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Abstract

Single and Differential Morph Attack Detection

Baaria Chaudhary

Face recognition systems operate on the assumption that a person’s face serves

as the unique link to their identity. In this thesis, we explore the problem of morph

attacks, which have become a viable threat to face verification scenarios precisely

because of their inherent ability to break this unique link. A morph attack occurs

when two people who share similar facial features morph their faces together such

that the resulting face image is recognized as either of two contributing individuals.

Morphs inherit enough visual features from both individuals that both humans and

automatic algorithms confuse them. The contributions of this thesis are two-fold:

first, we investigate a morph detection methodology that utilizes wavelet sub-bands

to differentiate bona fide and morph images. Second, we investigate the usefulness of

morphing identical twins to train a network robustly.

Although not always discernible in the image domain, many morphing algorithms

introduce artifacts in the final image that can be leveraged for morph attack detec-

tion. Because wavelet decomposition allows us to separately examine low and high

frequency data, we can identify and isolate these morphing artifacts in the spatial fre-

quency domain. To this end, a wavelet-based deep learning approach to detect morph

imagery is proposed and evaluated. We examine the efficacy of wavelet sub-bands

for both single and differential morph attack detection and compare performance to

other methods in the literature.

Finally, experiments are done on a large scale morph dataset created using twins.

This high quality morph twins dataset is used to train a single morph detector. The

details of this detector are explained and the resulting morph detector is submitted to

the NIST FRVT test for objective evaluation, where our detector exhibited promising

results.
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Chapter 1

Introduction

Face morph attacks have become a serious security concern for deployed face recog-

nition systems, which rely on the assumption that the face modality serves as the

unique link to a person’s identity. Face morphing refers to the image manipulation

process in which the face images of two individuals who already share similar facial

features are morphed together. Because of the high degree of resemblance the morph

contains to the two contributing individuals, both human inspectors and automatic

face recognition algorithms verify the resulting morph face image as coming from

either of the two original people. See Figure 1.1 for an example of a morph attack

from the AMSL database [27].

Morph attacks expose vulnerabilities in many security applications. Face morph

attacks are especially dangerous for the border control scenario because a morphed

passport photo means that a person who is not previously authorized to enter a coun-

try can cross borders undetected. The loophole in the passport enrollment process

opens a window for a criminal to morph his face with that of an accomplice, who then

applies for a passport with the morphed face image. Because the morphed face image

resembles the accomplice, it is approved and the passport is issued. The criminal

then receives a legitimate travel document that, although fraudulently obtained, al-

lows him to travel across borders and access restricted areas that otherwise would be

1



2 CHAPTER 1. INTRODUCTION

closed to him. For border control, morph passports can lead to illegal immigration,

human trafficking, and getting around no-fly lists. Realizing this problem, several

countries have invested in research in how to mitigate these attacks both to detect

morphs currently in the system and prevent morph attacks in the future.

Successful morphs are not visually perceptible, which makes them especially dif-

ficult to detect. As can be seen in Figure 1.2, if we look at the embedding space

representation of two identities with similar features, we see that morphed samples

are intentionally crafted to be within the discriminating boundaries of the two iden-

tities, which are already close in the embedding space because they look alike. This

is why morphs can be verified against both real subjects: they contain enough visual

similarity to both contributing individuals. This is a trend that will only continue to

be exacerbated as morphing technologies become more sophisticated. Therefore, it is

imperative to find an alternative solution to simple visual confirmation.

Although not always visually obvious to the human eye, many automatic face

morphing algorithms, such as landmark manipulation and GAN generation, introduce

artifacts in the final image that indicate an image was morphed. These morphing

artifacts mainly reside in the high frequency spectrum. Even though these artifacts

are not typically discernible in the image domain, they can be leveraged for morph

attack detection using wavelet decomposition. Because wavelet decomposition allows

us to separately examine low frequency and high frequency data, we can identify

and isolate these morphing artifacts in the spatial frequency domain. To this end,

a wavelet-based deep learning approach to detect morph imagery is proposed. Our

method leverages selected informative sub-bands as features to train a deep morph

detector.
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Figure 1.1: An example of a morph attack: bona fide identity #1 (left), morphed
image(middle), bona fide identity #2 (right).

1.1 The Face as A Biometric Authenticator

The face is an incredibly powerful biometric modality that has found purpose in a

variety of security applications: from verification to surveillance, and from passports

to personal phone lock protections. Unlike key-based security systems, it is impossible

to lose or forget your face the way you lose or forget your keys or passwords. Face

recognition’s ease of use and comparatively low operational cost puts it above all other

biometric modalities for real world applications. Furthermore, if the face recognition

algorithm goes offline or triggers a false alarm, a human inspector on site can easily

perform the verification with minimal training. This makes it especially attractive for

border security crossings, specifically in areas where access to advanced technologies

may be limited and resource constraints must be considered. It is for these reasons

that since 2002 the International Civil Aviation Organization (ICAO) has mandated

the inclusion of a facial reference passports in all passports [15]. This means that the

face is the only biometric modality universally recorded in every passport worldwide.
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Figure 1.2: Abstract representation of two similar identities in the embedding space.
The morph is designed to be within the decision boundary for the two identities.

1.2 Morph Attacks in Border Control

The steps of the passport biometric system, as outlined by ICAO, are enrollment,

template creation, identification, and verification. Morph attacks target the enroll-

ment step of the border security biometric system pipeline. The passport enrollment

process is vulnerable because the applicant is requested to provide the photo at the

time of application. This means that the actual taking and submitting of the photo

is an unsupervised process, allowing a window for a malicious actor to manipulate

the photo. Hence, it is during the passport enrollment process that an image that

has been tampered with is submitted and assigned to an identity.

The identity verification process operates on the assumption that the face serves

as the unique link between a person and their intrinsic identity, meaning that the

face is the distinguishing characteristic that differentiates one person from the other.

For the most part, this is true. Face recognition systems have shown that they can

differentiate one individual from another with a high amount of accuracy. However,
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face recognition system’s vulnerability and, for lack of a better word, gullibility to a

misleading or forged image is a major security concern. Morph images threaten the

integrity of face recognition systems because of their inherent ability to break this

unique link: successful morph images inherit enough features from both contributing

individuals to be within the threshold of acceptance for face recognition algorithms.

This means that the principle of unique link is violated whenever a morph image is

entered in the passport database during the enrollment process. Moreover, face recog-

nition algorithms are intentionally designed to tolerate a large intra class variance to

account for the significant changes in facial appearance that naturally occur in the 5-

to 10- year life cycle of a passport.

The threat of morphs attacks to border security is further exacerbated by the

fact that morph attacks are relatively easy technically to execute. There is no com-

plex forgery of passport technology but rather a straightforward manipulation of the

passport photo at time of enrollment. Many morphing algorithms are not only freely

accessible but also have no technical knowledge barrier. With some photo editing

skills, a criminal could obtain a travel document that, although fraudulently ob-

tained, is legitimate and genuine. Indeed, the more difficult part is actually finding

a suitable look-alike. Morph attacks are appealing to criminals precisely because of

how comparatively simple it is to execute and how effective morph attacks can be at

fooling face recognition systems. In vulnerability terms, this means one person can

enter the country and another person can leave the country using the same identity.

Governments issue passports on the assumption that one passport is for one specific

person only and the passports are used to keep track of who enters and who leaves the

country. As these technologies become more accessible and more advanced and no

morph detection algorithm is instituted to detect these manipulated images, national

security is at stake.
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1.3 Thesis Contributions

In this thesis, we examine the problem of face morph attacks, which significantly

subvert the integrity of face recognition systems. The contributions of this thesis

are two-fold: first, we investigate a new morph detection methodology that utilizes

wavelet sub-bands to differentiate bona fide and morph images. Second, we investigate

the power of using twins to create morph databases that are of high quality to train

a network robustly. We submit our twins-trained network to NIST for objective

evaluation where it performs reasonably well.

We propose a highly discriminative morph attack detection algorithm that utilizes

undecimated discrete wavelet transform. As mentioned earlier, the morphing process

introduces involuntary artifacts in the image, mainly those in the high frequency

spectrum. We can utilize wavelet transform to extract and analyze these artifacts

in an effort to detect morphs. The core of our framework is that morphing artifacts

that can be readily identified in the spatial frequency domain, more so than in the

image domain. As such, we decompose each image into its respective wavelet sub-

bands and utilize Kullback-Liebler divergence (KLD) as a feature selection method

to determine which sub-bands contain the most differentiation between a bona fide

and morphed image. These discriminative sub-bands are then used to train a deep

neural network for both single morph (classification) and differential morph (verifi-

cation) scenarios. We examine the efficacy of discriminative wavelet sub-bands for

morph attack detection and demonstrate that a wavelet-based morph detection can

accurately identify morph imagery. Extensive experiments are conducted on three

different morph image datasets and the performance is bench marked with several

state-of-the-art techniques. The major contributions of this work are as follows:

• a novel morph attack detection algorithm for both single and differential morph

detection that employs wavelet transform to extract and select discriminative
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wavelet sub-bands, which are then used to train a morph detector.

