693 research outputs found

    3D photogrammetric data modeling and optimization for multipurpose analysis and representation of Cultural Heritage assets

    Get PDF
    This research deals with the issues concerning the processing, managing, representation for further dissemination of the big amount of 3D data today achievable and storable with the modern geomatic techniques of 3D metric survey. In particular, this thesis is focused on the optimization process applied to 3D photogrammetric data of Cultural Heritage assets. Modern Geomatic techniques enable the acquisition and storage of a big amount of data, with high metric and radiometric accuracy and precision, also in the very close range field, and to process very detailed 3D textured models. Nowadays, the photogrammetric pipeline has well-established potentialities and it is considered one of the principal technique to produce, at low cost, detailed 3D textured models. The potentialities offered by high resolution and textured 3D models is today well-known and such representations are a powerful tool for many multidisciplinary purposes, at different scales and resolutions, from documentation, conservation and restoration to visualization and education. For example, their sub-millimetric precision makes them suitable for scientific studies applied to the geometry and materials (i.e. for structural and static tests, for planning restoration activities or for historical sources); their high fidelity to the real object and their navigability makes them optimal for web-based visualization and dissemination applications. Thanks to the improvement made in new visualization standard, they can be easily used as visualization interface linking different kinds of information in a highly intuitive way. Furthermore, many museums look today for more interactive exhibitions that may increase the visitors’ emotions and many recent applications make use of 3D contents (i.e. in virtual or augmented reality applications and through virtual museums). What all of these applications have to deal with concerns the issue deriving from the difficult of managing the big amount of data that have to be represented and navigated. Indeed, reality based models have very heavy file sizes (also tens of GB) that makes them difficult to be handled by common and portable devices, published on the internet or managed in real time applications. Even though recent advances produce more and more sophisticated and capable hardware and internet standards, empowering the ability to easily handle, visualize and share such contents, other researches aim at define a common pipeline for the generation and optimization of 3D models with a reduced number of polygons, however able to satisfy detailed radiometric and geometric requests. iii This thesis is inserted in this scenario and focuses on the 3D modeling process of photogrammetric data aimed at their easy sharing and visualization. In particular, this research tested a 3D models optimization, a process which aims at the generation of Low Polygons models, with very low byte file size, processed starting from the data of High Poly ones, that nevertheless offer a level of detail comparable to the original models. To do this, several tools borrowed from the game industry and game engine have been used. For this test, three case studies have been chosen, a modern sculpture of a contemporary Italian artist, a roman marble statue, preserved in the Civic Archaeological Museum of Torino, and the frieze of the Augustus arch preserved in the city of Susa (Piedmont- Italy). All the test cases have been surveyed by means of a close range photogrammetric acquisition and three high detailed 3D models have been generated by means of a Structure from Motion and image matching pipeline. On the final High Poly models generated, different optimization and decimation tools have been tested with the final aim to evaluate the quality of the information that can be extracted by the final optimized models, in comparison to those of the original High Polygon one. This study showed how tools borrowed from the Computer Graphic offer great potentialities also in the Cultural Heritage field. This application, in fact, may meet the needs of multipurpose and multiscale studies, using different levels of optimization, and this procedure could be applied to different kind of objects, with a variety of different sizes and shapes, also on multiscale and multisensor data, such as buildings, architectural complexes, data from UAV surveys and so on

    Efficient Spatially Adaptive Convolution and Correlation

    Get PDF
    Fast methods for convolution and correlation underlie a variety of applications in computer vision and graphics, including efficient filtering, analysis, and simulation. However, standard convolution and correlation are inherently limited to fixed filters: spatial adaptation is impossible without sacrificing efficient computation. In early work, Freeman and Adelson have shown how steerable filters can address this limitation, providing a way for rotating the filter as it is passed over the signal. In this work, we provide a general, representation-theoretic, framework that allows for spatially varying linear transformations to be applied to the filter. This framework allows for efficient implementation of extended convolution and correlation for transformation groups such as rotation (in 2D and 3D) and scale, and provides a new interpretation for previous methods including steerable filters and the generalized Hough transform. We present applications to pattern matching, image feature description, vector field visualization, and adaptive image filtering

