2,112 research outputs found

    Audio style transfer

    Full text link
    'Style transfer' among images has recently emerged as a very active research topic, fuelled by the power of convolution neural networks (CNNs), and has become fast a very popular technology in social media. This paper investigates the analogous problem in the audio domain: How to transfer the style of a reference audio signal to a target audio content? We propose a flexible framework for the task, which uses a sound texture model to extract statistics characterizing the reference audio style, followed by an optimization-based audio texture synthesis to modify the target content. In contrast to mainstream optimization-based visual transfer method, the proposed process is initialized by the target content instead of random noise and the optimized loss is only about texture, not structure. These differences proved key for audio style transfer in our experiments. In order to extract features of interest, we investigate different architectures, whether pre-trained on other tasks, as done in image style transfer, or engineered based on the human auditory system. Experimental results on different types of audio signal confirm the potential of the proposed approach.Comment: ICASSP 2018 - 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr 2018, Calgary, France. IEE

    A multi-camera approach to image-based rendering and 3-D/Multiview display of ancient chinese artifacts

    Get PDF
    published_or_final_versio

    Towards Generalizable Morph Attack Detection with Consistency Regularization

    Full text link
    Though recent studies have made significant progress in morph attack detection by virtue of deep neural networks, they often fail to generalize well to unseen morph attacks. With numerous morph attacks emerging frequently, generalizable morph attack detection has gained significant attention. This paper focuses on enhancing the generalization capability of morph attack detection from the perspective of consistency regularization. Consistency regularization operates under the premise that generalizable morph attack detection should output consistent predictions irrespective of the possible variations that may occur in the input space. In this work, to reach this objective, two simple yet effective morph-wise augmentations are proposed to explore a wide space of realistic morph transformations in our consistency regularization. Then, the model is regularized to learn consistently at the logit as well as embedding levels across a wide range of morph-wise augmented images. The proposed consistency regularization aligns the abstraction in the hidden layers of our model across the morph attack images which are generated from diverse domains in the wild. Experimental results demonstrate the superior generalization and robustness performance of our proposed method compared to the state-of-the-art studies.Comment: Accepted to the IEEE International Joint Conference on Biometrics (IJCB), 202

    Single and Differential Morph Attack Detection

    Get PDF
    Face recognition systems operate on the assumption that a person\u27s face serves as the unique link to their identity. In this thesis, we explore the problem of morph attacks, which have become a viable threat to face verification scenarios precisely because of their inherent ability to break this unique link. A morph attack occurs when two people who share similar facial features morph their faces together such that the resulting face image is recognized as either of two contributing individuals. Morphs inherit enough visual features from both individuals that both humans and automatic algorithms confuse them. The contributions of this thesis are two-fold: first, we investigate a morph detection methodology that utilizes wavelet sub-bands to differentiate bona fide and morph images. Second, we investigate the usefulness of morphing identical twins to train a network robustly. Although not always discernible in the image domain, many morphing algorithms introduce artifacts in the final image that can be leveraged for morph attack detection. Because wavelet decomposition allows us to separately examine low and high frequency data, we can identify and isolate these morphing artifacts in the spatial frequency domain. To this end, a wavelet-based deep learning approach to detect morph imagery is proposed and evaluated. We examine the efficacy of wavelet sub-bands for both single and differential morph attack detection and compare performance to other methods in the literature. Finally, experiments are done on a large scale morph dataset created using twins. This high quality morph twins dataset is used to train a single morph detector. The details of this detector are explained and the resulting morph detector is submitted to the NIST FRVT test for objective evaluation, where our detector exhibited promising results

    Morphing Attack Detection -- Database, Evaluation Platform and Benchmarking

    Get PDF
    Morphing attacks have posed a severe threat to Face Recognition System (FRS). Despite the number of advancements reported in recent works, we note serious open issues such as independent benchmarking, generalizability challenges and considerations to age, gender, ethnicity that are inadequately addressed. Morphing Attack Detection (MAD) algorithms often are prone to generalization challenges as they are database dependent. The existing databases, mostly of semi-public nature, lack in diversity in terms of ethnicity, various morphing process and post-processing pipelines. Further, they do not reflect a realistic operational scenario for Automated Border Control (ABC) and do not provide a basis to test MAD on unseen data, in order to benchmark the robustness of algorithms. In this work, we present a new sequestered dataset for facilitating the advancements of MAD where the algorithms can be tested on unseen data in an effort to better generalize. The newly constructed dataset consists of facial images from 150 subjects from various ethnicities, age-groups and both genders. In order to challenge the existing MAD algorithms, the morphed images are with careful subject pre-selection created from the contributing images, and further post-processed to remove morphing artifacts. The images are also printed and scanned to remove all digital cues and to simulate a realistic challenge for MAD algorithms. Further, we present a new online evaluation platform to test algorithms on sequestered data. With the platform we can benchmark the morph detection performance and study the generalization ability. This work also presents a detailed analysis on various subsets of sequestered data and outlines open challenges for future directions in MAD research

    MIPGAN -- Generating Strong and High Quality Morphing Attacks Using Identity Prior Driven GAN

    Full text link
    Face morphing attacks target to circumvent Face Recognition Systems (FRS) by employing face images derived from multiple data subjects (e.g., accomplices and malicious actors). Morphed images can be verified against contributing data subjects with a reasonable success rate, given they have a high degree of facial resemblance. The success of morphing attacks is directly dependent on the quality of the generated morph images. We present a new approach for generating strong attacks extending our earlier framework for generating face morphs. We present a new approach using an Identity Prior Driven Generative Adversarial Network, which we refer to as MIPGAN (Morphing through Identity Prior driven GAN). The proposed MIPGAN is derived from the StyleGAN with a newly formulated loss function exploiting perceptual quality and identity factor to generate a high quality morphed facial image with minimal artefacts and with high resolution. We demonstrate the proposed approach's applicability to generate strong morphing attacks by evaluating its vulnerability against both commercial and deep learning based Face Recognition System (FRS) and demonstrate the success rate of attacks. Extensive experiments are carried out to assess the FRS's vulnerability against the proposed morphed face generation technique on three types of data such as digital images, re-digitized (printed and scanned) images, and compressed images after re-digitization from newly generated MIPGAN Face Morph Dataset. The obtained results demonstrate that the proposed approach of morph generation poses a high threat to FRS.Comment: Revised version. Submitted to IEEE T-BIOM 202

    Handbook of Digital Face Manipulation and Detection

    Get PDF
    This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area
    • …
    corecore