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Abstract 

 

3D Pedestrian Tracking and Virtual Reconstruction of Ceramic Vessels Using 

Geometric and Color Cues 

Zhongchuan Zhang 

 

 

 

 

Object tracking using cameras has many applications ranging from monitoring 

children and the elderly, to behavior analysis, entertainment, and homeland security. 

This thesis concentrates on the problem of tracking person(s) of interest in crowded 

scenes (e.g., airports, train stations, malls, etc.), rendering their locations in time 

and space along with high quality close-up images of the person for recognition. 

The tracking is achieved using a combination of overhead cameras for 3D tracking 

and a network of pan-tilt-zoom (PTZ) cameras to obtain close-up frontal face 

images. Based on projective geometry, the overhead cameras track people using 

salient and easily computable feature points such as head points. When the obtained 

head point is not accurate enough, the color information of the head tops across 

subsequent frames is integrated to detect and track people. To capture the best 

frontal face images of a target across time, a PTZ camera scheduling is proposed, 

where the ‘best’ PTZ camera is selected based on the capture quality (as close as 

possible to frontal view) and handoff success (response time needed by the newly 

selected camera to move from current to desired state) probabilities. The 

experiments show the 3D tracking errors are very small (less than 5 cm with 14 

people crowding an area of around 4 m2) and the frontal face images are captured 

effectively with most of them centering in the frames. 



xii 

Computational archaeology is becoming a success story of applying 

computational tools in the reconstruction of vessels obtained from digs, freeing the 

expert from hours of intensive labor in manually stitching shards into meaningful 

vessels. In this thesis, we concentrate on the use of geometric and color information 

of the fragments for 3D virtual reconstruction of broken ceramic vessels. Generic 

models generated by the experts as a rendition of what the original vessel may have 

looked like are also utilized. The generic models need not to be identical to the 

original vessel, but are within a geometric transformation of it in most of its parts. 

The markings on the 3D surfaces of fragments and generic models are extracted 

based on their color cues. Ceramic fragments are then aligned against the 

corresponding generic models based on the geometric relation between the 

extracted markings. The alignments yield sub-scanner resolution fitting errors.    
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1. INTRODUCTION 

1.1 Problems and Motivation in Pedestrian Tracking 

Surveillance cameras are prevalently installed everywhere, but the videos are 

usually used only “after the fact” as a forensic tool thus losing its benefit as an 

active and real time media [1]. Tracking objects automatically can detect the 

abnormal behavior and suspicious individuals in real time and make preventing 

crimes possible. By recording large sets of tracks of people, designers can place 

nursing supplies at well-chosen locations in hospitals and place fountains and 

benches in public squares appropriately to make it more accessible to people [2]. 

Object tracking also plays an important part in many other computer vision 

applications such as crowd management, motion analysis and human-machine 

interaction. 

 

 

 

 

Figure 1.1: Tracking a basketball player by consistently labelling him across frames 
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Generally, object tracking can be divided into two categories. The first one is 

consistently labeling an object across time and cameras (if more than one camera 

is used). This can highlight the object of interest effectively. The first and second 

row in Figure 1.1 are frames captured by cameras 1 and 2. The man as shown in 

the red circle is tracked by being consistently labelled using green cuboid across 

frames and the two cameras. By tracking the basketball player, the coach can 

evaluate his performance and the player can improve himself accordingly. 

With only one cameras, [3-5] track objects using global color reference models. 

The current frame is searched for a region, a fixed-shape variable-size window, 

whose color content best matches the color model of an object in the previous frame. 

This region is given the same label as the object in the previous frame. Instead of 

using the deterministic search in [3-5], Pérez et al. [6] introduce a new Monte Carlo 

tracking within a probabilistic framework. It can better handle color clutter in the 

background and complete occlusion over a few frames. Multiple cameras are used 

to label objects over time to resolve the occlusion problem that is apt to happen 

when using one camera. Chang and Gong [7] use Bayesian networks to combine 

the geometry-based modalities and recognition-based modalities for 

matching/labelling subjects between consecutive image frames and between 

multiple camera views. In  [8], N points belonging to the medial axis of the upper 

body are used as the feature for tracking and multivariate Gaussian models are 

applied to find the most likely matches of human subjects between consecutive 

frames taken by several cameras. Khan and Shah [9] first assume that the single-

camera tracking/labelling result is available, and then use the FOV (field of view) 
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lines to disambiguate multiple possibilities for correspondence between different 

cameras.  

The second kind of tracking is to detect the objects’ 2D/3D positions in real 

world or a reference coordinate system across time. This usually needs multiple 

cameras. 2D/3D trajectories are generated by associating the positions of an object 

across time. The tracking we perform in this thesis falls into this category. Figure 

1.2 shows the 2D trajectories of the basketball players in a short period of time [10]. 

Based on the trajectories, coaches can do the motion analysis on opposing players 

and make offensive and defensive tactics accordingly.    

 

 

 

 

Figure 1.2: Ground plane trajectories of the basketball players 

 

 

 

In [10], images from each camera view are projected on a top-view through 

multi-level homographic transformations to generate a detection volume for each 

object. Ground plane tracks are obtained using a track-before-detect particle filter 

that uses mean-shift clustering. Lee et al. [11] apply planar geometric constraints 
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to moving objects tracked throughout the scene. By robustly matching and fitting 

tracked objects to a planar model, they align the scene's ground plane across 

multiple views and decompose the planar alignment matrix to recover the 3D 

relative camera and ground plane positions. Mittal and Davis [12] propose a method 

which matches object regions along epipolar lines in each camera pair to obtain 

ground points guaranteed to lie inside the object. The estimates of 2D locations of 

objects are obtained by integrating results from camera pairs using outlier-rejection 

scheme. Those locations are then used to track objects over time. Most of the 

existing approaches for the tracking in the second category focus on generating the 

2D ground trajectories and side view cameras are usually used. However, tracking 

people in 3D is also useful in many applications. For example, it can guide pan-tilt-

zoom (PTZ) cameras to capture close-up face or iris images and analyze human 

behaviors such as sitting or falling down. In addition, tracking using overhead 

cameras have their own advantages over side view cameras and are rarely studied. 

In this thesis, we use overhead cameras to track people in 3D and use the 3D tracker 

to guide a set of PTZ cameras to capture high-quality close-up face images for 

recognition. 

1.2 Problems and Motivation in Virtual Reconstruction of Broken Vessels 

The archaeological journey from primary evidence collecting to public history 

interpretation has been long and arduous as analysis and meaningful history 

understandings are dependent upon time-consuming artifact reconstructions. To 

recreate an entire object from broken fragments, archaeologists need to manually 
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inspect the shape, color, material, texture, boundaries and fracture surfaces of 

fragments to join the fragments with adhesives and/or additional structural support 

materials, as shown in Figure 1.3. Often the mended pieces are kept in depositories 

and can′t be shared with other labs as they are delicate and need to be well preserved.  

 

 

 

 

Figure 1.3: Mending ceramic fragments manually 

 

 

 

Reconstructing unearthed archaeological pieces virtually in 3D is motivated by 

the necessity to discover, preserve, and interpret history more efficiently. Many 

ceramic artifacts researched in the thesis are from one of the best preserved and 

most diverse urban colonial archaeological sites ever excavated - the Mall at 

Independence National Historical Park (INHP) in Philadelphia, Pennsylvania. This 

research on the whole is seen by INHP archaeologists as having a great potential to 

have significant implications for archaeological artifact mending, collections 

management, and site interpretation [13]. Once operated on a full scale, this 

technology will allow for more efficient laboratory work and will produce a 

significant time, money and labor savings. Computers (not just people) will be able 
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to mend the ceramic fragments based on the decorative markings (color patterns 

different from the background) on them to obtain 'piece back together' broken 

vessels. Such vessel reconstruction is a vital first step in the laboratory processing 

of artifacts. Speeding up this phase means faster advancement to the analysis and 

interpretation phase of study (as artifact identification precedes site analysis). 

Computer-assisted vessel reconstructions will furthermore allow for remote 

research capabilities as a collection of ceramics will be able to be studied off-site 

via digital proxies. Moreover, digital images and CAD visualization of 

reconstructed vessels will be a useful resource easily shared and be accessible all 

over the world through the Internet and will serve as an excellent educational tool. 

Records from this research and development project will be archived as a part of 

the INHP archaeological record collection in the Independence Park Archives. 

Reconstructing a vessel virtually from broken fragments is similar to a 3D 

puzzle-solving problem. Intuitively, the information of the fracture surface of 

fragments such as the surface feature clusters [14]  and surface normal [15] is used 

to find the matching pairs. But this doesn’t work well for thin-shell vessels since 

the information on the fracture surface is not enough. In this case, the contours of 

fractures are extracted and the matching fragments are established based on the 

curve matching [16-19]. However, all these methods are based on the fracture 

information of the fragments. As archaeological fragments’ edges may be eroded 

through time while in ground or during excavation, fracture information may not 

be well preserved as well, which means that neighboring fragments cannot be 

matched. In the thesis, we address this problem by utilizing surface information of 
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fragments (surface markings), which might be better preserved, in effectively 

represent and reconstruct fragments. We also integrate the experts’ opinion by 

using generic models that are created by them. In this case, the vessels are virtually 

reassembled by aligning fragments to the corresponding generic model. 

1.3 Geometric and Color Cues 

Geometric and color information are two important aspects of computer vision. 

Geometric information such as the shape of an object, the geometric relations 

between multiple views of the same object or scene, the geometric properties of an 

object, is widely used in many applications. Objects can be detected and recognized 

based on their shapes [20], as shown in Figure 1.4(a) where three traffic signs are 

detected. Epipolar lines estimated using the geometric relations between the two 

views in Figure 1.4(b) help in finding corresponding points in the two views 

efficiently and accurately [21]. The corresponding points of the red points in the 

left image can be found on the red segments in the right image. The matching points 

of the green points in the right image can be detected in the same way. By using the 

geometric properties of the corner points of the chess board, the image in Figure 

1.4(c) is rectified. 

Color information such as color distribution, color histogram, color differences, 

is also very useful in a variety of applications such as in image segmentation [22], 

object recognition [23, 24], image enhancement [25], edge detection [26]. The 

image in Figure 1.5(a) is segmented into two parts based on spatially varying color 

distributions. Since color histograms are stable object representation in the presence 
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of occlusion and over change in view [24], based on which the four cups in Figure 

1.5(b) are recognized as the same object. By adjusting the color histogram, the left 

image in Figure 1.5(c) is enhanced and more details are unveiled. 

 

 

 

 

(a) Object detection 

 

(b) Looking for corresponding points in 2 views 

 

(c) Image rectification 

Figure 1.4: Some applications based on geometric cues 
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(a) Image segmentation                            (b) Object recognition 

 

(c) Image enhancement 

Figure 1.5: Some applications based on color cues 

 

 

 

In this thesis, both the geometric and color cues of the pedestrians/scenes are 

used to track pedestrians in crowded scenes. A 3D head point, the highest point of 

a person, is first obtained mainly based on the projective geometry. If the detected 

head points are not accurate, the color information across frames is utilized to detect 

and track them. The 3D head points can help to capture close-up face images. The 

two cues used in the 2D images are also utilized for 3D surface alignment to 

virtually reconstruct broken ceramic vessels. The markings are extracted from the 
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3D ceramic fragments based on the color cues, and then the fragments are aligned 

to the corresponding generic models using the geometric relations between them.  

1.4 Contributions of the Thesis 

The major contributions of this thesis are as follows. 

In tracking:  

1. It effectively deals with occlusion in crowded scenes by using two overhead 

cameras for tracking and smart PTZ cameras surrounding the scene for obtaining 

close-up frontal face images of a person of interest. 

2. It achieves a very good approximation to an ideal tracker, which basically 

acts like a camera stuck and pointing to the person’s face yielding ‘good quality’ 

face pictures for recognition and knows the 3D position of that person at all times. 

3. It obtains salient and easily attainable points (head points) for 3D tracking 

using the projective geometry, and computes disparities only on the potential head 

top segment which is a short segment passing through the head top as opposed to 

everywhere in the scene. 

4. It tracks people in 3D by fusing both the geometric and color cues. When 

the head points detected based on the projective geometry is not accurate enough, 

it combines mutual information between frames by using the color histograms 

associated with the head top area and its projection in the subsequent frames to 

better localize the head position, a requirement for acquiring high quality close-up 

face images of the person of interest at all time. The estimated velocity of a target 
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up to frame (n-1) is used to predict the search area where the head point at frame n 

resides.  

5. It acquires close-up frontal face images for a person of interest through the 

use of distributed smart PTZ camera system, where the capture probability and 

camera handoff success probability (if a handoff between 2 cameras is needed) are 

quantitated and translated in terms of constraints on camera movement(s) and on 

its (their) physical parameters. 

In vessel reconstruction: 

1. Experts’ knowledge and feedback are integrated in virtual reconstruction of 

broken vessels by using the generic models made by them.  

2. It allows for built-in uncertainty of an expert model which is learned through 

approximations to the excavated vessel and/or through knowledge of the historical 

period. 

3. Geometric and color cues of the ceramic fragments and generic models are 

combined to reassemble broken vessels. The markings on the fragment and generic 

models are extracted using the colors, and then the fragment is aligned against the 

corresponding generic models based on the geometric relations between them. 

4. A novel set of affine weighted moments and absolute invariants are proposed 

to find the corresponding generic models and perform the alignment. 

1.5 Organization of the Thesis 

The rest of the thesis is organized as follows. In chapter 2, a novel approach is 

proposed to track pedestrians in 3D based on the head point detection using 
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overhead cameras. The pedestrian tracking is performed under both uncrowded and 

crowded scenes from an overhead view. For uncrowded scenes, mainly the 

geometric cues of the pedestrians are utilized, whereas the geometric and color cues 

are fused to detect and track pedestrians in crowded scenes. The tracking results in 

both scenes are given in the form of trajectories and the 3D tracking errors are 

provided. With the 3D tracking results generated by the fixed overhead cameras, 

we capture high-quality close-up frontal face images of a person of interest using a 

set of PTZ cameras across time in chapter 3. A PTZ camera scheduling scheme is 

presented based on the face image capture quality and PTZ camera handoff success 

probability both of which are quantified using mathematic models. In chapter 4, we 

propose to virtually reconstruct broken vessels by combining the geometric and 

color information of ceramic fragments. Markings on the fragments are extracted 

based on colors and then aligned to the generic models (which are created by the 

experts) using the geometric relations between them. Chapter 5 concludes the thesis 

and discusses about the possible extensions for the future work. 
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2. TRACKING PEDESTRIANS IN 3D 

In this chapter, we propose to track pedestrians in 3D based on the head points 

using two horizontally aligned overhead cameras. Pedestrians are detected and 

tracked based on their geometric and color cues in the scene. A short segment 

passing through the head top of each person is detected using the projective 

geometry. A head point is detected on the segment and its 3D position is computed. 

The 3D head position is then tracked assuming constant moving velocity within 

two consecutive frames. For crowded scenes, the tracking is performed by using 

both projective geometry of the people and the color histograms of the head tops 

across frames. Our method works well for 3D tracking without using the full 

disparity map of a scene and improves the tracking robustness and accuracy by 

combining two complementary cues of the tracked persons. The experiments show 

that the average errors of the estimated ground plane positions and heights of the 

pedestrians in both uncrowded and crowded scenes are around 4 and 3 cm, 

respectively, and that our method is well suited for capturing close-up face images. 

2.1 Introduction  

With the prevalence of video surveillance, pedestrian tracking is drawing more 

attention and is more rigorously pursued. As the part of human body that least 

subjected to occlusion from different points of view, the human head is used to 

track people in a scene. Accurately tracking the 3D head position of a person is 

fundamental in capturing close-up facial images for most face recognition 

systems[27] and close-up iris images for iris recognition [28]. It is also helpful in 
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action recognition, such as fall detection of a person [29]. In this chapter, we focus 

on 3D pedestrian tracking based on head point in indoor environments, such as train 

stations, airports, shopping malls and hotel lobbies where scenes can be crowded. 

