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ABSTRACT 

DESIGN OF A VIRTUAL LABORATORY FOR AUTOMATION CONTROL 

 

Zelin Zhu 

Old Dominion University, 2017 

Director: Yuzhong Shen 

In the past, only students who studied on campus were able to access laboratory 

equipment in traditional lab courses; distance learning students, enrolled in online 

courses, were at a disadvantage for they could learn basic lab experiment principles but 

could never experience hands-on learning. Modeling and simulation can be a powerful 

tool for generating virtual laboratories for distance learning students. This thesis 

describes the design and development of a virtual laboratory for automation control using 

mechanical, electrical, and pneumatic components for an automation and control course 

at Old Dominion University. This virtual laboratory application was implemented for two 

platforms — Windows personal computers and Android smartphones. The virtual lab 

serves as pre-lab session for on-campus students and a virtual lab tool for distance-

learning students to gain some “hands-on” lab experience. Utilizing the virtual learning 

environment as a supplement to engineering-based laboratories is also beneficial for 

students to prepare for the physical experiment and obtain a “hands-on,” practical lab 

experience without the hazards present in the physical lab. Such a methodology can also 

be applied to experiments in different fields such chemistry, etc. 
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CHAPTER 1 

INTRODUCTION 

Education and learning have become easier and more enjoyable with advances in 

computer software and hardware. Nowadays, there are other methods to learn new 

knowledge and skills outside the traditional classroom environment. In May 2012,  

Massachusetts Institute of Technology [1] and Harvard University [2] founded edX [3], 

which is a Massive Open Online Course (MOOC) learning platform that runs on an open-

source software platform (Open edX) [3]. It offers online university-level courses in a 

wide range of disciplines to all the students around the world. Although traditional 

classroom instruction still plays arguably the most important role in teaching and 

learning, students and professionals have much more resources at their disposal to expand 

their knowledge and develop expertise through massive open online courses from the 

world's best universities. Many schools, nonprofit organizations, and corporations offer 

or will soon offer courses on the edX website1.  

In addition to online courses, web search engines can also provide answers for all 

kinds of questions with a single mouse click. Free video websites like YouTube offer a 

myriad of high quality video tutorials on many subjects, ranging from mathematics to 

physics to computer science and others. Students and professionals can also obtain 

various novel ideas by listening to experts on online educational channel such as TED 

Talks [4]. With the ubiquity of smartphones and portable tablet computers, scores of 

mobile applications have been developed for learning and education. The ability for self-

                                                 
1 IEEE Transactions and Journals style is used in this thesis for formatting figures, tables, and references. 
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study, anywhere and anytime, is increasing and in strong demand among students and 

professionals alike. 

However, while online education does provide many new opportunities and 

resources, one limitation of existing online education is that it cannot provide learners 

with practical know-how or “field work.” Instead, online educational resources often 

focus on teaching theoretical concepts, such as proving theorems or solving equations, 

and do not offer any laboratory exercises. Yet, laboratory exercises are an essential 

component of science and engineering education, as they provide hands-on experiences 

for understanding theoretical concepts or directly addressing real world problems.  

There are several approaches to address the lack of hands-on laboratory exercises 

in online education. The first approach is to provide recorded videos of real lab 

experiments to familiarize students with the process of how a certain lab is conducted. 

However, this method alone does not adequately substitute for the physical experiment, 

as learners have no opportunity or lab equipment to practice the skills they learned from 

the video.  The second approach, which holds far greater potential to enhance the online 

laboratory experience, is to use computer-based modeling and simulation (M&S) 

applications. In highly realistic 3D simulated environments, a virtual laboratory 

simulation can emulate lab equipment and configurations and provide a comparable 

“hands on” learning experiences. 

Computer-based modeling and simulations that use computer hardware and 

software to model and simulate a wide range of problems have been successfully applied 

in many fields, particularly in science and engineering fields. For example, medical 

students and professionals can safely perform surgeries on virtual patients in a simulated 
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environment to enhance their surgical skills [5-7]. Unlike most traditional laboratory 

sessions where students are typically required to prepare experiments by reading and 

studying the paper-based lab manual, pre-lab sessions in a computer-based learning 

environment offer students unique learning experiences and practical activities, while 

also helping them understand the experimental objectives and procedures in a more 

interactive way prior to the physical experiment [8-10]. Moreover, using M&S tools help 

to avoid damages to physical equipment and reduce common mistakes so that the learners 

can perform more efficiently during the physical experiment by avoiding the mistakes 

made in the virtual laboratory. The rich and realistic visual effects of the virtual learning 

environment also make the pre-lab session more immersive and engaging. 

Electrical and computer engineering is a field in which modeling and simulation 

are extensively used. Before circuit simulation tools were invented, electrical engineers 

had to manufacture and examine a real circuit board or integrated chip to check whether 

the circuit design was correct or not. In order to reduce the cost and time of circuit 

design, various circuit simulations languages and tools have been developed, such as 

SPICE [11] for analog circuit design and VHDL [11] for digital circuit design. These 

circuit simulation tools generate highly accurate results, and new designs can be 

simulated and tested using simulation before putting them into production, greatly 

reducing the cost of circuit design.  

For introductory courses in circuit design and analysis, breadboards are widely 

used for building relatively simple circuits and learning basic circuit principles.  

However, students often don’t have enough exposure to laboratories because of the 

limited lab resources, such as available space, equipment, and scheduling.  The problem 
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becomes much more severe with online education and/or distance learning because it is 

almost impossible for online/distance learning students to access lab resources.  Thus, 

there is an urgent need to provide alternate means to complement labs for both traditional 

and online education.  In recent years, there have been a few released applications 

attempting to build virtual circuits. However, many of them are 2D-image or symbolic 

simulation. Wiring is a very critical procedure for breadboard circuits and the reduction 

of one spatial dimension of using 2D images for 3D wires causes disconnections between 

the virtual breadboards and real ones and reduces the effectiveness of virtual breadboard 

simulation. 

This thesis describes the software design and development of a highly realistic 

virtual lab for learning programmable control logic in an automation and control lab. In 

particular, this thesis presents the design and development of a simulation tool, named 

Virtual Lab, for wiring programmable control logic in an automation and control course 

(MET 370/386 Automation and Control) offered at Old Dominion University. Virtual 

Lab provides distance-learning students with a realistic lab scenario and accurate 

simulation of Programmable Logic Controllers (PLCs) equipment. Before using Virtual 

Lab, students can only use Computer Aided Design (CAD) software to complete their 

homework and lab problems without being able to touch PLCs or wire ladder logic 

diagrams [12].  Virtual Lab contains mechanical, electrical, and pneumatic components 

that can be combined and wired to form various control logic. 

Virtual Lab fills a gap in existing circuit and control simulation software, which 

has nearly 40 years of history with mature industry standards and is widely used in design 

of circuit and control systems.  Existing circuit and control simulation software is 
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designed for professionals and its visual presentations are symbolic and restricted to 

circuit or system levels.  The major contribution of Virtual Lab is that it provides a three-

dimensional realistic lab environment for electro-pneumatic experiments with an intuitive 

and user-friendly graphical interface. It also provides a highly interactive virtual 

environment for the learners to conduct the experiment with ease.  The core of Virtual 

Lab is a programmable logic control simulation engine that supports mechanical, electric, 

and pneumatic components and it allows combination of these different types of 

components for programmable logic control for automation. 

The remainder of this thesis is organized as follows: Section 2 describes 

background and related work. Section 3 presents a previous implementation of Virtual 

Lab that is expanded in this thesis. Section 4 shows the current methodology and 

implementation of Virtual Lab. Section 5 presents the validation results of Virtual Lab. 

Section 6 discuss future work and concludes the thesis. 
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CHAPTER 2 

BACKGROUND 

This section discusses background and related work. It starts with a brief 

introduction to modeling and simulation, followed by an overview of applications of 

modeling and simulation for education. The last section describes the physical lab 

components to be modeled and simulated in Virtual Lab. 

 

2.1 Modeling and Simulation 

Modeling and simulation is the process of creating a system or phenomenon by 

using physical, mathematical, or logical methods.  Modeling and simulation facilitates 

analysis, experimentation, and training. In this way, researchers can better understand a 

system’s behavior without testing the system in the physical world.  

The first use of M&S can be traced back to Buffon’s “needle experiment” in 

1777, in which the value of “π” can be estimated by dropping needles on a floor marked 

with equally spaced parallel lines [13]. After approximately a century and a half later, 

M&S was used in training pilots during the first World War. The Antoinette Trainer [14], 

consisting of two half section barrels mounted on top of each other, was the first flight 

simulator built by a French manufacturer to simulate the pitch and roll control of a 

monoplane. In the late 40s and early 50s, commercially designed computers started to 

arise as problem solving tools in many different organizations worldwide [15]. With the 

maturation of computer technology, M&S continued to evolve as popular training tools in 

the period of 50s – 80s. Multi-user synthetic environments were used to train soldiers 

under different mission and combat scenarios.  
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Recent technological advancements in M&S have enabled the creation of realistic 

virtual environments. For example, M&S is routinely used by the military for recruitment 

and training and for development of tactical and strategical solutions. On Air Force flight 

simulators, controls, fittings, and other elements are in the same places as they would be 

on a real aircraft. In fact, flight simulators have been used to train pilots across all 

branches of the forces to great success. Furthermore, M&S can be used in combat 

simulation as well. Soldiers and other related personnel can utilize virtual reality glasses 

that create an illusion of three-dimensional depth, and the results of this can be shared 

amongst large numbers of personnel [16, 17].  In addition to the military, modeling and 

simulation are widely used in other fields as well, including but not limited to, science, 

engineering, healthcare, transportation, and education. 