• an ablation study on the sub-band selection process using KL divergence to

show the efficacy of our method and reasoning behind the sub-bands selected

for final training.

• an evaluation of discriminative wavelet sub-bands by comparing its perfor-

mance to several baselines in the image domain, including the original (RGB,

3-channel) image.

• We compare our model’s performance to several state-of-the-art models: BSIF,

LBP, SIFT, and SURF. Deep learning method FaceNet is also used. Addition-

ally, cross-dataset performance is evaluated using AMSL [27].

• We explore the efficacy of using a large-scale high quality morphed twins database

to train a single morph detector, which we submit to NIST for evaluation.

1.4 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2 describes existing work related to the morph attack problem. Both

morph generation techniques and morph detection algorithms are mentioned.

The current standard in morph evaluation is also discussed.

• Chapter 3 discusses the overall wavelet sub-band selection methodology: wavelet

decomposition and subsequent sub-band selection. An in-depth discussion of

the ablation study and the effectiveness of sub-band selection is also explored.

• Chapter 4 presents the experimental setup details for the wavelet based morph

detector for both single and differential scenarios. The metrics used to evaluate

performance and dataset preprocessing information is also included. These
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methods are also explored in relation to several comparative baselines including

training using the original RGB image to validate the effectiveness of selected

wavelet sub-bands for morph detection. Additionally, the method’s performance

is also benchmarked in comparison to several state-of-the-art methods.

• Chapter 5 discusses using morphed twins to train a morph detector robustly.

We submitted this detector to NIST FRVT Morph test and the results from the

test are discussed in detail.

• Chapter 6 serves as the conclusion with an overview of thesis contributions, the

limitations confronted within the thesis, and future work in this field.



Chapter 2

Literature Review

The vulnerability of face recognition systems to morph attacks was first introduced

by Ferrara et. al. [12], who describes the step-by-step process a criminal takes to

morph an image and obtain a valid passport. This was the first time the issue was

discussed seriously as a threat in a research setting. However, morph attacks are not

simply theoretical and in fact are a real world issue.

As there is no morph attack detection algorithm in place at most border secu-

rity crossings, most of these fraudulent passports go undetected. An activist group

in Germany was able to take advantage of this loophole and successfully obtain a

passport using a morphed image as part of a political media campaign [48]. When

morphs are discovered, it is mostly by pure luck. For example, one asylum seeker

who was traveling through Europe with a morphed Dutch passport was stopped at

German border upon entry [18]. Some countries have already planned to heighten se-

curity measures in response to the threat of morphing. In Germany, plans were made

to make people take their passport photos in official government photo booths that

would immediately transfer the taken passport photo directly to the office. However,

it was scrapped due to cost and protests from private photography studios that would

lose business to the initiative [14].

9
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Even if the passport enrollment process is eventually changed, closing the window

of opportunity to manipulate the passport photo, there are still a countless number

of morph passports in circulation now. Furthermore, this change would only stop

morph attacks at border security. Morph attacks pose a threat to all identification

scenarios: private, corporate, and governmental.

In every case, it is crucial to the success of a morph that it is able to deceive a hu-

man observer. If automatic face recognition algorithms exhibit weakness in detecting

morphs, humans are much worse [36] [32] [3]. Studies show that even after training on

how to identify the clues that indicate a morphed image, algorithms perform better

than humans significantly [24] [19].

This being the case, both morph image generation and morph attack detection

have become active areas of research in recent years. This chapter will first explore

morph generation techniques, followed by a discussion of existing morph attack de-

tection algorithms as well as existing methods to benchmark results.

2.1 Morph Image Generation

As a technique, image morphing has been around for decades. It is widely used in

the film industry to create special effects. Although morphing tools exist for both

legitimate business and personal entertainment purposes, this technology can easily

be abused with malicious intent.

The morph generation process involves finding two people who look alike and

morphing their faces together. This first step is crucial – especially in the border

security scenario, where the face image must be able to fool both border inspectors

and the algorithm and the consequences of discovery are dire. There has been some

research in how to find suitable look-alikes [7] [37]. However, this is still a growing

research area.
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Figure 2.1: Example of ghosting and artifacts resulting from the morphing process.

Once look-alikes have been found, the second step is to generate a high quality

morph image. If the image is of low quality and quite clearly has artifacts, as can

be seen in Figure 2.1, a real world criminal would not risk discovery by using it to

apply for a passport. But a database of actual morphed passports deployed by actual

criminals is impossible to get. Instead, researchers must resort to creating their own

synthetic morph image databases, typically employing automatic generation tech-

niques. The best quality morph images are those created using manual manipulation

techniques, which allow for a custom merging of two individuals. Although man-

ual manipulation techniques such as Adobe Photoshop or GIMP 2.10 produce high

quality morphs, using such methods in a research setting to create a database satis-

factorily large enough to train an algorithm optimally is expensive, time consuming,

and ultimately unfeasible.

The automatic face morphing generation techniques employed by researchers typ-
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ically fall into two categories: landmark-based (manipulating the face in the image

domain) and GAN-based (manipulating the morph in the latent space domain). Fig-

ure 2.2 demonstrates examples from various morphing techniques. The following

paragraphs delve into detail about these morphing techniques.

The most commonly used automatic generation technique is landmark manipula-

tion (LMA) [25]. At the center of many automatic morphing algorithms, landmark

manipulation consists of finding the landmarks, or edges, of the two faces, warping

and alpha-blending the landmarks together to create the morphed image. The LMA

pipeline consists of three key steps: (1) correspondence, or identifying the landmarks

(keypoints) on the face images (typically around the nose, eye, and mouth regions),

(2) warping, or applying Delaunay Triangulation and warping each triangle to the

mesh to align the images, and (3) blending the aligned faces according to some alpha

value to produce the final morph. Landmark manipulated morphs are shown to be

difficult to detect and preserve the identity well, their weakness is in the ghosting

artifacts that occur around the edges of the face, especially the hair region, which

show the image is morphed. OpenCV [25], FaceMorpher [31], and Webmorph [9]

are a few of several morphing techniques employed by researchers that use landmark

manipulation at their center.

Although landmark manipulation morphs are challenging for morph detectors,

they can sometimes be visually obvious to the human eye due to the artifacts that

result from the warping process, typically around the eyes and ghosting around the

hairline. To counteract these obvious morph indicators, typically landmark manipula-

tion morphing pipelines include a series of post-processing steps intended to eliminate

the presence of these artifacts, such as image smoothing, manual retouching, image

sharpening, and image enhancement to improve any noticeable change in brightness

and contrast. A splicing technique, used in the creation of the VISAPP database [23],

morphs the landmarks in the inner face region only. The resulting face is then splic-



2.1. MORPH IMAGE GENERATION 13

Figure 2.2: Morphs created using different techniques with the FRLL database.

ing into one of the contributing individuals. In this way, the ghosting and artifacts

that typically occur around the hair regions and edges of the face are avoided. An

extension of the splicing technique is the Combined Morph [27] in which the faces are

aligned before the morphing process.

Generative Adversarial Networks (GANS) have also recently gained traction for

morph generation. GAN generation is more of an automatic end-to-end generation

technique in comparison to landmark-based techniques, which sometimes require post-

processing. The encoder in a GAN can transform images to a latent space and when

two latent spaces related to two different subjects are combined, a morph image is

synthesized. MorGAN [5] [8] creates morphs using an AliGAN inference model. Style-

GAN [17] has also been used for morph generation. A GAN network based on identity

prior generation that builds off of StyleGAN with the use of identity and perceptual

loss has also been proposed [54]. GAN generated morphs also avoid the artifacts and

ghosting that occurs in other morphing techniques, which has contributed greatly to

their popularity. However, it should be noted that studies show that GAN generated

morphs are typically weaker than landmark manipulation techniques because they

retain less identity information [51]. To counter this effect and still use the power

of GANs, the authors of [6] propose a morph generation algorithm that utilizes both

landmark and GAN architectures. The two face images are first morphed together

used landmark manipulation and then the resulting morph is sent to a GAN network

to clean up the artifacts.
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2.2 Morph Attack Detection

There are two scenarios researchers broadly consider for morph attack detection:

single (no reference) and differential morph detection. Single (no reference) morph

detection is when the algorithm bases its classification result only on the potential

morphed image. In the border security scenario, this correlates to morph detection at

time of passport enrollment, when the applicant submits the passport photo in either

digital or physical form. On the other hand, differential morph detection uses an

additional trusted image, typically a live capture at border control, to compare to the

potential morphed image to make its decision. This scenario correlates to detecting

a morph attack at border security when a person is actually attempting to use the

morphed passport photo for identification. Differential morph detection utilizes the

extra information present in the secondary image to make its decision, hence it is

more comparative than single morph detection.