Many existing tracking methods use a single side view camera [30-32], which 

cannot handle occlusions between people well, a phenomenon bound to happen in 

crowded scenes. To resolve the occlusion problem, multiple side view cameras are 

used. The more cameras are used, the more accurate the targets are localized. This, 

in turn, increases the computation and data transmission load as each view of the 

scene should be transmitted to the computer and processed. 

 

 

 

                   

                   (a) Side view                                               (b) Overhead view  

Figure 2.1:  Occlusions under a side and overhead view of the same scene 

 

 

 

Overhead cameras, which are usually deployed in indoor environments, offer 

advantages over side view cameras. As shown in Figure 2.1, occlusion is much less 

likely to happen in an overhead view compared to a side view where almost no 

person is viewed by him/herself. However, when the scene becomes more crowded, 

some people can be very close to each other and inter-object occlusion can occur. 
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In Figure 2.2, the pedestrians inside the circles are occluded and their images are 

connected. But their heads are always visible, thus tracking the head tops is very 

feasible to track people in 3D. In this chapter, we use two identical cameras that 

look straight down and are installed at the same height to track the pedestrians in 

uncrowded and crowded scenes, as shown in Figure 2.1(b) and Figure 2.2, 

respectively. Here the crowdedness is defined from an overhead view, and even an 

uncrowded scene from an overhead view where images of each person are 

separated from each other (as shown in Figure 2.1(b)) is crowded from a side view 

(as shown in Figure 2.1(a)).  

  

 

 

 

Figure 2.2: A crowded scene from an overhead view 

 

 

 

We assume that people in a scene are upright and the head tops are their highest 

parts. This implies that the head top of a person is generally visible from an 

overhead view even in crowded scenes. A 3D head point is defined as the highest 

point of a person and is roughly the center of the head top from an overhead view. 
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A human body is roughly symmetrically distributed around an axis, the central 

vertical axis. The vertical axis intersects a person at the ground point at the bottom 

and the head point at the top. The crowded scenes mentioned in this chapter are not 

extremely crowded (e.g., subway station during rush hours in Tokyo), i.e., people’s 

bodies are not touching each other even when they are in very close proximity. 

The major contributions of this chapter are as follow: 1) using an image from 

just one camera, a potential head top segment is determined based on the geometric 

cue of pedestrians for each pedestrian; 2) combining the image from the other 

camera, the 3D head point is localized efficiently without using depth images; 3) 

detecting and tracking pedestrians by fusing the geometric and color cues of 

pedestrians(scenes). Our approach has the following advantages: 1) lower 

computation and data transmission load when compared to using several side view 

cameras; 2) no full disparity map of the scene is needed unlike other methods using 

stereo vision, resulting in a large saving on the computational load; 3) better 

scalability since the common FOV of two overhead cameras is rectangular and easy 

to be calculated and measured; 4) more accurate and robust tracking results by 

fusing two complementary cues.  

2.2 Related Work 

Side view cameras are extensively used to track people due to their 

applicability in both indoor and outdoor environments. Many researchers utilize a 

single side view camera to do tracking. Zhao and Nevatia [30] use ellipsoid human 

shape model to aid in foreground segmentation and resolving occlusions. Each 
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person is then tracked in 3D using a Kalman filter approach. Prince et al. [31] 

present a robust method for locating potential head regions using 3 weak cues: skin 

color, motion detection and foreground extraction to form three bottom-up 

likelihood maps. The probability of a face appearing at each image location is then 

yielded by combining these likelihood maps with spatial priors. Brostow and 

Cipolla [32] propose an unsupervised Bayesian framework for clustering simple 

image features to track persons in a crowd. By and large fully or partially occluded 

objects present a challenge to these methods.  

To solve the occlusion problems, multiple side view cameras are deployed. 

Orwell et al. [33] propose to track objects in multiple views using color tracking. 

The connected blobs obtained from background subtraction are modelled using 

color histograms and are then used to match and track objects. Krumm et al. [34] 

combine information from multiple stereo cameras to detect human-shaped blobs 

in 3D space. Color histograms are created for each person and are used to identify 

and track people. Mittal and Larry [35] match object region based on the color 

characteristics in each camera pair. For each pair of matched region the back 

projection in 3D space is done in a manner that yields 3D points that guaranteed to 

be inside the object. Although these methods attempt to solve the occlusion problem, 

they may fall short due to either near total occlusion or when people are dressed in 

similar colors. To handle this problem, instead of using color or shape cues of a 

person, Khan and Shah [36] use a planar homography constraint that combines 

foreground likelihood information from different views to resolve occlusions and 

to determine regions on scene planes that are occupied by people. The homograghy 
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constraint, together with the multi-view geometric constraint regarding 

perpendicular projection of a camera’s optical center is also used by Sun et al. [37]. 

Similar to our approach (either for uncrowded [38] or crowded scenes [39] from an 

overhead view), Eshel and Moses [40] focus on tracking people’s head. They derive 

homograghy matrices at different height from the ground plane to align frames from 

different cameras and detect 2D patches using intensity correlation at various 

heights. The highest patch is regarded as the head patch. However, the thresholds 

of intensity correlation are set manually for each sequence and the method doesn’t 

work on non-planar ground - an assumption needed for the use of the homograghy 

constraint. Multiple planes parallel to the ground are used in [41] to increase 

localization robustness. Similar to [42] and [43], our tracking method for crowded 

scenes [39] integrates the information of all parallel planes by considering all 

foreground pixels along a vertical segment. 

For indoor environments, overhead cameras are also used. In [44] and [45] one 

overhead camera is used to localize a person, and the centroid of the foreground 

blob is taken as the ground position. The method is not accurate especially when 

people are close to the camera or walking around the boundaries of the FOV, and 

it fails when more than one person exists in a foreground blob. Boltes et al. [46] 

detect people’s heads from an overhead view by placing pasteboards with markers 

on the heads. To reduce the perspective distortion error, the height of a person is 

needed and color coded as a marker on the pasteboard. This method, however, is 

not applicable in general scenarios because the assumption of known heights and 

requiring people to have markers on their heads are not practical. To obtain the 3D 
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position of a person without these constraints, stereo overhead cameras are applied 

and robust background subtraction is done in 3D space. Beymer [47] reprojects 3D 

points to a top-down orthographic view to track the people’s ground position. 

Oosterhout et al. [48] detect 3D head positions in highly crowded situations by 

matching a sphere crust template on the foreground regions of the depth map and 

then track the head using Kalman filters. In another paper [49], they localize people 

in the scene by maximizing the similarity between the depth map obtained from a 

stereo camera and that reconstructed by projecting a certain number of templates at 

certain locations, as shown in Figure 2.3. By using stereo images, Boltes and 

Seyfried [50] build the perspective height field of pedestrians which are represented 

by a pyramid of ellipses, as shown in Figure 2.4. A person is then tracked using the 

center of the second ellipse from the head downward.  

 

 

 

 

Figure 2.3: 3D template matching 
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Figure 2.4: Perspective height field 

 

 

 

 

Figure 2.5: Flowchart of pedestrian tracking under uncrowded scenes 

 

 

 

2.3 3D Pedestrian Tracking in Uncrowded Scenes   

Figure 2.5 shows the overview of tracking in uncrowded scenes. First, the 

background subtraction is performed for frames from the left camera. For each 
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extracted foreground blob, which corresponds to a pedestrian in an uncrowded 

scene, a short segment passing through the head top, i.e., a potential head top 

segment is determined based on the projective geometric cues of the pedestrian. 

The head point of each person is detected on the segment by using the synchronized 

left and right images and the 3D position is calculated using triangulation. Once 

being localized, pedestrians are tracked across frames based on the constant moving 

velocity within two successive frames. 

2.3.1 Background Subtraction 

Every tracking method requires an object detection mechanism either in every 

frame or when the object first appears in the video. Typically, the common 

approach for detecting objects from a background scene is background subtraction: 

building a background model and then finding deviations from the model for every 

frame. A color balancing of background image and the frame based on the gray-

world assumption is taken against global illumination changes before background 

subtraction by Oto et al. [51]. Wren et al. [52] model the color of each background 

pixel with a 3D (Y, U and V color space) Gaussian. The mean and covariance are 

learned from the color observation in several consecutive frames, thus can cope 

with illumination changes. But Gao et al. [53] point that a single Gaussian is not a 

good model for outdoor scenes since multiple colors can be observed at a certain 

location due to repetitive object motion, shadows, or reflectance. To cope with this 

problem, Stauffer and Grimson [54] use a mixture of Gaussians to model the pixel 

color. While Horprasert et al. [55] propose a color model (brightness distortion and 

chromaticity distortion) which separates the brightness from the chromaticity 



22 

component. This method helps to distinguish shading background from the 

ordinary background and moving foreground objects, thus is able to handle the local 

and global illumination changes.  

 

 

 

 

Figure 2.6: Extracted foreground blobs in a frame from the left camera 

 

 

 

In this thesis, the foreground blobs of pedestrians are extracted using 

background subtraction done in hue-saturation-value (HSV) color space, which 

separate the brightness from the hue and saturation components, rather than in the 

RGB color space to remove the shadow caused by the lighting. This shadow 

removal technique is sufficient for indoor environment, such as train stations, 

airports and hotel lobbies, where the shadows are small and diffused. After 

background subtraction, the small ‘holes’ inside the foreground area are removed 

using binary area openings [56]. The extracted foreground areas are shown as the 
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green regions in Figure 2.6. We can see that the shadows are excluded from the 

extracted foreground. Unlike the method using multiple side view cameras, the 

foreground segmentation is only implemented for frames captured from one 

overhead camera (the left one in this thesis), which makes our approach more 

efficient.  

2.3.2 Potential Head Top Segment Detection 

In this section, a potential head top segment that contains head top points is 

detected for each extracted blob in the image from the left camera. 

Figure 2.7 shows the geometric relationship when an image of a person is taken 

by an overhead camera S.  A person is simplified as a cylinder model with the black 

dashed line as the central vertical axis l. G is the ground point where a person 

touches the ground. π is the plane perpendicularly intersecting the central vertical 

axis of the person at the ground point G. If the ground is flat, π is the ground plane 

since the person is walking upright. Otherwise π is a hypothetical plane. O is the 

perpendicular projection point of the optical axis of the overhead camera on plane 

π. Since both the optical axis of the camera and the central vertical axis l of the 

person are perpendicular to the plane π, they are in the same plane, plane SOG. The 

perspective projection of central vertical axis l lies on the line 𝑂𝐺 ⃡    . Thus with the 

assumption in section 2.1, it can be inferred that the highest head top point lies on 

the line 𝑂𝐺 ⃡     as well; and the shadow area A, the projected area of the person on 

plane π from the camera’s view, is divided into two halves by the line 𝑂𝐺 ⃡     , the 

projection of the person’s symmetrical axis. The point C as the centroid of the area 
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A should be also on the line 𝑂𝐺 ⃡     which is denoted as 𝑂𝐶 ⃡     for later use. F is the 

furthest point defined as  

  𝐹 = argmax
𝐹∈𝐴,𝐹∈𝑂𝐶 ⃡    

|𝑂𝐹̅̅ ̅̅ | (2.1) 

From the assumptions in section 2.1, we can safely argue that the segment 𝐶𝐹̅̅̅̅  

passes through the projected head top on plane π no matter the ground is flat or not. 

 

 

 

 

Figure 2.7: Detection of the potential head top segment using projective geometry 

 

 

 

Plane π' shown in Figure 2.7 is the image plane of camera S, and A' is the image 

of A, i.e. the foreground blob of the person. F' is the furthest point on the image 

plane, similarly to equation (2.1), defined as  

  𝐹′ = argmax
𝐹′∈𝐴′,𝐹′∈𝑂′𝐶′ ⃡        

|𝑂′𝐹′̅̅ ̅̅ ̅̅ | (2.2) 

where C', the image point of C, is the centroid of the pedestrian’s foreground blob 

A' and O' the image center. So the head top pixels can be found on segment 𝐶′𝐹′̅̅ ̅̅ ̅. 

The furthest point on the image plane F' and the blob centroid C' are shown in 
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Figure 2.8 as the green and red point. For an upright pedestrian, the furthest point 

F' can be a pixel on the head top, as shown in Figure 2.8(a) or other parts of the 

body, mainly the shoulder as shown in Figure 2.8 (b), depending on the walking 

direction and his/her location relative to the FOV center. In either case 𝐶′𝐹′̅̅ ̅̅ ̅ always 

passes through the head top pixels. 

 

 

 

      

(a) The Furthest point on the head top          (b) The Furthest point on the shoulder 

Figure 2.8: The centroid and the furthest point of a person 

 

 

 

2.3.3 3D Head Position Estimation 

The 3D head point is where the central vertical axis of a person intersects the 

head top, i.e. the highest point of the head top and the whole body. In section 2.3.2, 

a short segment containing head top points of a person is obtained from images 

captured from the left camera. Thus locating the 3D head point reduces to finding 

the center of points on the segment which are closest to the cameras and thus have 

the largest disparity. 
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2.3.3.1 Establishing Disparities along the Potential Head Top Segment 

To calculate the disparity of each pixel on the potential head top segment, its 

corresponding pixel needs to be found on the synchronized right image. For each 

pixel on the segment from the left image, we compare the N*N region about this 

pixel (the template) with a series of regions of the same size extracted from the right 

image (the samples) based on the RGB value distributions, as shown in Figure 2.9. 

The center of each sample, the candidate matching pixel, has the same row number 

as the pixel in the left image, since the left and right camera are aligned horizontally. 

The search range on the row can be largely narrowed down with the disparity range 

of a head point. A pixel on the potential head top segment is described as an N*N*3 

vector 𝑳, containing the RGB values of all pixels in the template. The kth candidate 

matching pixel is described by the same size vector 𝑹𝒌. The similarity of the two 

vectors is evaluated using Euclidean distance 

  𝐷𝑘 = ||𝑳 − 𝑹𝑘|| (2.3) 

 

 

 

 

                   (a)Left image: the template       (b) Right image: samples  

Figure 2.9: Finding the corresponding pixel from the right image (b) for a pixel on 

the potential head top segment in the left image (a) 
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A corresponding point of the point on the potential head top segment is 

established if 

  𝐷𝑎 < 𝛾 ∙ 𝐷𝑏 (2.4) 

where 𝐷𝑎  and 𝐷𝑏  are the minimum and second minimum of 𝐷𝑘  and 𝛾  is the 

similarity ratio (typically 𝛾 = 0.8). The disparity of the point on the segment is 

computed from the difference of the two matching pixels. 

To get a more accurate 3D position, we estimate the sub-pixel disparity by 

considering 𝐷𝑎 that satisfies (2.4) and its two neighboring values instead of just 

taking the point with minimum 𝐷𝑘 as the matching point. A parabola is fitted to the 

three values and the minimum is analytically solved for to get the sub-pixel 

correction. The disparities on the potential head top segment may have outliers 

caused by mismatching of the pixels from the left and right image. The 3D head 

point detection will be highly affected if the outlier has the maximum disparity on 

the segment. A correct disparity distribution along the segment has only one peak 

because of the ‘Ω’ shape of the upper body. To remove the outlier robustly, the 

disparities are first rounded to integers. If there are multiple local maxima in the 

rounded disparity distribution, those looking like spikes are considered as the 

outliers and removed. 

2.3.3.2 Computing 3D Head Coordinates 

After outlier removal, the center of the pixels with the largest rounded disparity 

instead of only the pixel with largest disparity on the potential head top segment is 

determined as the head point on the image plane. When computing the 3D head 

location, the largest disparity (not rounded) is used. This way, both the disparity 
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and the image plane position can have sub-pixel resolution, making the localization 

of the 3D head point more robust and accurate. 