 

2.2 Modeling and Simulation for Education 

As previously posited, M&S can help researchers understand a system’s behavior 

without testing said system in the physical world. M&S is utilized as a learning tool in 

the form of educational applications. M&S software facilitates studying material, 

exploring or expanding concepts, and acquiring certain skills in a virtual-based structure. 

With improvements in both software and hardware in the past two decades, M&S has 

become more popular and widely used in the academic world. A well-designed education 

application often includes: 1) multiple levels or challenges, 2) a compelling or intriguing 

guideline, 3) an intuitive, unique teaching method for every learner, 4) additional 

feedback from institutions to the designers.  
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Educational computer applications and simulation are often referred to as Game-

based learning (GBL) tools. GBL provides an approach of learning in which users 

explore and interact with educational content in an entertaining format [14]. Within an 

effective game-based learning environment, students and professionals work toward 

certain goals, choosing actions and experiencing the consequences of those actions along 

the way. Mistakes are made in a risk-free setting, and users safely learn and practice the 

correct protocol through many experiments. GBL keeps learners highly engaged in 

practicing behaviors and thought processes that can be easily transferred from the 

simulated environment to real life.  

Before 3D computer graphics were widely available to educational applications, 

2D computer graphics were used to present two-dimensional geometric models. They 

were used in applications that were originally developed for the traditional printing and 

drawing medium.  Several commonly used engineering modeling and simulation tools 

mostly used 2D computer graphics, such as VHSIC Hardware Description Language 

(VHDL), Simulation Program with Integrated Circuit Emphasis (Spice), LabVIEW, and 

MATLAB.  

VHDL is a hardware description language to model digital and mixed-signal 

systems mainly in electronic design applications. It is commonly used to generate models 

that describe a logic circuit. The logic design of that logic circuit is processed by a 

synthesis program and tested by a simulation program using simulation models. This 

collection of simulation models is commonly called a test bench. VHDL also has the 

capabilities of file input and output, and it can be used as a general-purpose language for 

text processing, but files are more commonly used by a simulation test bench for stimulus 
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or verification data. There are some VHDL compilers which build executable binaries. In 

this case, it might be possible to use VHDL to write a test bench to verify the 

functionality of the design using files on the host computer to define stimuli, to interact 

with the user, and to compare results with those expected. However, most designers leave 

this job to the simulator [18]. The example of using VHDL is shown below in Fig. 1. 

 

  

Fig. 1.  VHDL Interface [18]. 

 

When it is used for systems design, the major advantage of VHDL is that it allows 

the behavior of the required system to be modeled and verified before synthesis tools 

translate the design into real hardware. Another benefit of using VHDL is that it allows 

the description of a concurrent system instead of running codes sequentially, one 

instruction at a time. 
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SPICE stands for Simulation Program for Integrated Circuits Emphasis. It was 

originally developed in 1975 at Electronics Research Laboratory of University of 

California, Berkeley. It is a powerful circuit simulator that is widely used in integrated 

circuit and board-level design to verify circuit designs and to predict the circuit behavior. 

The advantages of using SPICE includes: 1) it is relatively cheap and has several free 

versions to download; 2) it is commonly used for teaching electronic related courses in 

most universities; 3) it provides users a very accurate circuit simulator tool. The interface 

of SPICE is shown below in Fig. 2. 

 

 

Fig. 2.  SPICE Interface [11]. 

 

Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is a system-

design platform and development environment using a visual programming language 

from National Instruments. The programming language used in LabVIEW, named G, is a 

dataflow programming language. Execution is determined by a graphical block diagram 

which connects different function-nodes by drawing wires. LabVIEW integrates the 
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creation of user interfaces into the development cycle. LabVIEW programs-subroutines 

are termed virtual instruments (VIs). Each VI has three components: a block diagram, a 

front panel, and a connector panel. The front panel is built using controls and indicators. 

Controls are inputs, which allow a user to supply information to the VI. Indicators are 

outputs, which can indicate, or display, the results based on the inputs given to the VI. 

The objects placed on the front panel will appear on the back panel as terminals. The 

back panel also contains structures and functions which perform operations on controls 

and supply data to indicators. The structures and functions are found on the Functions 

palette and can be placed on the back panel. Furthermore, indicators, structures, and 

functions are referred to as nodes. Nodes are connected to one another using wires, e.g., 

two controls and an indicator can be wired to the addition function so that the indicator 

displays the sum of the two controls. Thus, a virtual instrument can be run as either a 

program, with the front panel serving as a user interface, or, when dropped as a node onto 

the block diagram, the front panel defines the inputs and outputs for the node through the 

connector pane. This implies each VI can be easily tested before being embedded as a 

subroutine into a larger program [19]. One example of LabVIEW is shown in Fig. 3. 
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Fig. 3.  LabVIEW Interface [19]. 

 

When using LabVIEW, the graphical programming environment allows 

nonprogrammers to build programs by dragging and dropping virtual representations of 

lab equipment. However, there is also a certain danger of underestimating the expertise 

needed for high-quality G programming. For complex algorithms or large-scale code, it is 

significant that a programmer is familiar with LabVIEW code syntax and the topology of 

its memory management. 

MATLAB stands for Matrix Laboratory. It is an interactive software system for 

numerical computations and graphics. As the name suggests, MATLAB is especially 

designed for matrix computations, such as solving systems of linear equations, computing 

eigenvalues and eigenvectors, factoring matrices, etc. In addition, it has a variety of 

graphical capabilities, and can be extended through programs written in other languages, 

including C, C++, C#, Java, Fortran and Python [20]. Although MATLAB is primarily 

designed for numerical computing, it contains an additional toolbox and package that can 



   

 

13 

add graphical multi-domain simulation and model-based design for dynamic and 

embedded systems. MATLAB applications are created by the MATLAB scripting 

language. Common usage of the MATLAB application involves using the Command 

Window as an interactive mathematical shell or executing text files containing MATLAB 

code. The advantages of using MATLAB includes that: 1) it allows users to interact with 

their graphical models; 2) it can be greatly expanded by the addition of toolboxes; 3) it 

has a straightforward interface and quickly comprehends scripting language. 

While existing modeling and simulation tools such as VHDL, SPICE, LabVIEW, 

and MATLAB are very powerful and widely used, one capability that is missing in these 

tools is realistic rendering of physical objects and environments.  For example, only 

graphical symbols of circuit components are used by both SPICE and VHDL simulation 

tools, not 3D models of circuit components. Realistic 3D models are needed in various 

applications, such as circuit diagnosis, and especially useful for novice users.  The Virtual 

Lab developed in this thesis fills a gap in existing simulation tools by providing a realistic 

rendering of lab components and environments that are very similar to those in the real 

lab, and thus facilitates learning transfer and improves learning efficacy.   

 

2.3 Lab Description 

The Mechanical Engineering Technology Program at Old Dominion University 

provides a course named MET 370/386 Automation and Control. This course is strongly 

related to the design and analysis of feedback control system which includes the 

fundamentals of programmable logic controllers as well as practical applications of 

interfacing mechanical, electrical, pneumatic and hydraulic feedback control circuits. 
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Additionally, it has a lab section which contains: 1) four weeks of pneumatic 

applications, 2) four weeks of pneumatic components, electrical sensors, and ladder 

diagram, 3) five weeks of PLC programming [21]. The lab overview is shown in Fig. 4. 

 

 

Fig. 4.  Lab Overview in the Department of Engineering Technology at Old Dominion 

University [12]. 

 

The lab contains five electro-pneumatic training systems for students to conduct 

physical experiments. Each system consists of three major electrical components (power 

supply box, manual switch box, and electrical relay switch box) and nine major 

pneumatic components (air source, single-acting cylinder, double-acting cylinder, air 

divider, 3/2 pneumatic valve, 3/2 directional control valve, 3/2 solenoid (one sided) 

control valve, 5/2 solenoid (one sided) control solenoid valve, and 5/2 solenoid control 

valve), as shown in Fig. 5. 
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(a) (b) 

Fig. 5.  Programmable Logic Controller Wiring Lab. (a) Two major components of the lab 

(from left to right): manual switch box, and electrical relay switch box. (b) Power supply 

box. 

