1,088 research outputs found

    Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment

    Full text link
    We present a deep neural network-based approach to image quality assessment (IQA). The network is trained end-to-end and comprises ten convolutional layers and five pooling layers for feature extraction, and two fully connected layers for regression, which makes it significantly deeper than related IQA models. Unique features of the proposed architecture are that: 1) with slight adaptations it can be used in a no-reference (NR) as well as in a full-reference (FR) IQA setting and 2) it allows for joint learning of local quality and local weights, i.e., relative importance of local quality to the global quality estimate, in an unified framework. Our approach is purely data-driven and does not rely on hand-crafted features or other types of prior domain knowledge about the human visual system or image statistics. We evaluate the proposed approach on the LIVE, CISQ, and TID2013 databases as well as the LIVE In the wild image quality challenge database and show superior performance to state-of-the-art NR and FR IQA methods. Finally, cross-database evaluation shows a high ability to generalize between different databases, indicating a high robustness of the learned features

    Study of saliency in objective video quality assessment

    Get PDF
    Reliably predicting video quality as perceived by humans remains challenging and is of high practical relevance. A significant research trend is to investigate visual saliency and its implications for video quality assessment. Fundamental problems regarding how to acquire reliable eye-tracking data for the purpose of video quality research and how saliency should be incorporated in objective video quality metrics (VQMs) are largely unsolved. In this paper, we propose a refined methodology for reliably collecting eye-tracking data, which essentially eliminates bias induced by each subject having to view multiple variations of the same scene in a conventional experiment. We performed a large-scale eye-tracking experiment that involved 160 human observers and 160 video stimuli distorted with different distortion types at various degradation levels. The measured saliency was integrated into several best known VQMs in the literature. With the assurance of the reliability of the saliency data, we thoroughly assessed the capabilities of saliency in improving the performance of VQMs, and devised a novel approach for optimal use of saliency in VQMs. We also evaluated to what extent the state-of-the-art computational saliency models can improve VQMs in comparison to the improvement achieved by using “ground truth” eye-tracking data. The eye-tracking database is made publicly available to the research community

    The application of visual saliency models in objective image quality assessment: a statistical evaluation

    Get PDF
    Advances in image quality assessment have shown the potential added value of including visual attention aspects in its objective assessment. Numerous models of visual saliency are implemented and integrated in different image quality metrics (IQMs), but the gain in reliability of the resulting IQMs varies to a large extent. The causes and the trends of this variation would be highly beneficial for further improvement of IQMs, but are not fully understood. In this paper, an exhaustive statistical evaluation is conducted to justify the added value of computational saliency in objective image quality assessment, using 20 state-of-the-art saliency models and 12 best-known IQMs. Quantitative results show that the difference in predicting human fixations between saliency models is sufficient to yield a significant difference in performance gain when adding these saliency models to IQMs. However, surprisingly, the extent to which an IQM can profit from adding a saliency model does not appear to have direct relevance to how well this saliency model can predict human fixations. Our statistical analysis provides useful guidance for applying saliency models in IQMs, in terms of the effect of saliency model dependence, IQM dependence, and image distortion dependence. The testbed and software are made publicly available to the research community

    Global motion compensated visual attention-based video watermarking

    Get PDF
    Imperceptibility and robustness are two key but complementary requirements of any watermarking algorithm. Low-strength watermarking yields high imperceptibility but exhibits poor robustness. High-strength watermarking schemes achieve good robustness but often suffer from embedding distortions resulting in poor visual quality in host media. This paper proposes a unique video watermarking algorithm that offers a fine balance between imperceptibility and robustness using motion compensated wavelet-based visual attention model (VAM). The proposed VAM includes spatial cues for visual saliency as well as temporal cues. The spatial modeling uses the spatial wavelet coefficients while the temporal modeling accounts for both local and global motion to arrive at the spatiotemporal VAM for video. The model is then used to develop a video watermarking algorithm, where a two-level watermarking weighting parameter map is generated from the VAM saliency maps using the saliency model and data are embedded into the host image according to the visual attentiveness of each region. By avoiding higher strength watermarking in the visually attentive region, the resulting watermarked video achieves high perceived visual quality while preserving high robustness. The proposed VAM outperforms the state-of-the-art video visual attention methods in joint saliency detection and low computational complexity performance. For the same embedding distortion, the proposed visual attention-based watermarking achieves up to 39% (nonblind) and 22% (blind) improvement in robustness against H.264/AVC compression, compared to existing watermarking methodology that does not use the VAM. The proposed visual attention-based video watermarking results in visual quality similar to that of low-strength watermarking and a robustness similar to those of high-strength watermarking

    A new mesh visual quality metric using saliency weighting-based pooling strategy

    Full text link
    © 2018 Elsevier Inc. Several metrics have been proposed to assess the visual quality of 3D triangular meshes during the last decade. In this paper, we propose a mesh visual quality metric by integrating mesh saliency into mesh visual quality assessment. We use the Tensor-based Perceptual Distance Measure metric to estimate the local distortions for the mesh, and pool local distortions into a quality score using a saliency weighting-based pooling strategy. Three well-known mesh saliency detection methods are used to demonstrate the superiority and effectiveness of our metric. Experimental results show that our metric with any of three saliency maps performs better than state-of-the-art metrics on the LIRIS/EPFL general-purpose database. We generate a synthetic saliency map by assembling salient regions from individual saliency maps. Experimental results reveal that the synthetic saliency map achieves better performance than individual saliency maps, and the performance gain is closely correlated with the similarity between the individual saliency maps
    corecore