 

 

 

 

Figure 2.10: 3D head position calculation 

 

 

 

Figure 2.10 is the front view of the scene with a person in it. cam1 and cam2 

are the left and right overhead camera. The two cameras have a common image 

plane π' because of the way they are deployed. Plane π1 is parallel to the image 

plane π' and contains the optical centers of cam1 and cam2. H is the 3D head point 

which is the closest point of the person to plane π1 with the distance  

 𝑟 = 𝑏𝑓/𝑑  (2.5) 

where 𝑓 is the camera focal length, 𝑏 the baseline length and 𝑑 the disparity of the 

3D head point. The head pixel H' is the 3D head point in image plane π'. 

In Figure 2.10, the reference plane π0 is defined as the plane 𝑧 = 0 . The 

projection point of the optical centre of cam1, O0, is the origin of the world 
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coordinate system, and the x-axis is parallel to the baseline. The z-axis is the optical 

axis of cam1. The y-axis is determined by the right-hand rule. G is the ground point 

of the person and is the point where plane π perpendicularly intercepts the central 

vertical axis of the person. G0 is the perpendicular projection of G on the reference 

plane. If the ground is flat, π0 is the ground plane and is overlapped with π (G and 

G0 are also overlapped). From the stereo triangulation, we can compute the 3D 

position of head point H (x, y, z) as 

 
(𝑥, 𝑦) = 𝑂′𝐻′̅̅ ̅̅ ̅̅ ∗ 𝑟/𝑓, 𝑧 = ℎ − 𝑟

(2.5)
⇒   

(𝑥, 𝑦) = 𝑂′𝐻′̅̅ ̅̅ ̅̅ ∗ 𝑏/𝑑, 𝑧 = ℎ − 𝑟 

(2.6) 

where 𝑂′𝐻′̅̅ ̅̅ ̅̅  is a vector in the image plane showing the position of head pixel H' 

relative to the image center O' and h is the camera height. 𝑓 , 𝑏 and 𝑑 have the same 

definition as in equation (2.5). (𝑥, 𝑦) in (2.6) is the coordinate of the head point in 

the image plane π'. To get the 3D location, (𝑥, 𝑦) is converted to the position in the 

coordinate system of the reference plane π0 using simple calibration of the 

overhead camera.  

2.3.4 Pedestrian Tracking 

Once the 3D positions of pedestrians, denoted as the 3D head points, are 

obtained in each frame, they are tracked by assuming a constant moving direction 

and velocity within two consecutive frames. With the position of a person in the 

previous frame, his/her position in the current frame is predicted using the 

assumption and a search is implemented in a neighborhood around the predicted 

point. The position of the person is then updated by the detected 3D head point that 

is nearest to the predicted point and within the search area. If no head point is found 
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in the search area, the person’s location is updated using the predicted one. The 

person is deleted if he or she is not found over certain extend period of time. 

Similarly, if an object is not associated with any object in the previous frame over 

some frame intervals, it is regarded as a new target.  

2.3.5 Experiments 

2.3.5.1 Experiment Setup 

We test our approach using a publicly available visual surveillance simulation 

test bed, ObjectVideo Virtual Video (OVVV) [57]. OVVV is based on a 

commercial game engine, which can make human models in the scene behave like 

people in real world. It allows placing and configuring static and pan-tilt-zoom 

(PTZ) cameras freely and can generate the true 3D position of an object as well. 

Some researchers [58, 59] also test their algorithms on the similar virtual 

environments such as a virtual reconstruction of the original Penn Station in New 

York City [60]. 

 

 

 

       

                        (a) Planar ground                              (b) Non-planar ground 

Figure 2.11: The virtual scenes of the train station concourse 
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Two virtual scenes of the train station concourse are created, one with flat 

ground (Figure 2.11(a)) and the other with a small bump, whose cross section is a 

trapezoid, added on the flat ground (the area inside the ellipse in Figure 2.11 (b)). 

Seven people are walking in an area of about 4*4.5 m, which is an uncrowded scene 

(however, it’s crowded from side views): the blobs of people don’t merge in the 

overhead view of a scene. 

We set the flat ground and the flat part of the non-planar ground (i.e., the 

bottom of the bump) as the plane z=0. The ceiling is 8.84 m high from the plane 

z=0. Two identical synchronized cameras are installed on the ceiling with 

perpendicular views. The baseline is horizontal and the length is 1 m. The frame 

rate in both scenes is set as 15 frames per second in the test bed and the frame size 

is 640*480 pixels for overhead cameras.  

2.3.5.2 Experiment Results 

We compare our method with blob centroid (BC) based method which uses 

blob centroids as the ground plane positions [45]. Both approaches are applied to 

track people in the scene with planar and non-planar ground. Since the BC method 

only uses one camera, the left camera in our experiments, it can only estimate the 

ground (X-Y plane) positions and we only compare the ground tracking results. To 

use the BC method in the scene, the detected blob center of each person is assumed 

to be on the plane z=0 for both planar and non-planar ground. Its 2D position in 

real world is calculated by converting the coordinate system of the image plane to 

that of plane z=0 using simple calibration of the left camera.  
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                        (a)  Left image                                     (b) Right image 

Figure 2.12: The frames captured by two cameras with people walking on the planar 

ground 

 

 

 

   

                          (a)  Left image                                 (b) Right image 

Figure 2.13: The frames captured by two cameras with people walking on non-

planar ground 

 

 

 

First we let a group of people walk on the planar ground and then let the same 

group of people walk on the non-planar ground using the same paths. Figure 2.12 

and Figure 2.13 show the images captured by the two overhead cameras when 

people are walking on the planar and non-planar ground, respectively. The 
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foreground centroids and the detected head points are marked as in red and white 

in the left image. The detected head points are very close to the head top centers in 

both scenes, and are different from the blob centers, especially when a person is far 

away from the FOV center. The dashed line square in Figure 2.13 shows the bump 

area. The two sets of images in Figure 2.12 and Figure 2.13 are captured almost at 

the same time. But they don’t look the same since the bump actually affects their 

walking velocities. 

Our approach can estimate the 3D tracks for pedestrians. To display our results 

more clearly, the 3D tracks are projected to the X-Y plane and Z plane separately. 

This also helps to guide a PTZ camera, since the X-Y value and Z value are used 

to determine the pan angle and tilt angle, respectively. The X-Y plane tracking 

results using our approach and the BC method in the two aforementioned scenes 

are shown in Figure 2.14 and Figure 2.15, where the solid lines are the ground truth 

provided by the test bed and the dashed lines are the estimated trajectories. The 

small blue square is the FOV center of the left camera. The number at the one end 

of each trajectory denotes its object ID and the same pedestrian in both scenes is 

given the same ID. From Figure 2.14 and Figure 2.15, we can see that the X-Y 

plane trajectories obtained using our method is very close to the ground truth, while 

the method using the blob centroids can only track the pedestrians accurately when 

they are very close to the FOV center. The further a person is away from the FOV 

center, the larger the tracking errors are. Because of the bump that changes people’s 

speeds according to which part of the bump they are at, the trajectories in the two 

scenes are a little different although the same paths are set. 
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(a) Trajectories obtained using our approach 

 

(b) Trajectories obtained using the BC method 

Figure 2.14: X-Y plane tracking results using two different methods when people 

walking on the planar ground 
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(a) Trajectories obtained using our approach 

 

(b) Trajectories obtained using the BC method 

 

Figure 2.15: X-Y plane tracking results using two different methods when people 

walking on the non-planar ground 
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Table 2.1: The errors of the estimated tracks on the planar ground 

Object ID 
BC method 

X-Y errors(cm) 

Our method  

X-Y errors (cm) Z errors (cm) 

1 20.54±2.50 3.42 ± 2.21 2.87 ± 1.31 

2 15.00±3.85 4.76 ± 2.07 3.76 ± 4.43 

3 25.00±10.87 2.74 ± 1.75 3.14 ± 3.26 

4 8.29±5.15 4.31 ± 3.00 4.32 ± 3.46 

5 31.11±3.03 3.28 ± 1.44 2.58 ± 3.11 

6 15.23±6.03 4.78 ± 2.22 2.62 ± 1.98 

7 20.13±6.91 2.63 ± 1.79 3.14 ± 0.45 

 

 

 

Table 2.2: The errors of the estimated tracks in the non-planar ground 

Object ID 
BC method 

X-Y errors(cm) 

Our method  

X-Y errors (cm) Z errors (cm) 

1 26.95±4.30 3.74 ± 1.89 2.90 ± 1.57 

2 16.29±4.79 3.66 ± 1.86 3.63 ± 4.68  

3 36.48±14.24 2.40 ± 1.82 3.08 ± 2.98 

4 10.91±6.12 4.16 ± 2.63 3.71 ± 3.53 

5 43.18±4.85 6.17 ± 6.22 5.22 ± 4.16 

6 17.66±7.01 3.78 ± 2.22 3.90 ± 4.21 

7 21.76±12.27 4.82 ± 2.54 3.02 ± 4.24 

 

 

 

The errors of estimated Z values together with the X-Y plane values for each 

person in the two scenes are tabulated in Table 2.1 and Table 2.2. Table 2.3 shows 

the overall tracking errors for the two methods. From the tables, we can see that the 

X-Y plane tracking errors of our approach is much smaller than those of BC method 
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and the errors in Z plane is very small. The 3D head position errors result from the 

two main reasons: a) the estimated potential head top segment is off the head top 

center due to pedestrians’ movement which makes the foreground blob not 

perfectly symmetrical about the projection of the vertical central axis; b) robust 

corresponding points are not found on the head top part of the segment or are not 

established correctly between the images from the two cameras. 

 

 

 

Table 2.3: The overall tracking errors  

 
BC method 

X-Y errors(cm) 

Our method  

X-Y errors (cm) Z errors (cm) 

Planar plane 19.33±9.14 3.70±2.26 3.21 ± 2.89 

Non-planar plane 24.75±13.63 4.10 ± 3.25 3.64 ± 3.78 

 

 

 

In Figure 2.16(a), a potential head top segment (the white segment) misses the 

head top centroid but the head point, the green dot, is still detected on the head top. 

This results in an error on X-Y plane that is usually smaller than the head top radius 

(8 cm on average for adults), and the estimated Z value is very close to the true 

value since the head top is relatively flat. The reason b) can cause relatively big 

error on both X-Y and Z plane, but this rarely happens. The ellipse in Figure 2.15(a) 

highlights the relatively big difference between the true and estimated X-Y plane 

tracks of person 5 for whom the average X-Y and Z errors are greater than 5 cm 

(shown in Table 2.2). This is because no robust matching points on the head top are 

found between the left and right images in some frames. Figure 2.16(b) shows the 
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detected head point (the green dot) of person 5 in one of those frames. The head top 

potential segment is established relatively well but a point on the edge of the head 

top is detected as the head point, thus both the X-Y and Z errors are relatively big.  

 

 

 

                      

                                (a)                                                           (b) 

Figure 2.16: A part of the frames showing (a) A not well detected potential head 

top segment and (b) A not well detected head point. The white segment denotes the 

potential head top segment, and the green and red dots denotes the foreground blob 

center and detected head point respectively  

 

 

 

A PTZ camera is installed on the wall in both scenes with a resolution of 

320*240 and a height of 4 m to capture the close-up facial images. The X-Y plane 

position of the PTZ camera is (3.81, -8.89) m with the same coordinate system as 

shown in Figure 2.14 and Figure 2.15. To compare the facial image capturing 

results based on the head points detected by our approach and the BC method, an 

additional PTZ camera is installed 25 cm above the existing PTZ camera in the 

scene with a flat ground to focus on the face of the same person. For the scene with 

non-planar ground, no additional PTZ camera is installed and the reason will be 

given in the next paragraph. The two PTZ cameras (the existing and additional one) 
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in the scene with planar ground and the one in the scene with non-planar ground 

are assigned to capture the close-up facial images of person 5 over time. The PTZ 

cameras are set to focus on the target with a small FOV of 1.27*0.95 m.  

 

 

 

 

                    (a)                                      (b)                                  (c) 

 

             (d)                                       (e)                                      (f) 

Figure 2.17: The close-up facial images captured in the scene with planar ground 

when using our method ((a)-(c)) and BC method ((d)-(e)), respectively.  

 

 

 

 

                 (a)                                    (b)                                  (c) 

Figure 2.18: The close-up facial images captured in the scene with non-planar 

ground by using the 3D head points detected by our approach. 
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Figure 2.17 shows the capturing result in the scene with planar ground, where 

the first row is the close-up facial images captured based on the 3D head location 

estimated by our method and the second row is obtained based on the BC method. 

Since Z values are not estimated in the BC method they are set as the average height 

of adults. The images in the first and second row from left to right are captured 

when person 5 arrives at the locations marked by the circles in Figure 2.14 (a) and 

(b) and the walking direction is shown as the black arrow. When the ground is non-

planar, the Z value of a head point, i.e., the height from the head point to the plane 

z=0, cannot be obtained using the BC method even with the assumed average height, 

since the height of the bump where the person stands is unknown. Thus it’s almost 

impossible to capture face images based on BC method and only 1 PTZ camera is 

installed in this case. However, with the 3D head points detected by our approach, 

the target’s face images shown in Figure 2.18 are captured at the positions marked 

by the circles in Figure 2.15(a). 

From Figure 2.17(a)-(c) and Figure 2.18, our method is very effective in 

capturing high quality close-up facial images, with almost all the captured faces 

around the image center. Even for the point inside the ellipse in Figure 2.15 (a) 

where both X-Y and Z plane errors are relatively large, the whole face is still 

captured although it’s not in the very center as shown in Figure 2.18 (b). However, 

the BC method can’t focus well on the face even the Z value (height) is assumed. 

To always capture the front view facial images, more PTZ cameras and a 

scheduling algorithm are needed, which will be introduced in the next chapter. 
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2.4 3D Pedestrian Tracking in Crowded Scenes 

𝐶1𝐹1̅̅ ̅̅ ̅̅  in Figure 2.19 is the potential head top segment obtained using the 

method in the section 2.3 for uncrowded scenes where the foreground blobs don’t 

merge from an overhead view and a head point can be detected on 𝐶1𝐹1̅̅ ̅̅ ̅̅ . However, 

in a crowded scene, the foreground blobs can be connected shown as these inside 

the circle in Figure 2.19. We can see that not all three head points lie on the potential 

head top segment 𝐶𝐹̅̅̅̅  detected using the same method. In this section, a novel 

approach is proposed to track people in crowded scenes with flat ground. 

 

 

 

 

Figure 2.19: Potential head top segment detected using the method for uncrowded 

scenes 
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Figure 2.20: Flowchart of Pedestrian tracking in crowded scenes 

 

 

 

The overview of our method is shown in Figure 2.20. First, the background 

subtraction is performed for frames from the left camera using the same method as 

in section 2.3.1. The existence probability of a head area is calculated for each 

foreground pixel based on the properties of the projective geometry of the 

pedestrians caught by the overhead camera. The regions consisting of the pixels 

whose existence probabilities are higher than a threshold are regions of interest 

(ROIs) and are clustered according to the distances between them if there is more 

than one ROI in a foreground blob. A short segment passing through the head top, 

i.e., the potential head top segment, is then established based on the centroid of the 

clustered ROIs. On this segment, the 3D head point is detected and its position is 

estimated using the method in section 2.3.3. People are then tracked across frames 

under the assumption of constant moving velocity (people walk in a non-erratic and 

smooth way). If the detected head point is not accurate enough, it is corrected and 

updated based on the similar color distribution of a head top within two consecutive 

frames. Since the background subtraction and 3D head position calculation in 
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crowded scenes use the same method as in section 2.3, we only present the 

calculation of head area existence probability, potential head top segment detection 

and pedestrian tracking in this section (i.e., section 2.4). 

2.4.1 Head Area Existence Probability Calculation 

To detect a potential head top segment, the head area existence probability for 

each foreground pixel is first calculated. 

 

 

 

 

Figure 2.21: Projective geometry of an overhead camera 

 

 

 

The probability of a foreground pixel being inside a head area is referred as the 

head area existence probability. We roughly model a person as a cylinder as 

illustrated in Figure 2.21. Point P, with the height h, is a point on a person and the 

cylinder whose diameter is the average human width extends from the ground plane 

π to the height h. The shadow area A in the plane π is the projection of the cylinder. 