 

The power supply provides 24V Direct Current (DV) power. The manual switch 

box contains three manual push buttons with each controlling four switches: two 

Normally Open (NO) and two Normally Closed (NC) contacts. TABLE 1 shows the 

connection states of the switches when the push button is activated or deactivated. The 

state ON of a switch means that the two nodes of that switch are connected and OFF 

means those two nodes are disconnected [22]. 
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TABLE 1 

SWITCHES AND MANUAL PUSH BUTTON 

Connections Power Status (When Push 

Button Is Activated) 

Power Status (When Push 

Button Is Deactivated) 

13 & 14 (NO) ON OFF 

23 & 24 (NO) ON OFF 

31 & 32 (NC) OFF ON 

41 & 42 (NC) OFF ON 

 

Instead of using push buttons, electric relays are used in the electric switch box to 

control the connection states of the switches. Each relay controls four pairs of NO and 

NC switches. TABLE 2 shows the connection states of the switches when the relay 

switch is activated or deactivated [6]. 

 

TABLE 2 

SWITCHES AND ELECTRICAL RELAY 

Connections Electrical Relay Power 

Status When Activated 

Electrical Relay Power Status 

When Deactivated 

12 & 11(NC) OFF ON 

22 & 21(NC) OFF ON 

32 & 31(NC) OFF ON 

42 & 41(NC) OFF ON 

14 & 11(NO) ON OFF 

24 & 21(NO) ON OFF 

34 & 31(NO) ON OFF 

43 & 41(NO) ON OFF 

 

The air switch is also called directional control valve; it determines which part of 

the system the air flow enters. It is activated by pressing the green button manually. The 
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button will stay down until it is pressed again, then it will retract to its resting position 

with the help of a spring. The air switch is useful when the user wants the system to be 

controlled manually instead of with sensors and other types of initializers. An air switch 

is illustrated in Fig. 6. 

 

 

Fig. 6.  Air Switch in Pneumatic Lab. 

 

Different than the directional control valves with manual switches, solenoid 

control valves are activated or deactivated by using electrical signals. The solenoid slots, 

which are black connectors in Fig. 7, are where the air pipe and pneumatic systems 

connect. After receiving a signal from a PLC or hardwired system, the valve will be 

activated and release the air into another part of the equipment. The major difference 

between 3/2 solenoid control valve and 5/2 solenoid control valve is the number of slots 

on the equipment. The difference between solenoid one sided control valve and solenoid 

double sided control valve is that solenoid one sided control valve has a spring inside, 

which can put it back in resting position after the electrical signal ends. Fig. 7 shows the 

physical components of the solenoid control valve. 



   

 

18 

  

(a) (b) 

Fig. 7.  Solenoid Control Valve in Pneumatic Lab. (a) 5/2 Solenoid Control Valve. (b) 3/2 

Solenoid (One Sided) Control Valve. 

 

Acting cylinder is also named actuator. There are two types of actuators used in 

high pressure systems. The first is a single-acting cylinder. This type of actuator can be 

activated by the air being released into its entrance port, which is on the top of the 

housing of the cylinder. When the air flow stops, the cylinder will move back to its 

resting position due to an embedded spring. The other type is a double-acting cylinder. 

Unlike the single-acting cylinder, the double-acting cylinder only retracts to its original 

position if there is a signal of air entering through another port. Fig. 8 shows two acting 

cylinders. 
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(a) (b) 

Fig. 8.  Acting Cylinders in Pneumatic Lab. (a) Double Cylinder. (b) Single Cylinder. 

 

The air supply device accelerates the air speed by using a high-pressure pump and 

channeling it through a hose, which sends the air to a pneumatic system. Fig. 9 shows the 

air supply. 

 

 

Fig. 9.  Air Supply in Pneumatic Lab. 
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Air dividers can be used to connect the air compressor to various valves and 

actuators in the system. The only way to control which slot the air exits out is using a 

hose to connect with that slot. Fig. 10 shows an air divider. 

 

 

Fig. 10.  Air Divider in Pneumatic Lab. 
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CHAPTER 3 

PREVIOUS IMPLEMENTATION 

Before Virtual Lab was developed at Old Dominion University, one of the biggest 

challenges in laboratory-related classes in distance learning programs was to provide 

hands-on lab experience to those students enrolled in distance learning courses. Thus, on-

campus students have more opportunities to access lab equipment and obtain practical lab 

experience than those students in distance learning programs. To address this problem, 

the first version of Virtual Lab was designed and developed for wiring labs in an 

automation and control course.  

The main design goal of Virtual Lab was to provide a virtual laboratory 

environment that is intuitive, interactive, and effective for both learning and teaching 

PLC wiring. Fig. 11 shows a screen capture of the first version Virtual Lab. All three 

electrical components were created in 3D using CAD software. Furthermore, the Power 

Supply Box, Manual Switch Box, and Electrical Switch Box are located at the top, 

bottom right, and bottom left respectively. Six button icons were also created for various 

additional functions. From top to bottom, the first icon is called “Cable Color Selection,” 

and it enables students to select different colors for the wiring cables used in the lab. For 

example, students can choose red for the cables connected from the +24V power source 

and blue for the cables connected to the 0V power source. The second icon is “File 

Save,” and students can use it to save their finished/unfinished project in a binary format 

file that can be submitted to their instructors or can be opened later to review or modify 

their unfinished work. The third icon is “File Open.” The instructor can use this icon to 

open and review a file submitted by students for grading purposes. A student can also use 
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this icon to review or continue working on one unfinished project. The fourth icon is 

“Volume Control,” and students can use this function to control the sound for the node 

clicking sound or a warning signal, which occurs when a short circuit happens. Next icon 

is “Help,” and after clicking this icon, several PLC programming examples are shown for 

new users. The last icon is “System Close,” and it allows users to close the software 

safely [6]. Fig. 11 shows the functionality of each icon in Virtual Lab. 

 

 

Fig. 11.  Functionality of Each Icon in Virtual Lab. 

 

Virtual Lab includes both mechanical and electronical controllers that can be 

wired to form specific control logic. Virtual Lab was also placed on the website so that 

students can access the software through PCs, tablets, and smartphones. Fig. 12 shows 

Virtual Lab running on a Windows 8 tablet. 
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Fig. 12.  Virtual Lab running on a Windows 8 Tablet [12]. 

 

Virtual Lab was first used in the course MET 370/386 Automation and Control in 

Fall 2013 in an on-campus class, as there was no distance learning class scheduled at that 

time. TABLE 3 shows the results of survey questions. 
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TABLE 3 

RESULTS FOR SURVEY QUESTIONS 

5: strongly agree; 4: moderately agree; 3: agree; 2: partially agree; 1: disagree 

completely 

Survey Questions Results 

1. The software helps me gain the knowledge in logic-gate wiring. 4.41 

2. The software saves me time to learn logic-gate wiring and improves 

my actual wiring speed significantly. 
3.89 

3.   The software functions almost the same as the real equipment. 4.00 

4. The software is user friendly. 3.76 

5.    I would highly recommend the software when no real equipment is 

available. 
4.35 

6. It would be helpful to have a version of the software running on tablet 

computers, such as iPad, Surface, etc. 
4.18 

7. I would like to have similar software for other labs. 4.35 

8. I hope the software can handle more complex logic and contain more 

instruments. 
4.06 

9. I hope the software can run on Apple computers. 4.00 

 

From Table 3, the preliminary results showed that the prototype Virtual Lab was 

highly effective and has great potential for other labs and courses. However, the logic 

engine of the prototype could only process a fixed number of three lab components at the 

same time. Students may not have had enough exposure to simulated laboratories because 

of the limited number of lab components. To solve this problem, a second version of 

Virtual Lab was designed and developed. Unlike the first version, the primary design 

goal of the second Virtual Lab was to provide a multi-component logic system. The 

desired functionalities of the second version Virtual Lab are illustrated in the functional 

diagram in Fig. 13. 
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Fig. 13.  Functional Diagram of Second Version of Virtual Lab [12]. 

 

 In Fig. 13, Component Library contains all the models of the components used in 

Virtual Lab. There are three components at the top level: Power Box, Manual Switch 

Box, and Electrical Relay Switch Box. Components at the top level also include small 

sub-components. For example, one Power Supply Box contains one switch, one LED 

light and two connectors. The biggest difference between the first version of Virtual Lab 

and the second version of Virtual Lab is that a 2D Schematic Capture for Component 

Layout was added to the second version to enable users to place 2D symbols of the 

components in the 2D schematic capture to have a clear view of the overall lab setup. 

Additionally, the positions of 2D symbols were used to set the positions of the 3D 

components.  

Circuit Logic Simulation Engine is the underlying simulation engine used to 

simulate the circuit logic. It can automatically update all the voltages of all connected 
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nodes (connectors) once the user hits the switch on the Power Supply Box. File 

Operations provide common file operations (New, Open, Save, and Save as) to the user. 

It has its own proprietary file format as well. Sound Effects offers a variety of aural 

effects for different user operations. Lastly, Graphical User Interface (GUI) provides a 

comprehensive graphical user interface (GUI), which contains menu systems, context 

menus, toolbars, and status bars. Virtual Lab also supports a large variety of user 

interactions such as zoom, pan, and object move.  

The software architecture of the second version Virtual Lab was developed for 

future revisions and expansions, and it is illustrated in Fig. 14. 

