3,860 research outputs found

    Perceptual quality and visual experience analysis for polygon mesh on different display devices

    Get PDF
    Polygon mesh models have been widely used in various areas due to its high degree of verisimilitude and interactivity. Since the mesh models usually undergo various phases of signal processing for the purpose of storage, simplification, transmission, and deformation, the perceptual quality as well as the visual experience of mesh models are often subject to distortions at every stage. Therefore, investigating the perceptual quality and the visual experience of mesh models have become one of the major tasks for both the academia and industry. In this paper, we have designed two subjective experiments to investigate the perceptual quality and the visual experience in both the virtual reality environment and the traditional 2-D environment. Experimental results showed that there is no statistically significant difference in the quality perception between the two viewing conditions, independent of the model content, the distortion type, and the distortion level. On the contrary, there exists significant difference in the visual experience between the two viewing conditions under various factors. This paper helps researchers to better understand the quality perception behavior and the visual experience toward polygon mesh models

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    Point Cloud Framework for Rendering 3D Models Using Google Tango

    Get PDF
    This project seeks to demonstrate the feasibility of point cloud meshing for capturing and modeling three dimensional objects on consumer smart phones and tablets. Traditional methods of capturing objects require hundreds of images, are very slow and consume a large amount of cellular data for the average consumer. Software developers need a starting point for capturing and meshing point clouds to create 3D models as hardware manufacturers provide the tools to capture point cloud data. The project uses Googles Tango computer vision library for Android to capture point clouds on devices with depth-sensing hardware. The point clouds are combined and meshed as models for use in 3D rendering projects. We expect our results to be embraced by the Android market because capturing point clouds is fast and does not carry a large data footprint

    Digital Twinning remote laboratories for online practical learning, Production & Manufacturing Research

    Get PDF
    The COVID19 pandemic has demonstrated a need for remote learning and virtual learning applications such as virtual reality (VR) and tabletbased solutions. Creating complex learning scenarios by developers is highly time-consuming and can take over a year. It is also costly to employ teams of system analysts, developers, and 3D artists. There is a requirement to provide a simple method to enable lecturers to create their own content for their laboratory tutorials. Research has been undertaken into developing generic models to enable the semiautomatic creation of virtual learning tools for subjects that require practical interactions with the lab resources. In addition to the system for creating digital twins, a case study describing the creation of a virtual learning application for an electrical laboratory tutorial is presented, demonstrating the feasibility of this approach

    Neo: Virtual Object Modeling using Commodity Hardware

    Get PDF
    Recent developments in augmented reality technology have paved way for newapplications in a wide range of areas. These include the commercial markets,medicine applications, military applications and education. The technology pro-vides immersive images to enhance our perception of the world. Augmentedreality addresses challenges related to problem-solving by seamlessly integrat-ing digital images into real-world images.In the context of construction and maintenance industry, project inspections canbe time-consuming and tedious. These inspections involve usages of expensiveand specialized hardware. Some inspections even use physical blueprints anddrawings along with standardized measurement tools. This approach can posepractical challenges and be prone to errors.In this thesis we present Neo, a surface reconstruction system on commodityhardware. It utilizes augmented reality technology by scanning physical sur-roundings and reconstructs them as virtual objects. They are displayed on topof the camera’s live preview of the real world. By using a pipeline architecturewe model the physical surroundings in terms of their shapes and visual appear-ances. Cyber-physical information about the reconstructed virtual models areannotated in real-time. Evaluations of the system show us potentials to createrealistic copies of physical object

    Design of A Virtual Laboratory for Automation Control

    Get PDF
    In the past, only students who studied on campus were able to access laboratory equipment in traditional lab courses; distance learning students, enrolled in online courses, were at a disadvantage for they could learn basic lab experiment principles but could never experience hands-on learning. Modeling and simulation can be a powerful tool for generating virtual laboratories for distance learning students. This thesis describes the design and development of a virtual laboratory for automation control using mechanical, electrical, and pneumatic components for an automation and control course at Old Dominion University. This virtual laboratory application was implemented for two platforms — Windows personal computers and Android smartphones. The virtual lab serves as pre-lab session for on-campus students and a virtual lab tool for distance-learning students to gain some “hands-on” lab experience. Utilizing the virtual learning environment as a supplement to engineering-based laboratories is also beneficial for students to prepare for the physical experiment and obtain a “hands-on,” practical lab experience without the hazards present in the physical lab. Such a methodology can also be applied to experiments in different fields such chemistry, etc

    Doctor of Philosophy

    Get PDF
    dissertationVirtual environments provide a consistent and relatively inexpensive method of training individuals. They often include haptic feedback in the form of forces applied to a manipulandum or thimble to provide a more immersive and educational experience. However, the limited haptic feedback provided in these systems tends to be restrictive and frustrating to use. Providing tactile feedback in addition to this kinesthetic feedback can enhance the user's ability to manipulate and interact with virtual objects while providing a greater level of immersion. This dissertation advances the state-of-the-art by providing a better understanding of tactile feedback and advancing combined tactilekinesthetic systems. The tactile feedback described within this dissertation is provided by a finger-mounted device called the contact location display (CLD). Rather than displaying the entire contact surface, the device displays (feeds back) information only about the center of contact between the user's finger and a virtual surface. In prior work, the CLD used specialized two-dimensional environments to provide smooth tactile feedback. Using polygonal environments would greatly enhance the device's usefulness. However, the surface discontinuities created by the facets on these models are rendered through the CLD, regardless of traditional force shading algorithms. To address this issue, a haptic shading algorithm was developed to provide smooth tactile and kinesthetic interaction with general polygonal models. Two experiments were used to evaluate the shading algorithm. iv To better understand the design requirements of tactile devices, three separate experiments were run to evaluate the perception thresholds for cue localization, backlash, and system delay. These experiments establish quantitative design criteria for tactile devices. These results can serve as the maximum (i.e., most demanding) device specifications for tactile-kinesthetic haptic systems where the user experiences tactile feedback as a function of his/her limb motions. Lastly, a revision of the CLD was constructed and evaluated. By taking the newly evaluated design criteria into account, the CLD device became smaller and lighter weight, while providing a full two degree-of-freedom workspace that covers the bottom hemisphere of the finger. Two simple manipulation experiments were used to evaluate the new CLD device
    corecore