Aʹ in the image plane πʹ, corresponding to A, is the image of the cylinder. Figure 

2.22 shows a part of the image captured by the left camera, where Oʹ is the image 
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center. From Figure 2.21, Oʹ is also the vanishing point of all vertical segments on 

the image plane. A 3D points located on a vertical segment is projected on a 

vanishing line. In Figure 2.22, Pʹ is the image of P and the segment along the 

vanishing line 𝑃′𝑄′̅̅ ̅̅ ̅̅  denotes the height h in the image plane. Usually the longer 𝑃′𝑄′̅̅ ̅̅ ̅̅  

and the more number of foreground pixels (highlighted in green) inside Aʹ indicate 

a larger probability that Pʹ is within a head area. 

 

 

 

 

Figure 2.22: Part of the image captured by the left camera as shown in Figure 2.23(a) 

 

 

 

To efficiently calculate both l (the length of 𝑃′𝑄′̅̅ ̅̅ ̅̅ ) and the foreground area 

within Aʹ, a polar mapping is performed for each left image using the conversion 

formulas 

 {
𝑟 = √𝑥2 + 𝑦2    

𝜃 = 𝑎𝑡𝑎𝑛2(𝑦, 𝑥)
 (2.7) 

where 𝑎𝑡𝑎𝑛2(𝑦, 𝑥) is defined as 
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 𝑎𝑡𝑎𝑛2(𝑦, 𝑥) =

{
 
 
 
 
 

 
 
 
 
 arctan (

𝑦

𝑥
)                                    𝑖𝑓 𝑥 > 0

arctan (
𝑦

𝑥
) + 𝜋            𝑖𝑓 𝑥 < 0 𝑎𝑛𝑑 𝑦 ≥ 0 

arctan (
𝑦

𝑥
) − 𝜋              𝑖𝑓 𝑥 < 0 𝑎𝑛𝑑 𝑦 < 0

              
𝜋

2
                         𝑖𝑓 𝑥 = 0 𝑎𝑛𝑑 𝑦 > 0

             −
𝜋

2
                      𝑖𝑓 𝑥 = 0 𝑎𝑛𝑑 𝑦 < 0

               0                         𝑖𝑓 𝑥 = 0 𝑎𝑛𝑑 𝑦 = 0

 (2.8) 

x and y in equations (2.7) and (2.8) are the coordinate values of an pixel in the 

original image coordinate system shown in Figure 2.23(a) where the image center 

Oʹ is the origin of coordinates. 𝑟 and 𝜃 are the coordinate values of the pixel after 

polar mapping and are rounded to integers to determine its location in the new 

image. The rounding can generate small ‘holes’ in the polar mapped image. To 

eliminate these ‘holes’, an inverse conversion is implemented. To get more details 

for the part far away from the image center, 𝜃 is sampled every 0.5 degree during 

the polar mapping, so there are 720 columns in the polar mapped image.  

In Figure 2.23, the pixel (𝜃, 𝑟) in polar mapped image corresponds to the pixel 

(𝑥, 𝑦) after polar mapping. 𝜃 and 𝑟 denote the column number starting from the left 

and the row number starting from the bottom, respectively. The image center Oʹ is 

converted as the bottom row, which is shown in blue in Figure 2.23(b).  

If the image of a person is passed through by the positive x-axis shown as the 

red segment in Figure 2.23(a), it will be divided into two parts after polar mapping, 

with one part appearing in the far left and the other part in the far right of the polar 

mapped image. In this case, a circular shift on columns is implemented to combine 

the two parts. 
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(a) An image in the Cartesian coordinate system 

 

(b) The image in the polar coordinate system 

Figure 2.23: Polar mapping 

 

 

 

Figure 2.24 shows a part of the image after performing polar mapping on the 

left image mentioned in Figure 2.23(b). The segment  𝑃′𝑄′̅̅ ̅̅ ̅̅  along the vanishing line, 

as shown in Figure 2.22, becomes 𝑃′′𝑄′′̅̅ ̅̅ ̅̅ ̅ that is in a column and has the same height 

l as  𝑃′𝑄′̅̅ ̅̅ ̅̅ , and Aʹ is approximated by a rectangle Aʺ with the length being the height 

l and the width corresponding to the cylinder’s diameter (average human width). 

So the image of a cylinder becomes a rectangle after polar mapping. l can be 
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evaluated by the number of foreground pixels right below Pʺ, and the foreground 

area inside Aʺ can be computed using integral image [61-63] for the binary 

foreground blob. 

 

 

 

 

Figure 2.24: The reference projections and heights for foreground pixels 

 

 

 

To evaluate the head area existence probability, the reference projected area 

for each foreground pixel is computed. It is defined as the projection of a reference 

person with an average human width 𝑤𝑟  and height ℎ𝑟  assuming that the 

foreground pixel is the head point. The reference projection for a point is a rectangle 

since a person is modeled as a cylinder. In Figure 2.24, the dashed line rectangle R 

is the reference projection for the point Pʺ. 

Due to the perspective projection and polar mapping, the reference projected 

area varies with a pixel’s location. For example, the dashed line rectangle B is the 

reference projection for point Tʺ and its size is different from R. So the height and 
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width of a reference projection are pre-computed for all pixels in the polar mapped 

image.  

 

 

 

 

                  (a) A plane perpendicular to the ground  (b) The ground plane 

Figure 2.25: Pre-computing the height and width of the reference projection for a 

pixel in the polar mapped image 

 

 

 

In Figure 2.25, C is a camera with height ℎ𝑐; O is its projection on the ground 

plane, and X is a projected point on the ground corresponding to a pixel Xʺ in the 

polar mapped image. Figure 2.25(a) shows a plane perpendicular to the ground plane 

which is depicted in Figure 2.25(b). Assume that Xʺ is a head pixel, then the red 

rectangle in Figure 2.25(a) is the cross section of the reference person, and 𝑤𝑟
′ =

ℎ𝑐 ∙ 𝑤𝑟/(ℎ𝑐 − ℎ𝑟) in Figure 2.25(b) is the projected width of 𝑤𝑟. The height and 

width of the reference projection for pixel Xʺ, 𝜂ℎ(𝑋ʺ) and 𝜂𝑤(𝑋ʺ), are computed as 

 𝜂ℎ(𝑋ʺ) = ℎ𝑟
𝑑(𝑂ʺ𝑋ʺ̅̅ ̅̅ ̅̅ ̅)

ℎ𝑐
+ 𝑑(𝑤𝑟) (2.9) 

 

 𝜂𝑤(𝑋ʺ) = 2𝑡𝑎𝑛
−1(

𝑑(𝑤𝑟
′)

2𝑑(𝑂ʺ𝑋ʺ̅̅ ̅̅ ̅̅ ̅)
)/∆𝛼 (2.10) 
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where d(∙) denotes the distance in pixels and ∆𝛼 is the sampling angle for polar 

mapping. 𝑑(𝑂ʺ𝑋ʺ̅̅ ̅̅ ̅̅ ̅) is the row number of Xʺ from the bottom in the polar mapped 

image and Oʺ is image center after polar mapping, shown as the blue line in Figure 

2.24. For example, 𝑑(𝑂ʺ𝑃ʺ̅̅ ̅̅ ̅̅ ) is the row number of pixel Pʺ. The number of pixels 

corresponding to a segment on the ground plane can be obtained by simple camera 

calibration. 

The height of a foreground pixel Xʺ, H(Xʺ), is obtained by counting the number 

of consecutive pixels right below it in the same foreground blob. The height is 

calculated column by column from bottom to top. If H(Xʺ) is greater than 𝜂ℎ(𝑋ʺ) 

or the pixel one row below Xʺ belongs to the background, the pixel counting restarts 

from 0 (this also infers that 𝐻(𝑋ʺ) ≤ 𝜂ℎ(𝑋ʺ)). In Figure 2.24, 𝐸𝐷̅̅ ̅̅  denotes H(D) 

and the pixel counting starts from E because of the background pixels under E. H(G) 

is the length of 𝑍𝐺̅̅ ̅̅  instead of 𝑌𝐺̅̅ ̅̅  since 𝐻(𝑍) = 𝜂ℎ(𝑍). Thus occluded people can 

be roughly separated along a vanishing line (a column in the polar mapped image). 

The head area existence probability of a foreground pixel Xʺ in a polar mapped 

image is obtained by comparing with the pixel’s reference projected area and is 

defined as 

 𝑝𝑒(𝑋ʺ) =
𝑁(𝑋ʺ)

𝜂ℎ(𝑋ʺ)𝜂𝑤(𝑋ʺ)
 (2.11) 

where N(Xʺ) is the number of foreground pixels inside the rectangle with its top 

side centering at Xʺ, width being 𝜂𝑤(𝑋ʺ) and height being H(Xʺ). Compared with 

H(Xʺ), N(Xʺ) can determine a possible head pixel better, since a head pixel needs 

to be not only ‘high’ enough but also around the vertical central axis of a person. 

N(Xʺ) embeds the both features of a head point. In Figure 2.24, H(G) is greater than 
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H(D), but G does not necessarily have higher odds over D to be a head pixel as D 

is closer to the vertical central axis of the person. 𝑝𝑒(𝑃ʺ) > 𝑝𝑒(𝑇ʺ), because the 

foreground inside Aʺ covers more area of the reference projection. 

2.4.2 Potential Head Top Segment Detection 

 

 

 

 

Figure 2.26: ROIs with color coded head area existence probabilities in the polar 

mapped image 

 

 

 

We consider all pixels with the existence probability greater than a threshold 𝑡𝑝, 

not just those with the largest probability, as possible head area pixels. Since people 

are not perfect cylinders and a person’s height and width can be somewhat different 

from the averages, the probabilities of the head area pixels of one person may be 

lower than those of another person. Some head area pixels will not be detected if 

just those with maximal probability are considered. The threshold 𝑡𝑝 (set as 0.5 here) 

cannot be too high, since the computed existence probability of a true head area 
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pixel can be relatively low if a part of a person is occluded by another. The region 

formed by these detected possible head pixels is considered as the region of interest 

(ROI). In Figure 2.26, ROIs are shown as colored masks in a part of the polar 

mapped image, with the color indicating the head area existence probability. The 

pixels with high probabilities (those marked in red) are located not just in the head 

areas but also on the shoulders and around the necks. Thus the ROIs mainly lie on 

the top central part of a person.  

 

 

 

 

Figure 2.27: Establishing a potential head top segment 

 

 

 

It’s possible that more than an ROI exists in a foreground blob especially when 

it contains more than one person, thus ROI clustering is needed. To cluster the ROIs 

belonging to a person, the polar mapped image is converted back to the original 

one, as shown in Figure 2.27. ROIs with very small areas are considered not robust 
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and removed before clustering. The clustering starts by merging the largest ROI 

with any other ROI whose centroid is within an average shoulder width to the 

centroid of the largest ROI. The clustering continues with the largest ROI of the 

remaining ROIs until all the ROIs are clustered. The number of persons in a 

foreground blob can be estimated from the number of clusters. The three persons 

around the middle of Figure 2.27 are very close to each other and thus are detected 

in the same foreground blob within which the several ROIs are clustered into 3 

groups, 𝐺1, 𝐺2 and 𝐺3, corresponding to the three persons.  

The centroids of the clustered ROIs, considered as the points of interest (POIs), 

are shown as blue dots in Figure 2.27. When a foreground blob contains the image 

center, it spreads over the entire rows after polar mapping, and the POI cannot be 

obtained using the aforementioned method. This happens when a person is very 

close to the FOV center. In this case, if the scene is not extremely crowded, he or 

she will not be occluded and the head area roughly locates at the center of the 

foreground blob, thus the ROI can be considered as the center part of the blob and 

the POI as the blob centroid. Since an ROI (in either case) appears not just in the 

head area, the POI is not necessarily located at the head top center. To get an 

accurate 3D head point, a potential head top segment is established by extending 

the POI to both sides by a short length (e.g., the diameter of the head top) along the 

vanishing line and only the part lying on the foreground is considered. In Figure 

2.27, the POI 𝑃1 is almost outside the head top but the potential head top segment 

(the white one) passes through the whole head top, and the head point can be found 
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on the segment. The potential head top segments for the three persons 𝐺1, 𝐺2 and 

𝐺3, the 3 white segments, are also illustrated. 

Once the potential head top segments are detected, the head points are detected 

on the segments and their 3D positions are estimated using method in section 2.3.3. 

2.4.3 Pedestrian Tracking 

Pedestrian tracking is to associate a pedestrian’s location across time/frames. 

In this section, tracking is performed by fusing 2 kinds of information. Pedestrians 

are first tracked based on the 3D head point detected using geometric cues. If the 

detected head point is not accurate, they are tracked based on the similar color 

distribution of a head top within two consecutive frames. Tracking based on the 

first kind of information is presented in section 2.3.4, so it is not introduced here. 

Tracking based on the second information and the combination of the 2 kinds of 

information is given as follows. 

2.4.3.1 Tracking Based on the Color Cues of a Head Top 

Many works [51, 64-67] use the intensity or color within an object region to 

form a template or histogram of the object in each frame. The correspondences of 

an object between two (usually consecutive) frames is established by evaluating the 

similarities of the two templates or color histograms. In the overhead view of a 

scene, the head top of a person is usually visible and the color distribution of a head 

top in two consecutive frames are very similar. A head top is considered as a flat 

circular region parallel to the ground and its size from an overhead view is 

irrelevant to the person’s location. A color histogram is used as the representation 



54 

of a head top since it is invariant to scaling and rotation and can handle partial 

occlusions [66, 68]. 

The probability of the feature (color) u (u=1, 2, …, m) in a head top (the target) 

in the previous frame is computed as [66, 69] 

 𝑞𝑢(𝒚) = 𝐶∑𝑘 (‖
𝒙𝒊 − 𝒚

𝑟
‖
2

) 𝛿[𝑏(𝒙𝒊) − 𝑢]

𝑛

𝑖=1

 (2.12) 

 

 𝐶 = 1/∑𝑘 (‖
𝒙𝒊 − 𝒚

𝑟
‖
2

)

𝑛

𝑖=1

 (2.13) 

where {𝒙𝒊}𝑖=1,2,…𝑛 are the locations of pixels inside the target region which has in 

total n pixels. 𝒚 and 𝑟 are the center and radius of the head top, respectively. 𝑘(∙) 

is an isotropic kernel profile. 𝐶 is the normalization function that is independent of 

𝒚 and can be pre-computed given 𝑘(∙) and 𝑟. 𝛿 is the Kronecker delta function. 

𝑏(𝒙𝒊) associates the pixel at location 𝒙𝒊 to a specific histogram bin out of m bins. 

A head top centered at 𝒚 is then modeled as 𝒒(𝒚) = {𝑞𝑢(𝒚)}𝑢=1,2,…𝑚. 

Similarly, a candidate head top region (the target candidate) centered at 

location 𝒗  and with the radius ℎ(ℎ > 𝑟)  in the current frame is represented as 

𝒑(𝒗) = {𝑝𝑢(𝒗)}𝑢=1,2,…𝑚. 

 𝑝𝑢(𝒗) = 𝐶ℎ∑𝑘(‖
𝒔𝒊 − 𝒗

ℎ
‖
2

) 𝛿[𝑏(𝒔𝒊) − 𝑢]

𝑛ℎ

𝑖=1

 (2.14) 

 

 𝐶ℎ = 1/∑𝑘 (‖
𝒔𝒊 − 𝒗

ℎ
‖
2

)

𝑛ℎ

𝑖=1

 (2.15) 
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where {𝒔𝒊}𝑖=1,2,…𝑛ℎ are the locations of pixels inside the target candidate that has 

𝑛ℎ (𝑛ℎ > 𝑛)  pixels and 𝐶ℎ  is the normalization function. The radius ℎ  of the 

candidate region is determined by the average walking velocity and is usually 

smaller than 2m/s. 