Many classical hand-crafted feature descriptors have been used to detect morphs.

Of these, typically the better performing is Binarized Statistical Image Features

(BSIF) [16] [33]. Local Binary Patterns (LBP) [20] , Scale-Invariant Feature Trans-

form (SIFT) [22], Speeded-Up Robust Features (SURF) [1], and Histogram of Gra-

dients (HOG) [4] have also been explored for morph detection. Methods employing

these classical features overwhelmingly pair them with SVM as the classifier. For the

differential scenario, the difference vector between the two feature vectors is obtained

first and both the feature vector and difference vector are sent to separate SVMs and

score-level fusion is applied to arrive at the final decision score. BSIF, LBP, SIFT,

SURF, and HOG have also been explored in a multi-algorithm fusion approach [39].

Deep learning-based techniques have also shown promising results in detecting

morph images and have consistently outperformed most classical methods for morph

attack detection [45] [44]. Complementary VGG-16 and AlexNet features have been

concatenated and sent to a Probablistic Collaborate Representation Classifier (PCRC)
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for classification [34]. A Siamese disentangling network that disentangles the land-

marks and the appearance of the two images being compared has also been proposed

[47]. Similarly, a Siamese network has also been explored in the image domain [46].

A double Siamese network framework that utilizes two Siamese networks and merges

their output for its decision has also been proposed [2]. ArcFace embeddings trained

on many generated morphs is used in [41]. An interesting differential approach is face

demorphing [10] [11]. Essentially, the algorithm subtracts the trusted image from

the potential morph and a low similarity score indicates the image is a morph. This

method of demorphing has also been explored using a GAN framework [30].

Methods employed in forgery detection have also found relevance in morph detec-

tion, such as Photo Response Non-Uniformity (PRNU) analysis [42]. PRNU relies

on using the residual noise artifacts in the morphing process to detect morphs. In

[26], the authors design a face morphing detector by combining spatial and frequency

feature descriptors from an image. Fuzzy LBP in color channels of HSV and YCbCR

color spaces are investigated in [35]. Additionally, studying the residual noise com-

puted on color channels using deep CNN-based denoising has also been presented

for reliable face morphing detection [53] [52]. This paper aggregates several denoised

instances of an image in the wavelet domain.

2.3 Morph Detection Algorithm Evaluation

As mentioned earlier, because of the lack of large, publicly available morph datasets,

researchers often resort to generating their own synthetic morph images, typically em-

ploying large public face image databases to find look-alikes to morph together. These

databases suffer from a number of limitations. Some possess obvious visual morphing

artifacts. Others are limited in size and number of faces to select look-alikes to morph

together. And yet others are created using manual morphing techniques that though
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high quality and good enough to fool a network are limited in number and impossible

to train a morph detector robustly with. Additionally, because of the distribution

restrictions on these large face image databases used in the creation of morphs, the

sharing capability of the resulting morph image datasets is also limited. This severely

restricts any meaningful comparison of the state-of-the-art in this field. It is difficult

for researchers to replicate and validate one another’s results, not to mention dif-

ficult to benchmark their own results in relation to the literature. Hence, many of

these implementations of these algorithms remain strictly experimental, meaning none

are sufficiently robust to meet real world applicability standards. In this work, we

try to emphasize cross-dataset analysis, testing on multiple publicly available morph

datasets, so that our detector is adaptable to all scenarios.

To counteract this limitation, researchers can submit their algorithms to the

United States National Institute of Standards and Technology (NIST) Face Recog-

nition Vendor Test (FRVT) Morph Test [28] for objective evaluation. NIST tests

each algorithm on several morph datasets of varying quality and method to evaluate

an algorithm’s general ability to detect morphs. The NIST FRVT Morph test is for

both single and differential morph attack detection algorithms. Likely due to the

limited dataset available to researchers, most algorithms submitted to NIST exhibit

poor generalization, failing to satisfying detect many different kinds of morphs, each

generated using a different method and of different quality. Slowly, we are seeing

more algorithms submitted to NIST that are getting better at detecting a variety

of morphs, mainly algorithms that utilize an underlying deep learning architecture,

especially as training on morph datasets gets easier.



Chapter 3

Discriminative Wavelet Sub-band

Selection

Many of the methods described in Chapter 2 can introduce artifacts in the resulting

image, particularly in key areas where proper landmarking is difficult: the eyes and

hair regions. Furthermore, the morphs generated typically lose the high frequency

fine-grained information that the original contributing individual has such as appear-

ance of pores, wrinkles, and acne scars [35]. This so-called smoothing effect means

that morphs contain less high frequency information than morphs. We can differen-

tiate morphs from bona fides in the high frequency spectrum. It is easiest to isolate

these high frequency features in the wavelet domain which allows us to access local

discriminative information.

Our morph attack detection framework focuses on applying undecimated 2D dis-

crete wavelet transform (DWT) to the images and selecting only the most informative

sub-bands for network training. We can localize these most discriminative sub-bands

using KL Divergence [29]. KL divergence is a highly useful metric to measure the

similarity (or dissimilarity) between two probability distributions. It comes in handy

in our case to identify the sub-bands that show the most differentiation between a

17
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Figure 3.1: Essential overview of wavelet band selection algorithm.
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morphed and a bona fide image. We obtain the KLD values for the probability dis-

tributions of each sub-band and instituting a threshold on the KLD values, resulting

in 22 sub-bands. These 22 sub-bands, which have the highest KLD values, are then

used to train our deep morph detectors: one for single morph detection and one for

differential morph detection.

The following sections will briefly discuss wavelet transform and our sub-band

selection method. The effectiveness of our sub-band selection method will also be

evaluated through a data-driven ablation study.

3.1 2D Discrete Wavelet Transform

Wavelet transform is a useful and well-established tool. It has uses in many applica-

tions, especially in the image domain. A 2D wavelet transform decomposes an image

in the spatial frequency domain and is considered especially powerful because of its

ability to capture different frequencies at different resolutions. For most intents and

purposes, it is a reversible process. 2D DWT extracts low pass and high pass image

content in both horizontal and vertical directions. The low pass information yield

approximation data whereas the high pass filter brings into focus the detail image

content.

Because wavelet transform translates this data into individual sub-bands, we can

separately examine the approximation and detail data in an image. For our problem,

this means that wavelet transform allows us to effectively isolate the frequencies we

wish to study and discard the ones we don’t. We can accurately localize the sub-

bands where the morph artifacts are most prominent and make those sub-bands the

sole focus of our study. Furthermore, as most morphing artifacts reside in the high

frequency spectrum and wavelet decomposition allows us to selectively choose the

desired sub-bands only, using specific wavelet sub-bands in the place of the original
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image is highly justified for our problem. Still, the performance comparison between

the original RGB images and the selected wavelet sub-bands is substantiated in our

experiments in 4.5.1.

After one level of wavelet decomposition, we obtain the Low-Low (LL), Low-High

(LH), High-Low (HL), and High-High (HH) sub-bands. Further levels of decompo-

sition occur by decomposing each of the above sub-bands separately. As mentioned

earlier, since most morphing artifacts reside in the high frequency spectrum and since

morphed images–like the LL sub-bands–could be considered close approximations of

the original, we do not consider the LL sub-band informative for the morph attack

detection problem and discard the LL sub-band entirely after the first level of de-

composition. This is further substantiated by our exploration of the KLD values,

where the high frequency sub-bands exhibited the most differentiation between the

morphed and bona fide images, while the opposite could be said for the low frequency

sub-bands. As can be seen in Figure 3.2, our chosen wavelet sub-bands have all been

decomposed with the high pass filter. Thus, we only decompose the LH, HL, and HH

sub-bands down to the third level, resulting in 48 mid- and high-frequency uniform

wavelet sub-bands per image.

3.2 Sub-band Selection using KL Divergence

Even though the subtle discrepancies between a bona fide and a morph image can

be localized with wavelet sub-bands, 48 mid- and high-frequency sub-bands does not

completely isolate the sub-bands that actually contribute to the morph classification

result. Thus, utilizing some sort of sub-band selection method can be a powerful

and efficient way to find the most discriminating decision boundary between a morph

and a bona fide image. To do this, we apply Shannon Entropy and Kullback-Liebler

divergence to rank the sub-bands from most discriminative for morph detection to
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Figure 3.2: Selected sub-bands. The selected sub-bands are shown with regards to
their location in wavelet decomposition. Most of the informative sub-bands chosen
by KL divergence are those that have been filtered with the HH filter.

least discriminative.

