18,383 research outputs found

    Estimating Emotion Contagion on Social Media via Localized Diffusion in Dynamic Graphs

    Full text link
    We present a computational approach for estimating emotion contagion on social media networks. Built on a foundation of psychology literature, our approach estimates the degree to which the perceivers' emotional states (positive or negative) start to match those of the expressors, based on the latter's content. We use a combination of deep learning and social network analysis to model emotion contagion as a diffusion process in dynamic social network graphs, taking into consideration key aspects like causality, homophily, and interference. We evaluate our approach on user behavior data obtained from a popular social media platform for sharing short videos. We analyze the behavior of 48 users over a span of 8 weeks (over 200k audio-visual short posts analyzed) and estimate how contagious the users with whom they engage with are on social media. As per the theory of diffusion, we account for the videos a user watches during this time (inflow) and the daily engagements; liking, sharing, downloading or creating new videos (outflow) to estimate contagion. To validate our approach and analysis, we obtain human feedback on these 48 social media platform users with an online study by collecting responses of about 150 participants. We report users who interact with more number of creators on the platform are 12% less prone to contagion, and those who consume more content of `negative' sentiment are 23% more prone to contagion. We will publicly release our code upon acceptance

    Reach and speed of judgment propagation in the laboratory

    Full text link
    In recent years, a large body of research has demonstrated that judgments and behaviors can propagate from person to person. Phenomena as diverse as political mobilization, health practices, altruism, and emotional states exhibit similar dynamics of social contagion. The precise mechanisms of judgment propagation are not well understood, however, because it is difficult to control for confounding factors such as homophily or dynamic network structures. We introduce a novel experimental design that renders possible the stringent study of judgment propagation. In this design, experimental chains of individuals can revise their initial judgment in a visual perception task after observing a predecessor's judgment. The positioning of a very good performer at the top of a chain created a performance gap, which triggered waves of judgment propagation down the chain. We evaluated the dynamics of judgment propagation experimentally. Despite strong social influence within pairs of individuals, the reach of judgment propagation across a chain rarely exceeded a social distance of three to four degrees of separation. Furthermore, computer simulations showed that the speed of judgment propagation decayed exponentially with the social distance from the source. We show that information distortion and the overweighting of other people's errors are two individual-level mechanisms hindering judgment propagation at the scale of the chain. Our results contribute to the understanding of social contagion processes, and our experimental method offers numerous new opportunities to study judgment propagation in the laboratory

    Studying Paths of Participation in Viral Diffusion Process

    Full text link
    Authors propose a conceptual model of participation in viral diffusion process composed of four stages: awareness, infection, engagement and action. To verify the model it has been applied and studied in the virtual social chat environment settings. The study investigates the behavioral paths of actions that reflect the stages of participation in the diffusion and presents shortcuts, that lead to the final action, i.e. the attendance in a virtual event. The results show that the participation in each stage of the process increases the probability of reaching the final action. Nevertheless, the majority of users involved in the virtual event did not go through each stage of the process but followed the shortcuts. That suggests that the viral diffusion process is not necessarily a linear sequence of human actions but rather a dynamic system.Comment: In proceedings of the 4th International Conference on Social Informatics, SocInfo 201

    Cultural Diffusion and Trends in Facebook Photographs

    Full text link
    Online social media is a social vehicle in which people share various moments of their lives with their friends, such as playing sports, cooking dinner or just taking a selfie for fun, via visual means, that is, photographs. Our study takes a closer look at the popular visual concepts illustrating various cultural lifestyles from aggregated, de-identified photographs. We perform analysis both at macroscopic and microscopic levels, to gain novel insights about global and local visual trends as well as the dynamics of interpersonal cultural exchange and diffusion among Facebook friends. We processed images by automatically classifying the visual content by a convolutional neural network (CNN). Through various statistical tests, we find that socially tied individuals more likely post images showing similar cultural lifestyles. To further identify the main cause of the observed social correlation, we use the Shuffle test and the Preference-based Matched Estimation (PME) test to distinguish the effects of influence and homophily. The results indicate that the visual content of each user's photographs are temporally, although not necessarily causally, correlated with the photographs of their friends, which may suggest the effect of influence. Our paper demonstrates that Facebook photographs exhibit diverse cultural lifestyles and preferences and that the social interaction mediated through the visual channel in social media can be an effective mechanism for cultural diffusion.Comment: 10 pages, To appear in ICWSM 2017 (Full Paper

    Information is not a Virus, and Other Consequences of Human Cognitive Limits

    Full text link
    The many decisions people make about what to pay attention to online shape the spread of information in online social networks. Due to the constraints of available time and cognitive resources, the ease of discovery strongly impacts how people allocate their attention to social media content. As a consequence, the position of information in an individual's social feed, as well as explicit social signals about its popularity, determine whether it will be seen, and the likelihood that it will be shared with followers. Accounting for these cognitive limits simplifies mechanics of information diffusion in online social networks and explains puzzling empirical observations: (i) information generally fails to spread in social media and (ii) highly connected people are less likely to re-share information. Studies of information diffusion on different social media platforms reviewed here suggest that the interplay between human cognitive limits and network structure differentiates the spread of information from other social contagions, such as the spread of a virus through a population.Comment: accepted for publication in Future Interne

    The Scaling of Human Contacts in Reaction-Diffusion Processes on Heterogeneous Metapopulation Networks

    Full text link
    We present new empirical evidence, based on millions of interactions on Twitter, confirming that human contacts scale with population sizes. We integrate such observations into a reaction-diffusion metapopulation framework providing an analytical expression for the global invasion threshold of a contagion process. Remarkably, the scaling of human contacts is found to facilitate the spreading dynamics. Our results show that the scaling properties of human interactions can significantly affect dynamical processes mediated by human contacts such as the spread of diseases, and ideas
    • …
    corecore