 

 

Fig. 14.  Virtual Lab Version 1 and 2 Software Architecture [12]. 

 

Both Virtual Lab versions were built upon two major software libraries: Microsoft 

.NET Framework and Microsoft XNA Framework. The .NET framework [12] primarily 

runs on Microsoft Windows platforms and contains a large class library called 
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Framework Class Library (FCL). It also includes a common runtime engine, which is 

shared by all .NET-aware languages, and a base class library that provides 

comprehensive functionalities and services. The common runtime engine that is known as 

Common Language Runtime (CLR) is an application virtual machine that provides a 

wide range of services such as security, exception handling, and memory management. 

Microsoft .NET Framework is constituted by both FCL and CLR.  

XNA Framework [23] is a freeware set of tools with a managed runtime 

environment provided by Microsoft for game development. It is based on the Microsoft 

.NET Framework, and can be used on various platforms, such as Windows Devices and 

Xbox 360. The XNA Framework manages the basics of game development and allows 

game developers to focus more on content and the high-level gaming experience. While 

game developers can use both Microsoft XNA Framework and the Microsoft .NET 

Framework, XNA framework is used for game-specific tasks, such as graphics rendering 

and managing input, and .NET framework is used for more general programming tasks.  

Microsoft Windows Forms is a Graphical User Interface (GUI) library included as 

a part of Microsoft .NET Framework, which provides a large collection of GUI items. 

The GUI of the second version Virtual Lab was built upon Microsoft Windows Forms, 

instead of designing GUI elements from scratch. Although building custom GUIs can 

give an application a more unique feel and style, a small development team like the one 

involved in this project would be very challenged to develop custom GUIs due to the 

scale and complexity of the task. 
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Fig. 15 shows screenshots of the 2D schematic and the interactive 3D virtual 

wiring lab with its 3D interactive wiring environment. One advantage of second version 

Virtual Lab is that it increases the availability of equipment resources. 

 

 

 

Fig. 15.  Screen Capture of the 2D Schematic and 3D Interactive Wiring Environment in 

Second Version Virtual Lab [24]. 
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The development of the first version of Virtual Lab started in the summer of 2013 

and the first prototype was utilized in the course MET 370/386 at Old Dominion 

University in the fall of 2013. Since the overall feedback from students in MET 370/386 

was very positive, the software was under active development based on the student 

feedback to include new features, such as pneumatic components. 

Continuing development from the second version of Virtual Lab took a new 

direction, because the XNA toolset was no longer being actively developed after January 

31st, 2013, and was not supported by the new "Metro interface" layers of Windows 8 or 

by the Windows RT platform [12]. Therefore, to continue working on the second version 

of Virtual Lab and to update features and functionality to meet the evolving needs of 

MET 370/386, the previous unfinished project was re-developed using Unity game 

engine in this thesis. 
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CHAPTER 4 

METHODOLOGY 

This section introduces the methodology of building Virtual Lab with a specific 

emphasis on the development workflow. It begins with research overview and objectives 

and then introduces the overall design and application architecture of Virtual Lab. Lastly, 

it describes the methodologies used in the application development. 

 

4.1 Overview and Objectives 

Building 3D virtual laboratories contains 5 steps: 1) observing the physical lab 

settings and understanding the lab procedure, (2) creating 3D models for different parts of 

the physical laboratory setup via 3D modeling software, (3) importing models and 

textures to Unity 3D and making them interactive by attaching animations and scripts, (4) 

implementing the software and comparing the output with real world physical equipment, 

(5) analyzing the results of students using the virtual lab. The overall objective of this 

research project is to develop a virtual lab that includes the same functionalities as the 

physical lab, such as making wire connections, pressing buttons, placing and rotating 

objects, outputting experiment results, etc. Virtual Lab should provide users with an 

intuitive and engaging virtual environment to study programmable logic control using 

mechanical, electrical, and pneumatic components.  

 

4.2 Virtual Lab Functional Design 

The primary design goal of Virtual Lab is to provide a virtual laboratory 

environment that is intuitive, and effective for both learning and teaching programmable 
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logic control using mechanical, electrical, and pneumatic components. The desired 

functionalities of Virtual Lab are illustrated in the functional diagram shown in Fig. 16.  

 

 

Fig. 16.  Functional Diagram of Virtual Lab. 

 

 The details of the functional blocks are explained as follows. 

• Component Library contains all the prefabs of the lab models that are used 

in the application. It contains three circuit components (power supply box, 

manual switch box, and electrical switch box), and nine pneumatic 

components (air source, single-acting cylinder, double-acting cylinder, air 

divider, air switch, 3/2 pneumatic valve, 5/2 solenoid control valve, 3/2 

solenoid (one sided) control valve, and 5/2 solenoid (one sided) control 

solenoid). Moreover, each component contains other sub-components. For 

example, the Electric Switch Box contains electric switches, electric nodes 
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(connectors), four LED lights, and power lines. Also, the electric switch in the 

Electric Switch Box contains two terminals. Finally, the application contains 

two types of models: one is a graphical model that gives a visual 

representation of the component, and the other is a behavior model that 

contains various behaviors of the component. 

• Circuit and Pneumatic Logic Simulation Engine is the backbone simulation 

system to model and simulate the control electro-pneumatic logic. The 

simulation system stores and updates the connection of all the nodes (or 

terminals) based on the current state of the electro-pneumatic components, 

sets their voltage or air force correspondingly, and updates the status of the 

visual outputs represented by LEDs or piston rods. 

• Dynamic Wiring Mesh Generator allows users to use the mouse to create 

virtual wires for connecting various electric nodes of different lab 

components. Although Virtual Lab has two different types of wires, electric 

wires and pneumatic wires, both types use same mesh constructed algorithm, 

and the only differences between them are size and material. 

• User View Controlling System provides a 180° spherical view for users. It 

allows users to use the mouse to perform rotation, zoom, and pan actions of 

the camera in the application. 

• File Operation in the application has its own proprietary file format to store 

lab configuration and wire connection data. Common file operations include 

New, Open, and Save functions. 
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• Sound Effects are also included in the application, and they are used to 

provide important aural cues that improve user experience and educational 

effectiveness.  

• GUI Menu System and Event Holder provides a comprehensive graphical 

user interface that contains a menu system and toolbars. Furthermore, it 

monitors and manages the simulation events in the application. 

 

4.3 Application Architecture 

The application architecture for Virtual Lab was developed incorporating the 

desired features of Virtual Lab discussed in Section 4.2. It allows rapid application 

development (RAD) and facilitates future revisions and expansions. The application was 

developed using object-oriented programming with C# programming language, and the 

current implementation contains more than 30 classes and types. The application 

architecture is shown in Fig. 17. 
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Fig. 17.  Virtual Lab Application Architecture. 

 

The major application components utilized by or developed for Virtual Lab are 

shown in Fig. 17. The details of Microsoft .NET Frame will not be presented here 

because it has been discussed on Page 26, Section 3. The details of the remaining 

components are described as follows. 

• Unity 3D Platform is a cross-platform game engine developed by Unity 

Technologies. Since Unity was announced at Apple’s Worldwide Developers 

Conference in 2005, it has been extended to 21 hardware platforms. With an 

emphasis on portability, it targets a large amount of application program 

interfaces (APIs), such as Direct3D on Windows and Xbox 360; OpenGL on Mac, 

Linux, and Windows; OpenGL ES on Android and iOS; and proprietary APIs on 

video game consoles. The advantages of using Unity 3D include providing 

specification of texture compression and resolution settings for various game-

engine-supported platforms and providing support for bump mapping, reflection 
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mapping, parallax mapping, screen space ambient occlusion (SSAO), dynamic 

shadows using shadow maps, render-to-texture and full-screen post-processing 

effects. Additionally, the graphics engine's platform diversity within Unity 3D 

provides a shader with multiple variants and a declarative fallback specification, 

allowing Unity to detect the best variant for the current video hardware and, if 

none are compatible, to revert to an alternative shader that may sacrifice features 

for performance. Also, in a Unity project, developers have control over delivery 

to various platforms, such as PCs, consoles, mobile devices and websites [24]. 

• Asset Management contains and manages all the digital assets used in Virtual 

Lab, including raw 3D models, 2D image textures, materials, modified prefabs, 

and sound effects. Unity 3D supports importing models from most popular 3D 

applications. Most of the 3D models are pre-processed into modified prefabs in 

order to be adapted to Virtual Lab scenario and facilitate user operations. 

Moreover, this thesis developed a custom mesh generator in Virtual Lab for 

generating dynamic cube meshes. 