Our band selection algorithm first computes the probability distributions for the

morph sub-bands and the bona-fide sub-bands separately for all 48 sub-bands. For

each sub-band, the difference between the bona fide entropy distribution and the

morph entropy distribution is found to obtain a value for the sub-band. KL divergence

of the entropy distributions is calculated. Because KLD measures the difference

between the morph and bona fide entropy distributions, the higher the KLD value,

the more discriminative the sub-band is. As such, we want to focus on the sub-bands

that contain the most difference between a morphed and bona fide image. Therefore,
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the sub-bands are sorted from highest KLD value to lowest and the sub-bands with

the highest KLD value, corresponding to a larger divergence between a bona fide

and a morph image, are chosen for network training. In total, 22 of the highest

ranked sub-bands are used. The purpose of this method is to extract the sub-bands

containing the discriminative features and use them to classify the given image as

bona fide or morphed.

In detail, the method for finding the KLD values is as follows: after the entropy

distributions of each sub-band are found, we find the histograms of entropy for all 48

sub-bands for both bona fide and morph images. Accordingly, 96 normal distributions

(48 bona fide and 48 morph) are estimated using these histograms. Then, dissimilarity

of the two probability distributions is calculated for all sub-bands and the KLD value

is computed for each relative entropy distribution.

It is important to note here that the KLD values vary by morph dataset as each

dataset is created using a different morphing technique. Although high frequency

artifacts are a common result of every morphing technique, the variance of dataset

still makes a difference in the KLD value. Therefore, we focus on selecting the sub-

bands that are discriminative across the different morphing techniques. The KL

divergence values of each of the training sets is normalized by removing the mean. The

normalized KLD values are averaged for each sub-band for each of the three training

sets. After sorting the normalized average KLD values from highest to lowest, we

institute a threshold for selecting the sub-bands for network training. By choosing the

sub-bands based on highest normalized average KLD value, we can find the sub-bands

that are discriminative across morph techniques, not just for one specific morphing

technique. In this way, we hope to avoid our model only learning one type of morphing

technique. Ultimately, after instituting a threshold on the KLD values, we choose the

top-22 sub-bands as our chosen input to our morph detector. The ablation study in

the next section will delve more into why 22 of the top-most ranked sub-bands are
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Figure 3.3: Performance comparison between training on 48 sub-bands (left) and 22
sub-bands (right) shown by their Detection Error Tradeoff (DET) curves.

optimal for morph attack detection.

3.3 Ablation Study on Sub-band Selection

After ranking the sub-bands by KLD value, the next step is to determine how many

ranked sub-bands are actually needed for morph detection. Is the top-most discrim-

inative sub-band enough for network convergence or do we need the top-20 (out of

48)? For this, we perform an ablation study on the number of ranked sub-bands using

a data-driven approach. Different thresholds for different number of sub-bands are

studied.

After ranking the sub-bands from highest KLD value to lowest, we select the

subsets of the sub-bands according to the following criterion: the top-5 ranked sub-

bands, the top-10 ranked sub-bands, the top-15 ranked sub-bands and so on to the

full 48 sub-bands. We train several instances of the Inception Resnet v1 using the

training portions of the MorGAN, LMA, and VISAPP morph datasets (described in

4.2) for each subset of number of ranked sub-bands. A DNN with input channel size

of five is trained on the top-5 sub-bands and so forth. We assess the performance of
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the networks using the validation portion of the dataset. Essentially, we evaluate the

number of ranked sub-bands or the input channel size of the network for the ideal

classification result. Given that each additional channel is a wavelet sub-band, this

can also be seen as an ablation study on the amount of information required for a

morph detector to have optimal results. Performance is mainly evaluated using the

Area Under the Curve (AUC) metric.

We find the optimal performance to be of the 22 ranked sub-bands. After 22-sub-

bands, any further addition does not increase the classification result meaningfully. In

fact, 22 sub-bands is ideal in terms of network efficiency as well. Training on 48 sub-

bands is very large and time consuming. Not to mention it can be costly to train on the

machine, resource-wise. But sub-band selection lowers the dimensionality of the data.

Cutting down on to top-22 sub-bands helps achieve network convergence quicker and

reduces complexity. To highlight the merit of sub-band selection, we show that the

network trained on 48 sub-bands exhibits inferior performance in comparison to the 22

discriminative sub-band scheme, especially in the case of cross-dataset performance,

indicating that 22 sub-bands is better for generalization.

Figure 3.3 shows the Detection Error Tradeoff curves for morph detectors trained

with 48 sub-bands and morph detectors trained with 22 sub-bands. Three detectors

are trained on the MorGAN, LMA, and VISAPP datasets respectively and evaluated

on each of the datasets as well for both 48 sub-bands and 22 sub-bands. The difference

in training is most evident when it comes to cross-dataset training, where 22 sub-bands

is provably shown to generalize better. The DET curves show that the cross-dataset

performance for 22 sub-bands has smaller DET curves, indicating the morph detector

is able to detect more unknown morph techniques than when trained on all 48 sub-

bands.
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3.4 Summary

In this chapter, we present an overview of our sub-band selection scheme. The merits

of wavelet decomposition are discussed, particularly its usefulness for the morph de-

tection problem. The details of our sub-band selection algorithm are explained and

the effectiveness of sub-band selection is evaluated through a data-driven ablation

study. In the following chapter, we explain how we used these discriminative wavelet

features to train morph detectors to accurately detect morph imagery. The details of

our detector and the subsequent experimental results are shared.



Chapter 4

Wavelet-Based Morph Detection

In this chapter, an overview of the wavelet-based deep morph detection algorithm

that uses discriminative sub-bands as input is presented. The following sections will

delve into detail of our experimental setup for both single and differential scenarios,

introduce our datasets and dataset training protocol, and the metrics used to evaluate

our experimental performance. Finally, the results of our experiments are tabulated

and discussed.

4.1 Network Architecture

The applicability of discriminative wavelet sub-bands as features is explored both in

the single and differential morph attack detection domains. The Inception Resnet

v1 is employed as the base underlying architecture for both single and differential

scenarios. In the single morph implementation, the Inception Resnet v1 is pretrained

with weights from VGGFace2. Pretraining with face images helps prevent overfitting

and reduces training time when we train on our significantly smaller morph dataset.

We retrain the network then on the 22 selected discriminative wavelet sub-bands.

26
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Figure 4.1: Single and differential network architecture.

4.1.1 Siamese Network

For differential morph attack detection, we employ a Siamese network architecture

that uses the Inception Resnet v1 as the base network. The weights trained on the 22

sub-bands from the single morph implementation are used to initialize the Siamese

implementation.

Siamese networks are ideal for this type of scenario as they are designed to facili-

tate comparison between two inputs. For this reason, they are popular to use in face

verification tasks. Contrastive loss is used in conjunction with the Siamese network.

Contrastive loss measures the similarities between the outputs of the two sub-nets of

the Siamese network using Euclidean distance. In simplistic terms, contrastive loss

is a distance-based loss function that forces similar samples together in the embed-

ding space while pushing apart samples that are different even further. In essence,

contrastive loss emphasizes the similarity between two samples of the same class and
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exaggerates the difference between samples of different classes.

Lc = (1− yg)D(I1, I2)
2 + yg max(0,m−D(I1, I2))

2, (4.1)

where I1 and I2 are the input face images, m is the margin or distance threshold to

control the separation and yg is the ground truth label for a given pair of training

images and D(I1, I2) is the L2 distance between the feature vectors:

D(I1, I2) = ||φ(I1)− φ(I2)||2. (4.2)

Here, φ(.) represents a non-linear deep network mapping image into a vector

representation in the embedding space. According to the loss function defined above,

yg is 0 for genuine image pairs and yg is 1 for imposter (morph) pairs.

4.2 Datasets and Pre-processing

In our training, we combine three different datasets: VISAPP [23], MorGAN [5] [8],

and LMA [5] that each utilize a different morphing technique to maximize network

performance and generalization. We combine the datasets as they are relatively small

and training on one will no doubt lead to overfitting. Furthermore, in a real world sce-

nario, the morphing technique a criminal attacker would employ is unknown. There-

fore, it makes sense to train a network on a variety of morph algorithms so that it

learns to generalize to a morph image. Additionally, we also test on different so-called

unseen datasets to obtain an accurate representation of how the network performs on

morph techniques it has not seen before. For this cross-dataset evaluation, we employ

AMSL Face Morph dataset [27]. This dataset is used strictly to evaluate cross dataset

performance.

VISAPP [23] is a collection of splicing morphs generated using face images from
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Table 4.1: Datasets used in training.

Dataset
Morph
Method

Training Testing
Bona Fide Morph Bona Fide Morph

MorGAN GAN-based 1495 500 1499 500

LMA Standard LMA 1495 500 1499 500

VISAPP Splicing LMA 78 198 78 116

the Utrecht dataset [50]. The splicing technique applies landmark morphing only to

the inner region of the face image and then splices the resulting morph into the face

region of one of the contributing individuals. In this way, the ghosting that typically

occurs around the hair region and edges of the face that occur in Figure 2.1 are

avoided. The images in this dataset are 900 × 1200 in size. We use a subset of this

dataset, namely Visapp-Splicing Selected, which consists of 183 high quality morphs

morphs generated as our training set. Our VISAPP dataset has 314 images total,

131 bona fide (neutral and smiling) images and 183 morphs.