By using the aforementioned normalized histograms 𝒒(𝒚)  and 𝒑(𝒗) , the 

similarity between the head top and its candidate is evaluated based on the 

Bhattacharyya coefficient[70]:  

 𝜌[𝒒(𝒚), 𝒑(𝒗)] = ∑√𝑞𝑢(𝒚)𝑝𝑢(𝒗)

𝑚

𝑢=1

 (2.16) 

This coefficient has a geometric interpretation: the angle between the two 

vectors 𝒒(𝒚) and 𝒑(𝒗). The head point, i.e., the center of the head top, in the 

current frame can be detected by maximizing the Bhattacharyya coefficient in 

(2.16). The maximization is an iterative process and the search of the head point in 

the current frame is initialized with the head point position 𝒚 in the previous frame. 

The search radius ℎ is determined by the velocity of the target estimated from up 

to previous frame. By using the Taylor expansion around 𝑝𝑢(𝒚), 𝜌[𝒒(𝒚), 𝒑(𝒗)]is 

approximated as  

 

𝜌[𝒒(𝒚), 𝒑(𝒗)] ≈
1

2
∑√𝑞𝑢(𝒚)𝑝𝑢(𝒚)

𝑚

𝑢=1

+
𝐶ℎ
2
∑𝑤𝑖𝑘(‖

𝒔𝒊 − 𝒗

ℎ
‖
2

)

𝑛ℎ

𝑖=1

 

(2.17) 
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 𝑤𝑖 = ∑√
𝑞𝑢(𝒚)

𝑝𝑢(𝒚)

𝑚

𝑢=1

𝛿[𝑏(𝒔𝒊) − 𝑢] (2.18) 

 

 

 

 

Algorithm 1: Tracking head points based on color histograms 

 

Input: the head top model {𝑞𝑢(𝒚)}𝑢=1,2,…𝑚 and its center 𝒚 that is the head point in 

the previous frame  

Output: the head point 𝒚𝟏  and head top model {𝑞𝑢(𝒚𝟏)}𝑢=1,2,…𝑚  in the current 

frame  

1: Initialize the location of the head point in current frame with 𝒚 and set iteration     

number 𝑗 = 0  

2: Compute the weights {𝑤𝑖}𝑖=1,2,…𝑛ℎusing (2.18) 

3: Find the next location of candidate head point 𝒚𝟏 using (2.20) 

4: 𝑑 = ‖𝒚𝟏 − 𝒚‖, 𝒚 = 𝒚𝟏 

5: if 𝑑 < 휀 𝑜𝑟 𝑗 ≥ 𝑁, where 휀 is a threshold (default 1 pixel) and 𝑁 is the maximum 

iteration number (default 10)    

6:  Compute the head top model {𝑞𝑢(𝒚𝟏)}𝑢=1,2,…𝑚 in the current frame  

8: Stop 

9: else  

10:  j=j+1 and go to step 2   

 

 

 



57 

Because the first term in (2.17) is independent of 𝒗, we need to maximize the 

second term in order to get the maximum of (2.16). By employing the mean shift 

iteration [71], the estimated head point moves from current location 𝒚 to the new 

location 𝒚𝟏 calculated as 

 𝒚𝟏 =
∑ 𝒔𝒊𝑤𝑖𝑔 (‖

𝒔𝒊 − 𝒚
ℎ
‖
2

)
𝑛ℎ
𝑖=1

∑ 𝑤𝑖𝑔 (‖
𝒔𝒊 − 𝒚
ℎ
‖
2

)
𝑛ℎ
𝑖=1

 (2.19) 

where 𝑔(∙) = −𝑘′(∙), assuming that the derivative of 𝑘(∙) exists for all positive 

values. The kernel 𝑘(∙) with Epanechnikov profile [71] is recommended to be 

adopted thus 𝑔(∙) becomes constant and (2.19) is reduced to a simple weighted 

average [66]: 

 𝒚𝟏 =
∑ 𝒔𝒊𝑤𝑖
𝑛ℎ
𝑖=1

∑ 𝑤𝑖
𝑛ℎ
𝑖=1

 (2.20) 

The mean shift tracking algorithm is presented in Algorithm 1. The head point 

in the current frame is obtained using an iteration process and the iteration ends 

when the calculated head points in the previous and current iterations are close 

enough or the number of the iterations arrives at the preset threshold. 

2.4.3.2 Tracking by Fusing the Geometric and Color Cues 

To track a person in 3D, we can first detect all the 3D head points in the current 

frame using the projective geometric cues as mentioned previously in section 2.4.2, 

and then associate the detected or predicted head point with the corresponding 

person in the previous frame, as described in section 2.3.4. The head point detecting 

and associating are separated, and it’s possible that both the detected and predicted 

head point is not accurate, shown as the white point in The mean shift tracking 
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algorithm is presented in Algorithm 1. The head point in the current frame is 

obtained using an iteration process and the iteration ends when the calculated head 

points in the previous and current iterations are close enough or the number of the 

iterations arrives at the preset threshold.(b). In this case, the corresponding head 

point in the current frame can be determined using the color information of the head 

top that is shown as the region inside the red circle with the head point as the center 

in The mean shift tracking algorithm is presented in Algorithm 1. The head point 

in the current frame is obtained using an iteration process and the iteration ends 

when the calculated head points in the previous and current iterations are close 

enough or the number of the iterations arrives at the preset threshold.(a). Thus the 

detecting and associating (together, called tracking) are performed at the same time.  

 

 

 

             

        (a) Part of the previous frame     (b) The same region as (a) in the current frame 

Figure 2.28: A head point in the current frame (b) is detected using the projective 

geometry and associated with the head point in the previous frame (a) based on the 

constant velocity within 2 consecutive frames. The frames in (a) and (b) are from 

the left overhead camera  
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Once the 2D head point is detected, its 3D position can be calculated via 

triangulation after finding the matching point in the right image. However, to track 

the head point based on the color histogram of the head top using mean shift as in 

section 2.4.3.1, an initial head point such as the white point in The mean shift 

tracking algorithm is presented in Algorithm 1. The head point in the current frame 

is obtained using an iteration process and the iteration ends when the calculated 

head points in the previous and current iterations are close enough or the number 

of the iterations arrives at the preset threshold.(a) is needed. The head point detected 

based on the projective geometry and tracked based on constant velocity within two 

successive frames is a good choice for the initialization. Thus the geometric cues 

(together with the common motion assumption) and color cues are two 

complementary tools for pedestrian tracking and are integrated to improve the 

robustness and accuracy of the tracking results. The new tracking algorithm is given 

as in Algorithm 2.  

Line 3 in Algorithm 2 determines whether the detected head point using the 

geometric cues is accurate or not by evaluating the similarity of the color 

histograms within the two red circles shown in The mean shift tracking algorithm 

is presented in Algorithm 1. The head point in the current frame is obtained using 

an iteration process and the iteration ends when the calculated head points in the 

previous and current iterations are close enough or the number of the iterations 

arrives at the preset threshold.. If the head point detected based on the color cues is 

an outlier, i.e., the detected 2D head point lies in the background or the height of 

the 3D head point changes drastically, as shown in Line 7, the head point detected 
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based on the geometric cues is still adopted. This procedure is used as a cross 

validation and thus can improve the tracking robustness. 

 

 

 

 

Algorithm 2: Tracking head points based on the common motion assumption and 

color cues 

 

Input: the 2D, 3D head point 𝑿𝟐𝒅, 𝑿𝟑𝒅 of a person f and the color distribution of  

the head top 𝒒(𝑿𝟐𝒅) in the previous frame  

Output: the 2D, 3D head point 𝒀𝟐𝒅, 𝒀𝟑𝒅 of the person f and the color distribution 

of the head top 𝒒(𝒀𝟐𝒅) in the current frame  

1: Detect all the head points based on geometric cues and find the 2D and 3D head      

point, 𝒀𝟐𝒅 and 𝒀𝟑𝒅, for the person f based on constant moving velocity in current      

frame  

2: Compute the color histogram of the head top 𝒒(𝒀𝟐𝒅) 

3: if 𝜌[𝒒(𝒀𝟐𝒅), 𝒒(𝑿𝟐𝒅)]> 휀1(a threshold, set as 0.8)    

4: Stop 

5: else 

6:  Find the 2D head point 𝑻𝟐𝒅 for person f based on 𝒒(𝑿𝟐𝒅) using mean shift 

and calculate its 3D location 𝑻𝟑𝒅 

7: if 𝑻𝟐𝒅 is in the foreground and z-value of 𝑻𝟑𝒅 is within a reasonable range 

8: 𝒀𝟐𝒅 = 𝑻𝟐𝒅, 𝒀𝟑𝒅 = 𝑻𝟑𝒅 

9: else  
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10: Stop 

 

 

 

2.4.4 Experiments 

2.4.4.1 Experiment Setup 

As in the uncrowded scenes in section 2.3, we test our approach using a 

publicly available visual surveillance simulation test bed, ObjectVideo Virtual 

Video (OVVV) [57]. 

 

 

 

 

Figure 2.29: A virtual train station concourse 

 

 

 

A virtual scene of a train station concourse with a flat ground as shown in 

Figure 2.29 is created, where two group people walk towards mainly two different 

directions. There are 14 people walking in an area of about 4*4.5 m, which is a 

crowded scene. The foreground blobs of people merge from time to time even in 

the overhead view of a scene. The ceiling is 8.84 m high from the ground. Two 
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identical horizontally aligned cameras are installed on the ceiling with the image 

planes parallel to the ground plane. The frame rate is 15 frames per second and the 

frame size is 640*480 pixels.  

2.4.4.2 Experiment Results 

Figure 2.30 shows two frames captured by the left camera. In these frames, 

people are close to each other thus occlusions occur. The green dots are the 2D head 

points detected based on the projective geometry and they are updated using mean 

shift if the color distributions within the head tops around the detected head points 

are not close enough to those in the previous frame. The corrected head points are 

shown as white dots in Figure 2.30. We can see that the green dots which are 

relatively further from the head top centers are updated by the white dots which are 

closer to the head top centers. Thus the detection of the head points becomes more 

accurate.  

To better show the tracking results, the estimated 3D tracks are projected onto 

the X-Y plane (ground) and Z plane (height) separately. Figure 2.31(a) depicts the 

ground plane tracking results when the 3D head points are detected only using 

geometric cues and tracked based on the common motion assumption. Figure 

2.31(b) shows ground plane tracking results when both the geometric and color 

cues are applied. In both figures 2.31(a) and (b), the solid and dashed lines of the 

same color represent the ground truth and estimated trajectory of the same person, 

respectively. The brown dots are the FOV centers. The number at one end of each 

trajectory denotes the object ID. The estimated trajectories are oscillating around 
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but very close to the ground truth, and the estimated tracks in Figure 2.31(b) are 

even closer to the ground truth. 

 

 

 

 

Figure 2.30: Two frames captured by the left camera with the head points detected 

by combining the geometric and color cues  
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(a) Tracking results only based on the geometric cues 

 

(b) Tracking results based on both the geometric and the color cues 

Figure 2.31: The ground plane tracking results 
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Table 2.4: The smallest and largest four average errors of the estimated tracks when 

only the geometric cues are used 

Object ID Ground Plane Errors (cm) Height Errors (cm) 3D Errors (cm) 

11 2.40 ± 1.28 2.07 ± 0.62 3.31 ± 1.06 

13 2.48 ± 1.59 2.21 ± 1.31 3.42 ± 1.90 

12 2.83 ± 1.83 2.50 ± 1.96 3.89 ± 2.51 

1 3.15 ± 2.32 4.07 ± 2.62 5.41 ± 3.07 

8 4.90 ± 2.50 3.87 ± 2.54 6.36 ± 3.35 

3 5.06 ± 2.47 3.56 ± 3.94 6.59 ± 4.03 

4 5.30 ± 2.05 3.87 ± 2.74 6.83 ± 2.82 

6 5.67 ± 1.72 3.95 ± 3.90 7.18 ± 3.76 

 

 

 

Table 2.5: The smallest and largest four average errors of the estimated tracks when 

both the geometric and color cues are used  

Object ID Ground Plane Errors (cm) Height Errors (cm) 3D Errors (cm) 

13 2.23 ± 1.16 1.91 ± 0.67 3.04 ± 1.09 

12 2.53 ± 1.29 1.95 ± 0.70 3.30 ± 1.22 

11 2.52 ± 1.35 2.03 ± 0.70 3.89 ± 1.09 

2 2.72 ± 1.81 2.17 ± 0.63 4.23 ± 1.41 

4 4.69 ± 1.97 2.83 ± 2.28 5.74 ± 2.45 

3 5.21 ± 1.94 2.24 ± 0.82 5.83 ± 1.57 

9 4.90 ± 1.62 2.90 ± 2.18 5.91 ± 2.18 

6 5.54 ± 1.13 3.32 ± 1.64 6.55 ± 1.63 

 

 

 

Table 2.6: The overall tracking errors when only the geometric cues are used 

Ground Plane Errors (cm) Height Errors (cm) 3D Errors (cm) 

4.02 ± 2.38 3.08 ± 2.80 5.34 ± 3.25 
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Table 2.7: The overall tracking errors when both the geometric and color cues are 

used 

Ground Plane Errors (cm) Height Errors (cm) 3D Errors (cm) 

3.76 ± 2.16 2.65 ± 1.93 4.86 ± 2.44 

 

 

 

The tracking errors are reported as the average distances between the true and 

estimated positions across all frames for each object. The smallest and largest four 

average 3D tracking errors are tabulated in Table 2.4 and Table 2.5 together with 

the ground plane and height tracking errors. Table 2.4 and Table 2.5 show the 

tracking errors when one and two tracking cues are used, respectively. Table 2.6 

and Table 2.7 show the corresponding overall tracking errors. From the tables, it’s 

obvious that tracking based on fusing two tracking cues gives better tracking results. 

To the best of our knowledge, the smallest error of the ground plane trajectories in 

others’ works is around 5 cm as reported in paper [37] where more than 2 side view 

cameras are used and the scene is sparse. 

From Table 2.4 to Table 2.7, we can see that the ground plane, height and 3D 

tracking errors are dependent. When estimating the 3D head position, the height of 

person is first calculated, and based on which the ground plane coordinates are 

obtained. The 3D head position errors mainly result from the fact that sometimes 

the estimated potential head top segment can be slightly off the head top center. 

Pedestrians walking in the scene are not perfect cylinders, hence the foreground 

blobs are not completely symmetric about the vanishing line that passes through 

the head top center. Although the detected head point might miss the head top center, 

it still lies inside the head top. This results in an error on the X-Y plane that is 
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usually smaller than the head top radius (about 8 cm on average for adults). Even 

if the detected head point misses the head top center, the estimated height is very 

close to the true value since the head top is relatively flat. This is also validated in 

Table 2.4 to Table 2.7 where the height errors are usually smaller than the 

corresponding ground plane errors.  

To demonstrate that our accurately estimated 3D head positions can be helpful 

in face tracking and recognition, a PTZ camera with a height of 4 m, ground plane 

coordinate (-1, -9) m (the same coordinate system shown in Figure 2.31(b)) and a 

resolution of 320*240 pixels is installed on the wall. The FOV of the PTZ camera 

is set small (1.27*0.95 m) to capture high resolution close-up facial images. If the 

3D head position is not accurate enough, no or only partial facial image can be 

captured. The pan and tilt angles of the PTZ camera are determined by the ground 

plane position and the height of the target, respectively. The PTZ camera is guided 

by the 3D trajectories obtained by fusing two geometric and color cues. In Figure 

2.32, the three close-up facial images from left to right are captured when person 3 

arrives at the locations marked by the asterisks in Figure 2.31(b). The arrow denotes 

the walking direction. Our method provides accurate 3D head locations and thus is 

very effective in capturing close-up facial image, with almost all the captured faces 

around the image center. Even for the second capture location where both X-Y and 

Z plane errors are relatively big, the whole face is still captured (the middle image 

in Figure 2.32). To always capture the frontal face images for better recognition, 

more than one PTZ cameras are required thus a camera scheduling is also needed. 