• Component Library contains both graphical models and behavior models for the 

components. Models are represented in various dimensions: 2D symbols in the 

main menu are shown for equipment, while connectors (or terminals), switches, 

electric and pneumatic wires, circuit equipment and pneumatic equipment are 

shown in the 3D virtual environment. Many C# classes were utilized to represent 

and manage different components. Furthermore, software reuse techniques such 

as inheritance and containment have been heavily utilized in building the 

component library. 
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• Dynamic Mesh Generator contains a vital component in Virtual Lab, which 

creates a dynamic tube-shaped mesh for connecting different connectors on the 

equipment in Virtual Lab. There are two types of geometrical objects used to 

display the wires. After the user selects the two connectors (nodes) from the 

equipment, an adjustable curve is formed and rendered by the movement of the 

cursor. Different than the previous versions of Virtual Lab, this adjustable curve is 

a simple polyline generated using Bézier curves instead of Hermite curves. If the 

user clicks the mouse left button, the wire location is finalized and becomes a 

thick wire object.  The thick wire object is represented by a triangle mesh that is 

generated by extruding the Bézier curve from the center. Additionally, the current 

dynamic geometry generation for mesh generator is implemented on Central 

Processing Units (CPU). 

• Circuit and Pneumatic Simulation Logic Engine provides the core simulation 

logic for the programmable logic controller in Virtual Lab. A connector (node) is 

the most fundamental component in the circuit and pneumatic simulation logic 

engine. Each node includes three states based on its current voltage: Positive, 

Ground, and None. The topology of the electro-pneumatic connection is 

determined and updated based on the generated wires and the status of the 

switches. The nodes states are then updated according to the current electro-

pneumatic topology. The final simulation outputs in the form of LED lights, and 

pistons are updated based on the states of nodes. 

• Graphical User Interface and Interactions contains a Unity 3D User Interface 

(UI) [25] system which allows developers to create user interface quickly and 
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intuitively. It contains various UI elements including: UI button, UI Canvas, UI 

image, etc. The most important part in UI system is Canvas, which is the area that 

includes all the UI elements. The Canvas is a Game Object with a Canvas 

component on it, and all UI elements are children of this Canvas. Canvas has 

three render mode settings: Screen Space-Overlay, Screen Space-Camera, and 

World Space. The render mode is used to determine if the user interface will be 

rendered in screen space or world space. In addition, an event system will also be 

attached to the Hierarchy once a Canvas is setup. The primary functionality of the 

event system is to send events to objects in the application based on user inputs, 

such as keyboard, mouse, touch, and custom input. The Event System consists of 

a few components that work in conjunction to send events. 
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CHAPTER 5 

IMPLEMENTATION 

This section describes the implementation of Virtual Lab. It begins with the 

selection of the development platform used for Virtual Lab, followed by 3D modeling of 

the components in Virtual Lab.  It then presents the design of the simulation logic engine. 

Lastly, it describes the methodologies used in virtual wires generation. 

 

5.1 Development Platform 

When choosing the development platform for Virtual Lab, the primary factor for 

not choosing 2D graphics tools is that they cannot provide users a realistic three-

dimensional environment and equipment.  Autodesk MAYA and Autodesk CAD are two 

popular computer programs for 3D modeling, and they are used to create, animate and 

implement 3D models in immersive environments. Autodesk MAYA is a powerful 

software tool widely used by top feature film animation studios and game development 

companies. It offers 3D modeling, animation, simulation, and rendering tools on an 

extendable production platform. CAD, also called Computer-Aided Design, utilizes 

computer technology for design and design documentation. Autodesk CAD was the first 

CAD program in history. It is extensively used in architecture and structural engineering 

fields. It allows engineers to visualize their designed concepts through visual renderings 

and to simulate how their designed models will perform in the physical world. 

Unity is the one of the most widely used game engines in the video game 

industry. It provides many features and an intuitive and extensive interface. Unity 

supports assets from major 3D modeling tools, and all the 3D models raw files from 
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Autodesk MAYA, Blender, and 3D MAX can be directly imported to Unity [26]. 

Moreover, most of Unity’s API and project structure is identical for all supported 

platforms, and in some cases a project can simply be rebuilt to run on different devices.  

As previously mentioned, 3D models generated by Autodesk are used to create a 

virtual lab environment in Unity. Script languages must be utilized to interact with 3D 

models, and these scripts can be used to store and manage the various types of data 

within the models. Developers can access different parts of 3D models and easily control 

them via scripts. When developing M&S applications in Unity, scenes are containers for 

all types of objects that are essential to the application. In each scene, programmers can 

design and construct their specific level/section of the application separately. Virtual Lab 

contains three scenes in total: Start Scene (Menu), Main Scene (Equipment Operation) 

and Side Scene (Equipment Inspection). Start Scene acts as a portal and presents users 

with various menu options. Main Scene allows users to interact with different circuit and 

pneumatic equipment models and to perform virtual experiments. Additional technical 

information about each piece of equipment in Virtual Lab is included in the Side Scene. 

 

5.2 3D Modeling of Virtual Lab Components 

In computer graphics, 3D modeling is the process of developing a mathematical 

representation of a three-dimensional surface of an object through specialized software. 

3D models can be created by connecting a collection of points in 3D space via various 

geometric structures such as triangles, lines, curved surfaces, etc. The two main 

approaches to 3D modeling are Polygon modeling and NURBS. Polygonal modeling uses 

polygons to represent the surfaces of 3D models. A group of polygons that are connected 
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by shared vertices is referred to as a mesh. A triangular mesh is a surface object 

consisting of arranged triangles, each of which is defined by three vertices. Multiple 

triangles can generate more complex polygons, and a group of polygons is referred to as 

an element. A single polygon within the element is called a face. To display a mesh in 

three-dimensional space, the mesh cannot pierce itself. For instance, an edge, which is 

two vertices connected by a straight line, cannot pass through a polygon [26]. The main 

advantage of polygonal modeling method is that the representation speed is faster 

compared with other modeling approaches. However, polygonal modeling is incapable of 

accurately representing curves and curved surfaces. 

 

  

Fig. 18.  Polygon & NURBS Modeling in MAYA. 

 

Non-uniform Rational Basis Spline (NURBS) [27] is another 3D modeling 

technique commonly used in computer graphics. NURBS modeling provides smoother 

and more mathematically precise curves and curved surfaces. Thus, it is mainly used in 

automotive design and industrial parts design. Fig. 18 shows the polygon and NURBS 

modeling in MAYA. The key benefit of using NURBS is that it uses a more precise 

mathematical calculation technique to smoothly and accurately display a curved surface. 
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Most pneumatic equipment is created in Autodesk CAD using NURBS to keep the 

original data exact and complete, without any loss of definition. However, Unity does not 

directly support the following 3D modeling packages: NURBS, Non-Uniform Rational 

Mesh Smooth (NURMS), and subdivision surfaces. Therefore, these models must be 

converted into polygons before importation to Unity. Autodesk MAYA has the capability 

to convert a NURBS surface to polygon mesh, and the process of converting NURBS to 

polygons is to select the NURBS surface from the 3D model and choose Modify > 

Convert > NURBS to Polygons [28]. 

In some special situations, converting a NURBS surface to a polygon mesh can 

result in some polygon normals of the converted mesh facing wrong directions. To solve 

this problem in Autodesk MAYA, Reverse function was used to reverse the face normal 

on a polygon face and switched the “front” and “back” facing direction of the polygon 

normals. The green lines in the following Fig. 19 shows the directions of polygon 

normals that will be rendered in the 3D Space.  

 

 

Fig. 19.  Reverse Polygon Normals. 
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Table 4 shows the physical equipment in the lab and the corresponding 3D 

models generated in Maya. 

 

TABLE 4 

TABLE OF 3D MODELS AND PHYSICAL EQUIPMENT COMPARISON 

Physical Equipment 3D Virtual Model 
Equipment 

Name 

  

Power 

Supply Box 

  

Manual 

Switch Box 

and 

Electrical 

Relay Switch 

Box 

  

Air Supply 

  

Single-

Acting 

Cylinder 
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Double-

Acting 

Cylinder 

  

Air Divider 

Physical Component Not Available 

 

3/2 

Directional 

Control 

Valve 

  

3/2 Solenoid 

(One Sided) 

Control 

Valve 

Physical Component Not Available 

 

5/2 Solenoid 

(One Sided) 

Control 

Solenoid 

Valve 
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5/2 Solenoid 

Control 

Valve 

 

5.3 Simulation Logic Engine Design 

Since there is a large number of components in Virtual Lab, creating a Simulation 

Logic Engine (SLE) to hold all the application objects is essential. The purpose of 

creating a SLE is fourfold. The first goal is to store and manage all types of data for the 

various virtual objects. The second goal is to generate realistic virtual simulation logic for 

the application. The third goal is to monitor various simulation events and modify them if 

necessary. The fourth goal is to track and edit specific data as required. 

There are two types of simulation in Virtual Lab: electric and pneumatic control 

simulation. In the physical world, an electric circuit [29] is the combination of individual 

electric components, such as resistors, switches, inductors, transistors, and capacitors,  

which are connected by conductive wires that allow an electric current to flow. This 

combination of components and wires can perform various operations, like amplifying 

signals, transferring data, and performing computations. Compared with the physical 

experiment, the functionality of each equipment in Virtual Lab is the same. Various data 

structures are used to store various data to create realistic physical reactions, and 

algorithms are utilized to perform calculations, data processing, and automated actions. 