MorGAN [5] was generated using a GAN model to synthesize morph images. A

subset of the CelebA dataset [21] of manually selected full frontal images is used to

create the morphs. The authors of MorGAN also generated the LMA dataset [5] that

consists of morphs created using the standard landmark manipulation technique [25].

Both LMA and MorGAN use the same contributing individuals. Both MorGAN and

LMA have 1,500 bona fide reference images from which 1000 morphs are created. In

addition, the dataset includes 1,500 bona fide probe images for comparison. MorGAN

morph images are of size 64 × 64 and LMA morph images are originally of size

128× 128. Although a lower resolution than what is ICAO compliant, training on a

variety of techniques and resolutions could help identify morphs at all levels, especially

when the bona fide images are of a lower quality as well.

Finally, a publicly available morph dataset is used to measure cross dataset perfor-

mance, namely AMSL. This dataset is strictly used as a test dataset. The Advanced

Media Security Lab (AMSL) Face Morph Dataset is created using the Combined
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Morph tool [27]. AMSL consists of 204 bona fide (neutral and smiling) images and

2175 morph images. All face images from AMSL are ICAO compliant and were addi-

tionally compressed using the JPEG2000 algorithm according to the morphing process

described in [27]. This is important to note as the intention of the compression was

to erase or hide most of the artifacts that are introduced in morphing.

4.2.1 Preprocessing

All images are pre-processing according to the MTCNN framework [55], which utilizes

three convolutional neural networks to predict face and landmark locations. Faces

are detected, aligned, and resized to 160 × 160 for network input as is standard for

FaceNet. All training portions are further augmented with horizontal flips. Images

are then converted to grayscale before wavelet decomposition is applied. The 22

informative sub-bands are selected as input per the scheme describe in 3.2 and the

remaining sub-bands discarded. Thus, for each image, the network input is 22×160×

160.

50% of the subjects are considered for training and 50% of the subjects is used

for testing. Additionally, 15% of the test set is selected during model optimization

as the validation set. By design, the train-test split is disjoint, with no overlapping

morphs or contributing bona fides to morphs. This is done to ensure an accurate

representation of performance. Furthermore, to offset the class imbalance between

the bona fide and morph classes, the batch generator is weighted to ensure that

the network sees an equal number of morph and bona fide samples at every iteration.

Additionally, for the differential implementation, the images are paired off into morph

pairs (one bona fide image and one morph image) and genuine pairs (two bona fide

images of the same individual).
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4.3 Experimental Setup

Both single and differential implementations employ a similar experimental setup,

albeit for some slight differences on account of their purpose. For both implementa-

tions, the batch size is 32 and Adam is chosen as the optimizer with an initial learning

rate 0.0001. Validation loss is monitored continuously as a measure of how well the

network trains and at every newly-achieved low, the best weights are saved. If the

validation loss plateaus for 35 epochs, the learning rate is divided by ten, the best

weights are re-loaded and training starts again from the last saved lowest validation

loss down to a learning rate of 1e-06. After that, early stopping is implemented if the

network plateaus. For the Siamese network, the margin m for contrastive loss is set

to 1. Training is accelerated by the use of three Titan X (PASCAL) 12 GB GPUs.

We train our morph detectors using the combined training portions of VISAPP,

MorGAN, and LMA. We called this combined dataset the universal dataset. As men-

tioned previously, several morph attack detection algorithms suffer from overfitting on

a small morph dataset, especially if the dataset is only created using one morph gen-

eration technique. Our purpose in combining the training sets is to train a network

that generalizes to morph artifacts in the hopes that the performance will remain

robust when tested on a different morph dataset the detector has not seen before.

4.4 Metrics

We use the standard measures for morph attack detection to evaluate network per-

formance, namely the APCER, BPCER, and EER rates. APCER stands for Attack

Presentation Classification Error Rate or the rate at which morphs are erroneously

classified as bona fides. This is the rate at which morphs pass undetected. Con-

versely, BPCER, which stands for Bonafide Presentation Classification Error Rate is

the rate at which bona fide images are incorrectly classified as morphs. THE APCER
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and BPCER rates correspond to Type 1 and Type 2 error, or the false positive and

negative rates. BPCER can also be considered the false alarm rate. In a real world

application, a false alarm is the rate at which an individual is inconvenienced and is

considered expensive in terms of resources required and as such this rate is controlled

according to FRONTEX guidelines [13]. Hence, artificially regulating the BPCER

rate by restricted it to fixed thresholds is highly recommended. When the BPCER

rate is artificially controlled, the decision boundary moves to allow more morphs to

be accepted as genuine individuals. However, even with a more rigidly controlled

BPCER rate and resulting higher morph miss rate, the percentage of morphs de-

tected is still better than no morph detection algorithm at all [28]. Equal Error Rate

(EER) is the point where BPCER and APCER are equal. Additionally, the rates at

a controlled threshold are reported for morph detection, typically to control the false

alarm rate. APCER5 is the APCER rate where BPCER is 5%. Similarly, APCER10

is the rate when BPCER is 10%. These rates are plotted in a Detection Error Tradeoff

(DET) curve.

4.5 Experiments Overview

Next, there will be a discussion of experiments and their subsequent results. We assess

the performance of using discriminative wavelet sub-bands as features using the test

sets of VISAPP, MorGAN, and LMA. We also use the so-called universal test set,

which comprises of all three individual test sets, and acts as an average indicator of

how the universally trained networks perform. In addition, we test on AMSL as our

unseen dataset. In this way, we fully evaluate both same dataset and cross dataset

performance.

In the following sections, we will briefly discuss comparison of our wavelet based

morph detector with a variety of comparative baselines, mostly in the image domain
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Table 4.2: Single morph attack performance of the proposed framework and baselines.

Testing Method
APCER@BPCER BPCER@APCER D-EER
5% 10% 5% 10% %

MorGAN

BW images 23.5 9.07 12.6 9.0 9.0
RGB images 5.7 1.55 4.70 2.74 4.69

LL-removed BW images 18.68 6.29 9.93 6.28 7.5
LL-removed RGB images 2.55 1.14 1.98 0.99 3.58

BW-22 wavelets 1.20 0.60 0.73 0.20 2.47
RGB-66 wavelets 1.0 0.86 0.66 0.20 2.33

LMA

BW images 25.28 15.28 24.20 15.1 12.6
RGB images 12.79 6.89 13.0 6.16 7.8

LL-removed BW images 41.1 28.8 35.4 24.2 16.6
LL-removed RGB images 9.17 5.29 8.5 4.36 6.14

BW-22 wavelets 10.8 5.0 11.2 6.0 7.47
RGB-66 wavelets 8.6 5.39 12.5 3.8 7.47

VISAPP

BW images 0.0 0.0 0.0 0.0 0.0
RGB images 0.0 0.0 0.0 0.0 0.0

LL-removed BW images 0.0 0.0 0.0 0.0 0.0
LL-removed RGB images 0.0 0.0 0.0 0.0 0.0

BW-22 wavelets 0.0 0.0 0.0 0.0 0.0
RGB-66 wavelets 0.0 0.0 0.0 0.0 0.0

UNIVERSAL

BW images 18.50 10.60 14.40 9.38 9.55
RGB images 6.75 2.92 6.08 2.98 5.57

LL-removed BW images 30.4 13.62 19.83 11.40 10.59
LL-removed RGB images 5.8 1.89 4.5 2.98 4.52

BW-22 wavelets 1.26 0.65 1.77 0.65 2.70
RGB-66 wavelets 3.3 1.97 2.84 0.97 4.48

to show its effectiveness. We also compare to several state of the art techniques, both

classical feature-based and deep learning based morph attack detection techniques.

4.5.1 Wavelet-based Morph Detection Comparison

As wavelet transform is a reversible process, there are questions as to whether it really

is better to use wavelet sub-bands for morph detection over the original RGB image,

which is considered the standard input for CNN based classifiers. Therefore, we com-

pare our wavelet-based morph detector with a standard RGB image-based morph

detector. We conduct these experiments for both single and differential morph detec-

tion scenarios. The purpose of this exercise is to investigate whether discriminative

wavelet sub-bands really do add more information for the classification result or if

some other method in the image domain is actually better. For this, we choose several
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Table 4.3: Differential Performance of the proposed framework and baselines. With
the exception of RGB-66 testing on MorGAN, BW-22 exhibits superior performance.