    Report on shape analysis and matching and on semantic matching

    No full text
    In GRAVITATE, two disparate specialities will come together in one working platform for the archaeologist: the fields of shape analysis, and of metadata search. These fields are relatively disjoint at the moment, and the research and development challenge of GRAVITATE is precisely to merge them for our chosen tasks. As shown in chapter 7 the small amount of literature that already attempts join 3D geometry and semantics is not related to the cultural heritage domain. Therefore, after the project is done, there should be a clear ‘before-GRAVITATE’ and ‘after-GRAVITATE’ split in how these two aspects of a cultural heritage artefact are treated.This state of the art report (SOTA) is ‘before-GRAVITATE’. Shape analysis and metadata description are described separately, as currently in the literature and we end the report with common recommendations in chapter 8 on possible or plausible cross-connections that suggest themselves. These considerations will be refined for the Roadmap for Research deliverable.Within the project, a jargon is developing in which ‘geometry’ stands for the physical properties of an artefact (not only its shape, but also its colour and material) and ‘metadata’ is used as a general shorthand for the semantic description of the provenance, location, ownership, classification, use etc. of the artefact. As we proceed in the project, we will find a need to refine those broad divisions, and find intermediate classes (such as a semantic description of certain colour patterns), but for now the terminology is convenient – not least because it highlights the interesting area where both aspects meet.On the ‘geometry’ side, the GRAVITATE partners are UVA, Technion, CNR/IMATI; on the metadata side, IT Innovation, British Museum and Cyprus Institute; the latter two of course also playing the role of internal users, and representatives of the Cultural Heritage (CH) data and target user’s group. CNR/IMATI’s experience in shape analysis and similarity will be an important bridge between the two worlds for geometry and metadata. The authorship and styles of this SOTA reflect these specialisms: the first part (chapters 3 and 4) purely by the geometry partners (mostly IMATI and UVA), the second part (chapters 5 and 6) by the metadata partners, especially IT Innovation while the joint overview on 3D geometry and semantics is mainly by IT Innovation and IMATI. The common section on Perspectives was written with the contribution of all

    Analysis of textural image features for content based retrieval

    Get PDF
    Digital archaelogy and virtual reality with archaeological artefacts have been quite hot research topics in the last years 55,56 . This thesis is a preperation study to build the background knowledge required for the research projects, which aim to computerize the reconstruction of the archaelogical data like pots, marbles or mosaic pieces by shape and ex ural features. Digitalization of the cultural heritage may shorten the reconstruction time which takes tens of years currently 61 ; it will improve the reconstruction robustness by incorporating with the literally available machine vision algorithms and experiences from remote experts working on a no-cost virtual object together. Digitalization can also ease the exhibition of the results for regular people, by multiuser media applications like internet based virtual museums or virtual tours. And finally, it will make possible to archive values with their original texture and shapes for long years far away from the physical risks that the artefacts currently face. On the literature 1,2,3,5,8,11,14,15,16 , texture analysis techniques have been throughly studied and implemented for the purpose of defect analysis purposes by image processing and machine vision scientists. In the last years, these algorithms have been started to be used for similarity analysis of content based image retrieval 1,4,10 . For retrieval systems, the concurrent problems seem to be building efficient and fast systems, therefore, robust image features haven't been focused enough yet. This document is the first performance review of the texture algorithms developed for retrieval and defect analysis together. The results and experiences gained during the thesis study will be used to support the studies aiming to solve the 2D puzzle problem using textural continuity methods on archaelogical artifects, Appendix A for more detail. The first chapter is devoted to learn how the medicine and psychology try to explain the solutions of similiarity and continuity analysis, which our biological model, the human vision, accomplishes daily. In the second chapter, content based image retrieval systems, their performance criterias, similiarity distance metrics and the systems available have been summarized. For the thesis work, a rich texture database has been built, including over 1000 images in total. For the ease of the users, a GUI and a platform that is used for content based retrieval has been designed; The first version of a content based search engine has been coded which takes the source of the internet pages, parses the metatags of images and downloads the files in a loop controlled by our texture algorithms. The preprocessing algorithms and the pattern analysis algorithms required for the robustness of the textural feature processing have been implemented. In the last section, the most important textural feature extraction methods have been studied in detail with the performance results of the codes written in Matlab and run on different databases developed

    3D Pedestrian Tracking and Virtual Reconstruction of Ceramic Vessels Using Geometric and Color Cues

    Get PDF
    Object tracking using cameras has many applications ranging from monitoring children and the elderly, to behavior analysis, entertainment, and homeland security. This thesis concentrates on the problem of tracking person(s) of interest in crowded scenes (e.g., airports, train stations, malls, etc.), rendering their locations in time and space along with high quality close-up images of the person for recognition. The tracking is achieved using a combination of overhead cameras for 3D tracking and a network of pan-tilt-zoom (PTZ) cameras to obtain close-up frontal face images. Based on projective geometry, the overhead cameras track people using salient and easily computable feature points such as head points. When the obtained head point is not accurate enough, the color information of the head tops across subsequent frames is integrated to detect and track people. To capture the best frontal face images of a target across time, a PTZ camera scheduling is proposed, where the 'best' PTZ camera is selected based on the capture quality (as close as possible to frontal view) and handoff success (response time needed by the newly selected camera to move from current to desired state) probabilities. The experiments show the 3D tracking errors are very small (less than 5 cm with 14 people crowding an area of around 4 m2) and the frontal face images are captured effectively with most of them centering in the frames. Computational archaeology is becoming a success story of applying computational tools in the reconstruction of vessels obtained from digs, freeing the expert from hours of intensive labor in manually stitching shards into meaningful vessels. In this thesis, we concentrate on the use of geometric and color information of the fragments for 3D virtual reconstruction of broken ceramic vessels. Generic models generated by the experts as a rendition of what the original vessel may have looked like are also utilized. The generic models need not to be identical to the original vessel, but are within a geometric transformation of it in most of its parts. The markings on the 3D surfaces of fragments and generic models are extracted based on their color cues. Ceramic fragments are then aligned against the corresponding generic models based on the geometric relation between the extracted markings. The alignments yield sub-scanner resolution fitting errors.Ph.D., Electrical Engineering -- Drexel University, 201

