is contrasted with major speech theories. From a Cognitive Neuroscience perspective, the 'analysis-by-synthesis' model is argued to offer the most sensible representational system for AV speech integration. This thesis shows that AV speech integration results from both the statistical nature of stimulation and the inherent predictive capabilities of the nervous system

    Example Based Caricature Synthesis

    Get PDF
    The likeness of a caricature to the original face image is an essential and often overlooked part of caricature production. In this paper we present an example based caricature synthesis technique, consisting of shape exaggeration, relationship exaggeration, and optimization for likeness. Rather than relying on a large training set of caricature face pairs, our shape exaggeration step is based on only one or a small number of examples of facial features. The relationship exaggeration step introduces two definitions which facilitate global facial feature synthesis. The first is the T-Shape rule, which describes the relative relationship between the facial elements in an intuitive manner. The second is the so called proportions, which characterizes the facial features in a proportion form. Finally we introduce a similarity metric as the likeness metric based on the Modified Hausdorff Distance (MHD) which allows us to optimize the configuration of facial elements, maximizing likeness while satisfying a number of constraints. The effectiveness of our algorithm is demonstrated with experimental results

    CASA 2009:International Conference on Computer Animation and Social Agents

    Get PDF

    Discovering Dynamic Visemes

    Get PDF
    Abstract This thesis introduces a set of new, dynamic units of visual speech which are learnt using computer vision and machine learning techniques. Rather than clustering phoneme labels as is done traditionally, the visible articulators of a speaker are tracked and automatically segmented into short, visually intuitive speech gestures based on the dynamics of the articulators. The segmented gestures are clustered into dynamic visemes, such that movements relating to the same visual function appear within the same cluster. Speech animation can then be generated on any facial model by mapping a phoneme sequence to a sequence of dynamic visemes, and stitching together an example of each viseme in the sequence. Dynamic visemes model coarticulation and maintain the dynamics of the original speech, so simple blending at the concatenation boundaries ensures a smooth transition. The efficacy of dynamic visemes for computer animation is formally evaluated both objectively and subjectively, and compared with traditional phoneme to static lip-pose interpolation

    Windows into Sensory Integration and Rates in Language Processing: Insights from Signed and Spoken Languages

    Get PDF
    This dissertation explores the hypothesis that language processing proceeds in "windows" that correspond to representational units, where sensory signals are integrated according to time-scales that correspond to the rate of the input. To investigate universal mechanisms, a comparison of signed and spoken languages is necessary. Underlying the seemingly effortless process of language comprehension is the perceiver's knowledge about the rate at which linguistic form and meaning unfold in time and the ability to adapt to variations in the input. The vast body of work in this area has focused on speech perception, where the goal is to determine how linguistic information is recovered from acoustic signals. Testing some of these theories in the visual processing of American Sign Language (ASL) provides a unique opportunity to better understand how sign languages are processed and which aspects of speech perception models are in fact about language perception across modalities. The first part of the dissertation presents three psychophysical experiments investigating temporal integration windows in sign language perception by testing the intelligibility of locally time-reversed sentences. The findings demonstrate the contribution of modality for the time-scales of these windows, where signing is successively integrated over longer durations (~ 250-300 ms) than in speech (~ 50-60 ms), while also pointing to modality-independent mechanisms, where integration occurs in durations that correspond to the size of linguistic units. The second part of the dissertation focuses on production rates in sentences taken from natural conversations of English, Korean, and ASL. Data from word, sign, morpheme, and syllable rates suggest that while the rate of words and signs can vary from language to language, the relationship between the rate of syllables and morphemes is relatively consistent among these typologically diverse languages. The results from rates in ASL also complement the findings in perception experiments by confirming that time-scales at which phonological units fluctuate in production match the temporal integration windows in perception. These results are consistent with the hypothesis that there are modality-independent time pressures for language processing, and discussions provide a synthesis of converging findings from other domains of research and propose ideas for future investigations

    Temporal integration of loudness as a function of level

    Get PDF
    • …
    corecore