10 research outputs found

    OutlierDetection.jl: A modular outlier detection ecosystem for the Julia programming language

    Full text link
    OutlierDetection.jl is an open-source ecosystem for outlier detection in Julia. It provides a range of high-performance outlier detection algorithms implemented directly in Julia. In contrast to previous packages, our ecosystem enables the development highly-scalable outlier detection algorithms using a high-level programming language. Additionally, it provides a standardized, yet flexible, interface for future outlier detection algorithms and allows for model composition unseen in previous packages. Best practices such as unit testing, continuous integration, and code coverage reporting are enforced across the ecosystem. The most recent version of OutlierDetection.jl is available at https://github.com/OutlierDetectionJL/OutlierDetection.jl.Comment: 5 pages, 5 figure

    Comparison Between Gross Errors Detection Methods in Surveying Measurements

    Get PDF
    The least squares estimation method is commonly used to process measurements. In practice, redundant measurements are carried out to ensure quality control and to check for errors that could affect the results. Therefore, an insurance of the quality of these measurements is an important issue. Measurement errors of collected data have different levels of influence due to their number, measured accuracy and redundancy. The aim of this paper is to examine the detection of gross error capabilities in vertical control networks using three methods; Global Test, Data Snooping and Tau Test to compare the effectiveness of these three methods. With the least squares’ method, if there are gross errors in the observations, the sizes of the corresponding residuals may not always be larger than for other residuals that do not have gross errors. This makes it difficult to find (detect) it. Therefore, it is not certain that serious errors should be detected by just examining the magnitudes of the residuals alone. These methods are used in conjunction with developed programs to calculate critical values for the distributions (in real time) rather than look for these in statistical tables. The main conclusion reached is that the tau (τ) statistic is the most sensitive to the presence gross error detection; therefore, it is the one recommended to be used in gross error detection

    Locality-Based Visual Outlier Detection Algorithm for Time Series

    Get PDF
    Physiological theories indicate that the deepest impression for time series data with respect to the human visual system is its extreme value. Based on this principle, by researching the strategies of extreme-point-based hierarchy segmentation, the hierarchy-segmentation-based data extraction method for time series, and the ideas of locality outlier, a novel outlier detection model and method for time series are proposed. The presented algorithm intuitively labels an outlier factor to each subsequence in time series such that the visual outlier detection gets relatively direct. The experimental results demonstrate the average advantage of the developed method over the compared methods and the efficient data reduction capability for time series, which indicates the promising performance of the proposed method and its practical application value

    StatBreak: identifying "lucky" data points through genetic algorithms

    Get PDF
    Sometimes interesting statistical findings are produced by a small number of “lucky” data points within the tested sample. To address this issue, researchers and reviewers are encouraged to investigate outliers and influential data points. Here, we present StatBreak, an easy-to-apply method, based on a genetic algorithm, that identifies the observations that most strongly contributed to a finding (e.g., effect size, model fit, p value, Bayes factor). Within a given sample, StatBreak searches for the largest subsample in which a previously observed pattern is not present or is reduced below a specifiable threshold. Thus, it answers the following question: “Which (and how few) ‘lucky’ cases would need to be excluded from the sample for the data-based conclusion to change?” StatBreak consists of a simple R function and flags the luckiest data points for any form of statistical analysis. Here, we demonstrate the effectiveness of the method with simulated and real data across a range of study designs and analyses. Additionally, we describe StatBreak’s R function and explain how researchers and reviewers can apply the method to the data they are working with.Social decision makin

    Attribute Relationship Analysis in Outlier Mining and Stream Processing

    Get PDF
    The main theme of this thesis is to unite two important fields of data analysis, outlier mining and attribute relationship analysis. In this work we establish the connection between these two fields. We present techniques which exploit this connection, allowing to improve outlier detection in high dimensional data. In the second part of the thesis we extend our work to the emerging topic of data streams

    Generalized and efficient outlier detection for spatial, temporal, and high-dimensional data mining