Testing Method
APCER@BPCER BPCER@APCER D-EER
5% 10% 5% 10% %

MorGAN

BW images 7.88 6.17 13.1 3.1 5.57
RGB images 4.5 3.3 3.22 1.74 4.17

LL-removed BW images 5.5 3.14 4.5 3.28 5.53
LL-removed RGB images 3.66 2.98 1.58 0.79 3.55

BW-22 wavelets 3.71 1.85 3.06 0.26 3.89
RGB-66 wavelets 0.86 0.0 0.37 0.37 1.62

LMA

BW images 22.7 14.3 36.5 15.1 11.6
RGB images 11.1 6.68 12.2 5.62 8.8

LL-removed BW images 25.9 14.4 19.0 11.5 11.5
LL-removed RGB images 15.75 7.4 12 6.48 8.06

BW-22 wavelets 4.95 2.67 4.38 1.46 4.52
RGB-66 wavelets 10.53 5.39 9.44 4.72 7.36

VISAPP

BW images 5.97 0.0 0.0 0.0 3.17
RGB images 1.32 0.08 0.0 0.0 0.0

LL-removed BW images 1.57 0.08 5.63 4.22 0.0
LL-removed RGB images 2.98 0.8 0.0 0.0 3.25

BW-22 wavelets 0.0 0.0 0.0 0.0 0.0
RGB-66 wavelets 0.0 0.0 0.0 0.0 0.0

UNIVERSAL

BW images 15.0 8.95 14.4 7.5 8.53
RGB images 6.65 4.01 5.22 2.5 5.63

LL-removed BW images 19.1 6.74 10.872 7.78 8.45
LL-removed RGB images 10.9 3.53 5.52 4.56 5.52

BW-22 wavelets 3.25 1.69 3.01 0.65 3.93
RGB-66 wavelets 6.4 2.67 5.15 2.57 5.15

baselines to compare. For each baseline, we train a separate network using the same

train-test split and experimental setup for maximum comparison.

Wavelet transform is traditionally in grayscale yet the original images are in RGB.

Noting this, we also wish to investigate the importance of color information for morph

detection. Thus, we also obtain the wavelets for the color image by obtaining the 48

sub-bands for each color channel separately, resulting in 144 sub-bands total after the

LL sub-band is removed from each color channel and before the sub-band selection is

applied. We select 22 sub-bands from each color channel, for a total of 66 sub-bands,

which we call this baseline RGB-66 in correlation with BW-22, which are our original

22 wavelet sub-bands. The 22 sub-bands chosen for each color channel are identical to

the 22 sub-bands of BW-22. The experimental setup is also identical to our wavelet

sub-bands.
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Figure 4.2: DET curves for all protocols, tested on the (a) MorGAN and (b) LMA
test sets.

The first image-based baseline we consider is the original RGB image. The second

is the grayscale image, which corresponds to the image right before wavelet decom-

position is applied. In a similar fashion, we also investigate the images where LL is

removed. To mirror the removal of the approximation data in the image domain and

take advantage of the reconstructable feature of wavelet transform, the LL is removed

by decomposing the image in the wavelet domain, removing the LL sub-band, and

then performing Inverse Wavelet Transform (IWT) to get the LL-removed image.

We apply the LL removal process to both the grayscale and color images, obtaining

the baselines LL-removed BW and LL-removed RGB. This is roughly equivalent to

48 sub-bands of BW-22 and the 144 sub-bands of RGB-66 before sub-band selection

occurs. We then train a separate Inception Resnet v1 architecture using all of the

above baselines using the same training protocol and compare the test results. We do

this for both single morph detector and the Siamese differential morph detector for

each of the above scenarios: BW-22, RGB-66, RGB images, BW images, LL-RGB,

and LL-BW.

The results show that wavelet-based deep morph detection does exhibit supe-
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rior performance, significantly outperforming the other baselines. This can be seen

clearly in Figure 4.2. We note that for almost all scenarios, RGB performs better than

grayscale images, suggesting that there is utility in the color information for morph

detection. Especially for the MorGAN dataset, the performance really improves with

the use of color, indicating synthesized GAN-generated morphs have more color infor-

mation than landmark based methods such as LMA or VISAPP. This is more clearly

noted with the single morph detection results tabulated in Table 4.2 where there is

a stark difference between the RGB baselines and the grayscale baselines, suggest-

ing that color information is important for the classification result. This difference

is more subtle in the differential domain, suggesting that the comparison of the two

images dulls the need for color information. This difference overall is muted, however,

in the wavelet domain, where the original BW-22 selected wavelets outperform the

RGB-66 wavelets.

Interestingly enough, for single morph detection, the performance increases when

the LL sub-band is removed from the RGB images, substantiating our claim that it

is more useful to remove the LL sub-band altogether. However, for the differential

implementation, the opposite can be seen, where the original RGB images perform

better. It seems that when the detector only sees one image at a time, it is useful

to remove the LL sub-band. Note that overall for each baseline if the single morph

detection results are compared with the Siamese morph detection results in Table

4.3, the Siamese version of the morph detector performs better. This difference can

be most clearly seen in the comparison of the EER rates. This is on par with what

is assumed about differential morph detection. Because differential morph detection

has the additional image and thus additional information to compare the potential

morph with, generally speaking the performance is also higher.

It is also notable that VISAPP’s performance is consistently high for each scenario,

regardless of single or differential. This could be due to the small nature of the dataset
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that the networks are able to easily fit to it. Furthermore, the performance of the

LMA morphs is significantly lower for each baseline in comparison to MorGAN and

VISAPP. This is also consistent with what is in the literature. Landmark-manipulated

morphs are historically more difficult for deep morph detectors to detect than GAN-

generated morphs [51].

4.5.2 State of the Art

In addition to evaluating the strength of wavelets in comparison to baselines in the

image domain, we also compare the strength of wavelets to other state of the art

techniques mentioned in the literature. Here, it is important to reiterate that due to

the private nature of most morph image datasets, direct comparison is very limited.

Therefore, the results shown below follow as much of the methodology as mentioned

in the paper but they are trained with our datasets. The techniques we explore are

both classical hand-crafted techniques and deep learning methods. Due to the hybrid

nature of our method where classical wavelets meet deep learning and we use KLD-

based wavelet feature extraction, evaluating performance in comparison to both other

classical methods and deep learning methods is highly justified.

As far as classical hand-crafted techniques go, we employ BSIF, LBP, SURF, and

SIFT to compare our network with. All four of these techniques have enjoyed pop-

ularity in the literature for morph detection. BSIF and LBP are feature descriptors.

For BSIF, we choose the 8-bit BSIF features vectors that are constructed using 3× 3

filters. The LBP feature descriptors are extracted according to patches of 3× 3. The

resulting feature vectors, normalized histograms of 256, are the values of the LBP

binary code.

SURF and SIFT are keypoint descriptors. Keypoint descriptors, especially, are

useful for morph detection because the morph should produce less keypoints than the

bona fide images on the account of the smoothing effect of the morph operation. Each
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Table 4.4: Single Performance Comparison of Proposed Framework. All algorithms
trained with the Universal dataset.

Testing Method
APCER@BPCER D-EER
5% 10% %

MorGAN

SURF 76.0 70.0 38.67
SIFT 93.3 88.6 47.6
LBP 90.13 82.2 41.6
BSIF 91.3 84.78 50.0

BW-22 wavelets 1.20 0.73 2.47

LMA

SURF 74.50 62.70 33.40
SIFT 67.70 50.00 28.31
LBP 61.50 51.20 29.0
BSIF 70.42 57.60 30.0

BW-22 wavelets 10.8 5.83 7.47

VISAPP

SURF 79.4 70.1 31.0
SIFT 83.2 70.9 27.0
LBP 72.5 59.5 37.67
BSIF 67.2 59.0 35.0

BW-22 wavelets 0.0 0.0 0.0

AMSL

SURF 79.89 70.65 34.0
SIFT 79.89 66.3 34.7
LBP 94.02 85.8 49.0
BSIF 91.3 84.78 50.0

BW-22 wavelets 33.82 26.96 19.54

of the above four frameworks is paired with a Support Vector Machine (SVM) with

an rbf kernel as a classifier. The SVM is chosen as the classifier as this is the most

commonly used classifier in conjunction with these techniques used in the literature.

As we cannot compare directly, it is important to facilitate comparison by following

as much of the methodology employed by others.

For the differential implementation of these classical models, we follow [40] where

the feature vector of the potential morph image is subtracted from the feature vector

of the trusted image. This difference vector is then fed into an SVM classifier for

differential morph detection. To compare our detector to deep learning models, we

investigate FaceNet [43] performance with standard image input for the differential

scenario.

The single morph detector outperforms the other classical techniques. When train-

ing on all three datasets or the universal dataset, this becomes even clearer as can be

seen in 4.4. We also test our universal single morph detector on the AMSL dataset



4.5. EXPERIMENTS OVERVIEW 39

Table 4.5: Differential Performance Comparison of Proposed Framework. All algo-
rithms trained with the Universal dataset.