    Distributed scene reconstruction from multiple mobile platforms

    Get PDF
    Recent research on mobile robotics has produced new designs that provide house-hold robots with omnidirectional motion. The image sensor embedded in these devices motivates the application of 3D vision techniques on them for navigation and mapping purposes. In addition to this, distributed cheapsensing systems acting as unitary entity have recently been discovered as an efficient alternative to expensive mobile equipment. In this work we present an implementation of a visual reconstruction method, structure from motion (SfM), on a low-budget, omnidirectional mobile platform, and extend this method to distributed 3D scene reconstruction with several instances of such a platform. Our approach overcomes the challenges yielded by the plaform. The unprecedented levels of noise produced by the image compression typical of the platform is processed by our feature filtering methods, which ensure suitable feature matching populations for epipolar geometry estimation by means of a strict quality-based feature selection. The robust pose estimation algorithms implemented, along with a novel feature tracking system, enable our incremental SfM approach to novelly deal with ill-conditioned inter-image configurations provoked by the omnidirectional motion. The feature tracking system developed efficiently manages the feature scarcity produced by noise and outputs quality feature tracks, which allow robust 3D mapping of a given scene even if - due to noise - their length is shorter than what it is usually assumed for performing stable 3D reconstructions. The distributed reconstruction from multiple instances of SfM is attained by applying loop-closing techniques. Our multiple reconstruction system merges individual 3D structures and resolves the global scale problem with minimal overlaps, whereas in the literature 3D mapping is obtained by overlapping stretches of sequences. The performance of this system is demonstrated in the 2-session case. The management of noise, the stability against ill-configurations and the robustness of our SfM system is validated on a number of experiments and compared with state-of-the-art approaches. Possible future research areas are also discussed

    A 3D Digital Approach to the Stylistic and Typo-Technological Study of Small Figurines from Ayia Irini, Cyprus

    Get PDF
    The thesis aims to develop a 3D digital approach to the stylistic and typo-technological study of coroplastic, focusing on small figurines. The case study to test the method is a sample of terracotta statuettes from an assemblage of approximately 2000 statues and figurines found at the beginning of the 20th century in a rural open-air sanctuary at Ayia Irini (Cyprus) by the archaeologists of the Swedish Cyprus Expedition. The excavators identified continuity of worship at the sanctuary from the Late Cypriot III (circa 1200 BC) to the end of the Cypro-Archaic II period (ca. 475 BC). They attributed the small figurines to the Cypro-Archaic I-II. Although the excavation was one of the first performed through the newly established stratigraphic method, the archaeologists studied the site and its material following a traditional, merely qualitative approach. Theanalysis of the published results identified a classification of the material with no-clear-cut criteria, and their overlap between types highlights ambiguities in creating groups and classes. Similarly, stratigraphic arguments and different opinions among archaeologists highlight the need for revising. Moreover, pastlegislation allowed the excavators to export half of the excavated antiquities, creating a dispersion of the assemblage. Today, the assemblage is still partly exhibited at the Cyprus Museum in Nicosia and in four different museums in Sweden. Such a setting prevents to study, analyse and interpret the assemblageholistically. This research proposes a 3D chaîne opératoire methodology to study the collection’s small terracotta figurines, aiming to understand the context’s function and social role as reflected by the classification obtained with the 3D digital approach. The integration proposed in this research of traditional archaeological studies, and computer-assisted investigation based on quantitative criteria, identified and defined with 3D measurements and analytical investigations, is adopted as a solution to the biases of a solely qualitative approach. The 3D geometric analysis of the figurines focuses on the objects’ shape and components, mode of manufacture, level of expertise, specialisation or skills of the craftsman and production techniques. The analysis leads to the creation of classes of artefacts which allow archaeologists to formulate hypotheses on the production process, identify a common production (e.g., same hand, same workshop) and establish a relative chronological sequence. 3D reconstruction of the excavation’s area contributes to the virtual re-unification of the assemblage for its holistic study, the relative chronological dating of the figurines and the interpretation of their social and ritual purposes. The results obtained from the selected sample prove the efficacy of the proposed 3D approach and support the expansion of the analysis to the whole assemblage, and possibly initiate quantitative and systematic studies on Cypriot coroplastic production
    • …
    corecore