In an electromagnetic field [30], an electric charge is the basic property of 

elementary particles of matter, which causes all electric and magnetic forces and 

interactions. Electric charges may be positive or negative, and an electric current occurs 
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when positive and negative charges are placed on the opposite ends of an object. Every 

electric component should be given a customized data structure that includes its current 

voltage and other essential information as a property, and data of each electric component 

are used to determine if any simulated reaction should occur. For example, a LED light 

contains two electrical parts A and B, and both A and B are given a property to store their 

current voltage, etc. An illustration of this is shown in Fig. 20. 

 

 

Fig. 20.  Illustration for Circuit Design. 

 

To determine if an LED is activated, the combination of A and B must include 

one positive and one negative charge. If this condition is satisfied, then the electric 

current may virtually pass through the LED. The pseudocode for the LED is shown in 

Fig. 21: 
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function LED Switch (Time timer) 

 A.Voltage ← Voltage.None  

 B.Voltage ← Voltage.None  

 if Circuit is turned on 

  UpdateVoltage(A and B) 

  if A.Voltage == Voltage.Possitive && B.Voltage == 

            Voltage.Negative then 

   LED.Switch ← On 

  else if A.Voltage == Voltage.Negative && B.Voltage ==  

            Voltage.Positive then 

   LED.Switch ← On 

  else 

   LED.Switch ← Off 

  end if 

 end if 

 

Fig. 21.  Pseudocode for the LED. 

 

In addition, users may encounter short circuits during the experiment. A short 

circuit [31] is an electrical circuit that allows a current to go through an unintended path 

with almost no electrical resistance. This results in an excessive electric current and 

potentially causes circuit damage, overheating, or even fire and explosion. When a short 

circuit occurs, two nodes of this electrical circuit must be abnormally connected, and the 

voltages of each intended to be different.  

As previously mentioned, every electric component is given a customized data 

structure that includes its current voltage and other essential information as a property. A 

short circuit will happen when a connection between two nodes forces them to have the 

same voltage. An illustration of this is shown in Fig. 22 as follows: 
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Fig. 22.  Illustration of a Short Circuit. 

 

From the figure above, node A is positive and node B is negative, and both force 

each other to change their voltages to the same value. If this condition is satisfied, then a 

short circuit occurs. 

Pneumatic systems are used extensively in industrial areas and are commonly 

powered by compressed air or other gases [32]. A pneumatic system can be controlled 

through selected solenoid valves, and it provides a lower cost, more flexible, safer 

alternative to electric motors and actuators. With pneumatics, air is usually pumped into a 

receiver using a compressor and then the receiver holds a large volume of compressed air 

to be used by the pneumatic system as needed. Pneumatic systems also use a variety of 

valves for controlling pressure, direction, and speed of actuators.  

As mentioned in Section 4.3.10, every electric component is given a customized 

data structure that includes its current voltage and other essential information as a 

property. It is essential to apply the same data structure method to every pneumatic unit.  

However, unlike the circuit simulation, there is no electric charge in any pneumatic unit. 
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Therefore, to simulate the air flow passing through various pneumatic components in 

Virtual Lab, the property of voltage in each pneumatic unit was replaced with the 

property of air pressure. Compared with the property of voltage which has three states, 

the property of air pressure has only two states: positive and none. For example, a 

double-acting cylinder contains two air inlets A and B, and both A and B are given a 

property to store their air pressure states, etc. An illustration of this is shown in Fig. 23. 

 

 

Fig. 23.  Air Force States in Double-acting Cylinder. 

 

The moving direction of a piston rod is determined by the status of both air inlet 

A and B. When air goes into air inlet A, the status of air inlet A will be become positive. 

The status of air inlet B remains none if there is no air force going into B. The logic of 

moving direction is shown below: 

 

𝑀𝑜𝑣𝑖𝑛𝑔𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = {
𝑚𝑜𝑣𝑖𝑛𝑔 𝑙𝑒𝑓𝑡

𝑛𝑜 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡
𝑚𝑜𝑣𝑖𝑛𝑔 𝑟𝑖𝑔ℎ𝑡

(𝐴. 𝑠𝑡𝑎𝑡𝑒 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝐵. 𝑠𝑡𝑎𝑡𝑒 = 𝑛𝑜𝑛𝑒)
(𝐴. 𝑠𝑡𝑎𝑡𝑒 = 𝐵. 𝑠𝑡𝑎𝑡𝑒)

(𝐵. 𝑠𝑡𝑎𝑡𝑒 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝐴. 𝑠𝑡𝑎𝑡𝑒 = 𝑛𝑜𝑛𝑒)
. (1) 

 



   

 

49 

The electro-pneumatic system is controlled by an electric current and operated by 

opening and closing valves. In many electro-pneumatic systems, the devices being 

controlled are electrically-actuated directional control valves. These control valves supply 

air pressure to devices such as double-acting cylinders that will extend or retract a rod 

when pressure is applied or removed. Built-in solenoids are used to open and close these 

valves and are activated with AC or DC voltage signals. For example, a solenoid contains 

two air outlets A and B, and an air inlet C. A will be connected to C if left valve is on, 

and B will be connected to C if right valve is on. However, air can only go from air inlet 

C to air outlets A and B, and the process cannot be reversed. The illustration is shown in 

Fig. 24. 

 

 

Fig. 24.  The Functionality of a Solenoid. 
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The left valve is on when the combination of connectors in the left side contain 

one positive and one negative charge. In that case, air inlet C is connected to air outlet A, 

and air can go through C to A. 

After students connect various components in Virtual Lab, this application can 

simulate the PLCs accurately. The fundamental data structure behind this simulation is a 

graph data structure. In mathematics, a graph is a pictorial representation of a set of 

objects where some pairs of objects are connected by links. The interconnected objects 

are represented by points termed as vertices, and the links that connect the vertices are 

called edges. Furthermore, in computer science, a mathematical graph is referred to as 

Graph Data Structure [33], and it can be represented by two elements: an array of vertices 

and an array of edges. Each node of the graph is represented as a vertex. Edge represents 

a path between two vertices or a line between two vertices. There are different types of 

edges in Graph Data Structure. One is directed versus undirected edges, and another one 

is weighted versus unweighted edges. By default, an edge represents the connection 

between one node and another, and this connection is assumed to be bidirectional. That 

is, if there exists an edge between nodes A and B, it is assumed that one can travel from 

A to B and from B to A. Graphs with bidirectional edges are said to be undirected graphs, 

because there is no implicit direction in their edges. In some cases, though, an edge might 

infer a one-way connection from one node to another. For example, the earth is 

illuminated by the sun light, the travel path of the sun light would imply that the edge 

between the earth and the sun would be unidirectional. That is, graphs with unidirectional 

edges are said to be directed graphs. Furthermore, because graphs represent a collection 

of objects and their relationship among these objects, it can be important to assign a value 
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between the connection from one node to another, in the form of graphs with weighted 

edges. For example, if one considers the map of the United States, the value of any path 

from one city to another is the sum of the value of the edges along the path. The shortest 

path, then, would be the path with the least value. Lastly, two vertices are termed as 

adjacent if they are connected to each other through an edge. For example, B is adjacent 

to A, and E is adjacent to A, etc.  

The same method has been utilized in circuit simulation and pneumatic simulation 

to save and update all the nodes (connectors) that users have connected. Once all the 

nodes have been selected, the information of each node and its adjacent nodes is saved. In 

circuit simulation, when users press the power button in the simulation environment, the 

update function starts to run. The first update function is to first check the number of 

equipment that are inside the virtual circuit. Then it will locate all the power nodes that 

are connected in the power box and update the red nodes’ current voltages to positive and 

the blue nodes’ current voltages to ground. The second step is to update all the adjacent 

nodes of the power nodes. Each node stores a list of its neighbor nodes so that after all 

the power nodes are updated, the first neighbor node of each power node will be updated 

as well. The update function in each node contains a recursive implementation of a 

Depth-first search (DFS) algorithm which causes a selecting node to start updating itself 

first and then explore its neighbor nodes as far as possible along each branch before 

backtracking to the previous node. The example of the updating process is shown in Fig. 

25: 
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Fig. 25.  The Example of Update Process. 

 

From Fig. 25, it shows that node A of the power box connects with node C of the 

manual switch box, node C and node D are the two sides of the LED light. Node B 

connects with node D.  After the user presses the power button, the current voltage of 

node A will be updated to positive and the current voltage of node B will become ground. 

Because node A and node B are also connecting with other neighbor nodes, the voltages 

of their neighbor nodes will be updated as well. In this example, node C connects with 

node A, so its voltage will be updated to positive. The same case applies to node D, its 

voltage will be changed to ground. After finishing updating the circuit logic, the LED 

will be activated due to its two nodes including one positive and one negative charge. The 

same principle is being applied to the pneumatic simulation, but the only difference 

between these two simulations is that the voltage states of the pneumatic node does not 

contain ground. In addition, there is no short circuit scenario in the pneumatic system. 
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5.4 Virtual Wire Generation 

In the physical world, wires [41] are flexible cords commonly used to connect 

various equipment and carry electricity or telecommunication signals. In Virtual Lab, 

wires act as conduits for data transmission and represent a link between two virtual 

connectors of the lab equipment. Virtual Lab enables users to draw customized wires in 

the simulated environment by configuring the coordinates of the two selected virtual 

connectors and the current mouse position. 