Testing Method
APCER@BPCER D-EER
5% 10% %

MorGAN

SURF 86.8 70.11 46.1
SIFT 57.6 47.7 27.3
LBP 90.13 82.2 41.6
BSIF 86.8 71.6 31.7

FaceNet 36.80 31.15 22.25
BW-22 wavelets 0.86 0.0 1.62

LMA

SURF 81.1 63.69 51.1
SIFT 63.2 55.8 36.7
LBP 91.1 83.4 40.5
BSIF 86.5 75.0 36.4

FaceNet 43.70 40.90 30.35
BW-22 wavelets 4.95 2.67 4.52

VISAPP

SURF 94.1 90.3 47.8
SIFT 91.1 84.7 52.2
LBP 31.1 19.5 16.0
BSIF 30.6 22.73 16.4

FaceNet 25.0 15.8 15.5
BW-22 wavelets 0.0 0.0 0.0

AMSL

SURF 96.7 91.3 53.0
SIFT 94.65 84.9 38.0
LBP 91.0 72.9 43.0
BSIF 91.0 82.0 41.3

FaceNet 38.6 31.35 19.86
BW-22 wavelets 33.78 23.61 16.4

in an effort to objectively evaluate the benefits of cross dataset performance.

For the Siamese morph detector, results can be compared in Table 4.5. Our dis-

criminative wavelet sub-bands consistently outperform the other methods, including

FaceNet. This is underlined by the performance of the detector on AMSL, which

is used to evaluate cross dataset performance and is used for testing only. Our

Siamese morph detector performs better than FaceNet. For the differential scenario,

the framework achieves an EER of 3.93% on the universal test set, significantly better

than the other baselines. Furthermore, the framework performs well on an unseen

morph dataset, AMSL, that uses a different morphing technique than our training

set, achieving an EER of 16.4%.
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4.6 Summary

In the last two chapters, using discriminative wavelet sub-bands as features for morph

attack detection is discussed in detail. The step-by-step process of obtaining the

desired sub-bands is explained and the sub-band selection process is evaluated using

a data-driven ablation study on the number of ranked sub-bands. Furthermore, the

effectiveness of sub-band selection is substantiated. The performance gains of using

selective wavelet sub-bands over the original RGB image is further explored in detail.

Our method is also compared to other classical feature-based methods used in the

literature. Overall, using discriminative wavelet features has shown to be a powerful

technique, even when training on a smaller dataset. We have demonstrated that a

wavelet-based morph detector can accurately identify morph imagery. In the following

chapter, after realizing some of the weaknesses of training on a smaller dataset, we

will explore using twins to train a morph detector accurately and robustly.



Chapter 5

Twins for Morph Attack Detection

Following our experiments in the wavelet domain, it became clear that to obtain

optimal results, training on a large dataset of high quality morph images was needed.

This is an ongoing problem faced by members of the research community. Luckily,

as a WVU research student, we have access to the WVU Twins Day Dataset [49],

a large-scale high-resolution dataset of twins collected on the annual Twins Day at

Twinsburg, Ohio over 2010 to 2019. The twins are used to generate large scale morph

databases using different automatic generation techniques.

Therefore, in this chapter, we explore the impact of training on large-scale high

quality morph images generated from twins on an Inception Resnet v1. We employ

several datasets generated by fellow research students from the Twins Day dataset in

our study: Twins Landmark, Twins StyleGAN, and Twins Landmark Perturbed. We

also investigate the effect of training on compressed versions of the Twins Landmark

images. In the end, we train a robust morph detector and submit our detector to

NIST FRVT Morph test for evaluation.

In the following sections, I will go over briefly the difficulty of finding suitable look-

alikes, the datasets employed in this study, the experiments conducted, and discuss

the results from NIST regarding our twin-morph-trained network.

41
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Figure 5.1: Bona Fide Twins (far left and far right) with morphs created using
different techniques with the Twins Day Dataset.

5.1 The Difficulty of Finding Look-Alikes

Most current morph datasets are lax with which individuals they morph together.

This is partly due to the fact that there is no standard procedure to identify and

measure similarity. It is also due to the small size of the source public face image

datasets available. Even if the source face image dataset is substantially large, there is

no guarantee there will be a look-alike for each face in the dataset. Simply put, there

isn’t a big enough pool of faces to begin with. Researchers often resort to morphing

individuals together that are only similar on the surface level of sharing gender and

ethnicity. This is a very superficial way to morph people together and often results in

lower-quality morphs. This can be a passable way to create morphs to train a single

morph detector since the detector only sees the potential morphed image. However,

for differential morph detection and for inspection by a human eye, these kinds of

morphs are often very obvious to detect as the difference between the bona fide and

the morph can sometimes be still quite large.

The problem of finding suitable look-alikes has been studied to some extent [7]

[37]. FaceNet and SSIM have been proposed as ways to find people who look similar.

Although these methods have shown some promise in assessing similarity, there is no

standard method found yet agreed by the research community. In response to this

problem, we propose using twins as our look-alikes to morph together.

Identical twins are already classified as a known and important security challenge.
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Table 5.1: Morph datasets created using twins.

Dataset Training Testing
Bona Fide Morph Bona Fide Morph

Twins Landmark 4526 6495 860 1240

Twins StyleGAN 4526 5506 1488 450

Twins Compressed 4526 6495 860 1240

Twins Perturbed 4526 6495 860 1240

Like morphs, differentiating between twins is also difficult for humans. For the pur-

pose of training a robust morph detector, a morph dataset based on twins is ideal.

There is no manual and time-consuming process of finding suitable look-alikes. Twins

already share a similar face structure and already fool recognition systems. A twin

morph lacks ghosting and obvious differences between the morph and bona fide im-

age, hence it can fool a human border inspector. By morphing twins, we can generate

high quality morph images that contain both the ideal visual similarity as well as the

underlying morphing artifacts so our network can be trained on both distinguishing

one twin from another and also distinguishing a morphed image from a genuine image

using image artifacts that result from the morph process. This way we can exploit

twin data characteristics and use a large scale dataset with variance.

In a real world scenario, where there is a very real risk of detection and subsequent

criminal punishment, a criminal would first ensure they find someone with similar

features to avoid detection. Hence, it is important for morph detection algorithms to

be trained on high quality look-alikes. This is why we use morphs generated from the

Twins Day dataset. Not only will the resulting morph contain artifacts and residual

image clues that indicate the image was tampered with but the resulting face will

be incredible similar to the original two people. Both the visual and inherent morph

qualities are satisfied.
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5.2 Datasets

The Twins Day dataset contains images from twins taken over 2010 to 2019 at the

annual Twins Day Festival in Twinsburg, Ohio. For some twins, there are images

taken over years. For each twin, there are multiple high resolution images in multiple

poses, sometimes taken over multiple days. This is important, especially for the

differential scenario, as we have multiple bona fide probes in addition to the twin

photo used for morphing. There are also neutral frontal face images with a neutral

background that are ideal for mimicking a passport photo. Some twins are excluded

(i.e. fraternal twins of one female, one male) and after some dataset cleaning, over

1250 pairs of twins are used to create the morphs.

The first twins morph database is Twins Landmark, which was generated using

the standard landmark manipulation method [31]. For each twin pair, there are three

morphs with a corresponding alpha value of 0.3, 0.4, and 0.5 respectively. Following

this, there is a morph database of twins generated using a GAN framework: Twins

StyleGAN. This contains one morph image per twin pair. With Twins Landmark and

Twins StyleGAN, we broadly cover the two common automated morphing techniques

employed in the literature.

Following these two methods, we further augment the Twins Landmark morphs

with two post-processing techniques: compression and adversarial perturbation. First,

we compress the Twins Landmark morphs using JPEG compression to create Twins

Landmark Compressed. Compression was used to help robustness against lower reso-

lution images. Compression also helps mimic the passport enrollment process wherein

a submitted passport photo is compressed before being put in the issued passport.

Finally, we also investigate the performance after perturbing the Twins Landmark

images. Adversarial perturbation is added to each morph such that a morph detec-

tor is fooled to classify the morph images as bona fide but not so much so that the

perturbation is visually distinguishable.
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Table 5.2: Performance of our twins-trained morph detector on some select databases.

Testing
APCER @ BPCER D-EER
1% 5% 10% %

Twins Landmark 10.17 3.4 2.43 3.64
FERET OpenCV 42.91 31.7 19.86 13.0
FERET StyleGAN 43.02 26.99 17.49 15.09
FERET Facemorpher 37.21 33.95 18.08 13.3

The datasets are further augmented using horizontal flips. In addition, for each

twin, there is an additional ground truth image that serves as our Bona Fide Probe.

After all augmentation, our total training set, consisting of morphs from all twins

morph datasets (Landmark, StyleGAN, Compressed, Perturbed) is 44,152 morph

images and 20,751 real images. All images are pre-processed using the MTCNN

framework and resized to 512 × 512 for network training. This is notably larger than

the 160 × 160 used by the wavelet detector. We are aiming for a high quality, robust

morph detector and this higher resolution is more closer to passport-sized images.