This is presented in next chapter.  



68 

     

Figure 2.32: Close-up facial images of person 3 captured by the PTZ camera 

 

 

 

2.5 Conclusions 

In this chapter, we detect and track pedestrians in an indoor environment from 

an overhead view based on 3D head points. We start with uncrowded scenes where 

people are not occluded and their images are not connected from an overhead view. 

In uncrowded scenes, a potential head top segment is detected for each person 

directly from projective geometry. To obtain a head top segment in crowded scenes, 

possible head areas are determined inside each foreground blob by evaluating the 

head area existence probability based on projective geometry. The highest points 

on the segment are detected to estimate the 3D head position efficiently. To track a 

person, the detected 3D head point is associated with the corresponding head point 

in the previous frame based on the common motion assumption. In crowded scenes, 

when the head point detected using the geometric cues is not accurate enough, it is 

updated using color cues of the head top region across consecutive frames. The 

approach is tested using a publicly available visual surveillance simulation test bed. 

The experiments show that the 3D tracking errors are very small under both 

crowded and uncrowded scenes from overhead views. The tracking errors for 
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ground positions and heights are around 4 cm and 3 cm, respectively. We also 

demonstrate that our method can help PTZ cameras to capture close-up face images. 

Currently our tracking approach can’t handle outdoor environment well since the 

background is more cluttered. By using a more clutter-tolerant foreground 

segmentation technique (e.g., extracting foreground objects through modeling the 

color of each pixel using a mixture of Gaussians), our method can also track people 

in outdoor environment.   
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3. SCHEDULING PTZ CAMERAS FOR FACE IMAGE CAPTURE 

BASED ON 3D PEDESTRIAN TRACKS 

The 3D position of a person acquired in last chapter is very helpful to capture 

close-up face images for recognition, and frontal face images usually give good 

recognition results. To achieve this, a smart camera network containing 2 overhead 

cameras and a set of PTZ cameras is constructed. With the detected 3D head 

position, we pick a most appropriate PTZ camera to capture the best frontal face 

images of a person of interest across time. A PTZ camera is selected based on the 

frontal face capture quality which is measured by the head visibility from the PTZ 

camera (a factor decided by both the target and other people in the scene and rarely 

considered by other researchers), view angle of the frontal face, camera-face 

distance and mechanical limits of the PTZ camera. When a new PTZ camera is 

chosen, the handoff success probability of the two PTZ cameras (the old and new 

one), which reflects the response time of the new camera moving from the initial to 

desired state, is also taken into account to capture close-up face images seamlessly. 

Experiments are implemented in a publicly available visual surveillance simulation 

test bed and show that our approach can capture the high-quality frontal face images 

effectively. 

3.1 Introduction 

To observe large scenes, cameras always have a wide field of view and are 

installed from a distance. This makes tasks that are sensitive to image quality and 

resolution, such as vehicle license plate recognition, face identification and gesture 
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recognition, very difficult. To get the details of objects clearly, PTZ cameras that 

can zoom in and adjust their orientations to follow/focus on the objects across time 

are needed.  

Using PTZ cameras together with fixed cameras to capture high quality videos 

of interested targets have been concerned by many researchers. Collins et al. [1] 

present a master-slave sensor corporation form with a wide-angle view camera as 

the master and a highly zoomed in pan-tilt camera as the slave. Object 

geoloccations are estimated from the master camera’s view point by intersecting 

back-projected viewing rays with a terrain model. Then a pan-tilt command 

transformed from the location is sent from the master camera to obtain the close-

up image of the object. Zhou et al. [72] also use one master camera and one slave 

camera to acquire biometric images of humans for recognition. They sample some 

pixels related to actual points in a surveillance scene and record the pan-tilt angles 

by which the slave camera can center on the points. For every other pixel on the 

master image, the slave camera angles are calculated by interpolation of the 

previously recorded angles. Instead of being controlled completely by the master 

camera, the slave camera only uses the pan-tilt command initially. After the target 

detection is achieved in the slave view, the slave camera starts to track the target. 

The system is designed to detect and track only one object. Stillman et al. [73] use 

two static and two PTZ cameras to track and recognize at most two people that wear 

clothes of different colors. The world coordinate obtained from the triangulation of 

the target locations from two static cameras provides a coarse estimate of the pan-

tilt angle and zoom factor. Like paper [72], PTZ cameras start tracking based on 
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their video stream once locking on the target. But they also use the information 

from static cameras to guide PTZ cameras when PTZ cameras lose the targets. 

A PTZ camera is assigned to a single target for a certain period of time to 

record high quality images of all targets. The assigning problem is not concerned if 

there is only one PTZ active camera and one target being followed [72, 74]. But if 

there is more than one PTZ camera and/or one target, the scheduling problem 

becomes increasingly non-trivial. Costello et al. [75] evaluate various strategies for 

scheduling a single PTZ camera to acquire biometric imagery of the people present 

in the scene. Hampapur et al. [76] present several ways to assign cameras to the 

subject being monitored, such as location-specific assignment which assigns active 

cameras to the objects within certain area, round robin sampling which assigns 

cameras to different objects periodically to achieve uniform coverage, etc. But how 

to implement those methods is not mentioned, since their experiment is based on 

only one target. Instead of assigning equal importance to each object, Qureshi and 

Terzopoulos [59] propose a weighed round robin scheduling algorithm to capture 

high quality videos for pedestrians based on their arrival time and the suitability of 

an active camera with respect to focusing on a pedestrian. Bimbo and Pernici [77] 

rank the importance of objects by evaluating the estimated deadline by when they 

will leave the scene and take into account of the cost of camera movements to 

acquire close-up images of as many targets as possible. Krahnstoever et al. [78] 

build a probabilistic objective function parameterized on the capture distance, view 

angle, target-zone boundary distance and mechanical limits of PTZ cameras for 

each target. By maximizing the objective function, a balance between the number 
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of captures per target and their quality is attained. To avoid camera scheduling 

which may appear optimal at present but will later lead to observation and tracking 

failures, Qureshi and Terzopoulos [79] apply a camera assignment considering both 

the short-term and long-term effects. With a scene under surveillance becoming 

crowded, occlusions caused by other people in the scene are prone to happen in the 

close-up images captured by PTZ cameras, which is rarely considered in most 

existing camera scheduling methods.   

In this chapter, a set of PTZ cameras are used to capture close-up face images 

of a target with the guidance of the 3D head positions obtained by fixed overhead 

cameras, as shown in Figure 3.1. A PTZ camera that captures the best frontal close-

up face images of the target, shown as the person in the circle in Figure 3.1, is called 

the best PTZ camera and is selected to capture face images across time. The best 

PTZ camera is determined not only by the target and candidate PTZ cameras but 

also other people in the scene who may block the view of target in close-up images.  

 

 

 

 

Figure 3.1: A camera network for close-up face image capture 
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3.2 Best PTZ Camera Selection based on Capture Quality   

The best PTZ camera varies with the location and velocity of the target. It is 

selected based on the frontal face capture quality that is evaluated by the head 

visibility, view angle of the frontal face, camera-face distance and camera 

mechanical limits. 

3.2.1 Capture Quality Measures  

In this section, quantitative models are built to measure the frontal face capture 

quality of each PTZ camera. 

3.2.1.1 Head Visibility 

To capture a face image, the head of a person of interest needs to be visible 

from the PTZ camera. When a scene becomes crowded, the head of the target can 

be blocked by other people in the scene from the point of view of a PTZ camera. If 

this happens, the PTZ camera will not be picked. Hence we need to consider the 

impact of other people on the PTZ camera selection. A person is modeled as a 

cylinder as shown in Figure 3.2, where C is a PTZ camera installed at a height of 

H from the ground and C' is the projection on the ground. ST is the central vertical 

axis of the person of interest, i.e., our target. Figure 3.2(a) shows the plane π that is 

formed by CC' and ST and thus is perpendicular to the ground. Q'P' on the plane π 

is the projection of QP which denotes a person that may obstruct the target. SR is 

the head part of the target and the length of RT is k, where k is height of the target 

and =
65

75
 (since an average person is generally 7-and-a-half heads tall). Figure 

3.2(b) shows the ground plane where P and T is the ground point of the 
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corresponding persons in Figure 3.2(a) and w is the average human width. The face 

of the target is blocked if that CR is intercepted by Q'P', P is closer to C' and P is 

inside the triangle AC'B formed by C' and the target. The face visibility from the 

PTZ camera, i.e., the target’s obstruction level to the camera, is quantified as 

 𝑄ℎ𝑣 = {
0        𝑖𝑓∠𝑇𝐶′𝑃 < 𝜃 & 𝐶′𝑃 < 𝐶′𝑇 & 𝛼 ≤ 𝛽
1                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.1) 

 

 

 

 

(a) A plane that is perpendicular the ground plane

 

(b) Ground plane 

Figure 3.2: Evaluating the head visibility of a person of interest from the view of a 

PTZ camera  
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3.2.1.2 View Angle of the Frontal Face 

Out of all kinds of views of a face, the frontal view can generate best face 

recognition results. Thus the view angle of the frontal face from a PTZ camera is 

crucial for high-quality face image capture. We assume people always face to the 

walking direction, i.e., the normal of the face and the walking direction are the same, 

which is a reasonable assumption. In Figure 3.3, the person walks following the 

arrow and δ (in degrees) is the view angle of the PTZ camera.  The capture quality 

based on the view angle of the frontal face is measured by 

 𝑄𝑣𝑎 = 𝑒
−
𝛿2

2𝜎𝑣𝑎
2
, 𝛿 = [0,180)  (3.2) 

 

 

 

 

Figure 3.3: An overhead view of a person walking on the ground 

 

 

 

The smaller the value of 𝜎𝑣𝑎, the faster 𝑄𝑣𝑎 decreases when the target doesn’t 

face to the PTZ camera. If 𝜎𝑣𝑎 = 45 degree and the PTZ camera captures the side 

view of the face, i.e. 𝛿 = 90 degree, we will have 𝑄𝑣𝑎 = 0.135 which means low 

capture quality of face image.  

PTZ Cam 

δ 

Ground plane 
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3.2.1.3 Camera-target Distance 

The quality of the captured face images generally degrades with the increase 

of the distance between the PTZ camera and the target. So the third quality measure 

is based on the camera-target distance given as 

 
𝑄𝑑 = 𝜌 + (1 − 𝜌)𝑒

−
𝑑2

2𝜎𝑑
2
 

(3.3) 

where d is distance between the face and the PTZ camera, as shown in Figure 3.3. 

𝜌 represents a baseline capture quality of face image when the target is far away 

from the camera. The second term of the right side of equation (3.3) models the 

trend how the capture quality drops as the target moves away from the camera. 𝜎𝑑 

is decided by the size of the scene monitored by the fixed overhead cameras and 

the distance from the center of the scene to the PTZ cameras.  

3.2.1.4 Mechanical Limits 

A PTZ camera has a mechanical limitation on the range of the pan, tilt and 

zoom parameters. It’s impossible to set the parameter state of PTZ cameras out of 

the physical range to capture the face images. Hence, a term that defines the 

mechanical limits of a PTZ camera is introduced: 

  𝑄𝑚 = {
1   𝑖𝑓(∅, 𝜓, 𝑟) ∈ [∅𝑚𝑖𝑛, ∅𝑚𝑎𝑥], [𝜓𝑚𝑖𝑛, 𝜓𝑚𝑎𝑥], [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥]
0                                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.4) 

where [∅𝑚𝑖𝑛, ∅𝑚𝑎𝑥], [𝜓𝑚𝑖𝑛, 𝜓𝑚𝑎𝑥] and [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥] are the mechanical limits of 

the pan, tilt and zoom parameters respectively. 
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3.2.2 PTZ Camera Selection 

The success probability of capture 𝑃𝑐𝑎𝑝, i.e., the probability that a PTZ camera 

captures a close-up frontal face image is evaluated using the quantitative measures 

in section 3.2.1, given as  

 𝑃𝑐𝑎𝑝 = 𝑄ℎ𝑣𝑄𝑣𝑎𝑄𝑑𝑄𝑚 (3.5) 

The capture probability reflects not only the status of the target and PTZ 

cameras but also other people in the scene. The PTZ camera generating the 

maximum probability is the best PTZ camera and is picked to follow the target. 

Assume that 𝐶𝑝𝑟𝑣 is the PTZ camera used in the previous frame and camera 𝐶𝑏𝑒𝑠𝑡, 

which is different from 𝐶𝑝𝑟𝑣, is the best PTZ camera based on 𝑃𝑐𝑎𝑝 in the current 

frame. The pan-tilt-zoom parameter state 𝑆𝑒𝑠𝑡 of 𝐶𝑏𝑒𝑠𝑡 is estimated accordingly. If 

the current parameter state 𝑆𝑐𝑢𝑟  of 𝐶𝑏𝑒𝑠𝑡  is very different from 𝑆𝑒𝑠𝑡  and camera 

𝐶𝑏𝑒𝑠𝑡 is still used to capture the target, we may lose the target since 𝐶𝑏𝑒𝑠𝑡 cannot 

arrive at the estimated parameter state in time. In this case, we need to stick with 

camera 𝐶𝑝𝑟𝑣 to capture the target with its corresponding estimated parameters, as 

shown in Figure 3.4. In the meantime, camera 𝐶𝑏𝑒𝑠𝑡  keeps moving towards the 

estimated orientation and zooming state. Since pedestrians walk smoothly, if the 

same PTZ camera is used between two frames, usually it can change from the 

current parameter state to the estimated one in time and capture the target 

successfully.  Hence, when a new PTZ camera 𝐶𝑏𝑒𝑠𝑡 is selected based on 𝑃𝑐𝑎𝑝, we 

need to consider the cost of changing from its current parameter state to the 

estimated state. It is measured by the handoff success probability, given as  
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𝑃ℎ = 𝑒

−𝑀𝑎𝑥(
(∅𝑐𝑢𝑟−∅𝑒𝑠𝑡)

2

2𝜎∅
2 ,   

(𝜓𝑐𝑢𝑟−𝜓𝑒𝑠𝑡)
2

2𝜎𝜓
2 ,   

(𝑟𝑐𝑢𝑟−𝑟𝑒𝑠𝑡)
2

2𝜎𝑟
2 )

 
(3.6) 

where (∅𝑐𝑢𝑟 , 𝜓𝑐𝑢𝑟 , 𝑟𝑐𝑢𝑟) and (∅𝑒𝑠𝑡, 𝜓𝑒𝑠𝑡, 𝑟𝑒𝑠𝑡)  are the current and estimated 

parameter sets respectively. 𝜎𝜙, 𝜎𝜓 and 𝜎𝑟 are determined by the panning, tilting 

and zooming speed of the PTZ camera and the frame rate of the fixed overhead 

cameras. A new PTZ camera 𝐶𝑏𝑒𝑠𝑡 is used to capture the target only when 𝑃ℎ is 

greater than a threshold t, as shown in Figure 3.4. For example, the panning and 

tilting speed of a PTZ camera are 180 degrees/s; the zooming speed is 60 units/s; 

and the frame rate is 20 frames/s. In this case, the panning and tilting angle are at 

most 9 degrees and the difference of the zooming factor is up to 3 units within two 

frames. We set 𝜎𝜙 = 9 , 𝜎𝜓 = 9  and 𝜎𝑟 = 3 . When |∅𝑐𝑢𝑟 − ∅𝑒𝑠𝑡| < 9 , |𝜓𝑐𝑢𝑟 −

𝜓𝑒𝑠𝑡| < 9  and |𝑟𝑐𝑢𝑟 − 𝑟𝑒𝑠𝑡| < 3, we have 𝑃ℎ > 0.6. Thus 0.6 can be set as the 

threshold t. 