    Get PDF
    Knowledge Discovery in Databases (KDD) ist der Prozess, nicht-triviale Muster aus großen Datenbanken zu extrahieren, mit dem Ziel, dass diese bisher unbekannt, potentiell nützlich, statistisch fundiert und verständlich sind. Der Prozess umfasst mehrere Schritte wie die Selektion, Vorverarbeitung, Evaluierung und den Analyseschritt, der als Data-Mining bekannt ist. Eine der zentralen Aufgabenstellungen im Data-Mining ist die Ausreißererkennung, das Identifizieren von Beobachtungen, die ungewöhnlich sind und mit der Mehrzahl der Daten inkonsistent erscheinen. Solche seltene Beobachtungen können verschiedene Ursachen haben: Messfehler, ungewöhnlich starke (aber dennoch genuine) Abweichungen, beschädigte oder auch manipulierte Daten. In den letzten Jahren wurden zahlreiche Verfahren zur Erkennung von Ausreißern vorgeschlagen, die sich oft nur geringfügig zu unterscheiden scheinen, aber in den Publikationen experimental als ``klar besser'' dargestellt sind. Ein Schwerpunkt dieser Arbeit ist es, die unterschiedlichen Verfahren zusammenzuführen und in einem gemeinsamen Formalismus zu modularisieren. Damit wird einerseits die Analyse der Unterschiede vereinfacht, andererseits aber die Flexibilität der Verfahren erhöht, indem man Module hinzufügen oder ersetzen und damit die Methode an geänderte Anforderungen und Datentypen anpassen kann. Um die Vorteile der modularisierten Struktur zu zeigen, werden (i) zahlreiche bestehende Algorithmen in dem Schema formalisiert, (ii) neue Module hinzugefügt, um die Robustheit, Effizienz, statistische Aussagekraft und Nutzbarkeit der Bewertungsfunktionen zu verbessern, mit denen die existierenden Methoden kombiniert werden können, (iii) Module modifiziert, um bestehende und neue Algorithmen auf andere, oft komplexere, Datentypen anzuwenden wie geographisch annotierte Daten, Zeitreihen und hochdimensionale Räume, (iv) mehrere Methoden in ein Verfahren kombiniert, um bessere Ergebnisse zu erzielen, (v) die Skalierbarkeit auf große Datenmengen durch approximative oder exakte Indizierung verbessert. Ausgangspunkt der Arbeit ist der Algorithmus Local Outlier Factor (LOF). Er wird zunächst mit kleinen Erweiterungen modifiziert, um die Robustheit und die Nutzbarkeit der Bewertung zu verbessern. Diese Methoden werden anschließend in einem gemeinsamen Rahmen zur Erkennung lokaler Ausreißer formalisiert, um die entsprechenden Vorteile auch in anderen Algorithmen nutzen zu können. Durch Abstraktion von einem einzelnen Vektorraum zu allgemeinen Datentypen können auch räumliche und zeitliche Beziehungen analysiert werden. Die Verwendung von Unterraum- und Korrelations-basierten Nachbarschaften ermöglicht dann, einen neue Arten von Ausreißern in beliebig orientierten Projektionen zu erkennen. Verbesserungen bei den Bewertungsfunktionen erlauben es, die Bewertung mit der statistischen Intuition einer Wahrscheinlichkeit zu interpretieren und nicht nur eine Ausreißer-Rangfolge zu erstellen wie zuvor. Verbesserte Modelle generieren auch Erklärungen, warum ein Objekt als Ausreißer bewertet wurde. Anschließend werden für verschiedene Module Verbesserungen eingeführt, die unter anderem ermöglichen, die Algorithmen auf wesentlich größere Datensätze anzuwenden -- in annähernd linearer statt in quadratischer Zeit --, indem man approximative Nachbarschaften bei geringem Verlust an Präzision und Effektivität erlaubt. Des weiteren wird gezeigt, wie mehrere solcher Algorithmen mit unterschiedlichen Intuitionen gleichzeitig benutzt und die Ergebnisse in einer Methode kombiniert werden können, die dadurch unterschiedliche Arten von Ausreißern erkennen kann. Schließlich werden für reale Datensätze neue Ausreißeralgorithmen konstruiert, die auf das spezifische Problem angepasst sind. Diese neuen Methoden erlauben es, so aufschlussreiche Ergebnisse zu erhalten, die mit den bestehenden Methoden nicht erreicht werden konnten. Da sie aus den Bausteinen der modularen Struktur entwickelt wurden, ist ein direkter Bezug zu den früheren Ansätzen gegeben. Durch Verwendung der Indexstrukturen können die Algorithmen selbst auf großen Datensätzen effizient ausgeführt werden.Knowledge Discovery in Databases (KDD) is the process of extracting non-trivial patterns in large data bases, with the focus of extracting novel, potentially useful, statistically valid and understandable patterns. The process involves multiple phases including selection, preprocessing, evaluation and the analysis step which is known as Data Mining. One of the key techniques of Data Mining is outlier detection, that is the identification of observations that are unusual and seemingly inconsistent with the majority of the data set. Such rare observations can have various reasons: they can be measurement errors, unusually extreme (but valid) measurements, data corruption or even manipulated data. Over the previous years, various outlier detection algorithms have been proposed that often appear to be only slightly different than previous but ``clearly outperform'' the others in the experiments. A key focus of this thesis is to unify and modularize the various approaches into a common formalism to make the analysis of the actual differences easier, but at the same time increase the flexibility of the approaches by allowing the addition and replacement of modules to adapt the methods to different requirements and data types. To show the benefits of the modularized structure, (i) several existing algorithms are formalized within the new framework (ii) new modules are added that improve the robustness, efficiency, statistical validity and score usability and that can be combined with existing methods (iii) modules are modified to allow existing and new algorithms to run on other, often more complex data types including spatial, temporal and high-dimensional data spaces (iv) the combination of multiple algorithm instances into an ensemble method is discussed (v) the scalability to large data sets is improved using approximate as well as exact indexing. The starting point is the Local Outlier Factor (LOF) algorithm, which is extended with slight modifications to increase robustness and the usability of the produced scores. In order to get the same benefits for other methods, these methods are abstracted to a general framework for local outlier detection. By abstracting from a single vector space, other data types that involve spatial and temporal relationships can be analyzed. The use of subspace and correlation neighborhoods allows the algorithms to detect new kinds of outliers in arbitrarily oriented subspaces. Improvements in the score normalization bring back a statistic intuition of probabilities to the outlier scores that previously were only useful for ranking objects, while improved models also offer explanations of why an object was considered to be an outlier. Subsequently, for different modules found in the framework improved modules are presented that for example allow to run the same algorithms on significantly larger data sets -- in approximately linear complexity instead of quadratic complexity -- by accepting approximated neighborhoods at little loss in precision and effectiveness. Additionally, multiple algorithms with different intuitions can be run at the same time, and the results combined into an ensemble method that is able to detect outliers of different types. Finally, new outlier detection methods are constructed; customized for the specific problems of these real data sets. The new methods allow to obtain insightful results that could not be obtained with the existing methods. Since being constructed from the same building blocks, there however exists a strong and explicit connection to the previous approaches, and by using the indexing strategies introduced earlier, the algorithms can be executed efficiently even on large data sets
    corecore