Furthermore, some research has shown that training on a higher resolution helps

with detecting artifacts in the image [28].

5.3 Experiments

We train several versions of our twins morph detector before we decide on the one to

submit to NIST. Our motivation was to create a detector that was robust to most

morphing algorithms. Since NIST tests on sequestered datasets on which there is

limited information on the morphing techniques, it was important for our detector

to also be robust to the unknown. This way our network generalizes and doesn’t

overfit to only one specific morph technique. This is important as in the real world

application, the morphing technique a criminal would use would be unknown to the

morph detector.

We employ several test sets to benchmark performance. We use AMSL as well
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as the morphs generated by [38] using the FRLL and FERET databases. The

FRLL morphs are generated using four methods: FRLL OpenCV, FRLL StyleGAN,

FRLL Webmorph, and FRLL Facemorpher. The FERET morphs consist of FERET

OpenCV, FERET StyleGAN, and FERET Facemorpher. These are all datasets used

in our experiments for testing only to evaluate cross dataset performance, much in

the same way NIST will evaluate our final twins morph detector.

As our purpose is to create a robust morph-technique-resistant detector, we em-

ploy cross dataset, cross morph technique training, at each level, adding more morph

techniques to the training set. First, we train only on Twins Landmark and eval-

uate performance. Then we investigate training with compressed versions of Twins

Landmark alongside the original Twins Landmark dataset. The purpose of this ex-

ercise was to see if compression could help with lower resolution images and act as

a substitute to print-and-scanned images, which was a database we did not have.

Finally, we train on all four datasets: Twins Landmark, Twins StyleGAN, Twins

Landmark Compressed, and Twins Landmark Perturbed. Figure 5.2 shows the per-

formance of our all-twins-morph-trained detector on Twins Landmark (same-dataset

performance) as well as on the OpenCV, StyleGAN and Facemorpher morphs created

from the FERET database (cross-dataset performance).

5.4 NIST Submission

Following our experiments, we train our final twins morph detector on all our datasets

and submit it to NIST for objective evaluation. As mentioned earlier, the NIST FRVT

Morph test is ongoing independent testing of morph attack detectors on a variety of

morphing techniques: low quality (visible artifacts), automated morph techniques

(i.e. MipGAN) and high quality (i.e. Manual). Our algorithm achieved very good

performance, especially being the highest performing on multiple datasets, including
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Figure 5.2: Performance of our detector, wvusingle 001, on the Local Morph Colorized
Average morphs [28].

print-and-scanned.

The submission process for the NIST Morph test requires our algorithm to be

in a Linux dynamically-linked library file in C++. First, we had to convert our

experimental code, which was written in Python PyTorch, to C++. Furthermore,

NIST only employs CPUs in its testing and the final executable has to be able to

be forked into different processes to run concurrently on multiple machines at once.

Once our algorithm was successfully running their validation package, we submitted

it for objective evaluation.

As the NIST FRVT Morph tests a multitude of morph techniques, in this paper,

we are only sharing a select few. The rest of the results can be viewed on their website

or in the published paper.

In Figure 5.2, the Local Morph Colorized Average dataset, a landmark-based

technique, is tested on each of the submitted morph detectors. This is a Tier 2

dataset, according to the methodology of NIST, meaning it is an automated morph

technique used in academic research with no obvious artifacts. Our morph detector
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Figure 5.3: Performance of our detector, wvusingle 001, on the MIPGAN-II morphs
[28].

performs extremely well on this dataset as can be seen in the DET curve. On the

side, the APCER at a controlled threshold of 1% is listed. This means the APCER or

morph miss rate at a contorlled threshold of 1 in 100 people being inconvenienced with

a false alarm. Our detector has the lowest rate at 33.4% morphs being missed. This

is still remarkable given the infancy of this research field however it does illustrate

how much more progress needs to be made. This means that 1 in 3 morphs pass

when 1 in 100 bona fides are inconvenienced with a false alarm. From an operational

reliability standpoint, this is still a very high rate.

Next, in Figure 5.3, we see our detector doing well on a GAN-based technique,

MIPGAN-II, which is a modified version of StyleGAN 2 with additional identity

losses. In Figure 5.4, we see our detector does not do so well. These Visa-Border

morphs were created using passport-like bona fides and the probes were live capture

webcam bona fides. It is possible the low performance is due to the variance with pose

angle and illumination in the border crossings. In the future, using lower resolution

bona fides may help improve performance on this type of morph.
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Figure 5.4: Performance of our detector, wvusingle 001, on the Visa-Border morphs
[28].

Figure 5.5: Performance of our detector, wvusingle 001, on the Print and Scanned
morphs [28].
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Figure 5.6: DET curve of our morph detector, wvusingle 001, on the impact of image
resolution.

In Figure 5.5, the performance on the print-and-scan dataset is shown. Printing

and scanning a morph image helps hide the artifacts present in a morphed image.

This is done also to mimic the process of submitting a printed photo at time of

passport application and the inevitable re-scanning of the photo before it appears

on a passport. The images were printed on 2 inches by 2 inches photo paper and

scanned at 300 ppi. Interestingly enough, a subset of the VISA-BORDER morphs

were used for this print-and-scan dataset yet our performance for the print-and-scan

Visa-Border is higher than the original Visa-Border images. It is possible that our

detector picks up on the artifacts of the actual print-and-scan process and mistakes

them for morphing artifacts, thus using those artifacts to determine that the images

are morphed.

These are just a few of the notable results shown from the NIST FRVT Morph

Test. Full results with all datasets and comparison to all other current state of the

art methods is available in [28] as well as online 1

1https://pages.nist.gov/frvt/html/frvt morph.html
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5.5 Summary

Overall, the network submitted to NIST generalizes well, especially on the automated

morph techniques. This shows that using twins is a useful alternative to the time-

consuming process of finding suitable look-alikes and it is effective for training a

deep morph detector robustly. However, the detector is still weak on images of lower

resolution, especially when the faces have an inter-ocular distance (IOD) of only 75

pixels or 150 pixels as can be seen in Figure 5.6. This is something to train on in the

future. This was our first foray into NIST evaluation, however we hope to eventually

submit more morphing algorithms, including in the wavelet domain in the future.



Chapter 6

Conclusion

In the scope of this thesis, morphing attack detection is studied in detail. Although

there is progress towards robust morph detection, this still remains a challenging

problem. Part of the problem is that morphed images are getting more realistic

as technology improves. Like how morph detection algorithms are becoming more

advanced, morph generation techniques are advancing too. Most solutions have not

matured enough to be viable in the real world scenario.

The following sections explain some of the conclusions that can be drawn from this

thesis, address the limitations we faced in creating this framework, and a discussion

of the future work involved in this field.

6.1 Limitations

This work too was particularly limited by the availability of morph datasets of suffi-

cient size and quality. More researchers have stepped up to the plate to address this

problem, creating databases that can be distributing in a research setting. It is cer-

tain that future research in this area will soon take great strides due to the increasing

amount of public databases available. This will also help create more reproducible

works and facilitate open source benchmarking that researchers can compare their
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work to. This author notes that since the beginning of this thesis, at least three

morph datasets have become available for researchers: (1) the morphs generated

from FRLL, FERET, and FRGC [38], (2) MipGAN [54], and (3) LMA DRD [6].

6.2 Future Work

There are many other methods that can be proposed for wavelet sub-band selection.

The method we chose is definitely hand-crafted with KLD at its core, however deep

learning based methods such as group sparsity and attention could also be helpful in

selecting the most discriminative sub-bands.

We already trained an image-based twins morph detector and submitted it to

NIST for evaluation. Our detector has promising results but also some faults. Noting

these issues, we hope to submit a better morph detector in the future for evaluation.

It would also be interesting to see if how a twins-morph-trained detector performs in

the differential morph attack scenario. In the future, the next step would be train

our wavelet-based detector too on a large database of morphs with high resolution

and high variance, perhaps exploring a twins morph trained wavelet detector.

6.3 Conclusion

In this work, we introduce a framework to detect morph face images using discrimi-

native wavelet sub-bands selected using KLD. The core of our method is the ability

to identify morph artifacts in the wavelet domain, leveraging the most informative

sub-bands for morph detection. We demonstrate the performance of our morph de-

tector on four different datasets. Likewise, we compare our model’s performance with

baseline models constructed with common classical and deep methods employed in

the literature. We show how discriminative wavelet sub-bands for morph detection

compare to the original image and show how effective it is to translate the morph
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from the image domain to the spatial frequency domain and harness discriminative

wavelet sub-bands for morph attack detection.

Additionally, we explore the impact of training on a large scale dataset on morphs

generated from identical twins. We also demonstrate that using twins as an alterna-

tive to the time-consuming process of finding look-alikes for generating a large-scale

dataset is quite effective for training a morph detector robustly. The twins-morph-

trained detector exhibits good performance in comparison to other current state-of-

the-art methods submitted to the NIST FRVT Morph evaluation.
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