 

 

 

 

Figure 3.4: Selecting a most appropriate PTZ camera to capture frontal face images 
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3.3 Experiments 

We test our PTZ camera scheduling approach using a publicly available visual 

surveillance simulation test bed, ObjectVideo Virtual Video (OVVV) [57]. A 

virtual train station concourse created in Chapter 2 is adopted and the two overhead 

cameras are installed in the same way as that in Chapter 2.4. 4 PTZ cameras with 

the resolution of 320*240 pixels and FOV of 1.27*0.95 m are installed around the 

scene, as shown in Figure 3.5 where the 4 blue dots denote the 4 PTZ cameras with 

the same height of 4.5 m and the image is the FOV of the left overhead camera. A 

person walks following the black arrows in the scene and the 3D head positions are 

obtained by fusing both the geometric and color cues of the person as present in 

Chapter 2.4.  

 

 

 

 

Figure 3.5: PTZ camera distribution 

 

-6 -4 -2 0 2 4 6 8

-8

-6

-4

-2

0

2 C4 

C5 

C2 

C3 

X(m) 

Y(m
) 



81 

         

(a) Frame 50                                                          (b) Frame 70 

     

(c) Frame 108                                                        (d) Frame 120 

 

(e) Frame 140 

Figure 3.6: Close-up face image capturing results when the handoff success 

probability is not considered 
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Figure 3.6 shows the close-up face image capturing results of the person when 

the handoff success probability of 2 PTZ cameras is not considered. The face 

images and the PTZ cameras used for capture are highlighted inside the white 

rectangles. PTZ Camera C3 is first used to follow the target. The person changes 

her walking direction around frame 108 starting from which camera C4 is selected 

to capture the face images based on the success probability of capture. From Figure 

3.6(c), the face image is not captured by C4 since there is much difference between 

the current and estimated parameter states at frame 108. C4 is still on the transition 

stage to the estimated orientation and zooming state.   

 

 

 

 

Figure 3.7: The face image captured at frame 108 when the handoff success 

probability is considered 

 

 

 

If we consider the difference between the current and estimated parameters by 

evaluating the handoff success probability, the previously used camera C3 is 

selected at frame 108 and the face image is captured, as shown in Figure 3.7. 

Although it is more like a side view face image, it’s better than completely losing 

C3 
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the target. Meanwhile, C4 keeps adjusting its parameters towards the estimated 

state. So, in the next few frame, the handoff success probability will be higher and 

higher and C4 will be used to capture the face images. In our experiment, C4 is 

assigned to follow the target starting from frame 110 when the handoff success 

probability is taken into account. 

 

 

 

  

Figure 3.8: 4 face image capturing locations on the estimated track of person 1 

 

 

 

We also test our method in a crowded scene mentioned in chapter 2 and the 

same PTZ camera distribution is employed as shown in Figure 3.5. Both the success 

probability of capture and the handoff success probability are considered as the 

scheduling scheme illustrated in Figure 3.4. Figure 3.8 shows the detected track of 

person 1 in the scene. Figure 3.9 (a) and (b) show the captured clos-up face images 

when person 1 arrives at the points A, B, C and D shown as the red dots in Figure 

3.8. The overhead views of the scene when the face images are captured are 

illustrated in Figure 3.9(c) and (d) where person 1 is marked in the red circles. PTZ 

camera C2 is the best PTZ camera to capture the face images when person 1 is at 

locations A and B. Person 1 changes her direction as shown in Figure 3.8 to avoid  
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(a) Face images captured when person 1 arrives at A (left) and B (right) in Fig 3.8 

                    

(b) Face images captured when person 1 arrives at C (left) and D (right) in Fig 3.8 

     

(c) Overhead views when person 1 arrives at A (left) and B (right) in Fig 3.8 

     

(d) Overhead views when person 1 arrives at C (left) and D (right) in Fig 3.8 

Figure 3.9: Face images in (a) and (b) are captured when person 1 is at the positions 

shown as the red circles in (c) and (d) respectively  

C2 C2 

C5 C5 
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the person in the white circles as shown in Figure 3.9(d). For locations C and D, 

PTZ camera C5 is selected. Person 1 is walking towards C5, but she isn’t looking 

at her walking direction since she is avoiding another person. Hence the best frontal 

face images are not as good as expected. However, C5 is the best choice out of the 

4 PTZ cameras. 

3.4 Conclusions  

In this chapter, we present a scheduling scheme for a set of PTZ cameras to 

capture the best close-up frontal face images of a person of interest. The PTZ 

cameras are guided by the 3D head positions provided by the fixed overhead 

cameras. The best PTZ camera for each frame is selected based on the capture 

quality of frontal face image, which is evaluated by the obstruction level, position 

and velocity of the target and the parameter state of candidate PTZ cameras. When 

a new PTZ camera is waken up based on the capture quality, a handoff success 

probability, which describes the time that the new camera needed to arrive at the 

desired state from current state, is taken into account. The quantitative models are 

created for the two probabilities to help assigning the most suitable PTZ camera for 

the target. Experiments show that our method can capture high-quality close-up 

frontal face images effectively with most of them around the image centers. Our 

scheduling method can also be extended to capture close-up frontal face images of 

multiple targets by considering additional factors such as the capture priority.  
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4. VIRTUAL RECONSTRUCTION OF BROKEN CERAMIC 

VESSELS 

This chapter presents a method to assist in the tedious process of reconstructing 

ceramic vessels from excavated fragments. The method exploits the fragments’ 

color and geometric information coupled with a series of generic models 

constructed by the experts to produce a virtual reconstruction of what the original 

vessels may have looked like. Generic models are the 3D surface models generated 

based on the experts’ historical knowledge of the period, provenance of the artifact, 

site locations, etc. The generic models need not to be identical to the original vessel, 

but must be within a geometric transformation of it in most parts. The surface 

markings on fragments and generic models are extracted based on the color 

information. By aligning a fragment against the corresponding generic model using 

the geometric relation between the markings on them, the ceramic vessels are 

virtually reconstructed. The alignment is based on a novel set of weighted discrete 

moments computed from convex hulls of the markings on the surface of the 

fragments and the generic vessels.  

4.1 Introduction  

Visualization and computer vision techniques have been applied in cultural 

heritage to facilitate the analysis and understandings of excavation findings, such 

as digital reconstruction of an ancient village [80], automatic 3D data acquisition 

[81-83] and documentation [84] of archaeological findings, identification of 

rotation axis of wheel-produced ceramics [84, 85], computing the profile sections 
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of fragments [86] and semi-automatically producing a collection of 3D vessels 

similar to those found in excavations [87]. In this chapter, we focus on virtually 

reconstructing/mending broken ceramic vessels. 

Computational methods have been used to facility the image and document 

reassembly. Saharan and Singh [88] use the flood fill algorithm to obtain the closed 

boundaries of fragmented images and calculate the local curvature of each 

boundary pixel which is stored into a string. The fragment matching is then reduced 

to a string matching problem. Zhu et al. [89] propose to use turning-function-based 

partial curve matching to find the candidate matches and define the global 

consistency as the global criterion to do document reconstruction. The global match 

confidences are assigned to each candidate match and then these confidences are 

iteratively updated via the gradient projection method to maximize the criterion. 

Tsamoura and Pitas [90] instead present a color based approach to reassemble 

fragmented images and paintings. A neural network based color quantization 

approach for the representation of the image contour followed by a dynamic 

programming technique is employed to identify the matching contour segments of 

the image fragments. Aminogi et al. [91] utilize both the shape and the color 

characteristics of the image fragment contours. A contour pixel sequence is overlaid 

on another one and, for each such “placement”, the curvature and color differences 

of the corresponding contour pixels are estimated. If their total sum is less than a 

predefined threshold, the contour segments are considered to match. 

Unlike images and documents, the reconstructions of solid artifact fragments 

are usually conducted in 3D space [92]. There are a variety of existing computer-
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aided techniques for the reassembly of those fragments. Some works [93, 94] 

assume original models are available for digitization or scanning before 

reconstruction. By using the adaptive clustering and Self-Organizing Feature Map 

(SOFM) technique [95], Igwe and Knopf [93] establish the correspondences 

between the fragments and the original model. The transformations are estimated 

from SOFM and used to morph all fragments back to the original model. Thomas 

et al. [94] reconstruct a tibia by aligning each fragment’s surface to the intact 

template using Geomagic Studio’s built-in iterative registration function followed 

by an iterative closest point algorithm. The whole process depends on expert 

interaction. Unfortunately, in more general mending scenarios as in this paper, 

exact original models are not available, making the reassembling fragments more 

of a 3D puzzle-solving problem than aligning a shard to a vessel. Similar to the 

jigsaw puzzles in 2D, fracture surface information of 3D fragments is used to do 

the reconstruction. Huang et al. [14] compute a patch based surface feature clusters 

for all fracture surfaces and use the corresponding features to match all fracture 

surfaces pairwise. Without relying on any surface features, Winkelbach and Wahl 

[15] calculate the surface normal of the points on the fracture surface and declare 

two points in tangential contact if their normal directions are opposite. Two 

fragments are mended by changing the pose and position of one fragment until 

maximal fracture surface (point) contact is achieved. To efficiently compute 

fragment matches and avoid small erosion, Brown et al. [96] regularly resample 

fragment edges into a “ribbon” from which surface normals are calculated based on 

rearranged ribbon points. 
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The above reconstruction methods are based on the fracture surface, which 

may not be applied for thin-shell objects since the information on their fracture 

surfaces is limited. Additionally, the fracture surface may be unavailable or 

expensive to obtain under certain circumstances. To deal with this lack of 

information, Sağıroğlu and Erçil [97, 98] utilize textures along the fracture. They 

use inpainting and texture synthesis methods to predict the textures of a band 

outside the border of fragments, and then corresponding pieces and the 

transformations between them are found using Euclidian distances [97] or FFT 

based correlation [98] of the texture features on the predicted regions. The 

experiments are performed only on 2D fragments although the authors state that the 

method can be extended to 3D cases. In the absence of textures on the fragment 

borders, both methods will fail, but ours would work in that case, as it considers 

more than one feature. Some other works [16-19] first extract fracture contours and 

then find the matching fragments by curve matching. Instead of only using one kind 

of information of fragments, Papaioannou and Karabassi [99] combine curve 

matching and fracture surface matching techniques, hence allowing for the 

reassembly of both thin and thick shell objects. Similarly, Oxholm and Nishino 

[100] leverage both the geometric and color properties of fractures contour to 

establish the matching fragments. 

No matter how many different types of information or tools are used, the above 

methods are fracture information based, relying on the geometry, color or texture 

of fracture contours and the geometry of fracture surfaces. Son et al. [101], however, 

use more than the fracture information. They estimate an axis of symmetry for each 
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fragment. When the estimated axes are reliable, fragment mending is based on both 

the symmetry property and break curve, otherwise is based solely on break curves.  

The edges of archaeological fragments are vulnerable and can be eroded 

through time while in the ground or during excavation, as shown in Figure 4.1. This 

leaves the fracture information not well preserved hence making fragments difficult 

to be matched. Surface (not fracture surface) information of fragments, such as 

surface markings, on the other hand, is better preserved and the fragment surfaces 

carry valuable information useful for representing and reassembling fragments.  

 

 

 

 

Figure 4.1: Ceramic fragments with eroded edges 

 

 

 

Figure 4.2 shows the some fragments excavated from the Independence 

National Historical Park (INHP) in Philadelphia, Pennsylvania. They are thin-shell 

pieces dating from the late 17th to the mid-20th century. They are scanned at the 

INHP lab using a 3D scanner. Many of them have surface markings, which are the 

color patterns drawn on their surfaces. 
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Figure 4.2: Ceramic fragments 

 

 

 

In this chapter, we propose to extract the surface markings on the fragments 

and generic models based on colors and then reconstruct a vessel by aligning 

fragments against the vessel′s generic models using the geometric cues of the 

corresponding markings on the fragments and generic model. The procedure is 

shown in Figure 4.3. For each extracted surface marking, we create a convex hull, 

resulting in a set of convex hulls on the fragment and the generic model. We 

introduce weighted moments to find the transformation that relates two 3D data sets 

(convex hull vertices) without the need of establishing point-to-point 

correspondences. Most of the previous works use moments of high order (up to 

fifth order in [102]) and handle up to similarity transformations between two data 

sets [103, 104]. We derive a novel weighted affine invariant moment with low order 

(zero and first order) to uniquely solve for affine transformation parameters. 

Candidate corresponding markings are established using absolute affine invariants 

derived from the weighted moments, which are computed from the convex hulls 
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associated with the set of markings. True marking correspondences are declared 

after a validation process. The local affine transformations are recovered from these 

true corresponding markings and used to transform and align the fragment against 

generic models. The average distance between the 3D points on the transformed 

shard and their closest points on the generic model is computed to evaluate the 

goodness of the alignment. This error is important as it confirms the best alignment 

or rejects it even when correspondences between markings on a fragment and a 

generic model are declared, or when more than one generic model is found to match 

a given fragment based on markings (in this case the generic model that results into 

the smallest average distance will be determined as the matching vessel).  

 

 

 

 

Figure 4.3: Aligning a fragment to a corresponding generic model based on color 

markings 
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4.2 Generic Models 

Archeologists usually possess a library that consists of excavated 

broken/unbroken/mended artifacts, patterns of relief, color markings, and historical 

documents describing the shape and dimension of various artifacts. They come 

from various digs and from various eras. The creation of a set of generic models is 

a process that involves the archaeological experts (e.g., archaeologists from INHP 

in Philadelphia - collaborators on our NSF grant) who are assisted by graphics and 

computational engineers for rendering in 3D what the experts perceive and consider 

as possible generic representations for possible vessels in a given dig. A raw 

template can be one of those unbroken or manually mended vessels. It is scanned 

and imported into any 3D sculpture software such as ZBrush and Meshlab. When 

the unbroken/mended vessels are not available, we simply create a 3D template 

vessel in ZBrush with the information supplied by the archaeologists (e.g., height, 

neck size, belly size of a vase), and interactively modify the template in accordance 

with what they think are good generic models. The archeologists have also the 

option of applying different relief patterns on the template and making some local 

deformations if necessary. Normally, from one template, archeologists will 

generate dozens of variations which belong to one given category of vessels. Any 

substantial change in the template will result in a new category. The creation of the 

generic models is also a dynamic process. If the generic models in one category 

have very few fragments aligned to them, the archeologists will make changes to 

the shape, the relief patterns, the color markings or the location of these patterns to 

create new variations. In some cases, we have to create a new template (category) 
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based on newly excavated fragments. Finally, the process of automating the 

fragment mending based on the experts’ opinion, even when that opinion does not 

reflect all the vessels in a given dig, results in a substantial reduction in the total 

fragments that the archeologists have to go through to manually mend them. The 

archeologists arrive at new historical findings by studying those sets for which they 

do not have good models. At a minimum, this proposed computational technology 

helps in pruning and reducing the data to a manageable set, freeing the archeologists 

from a laborious task such as mending what they know already. By and large, this 

is one of the main contributions that our work and similar work in computational 

archaeology offer. 

4.3 Modeling Fragments and Generic Models based on their Color 

Markings 

The surface markings are the patterns drawn on a vessel and usually have 

different colors from most other parts of a vessel. The determination of surface 

markings needs experts’ opinions and generic vessel models. For virtual 

reconstruction, either the whole surface markings or parts of the surface markings 

with certain colors are extracted. The color distribution of surface markings and 

background differs for different vessels thus the thresholds for surface marking 

extraction vary accordingly. In this work the surface markings on the generic 

models and fragments are extracted by manually thresholding the color information 

of the markings and/or the background. This can also be done by having an expert 

manually delineate the various surface markings.  
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For each surface marking, a 3D convex hull is computed based on the points 

of the marking using the algorithm introduced by Barber et al. [105]. The convex 

hull models a marking and is used towards aligning the individual ceramic fragment 

to the generic vessel. The convex hull is given by 

 

𝐶𝑜𝑛𝑣(𝑀) = {∑𝜆𝑖𝒒𝒊|

𝑘

𝑖=1

𝒒𝒊𝜖𝑀, 𝜆𝑖

≥ 0, ∀𝑖𝜖{1, … , 𝑘},∑𝜆𝑖 = 1

𝑘

𝑖=1

, 𝑘𝜖ℕ} 

(4.1) 

where 𝑀 is the set of points on a marking and 𝒒𝒊 is the i-th point in the set. For a 

set of points in 3D space, the convex hull is the smallest convex bounding polygon 

containing all the points, as shown in Figure 4.4 where the vertices and inner points 

of the convex hull are illustrated.  