Before constructing virtual wires in Virtual Lab, a Mesh class is created to 

generate customized mesh. Within the Mesh class, a single array is used to store all the 

vertices of a mesh, and each triangle is specified by using three integers that correspond 

to indices of the vertex array. The triangles are also put together into a single array of 

integers, and each of them is specified as triples of integers in that array. The first three 

elements in the array define the first triangle, the next three define the second triangle, 

and so on. Moreover, the sequence of the corner vertices of each triangle should be 

arranged in a clockwise sequence so that the visible outer surface is correctly displayed. 

In addition, adding normals to a mesh that is generated through the Mesh class can aid in 

correctly shading the mesh. The illustration of mesh generation workflow is shown in 

Fig. 26 below: 

 

 

Fig. 26.  Mesh Generation Workflow. 
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Creating a customized tube-shaped mesh object in Unity 3D engine requires all 

the vertices of that object in the 3D space. After the application system obtains the 

essential information, a Bezier curve mesh will be displayed at runtime. A Bezier curve is 

a parametric curve frequently used in computer graphics and related fields, and it is 

defined by a group of control points through P0 to Pn, where n is the order number and P0 

and Pn are the start point and end point of the curve. Thus, the intermediate control points 

that determine the curvature of the wire generally do not lie on the curve itself. Users can 

adjust the curvature of the Bezier curve by changing the position of its intermediate 

points. The illustration is shown in Fig. 27 as follows: 

 

 

Fig. 27.  Bezier Curve in the Runtime Application. 

 

In order to create a high-quality Bezier curve, a type of Bezier curve called a 

quadratic Bezier curve [34, 35] can be utilized to calculate all vertices on the curve. A 

Bezier Curve 
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quadratic Bezier curve is created by a function B(t), which contains three given points: 

P0, P1, and P2. A quadratic Bezier curve can be divided into a large number of segments 

to generate a life-like, high quality wire rendering, 

 

 𝐵(𝑡) = (1 − 𝑡)[(1 − 𝑡)𝑃0 + 𝑡𝑃1] + 𝑡[𝑃1(1 − 𝑡) + 𝑡𝑃2], 0 ≤ 𝑡 ≤ 1. (2) 

 

Based on the equation above, P0 and P2 are the coordinates of the end points, and 

P1 is the coordinate of intermediate control point. As t increases from 0 to 1, the curve 

departs from P0 in the direction of P1. Parameter t from the function B(t) can be used to 

determine the coordinates of all the segment points. For instance, assuming a Bezier 

curve is separated into n segments, and the coordinates of P0, P1 and P2 are gained from 

the application system, the coordinate of Pi can be calculated by the equation below: 

 

 

𝑃𝑖 = (1 −
𝑖 − 1

𝑛
) [(1 −

𝑖 − 1

𝑛
) 𝑃0 +

𝑖 − 1

𝑛
𝑃1] +

𝑖 − 1

𝑛
[𝑃1 (1 −

𝑖 − 1

𝑛
)

+
𝑖 − 1

𝑛
𝑃2], 0 ≤

𝑖 − 1

𝑛
≤ 1. 

(3) 

 

To compute the vertices around Pi, the vectors between three closed points must 

be calculated. As indicated by Fig. 28 below, V1 can be calculated from Pi-1 and Pi, while 

V2 can be calculated by Pi and Pi+1. T1 will be computed through V1 and V2. V3 is the 

cross product of V1 and V2. To increase the accuracy in determining side vertices’ 

coordinates, a new V4, which is perpendicular to V3 and T1, was also calculated as a cross 
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product of V3 and T1. With the given calculated values from V3 and V4, the positions of 

side vertices that circle around Pi can now be located. 

 

 

Fig. 28.  Coordinate for Side Vertex. 

 

V3 and V4 must be normalized before calculating the target vectors between Pi 

and the side vertices of Pi that are based on two given scalar values: R and α. R defines 

the radius of the circle around the Pi while α indicates the angle between V3 and the target 

vector. For instance, constructing a virtual circle in 3D space around a point Pi requires 

eight side vertices (named from SV0 to SV7). Similarly, the target vector between the 

target vertex and Pi is named from TV0 to TV7. The instructions are shown in Fig. 29. 
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Fig. 29.  Target Vectors Calculation. 

 

Once the system analyzes the results of all the target vectors, it will perform the 

final calculation (shown in Equation 4) for the actual coordinates of all the side vertices 

around Pi (illustrated in Fig. 30).  

  

 

Fig. 30.  Side Vertices Calculation. 
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𝑆𝑉𝑎 = 𝑃𝑖 + 𝑅 ∗ 𝑠𝑖𝑛(∝) ∗ 𝑉3 + 𝑅 ∗ 𝑐𝑜𝑠(∝) ∗ 𝑉4 

0 ≤ 𝑎 ≤ 7 

(4) 

 

Repeat the procedure above to generate a tube-shaped mesh, and the result of the 

wire object in Virtual Lab is shown in Fig. 31. 

 

 

Fig. 31.  Generated Wires in Unity 3D. 

 

5.5 User Interactions 

In the real lab, students are able to position and rotate equipment at desired 

locations. Therefore, a User View Controlling System is a new feature in Virtual Lab. It 

provides a 180° view to users, which they can manipulate and customize using the 

mouse. The user can use the mouse right click to perform rotation action and the mouse 

middle button to perform pan action. In addition, the mouse scroll wheel is used to 

perform zoom action. Since computer screen space is defined in pixels, the bottom-left of 



   

 

59 

the screen indicates (0, 0), while the right-top of the screen is (SceenPixelWidth, 

SceenPixelHeight). The third parameter z is the distance from the camera. However, the 

real coordinate for positioning the object in a 3D world is quite different from the camera 

view. The illustration is shown in Fig. 32. Unity [26] provides a function called 

ScreenToWorldPoint, which can transfer the mouse position from the screen space into 

the world space. 

 

 

Fig. 32.  Screen Space and 3D World Space. 

 

To determine if a specific virtual object is clicked by a user, there are two 

methods to highlight a selected object. The first method is to modify the color value from 

the material of the selected object (Fig. 33). The second method is to create and apply a 

special shader called Silhouette-Outlined [36] to the material of the selected object. 
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Fig. 33.  Color Value Modification. 

 

Modifying color value from the material to highlight the selected object is 

efficient when the object does not have multiple materials. Nevertheless, in Virtual Lab, 

many equipment models contain several materials to display various colors. The second 

method must be used to display an outlined effect on an object that contains multiple 

materials. Applying a customized Silhouette-Outlined shader can outline an object 

without changing all the color values of its materials. In addition, a variable timer in the 

script is required to create a glowing effect. The pseudocode of the algorithm is shown in 

Fig. 34. 

 



   

 

61 

function Glowing Effect (Time timer) 

 timeInterval ← 1.0  

 alpha ← 1.0  

 timer ← Time.deltaTime 

 if timer > timeInterval then 

timer ← timeInterval - timer 

  alpha ← alpha - timer / timeInterval 

 end if 

 if alpha <= 0 then  

alpha ← timer / timeInterval 

 else if alpha >= 1.0f then 

  alpha ← timer / timeInterval - alpha 

 end if 
 

Fig. 34.  Pseudocode for Glowing Effect. 

 

When considering multi-platform game development, Unity is one of the best 

game engines for developers. Most of Unity’s API and project structure are identical for 

all supported platforms and in some cases a project can simply be rebuilt to run on 

different devices. However, fundamental differences in the hardware and deployment 

methods mean that some parts of a project cannot be deployed between platforms 

directly. One example of different behavior between platforms is the input methods 

offered by the hardware. The Input.GetAxis function is frequently used on desktop 

platforms as a way of consolidating keyboard and joystick input. However, this function 

cannot be used for the mobile platforms directly because mobile platforms rely on 

touchscreen input. Therefore, it is necessary to design separate input functions for various 

platforms.  
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For example, a single touch in Android devices on the screen is treated as a left 

click and the Input.mousePosition property gives the position of the touch on if the finger 

is touching the screen. This means that games with simple mouse interaction can often 

work correctly between the desktop and mobile platforms. However, a desktop 

application can make use of more than one mouse button and a mobile application can 

detect multiple touches on the screen at a time. When using API, the problem can be 

managed partly by representing input with logical values that are then used by the rest of 

the application code. For example, a pinch gesture to zoom on a mobile device might be 

replaced by a plus/minus keystroke on the desktop; the input function could simply return 

a float value specifying the zoom factor. Moreover, it might be possible to use a two-

finger tap on a mobile to replace a right button click on the desktop. Furthermore, if the 

properties of the input device are an integral part of the application, then it may not be 

possible to remodel them on a different platform. This may mean that application cannot 

be deployed at all or that the input and/or gameplay need to be modified extensively [36].  

 

5.6 User Interface Design 

Graphic system design is intensive and focuses on providing users with 

comprehensive view of the 3D virtual environment. The main objective of the graphic 

system design is to enable complete first-person viewing of the lab environment and 

process in the application, while simultaneously enhancing the user experience via 

visually appealing graphic design. This graphic system design involves lab environment 

design and UI menu design. To accurately mimic the settings in the real lab environment, 
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the author created a sophisticated scene, composed of a 3D virtual lab and six 3D human 

models with animations. The illustration is shown in Fig. 35. 

 

 

Fig. 35.  Animated 3D Human Models in App Scene. 

 

The UI menu design was based on five key principles [26]. The structure principle 

dictates that the UI is organized in a meaningful and useful way centered on clear, 

consistent models that are apparent and recognizable to users. A good UI design should 

separate dissimilar items and group similar items together. Next, the simplicity principle, 

says that UI design should provide users with simple, clear content and straightforward 

shortcuts that are meaningfully related to longer procedures. Thirdly, the visibility 

principle decrees that essential options and materials for a given task must be visible 

without distracting the user with extraneous or redundant information. Fourthly, the 

feedback principle states the design of UI should inform users with actions or 

interpretations, changes of state or condition, and errors or exceptions that are relevant 

and of interest to the user through clear, concise, and unambiguous language familiar to 
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users. Lastly, the reuse principle maintains that ideally UI should be able to reuse internal 

and external components and actions, maintain consistency with purpose rather than 

arbitrary consistency, and therefore reduce the need for users to remember. Adhering to 

the five aforementioned principles, the finished UI in Virtual Lab is shown in Fig. 37 and 

Fig. 38. 

 

 

Fig. 36.  UI Menu in Start Scene. 

 

 

Fig. 37.  UI Menu in App Scene. 
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Additionally, UI on different platforms should also be modified to improve user 

experience. In Virtual Lab, the author added four additional buttons for Android platform 

to provide users with the abilities of view pan, view rotate, operation confirm and 

operation cancel. Also, the graphics on Android devices are optimized to have the best 

performance, including compressing 3D model textures, removing light probes in the 

virtual environment, resizing the UIs for all the scenes, and so on. Fig. 38 shows screen 

capture of Virtual Lab running on an Android device. 

 

 

Fig. 38.  Virtual Lab on Android Platform. 

 

5.7 Serialization and Deserialization 

Serialization is the process of converting an object into a stream of bytes to store 

the object or transmit it to memory, a database, or a file. The main purpose of using this 

technique is to save the state of an object and recreate it when needed. The reverse 

process is called deserialization [37]. There are two types of serialization: binary 

serialization and XML serialization. In binary serialization, all members in the serialized 
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field can be serialized, and the overall serialization performance is enhanced. XML 

serialization provides more readable code as well as greater flexibility of object sharing 

and usage for interoperability purposes. After comparing two types of serialization 

methods, the author selected binary serialization for its faster and more efficient 

performance. When designing the serialization function in Virtual Lab, the states of both 

virtual equipment and virtual wires must be saved in order to recreate the same scenario 

if it is needed again in the future. However, due to the large number of data information 

contained in these items, serializing every piece of information into the database can be 

complex and time consuming. To tackle this problem, the author created a class called 

SerializedItem, which contains an array of partial information of equipment and wires to 

reduce the amount of serialization process. The partial information of equipment includes 

its three-dimensional world position and its current index number. The partial 

information of wires is comprised of the three Bezier curve positions, the current material 

color, and the neighbor nodes information. After users click on the save button, all the 

information above will be saved into the saved class, and the binary data will be written 

into a file. When de-serializing the saved class, the application will first extract the 

information of all the equipment and place them in the virtual environment, and then 

extract the information of all the wires and construct the relationship between the existing 

nodes. After finishing the deserialization process, the same virtual experiment is 

generated in the Virtual Lab. 

 

5.8 Class Description 

The detailed description of major classes in Virtual Lab is listed in TABLE 5.  
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TABLE 5 

MAJOR CLASSES IN VIRTUAL LAB 

Class Name Description 

Singleton 

It is used to restrict the instantiation of any derived 

class to one virtual object, such as GameController 

class and CameraController class 

LabEquipment 

It contains data and functions that can be inherited 

from another subclass. It is used to simplify and 

improve the quality of the code 

CameraController 

It is used to control the movement of the user view and 

it can also send execution command to the pointed 

virtual object 

InputManager 
It is used to provide users with the capability of 

interacting with the virtual objects 

Node 

It contains the voltage information of its own and its 

neighbor nodes. It is used to set the reference of a 

connector and it has a recursive algorithm to update the 

voltage information of its own and its neighbor nodes 

LineController 

It includes the voltage information of two connected 

nodes. It is also used to modify the material color of a 

wire 

EquipmentController 
It is used to track and modify the collision detection 

between different virtual equipment 

GameController 

It is used to control and manage various system events 

(UI system event and input system event) and it can 

also track and transmit data to other class 

WireManager It is used to generate virtual wires in the application 

GameAudioController 
It is used to turn on/off the audio source in the 

application 

SerializedItem 

It contains the data information of virtual equipment 

and virtual wires. It allows a user to save and load the 

progress of his/her virtual experiment 
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PowerBoxController, 

ElectricSwitchBoxController, 

ManualSwitchBoxController, 

AirSupplyController, 

AirSwitchController, 

FiveTwoSolenoidController, 

FiveTwoValveController, 

PneumaticReturnController, 

SpringReturnController, 

SingleCylinderController, 

DoubleCylinderController, 

ThreeTwoController, 

ThreeTwoSolenoidController 

These class are derived class which inherit the data and 

functions of LabEquipment class. They are used to 

instantiate various virtual equipment and position them 

in the 3D world. 
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CHAPTER 6 

RESULTS 

This section shows the simulation results of Virtual Lab for typical programmable 

control logic encountered in introductory automation and control courses.  It contains the 

ladder diagrams of six logic circuits and their corresponding wiring in Virtual Lab. 

Ladder diagrams are graphical diagrams based on the circuit diagrams of relay logic 

hardware and they are used for programmable logic controllers in industrial control 

applications. The correctness of PLC logic simulation in Virtual Lab has been validated. 

 

 

Fig. 39.  AND Gate Ladder Diagram and Wiring Validation. 

 

In Fig. 40, when button A and button B are being pressed, the 5/2 Solenoid can 

transmit the air to the Single Cylinder. 
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Fig. 40.  OR Gate Ladder Diagram and Wiring Validation. 

 

In Fig. 41, when button A or button B is being pressed, the 5/2 Solenoid can 

transmit the air to the Single Cylinder. 

 

 

Fig. 41.  NOT Gate Ladder Diagram and Wiring Validation. 

 

In Fig. 42, when button A is being pressed, there is no air coming out from the 5/2 

Solenoid, when button A is being pressed, the 5/2 Solenoid can transmit the air to the Single 

Cylinder. 
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Fig. 42.  NAND Gate Ladder Diagram and Wiring Validation. 

 

In Fig. 43, when button A or button B is not being pressed, the 5/2 Solenoid can 

transmit the air to the Single Cylinder. 

 

 

Fig. 43.  NOR Gate Ladder Diagram and Wiring Validation. 

 

In Fig. 44, when both button A and button B are not being pressed, the 5/2 Solenoid 

can transmit the air to the Single Cylinder. 
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Fig. 44.  Relay Control Ladder Diagram and Wiring Validation. 

 

In Fig. 45, when button A is being pressed, the 5/2 Solenoid can transmit the air to 

the Single Cylinder. 

 

 

Fig. 45.  Seal-in Circuit Control Ladder Diagram and Wiring Validation. 

 

In Fig. 46, after the first-time button A is being pressed, even button A is held up, 

the 5/2 Solenoid can still transmit the air to the Single Cylinder. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

This thesis presented the design, implementation, and results of Virtual Lab, a 

simulation application for complementing programmable control logic using electrical 

and pneumatic components. This application is an updated, advanced version of a 

previous implementation of Virtual Lab. The development of the original Virtual Lab 

was motivated by two elements. First, current online education in general cannot 

adequately provide students with needed practical, hands-on laboratory experience. 

Secondly, distance learning students who take MET 370/386 courses at Old Dominion 

University were disadvantaged by not having access to the lab facilities, compared with 

on-campus students.  

After the first version of Virtual Lab was utilized in the course MET 370/386 

Automation and Control offered by Old Dominion University in fall 2013, the overall 

feedback from students and the instructor was overwhelmingly positive. However, the 

Microsoft XNA Game Studio which was primarily used for developing Virtual Lab was 

no longer actively being updated.  Unity is a leading game engine with a wide range of 

advanced capabilities and provides a natural choice for continuing development of 

Virtual Lab.  This second version inherited all the functionalities from the previous one 

and has incorporated new features, such as pneumatic components, direct 3D drag and 

drop, and more flexible camera views, and a multi-system logic processor. Students can 

now use it to simulate programmable logic controller using combined electro-pneumatic 

experiments. Currently, Virtual Lab is still under active development, with plans to add 

more lab devices and equipment. Integration of the current project with other virtual 
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reality devices such as Oculus Rift, HTC VIVE Samsung Gear VR, and Microsoft 

HoloLens is also being considered. 
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