 

 

 

      

           (a) The 3D data points                  (b) The convex hull of the 3D data points 

Figure 4.4:  A 3D point set and its convex hull where the red asterisks denote the 

vertices and the blue dots denote the rest of the points inside the convex hull 
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There are many reasons for using the convex hull as a marking 

representation[106]: 

(i) The convex hull for a marking is unique. 

(ii) It is a compact representation for a marking. 

(iii) It is computationally efficient. The upper bound of the computational 

complexity for finding the convex hull of n data points is of order O(n 

log n). 

(iv) It is affine invariant, which means that the convex hull of a data set 

subjected to an affine transformation is simply the affine transformed 

convex hull of the data before the transformation. 

Markings that are different in shape (interior to the convex hull) may have 

identical convex hulls, and that would be a problem if we were to exclusively use 

the convex hull affine invariants to do the marking matching and fragment 

alignment. The convex hull affine invariant features are only used for establishing 

the candidate corresponding markings on a fragment and generic model. The true 

matching markings are declared after a validation process using all points on the 

makings not only the vertices of the convex hull of the markings (shown in section 

4.5). This rules out the possibility of matching a fragment with a generic model 

grounded on different markings that have identical convex hulls. 
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4.4 Weighted Moments 

Given a data set 𝑅 = {𝒗𝒊 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)|𝑖 = 1,2, … , 𝑛} , a density function 

𝑓(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) and an s-weighted function 𝑤(𝒗𝒊, 𝒗𝒋, 𝒗𝒌)𝑠, we define the s-weighted 

central moment as 

 

𝜇(𝑎, 𝑏, 𝑐)𝑠 =∑∑∑(𝑥𝑖 − �̅�)
𝑎(𝑦𝑖 − �̅�)

𝑏(𝑧𝑖

𝑛

𝑘=1

𝑛

𝑗=1

𝑛

𝑖=1

− 𝑧̅)𝑐 𝑓(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)𝑤(𝒗𝒊, 𝒗𝒋, 𝒗𝒌)𝑠 

(4.2) 

where (�̅�, �̅�, 𝑧̅) is the center of the data set. The choice of the weight function is 

dictated by a geometric transformation, and is based on the volume relative 

invariance of an affine transformation (section 4.5.1). Without loss of generality, 

we let 𝑓(𝑥𝑖 , 𝑦𝑖, 𝑧𝑖) = 1, hence equation (4.2) becomes 

 

𝜇(𝑎, 𝑏, 𝑐)𝑠 =∑∑∑(𝑥𝑖 − �̅�)
𝑎(𝑦𝑖 − �̅�)

𝑏(𝑧𝑖

𝑛

𝑘=1

𝑛

𝑗=1

𝑛

𝑖=1

− 𝑧̅)𝑐𝑤(𝒗𝒊, 𝒗𝒋, 𝒗𝒌)𝑠 

(4.3) 

4.5 Establishing Matching Markings based on their Geometric Relation 

The corresponding markings on a fragment and a generic models are related 

by a geometric transformation: affine transformation. In this section, we establish 

a pair of matching markings by creating an absolute affine invariant based on the 

weighted moments. So an appropriate s-weighted function is first determined.  
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4.5.1 Choice of the S-weighted Function 

The convex hull is used as a compressed representation of a surface marking, 

and the correspondences of the surface markings between fragments and generic 

models are established using the vertices of their convex hulls. Since the number of 

convex hull vertices is generally much less than the number of points of its 

corresponding surface marking, the computation load of the weighted moments is 

reduced using the convex hull representation. Let 𝒗𝒊 = (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖), 𝒗𝒋 = (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) 

and 𝒗𝒌 = (𝑥𝑘, 𝑦𝑘, 𝑧𝑘)  be three vertices on the convex hull of a marking, and 

let   𝒗𝒂𝒊 = (𝑥𝑎𝑖, 𝑦𝑎𝑖 , 𝑧𝑎𝑖) ,  𝒗𝒂𝒋 = (𝑥𝑎𝑗 , 𝑦𝑎𝑗 , 𝑧𝑎𝑗), 𝒗𝒂𝒌 = (𝑥𝑎𝑘, 𝑦𝑎𝑘, 𝑧𝑎𝑘)  be their 

counterparts after an affine transformation 𝑇𝐴 = {[𝐿], 𝑩} with 

 [𝐿] = [

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

] , 𝑩 = [

𝑏1
𝑏2
𝑏3

] (4.4) 

 

 [

𝑥𝑎𝑖   𝑥𝑎𝑗   𝑥𝑎𝑘
𝑦𝑎𝑖   𝑦𝑎𝑗   𝑦𝑎𝑘
𝑧𝑎𝑖  𝑧𝑎𝑗   𝑧𝑎𝑘

] = [𝐿] [

𝑥𝑖   𝑥𝑗   𝑥𝑘
𝑦𝑖   𝑦𝑗   𝑦𝑘
𝑧𝑖   𝑧𝑗   𝑧𝑘

] + 𝑩 (4.5) 

where 𝑖, 𝑗, 𝑘 = 1,2, … , 𝑛, and where 𝑛 is the number of convex hull vertices. Note 

that the centroids of the convex hull vertices also follow the affine transformation, 

i.e. 

 [
�̅�𝑎
�̅�𝑎
𝑧�̅�

] = [𝐿] [
�̅�
�̅�
𝑧̅
] + 𝑩 (4.6) 

where 𝒗𝟎 = (�̅�, �̅�, 𝑧̅)  and 𝒗𝒂𝟎 = (�̅�𝑎, �̅�𝑎, 𝑧�̅�)  are the centroids of convex hull 

vertices of the original marking and its affine map, and  𝒗𝒂𝟎
𝑇  and  𝒗𝟎

𝑇  are the 

transpose of 𝒗𝒂𝟎 and 𝒗𝟎. Using equations (4.5) and (4.6), we have the following 

equation: 



99 

      𝑑𝑒𝑡 {[𝐶𝑎]} = 𝑑𝑒𝑡 {[𝐿]}𝑑𝑒𝑡 {[𝐶]} (4.7) 

with 𝑑𝑒𝑡 {[ ]} being the determinant of the matrix [ ], and 

 𝐶𝑎 = [

𝑥𝑎𝑖 − �̅�𝑎 𝑥𝑎𝑗 − �̅�𝑎 𝑥𝑎𝑘 − �̅�𝑎
𝑦𝑎𝑖 − �̅�𝑎 𝑦𝑎𝑗 − �̅�𝑎 𝑦𝑎𝑘 − �̅�𝑎
𝑧𝑎𝑖 − 𝑧�̅� 𝑧𝑎𝑗 − 𝑧�̅� 𝑧𝑎𝑘 − 𝑧�̅�

] (4.8) 

 

 𝐶 = [

𝑥𝑖 − �̅� 𝑥𝑗 − �̅� 𝑥𝑘 − �̅�

𝑦𝑖 − �̅� 𝑦𝑗 − �̅� 𝑦𝑘 − �̅�

𝑧𝑖 − 𝑧̅ 𝑧𝑗 − 𝑧̅ 𝑧𝑘 − 𝑧̅
] (4.9) 

 

 

 

 

Figure 4.5: Geometric interpretation of equation (4.7). On the left there are four 3D 

points forming a tetrahedron, and on the right there are the corresponding points 

and tetrahedron after an affine transformation 𝑇𝐴. 

 

 

 

Equation (4.7) has an interesting geometric interpretation.  𝒗𝒊, 𝒗𝒋 and 𝒗𝒌 are 

three vertices on the convex hull and 𝒗𝟎  is the centroid of all the convex hull 

vertices, hence they are not coplanar and form a tetrahedron as shown in left part 

of Figure 4.5. The corresponding affinely transformed convex hull vertices 𝒗𝒂𝒊, 𝒗𝒂𝒋, 

𝒗𝒂𝒌 and their centroid 𝒗𝒂𝟎 also form a tetrahedron, as shown in right part of Figure 

4.5. Let 𝑉𝑎 and  𝑉 be the volumes of the two tetrahedrons, then we have 
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𝑉𝑎 =
1

6
|(𝒗𝒂𝒊 − 𝒗𝒂𝟎) ∙ [(𝒗𝒂𝒋 − 𝒗𝒂𝟎) × (𝒗𝒂𝒌 − 𝒗𝒂𝟎)]|

=  
1

6
|𝑑𝑒𝑡{[𝐶𝑎]}| 

(4.10) 

 

 𝑉 =
1

6
|(𝒗𝒊 − 𝒗𝟎) ∙ [(𝒗𝒋 − 𝒗𝟎) × (𝒗𝒌 − 𝒗𝟎)]| =  

1

6
|𝑑𝑒𝑡 {[𝐶]}| (4.11) 

From equations (4.7), (4.10) and (4.11), we can see as expected that the volume 

is preserved and is a relative invariant under the affine transformation 𝑇𝐴, with  

 

 𝑉𝑎 = |𝑑𝑒𝑡 {[𝐿]}|𝑉 (4.12) 

 

With the volume being a relative affine invariant, we use it in defining the s-

weighted affine invariant function in (4.2) and (4.3) to render it a relative affine 

invariant. The s-weighted function is given as 

 𝑤(𝒗𝒊, 𝒗𝒋, 𝒗𝒌)𝑠 = |(𝒗𝒊 − 𝒗𝟎) ∙ [(𝒗𝒋 − 𝒗𝟎) × (𝒗𝒌 − 𝒗𝟎)]|
𝑠 (4.13) 

4.5.2 Absolute Invariants for Marking Matching 

From equations (4.12) and (4.13), we can see that the weight function is 

linearly decomposed under the affine map 

 𝑤𝑎(𝒗𝒂𝒊, 𝒗𝒂𝒋, 𝒗𝒂𝒌)𝑠 =  |𝑑𝑒𝑡{[𝐿]} |
𝑠𝑤(𝒗𝒊, 𝒗𝒋, 𝒗𝒌)𝑠 (4.14) 

,and so is the zero-th order s-weighted affine invariant central moments (using 

equations (4.3) and (4.14)) 

 𝜇𝑎(0,0,0)𝑠 = |𝑑𝑒𝑡 {[𝐿]}|
𝑠𝜇(0,0,0)𝑠 (4.15) 

where 
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 𝜇(0,0,0)𝑠 =∑∑∑𝑤(𝒗𝒊, 𝒗𝒋, 𝒗𝒌)𝑠

𝑛

𝑘=1

𝑛

𝑗=1

𝑛

𝑖=1

 (4.16) 

 

 𝜇𝑎(0,0,0)𝑠 =∑∑∑𝑤𝑎(𝒗𝒂𝒊, 𝒗𝒂𝒋, 𝒗𝒂𝒌)𝑠

𝑛

𝑘=1

𝑛

𝑗=1

𝑛

𝑖=1

 (4.17) 

Based on (4.15), absolute affine invariants can be constructed from these 

relative affine invariants by using any two different weight factors 𝑠0 and 𝑠1. We 

have      

  𝜇𝑎(0,0,0)𝑠0 = |𝑑𝑒𝑡 {[𝐿]}|
𝑠0𝜇(0,0,0)𝑠0 (4.18) 

 

 𝜇𝑎(0,0,0)𝑠1 = |𝑑𝑒𝑡 {[𝐿]}|
𝑠1𝜇(0,0,0)𝑠1 (4.19) 

From (4.18) and (4.19), the following absolute affine invariant relation is 

obtained: 

 𝐴𝐼(𝑠0, 𝑠1) =
√𝜇𝑎(0,0,0)𝑠1
𝑠1

√𝜇𝑎(0,0,0)𝑠0
𝑠0

=  
√𝜇(0,0,0)𝑠1
𝑠1

√𝜇(0,0,0)𝑠0
𝑠0

 (4.20) 

where 𝜇𝑎(0,0,0)𝑠0 , 𝜇(0,0,0)𝑠0 ≠ 0  since  𝑤𝑎(𝒓𝒂𝒊, 𝒓𝒂𝒋, 𝒓𝒂𝒌)𝑠, 𝑤(𝒓𝒊, 𝒓𝒋, 𝒓𝒌)𝑠 > 0 . 

The absolute invariant in (4.20) and a host of similar absolute invariants are used 

to establish which convex hull of a marking on the generic models corresponds to 

a given convex hull of the marking on the fragment. Corresponding convex hulls 

(not markings) are declared if the following inequality holds for a pre-determined 

threshold 𝛼 (e.g., 0.05). 

 
|𝐴𝐼𝐹 − 𝐴𝐼𝐺|

𝐴𝐼𝐺
< 𝛼 (4.21) 

where 𝐴𝐼𝐹 is the absolute invariant of the convex hull of a marking on the fragment 

and 𝐴𝐼𝐺  the counterpart on the generic model. Usually, a relatively low α is picked 
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to avoid a lot of candidate corresponding markings. Once the convex hull 

correspondences are established, the best affine transformation that maps the 

convex hull on the fragment onto its corresponding one on the vessel is computed 

as explained in the next section. As mentioned in section 4.3, different markings 

might have the same convex hull, thus (4.21) can only establish the candidate 

matching markings on fragments and generic models. The true matching markings 

are determined not just based on the convex hull vertices (of the markings) but on 

the entire marking. This is done by transforming the marking points on a fragment 

to the generic model’s domain using the transformation obtained in section 4.6 and 

then calculating the average distance error between all the marking points on the 

fragment and the generic model. The average distance error for a candidate 

matching marking pair with 𝑚 and 𝑚′ points on them respectively is 

 
𝑒𝑀𝑀′ =

∑ 𝑚𝑖𝑛
𝑖={1,2,…,𝑚}

‖𝑀𝑘
′ −𝑀𝑖‖

𝑚′

𝑘=1

𝑚′
 

(4.22) 

where 𝑀𝑘
′  denotes the 𝑘-th point of the transformed marking 𝑀′ on the fragment 

and 𝑀𝑖 the 𝑖-th point of the marking 𝑀on the generic vessel. Usually, if the error is 

smaller than the scanner’s resolution, the markings on the fragment and vessel are 

declared as true corresponding markings. The scanner’s resolution can be 

determined as follows if it’s not provided by the manufacture. Let 𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑖 and 

𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑗 be the 𝑖-th and 𝑗-th point on a scanned fragment with n points, and the 

scanner’s resolution is defined as  

 𝑅𝑒𝑠 =
∑ min

𝑖={1,2,…,𝑛},𝑖≠𝑗
‖𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑖 − 𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑗‖

𝑛
𝑗=1

𝑛
 (4.23) 



103 

4.6 Estimating the Geometric Transformation between the Matching 

Markings 

Given corresponding convex hull pairs, which have been determined using 

(4.21), we proceed to estimate the unique affine transformation 𝑇𝐴 = {[𝐿], 𝑩} that 

will align them. Towards that end, we use a set of first order s-weighted affine 

invariant central moments in (4.3) given by 

 

𝜇𝑎(1,0,0)𝑠 = | 𝑑𝑒𝑡{[𝐿]} |
𝑠[𝑎11 𝑎12 𝑎13]

∙ [𝜇(1,0,0)𝑠  𝜇(0,1,0)𝑠  𝜇(0,0,1)𝑠]
𝑇 

(4.24) 

 

 

𝜇𝑎(0,1,0)𝑠 = |𝑑𝑒𝑡{[𝐿]} |
𝑠[𝑎21 𝑎22 𝑎23]

∙ [𝜇(1,0,0)𝑠  𝜇(0,1,0)𝑠  𝜇(0,0,1)𝑠]
𝑇 

(4.25) 

 

 

𝜇𝑎(0,0,1)𝑠 = | 𝑑𝑒𝑡{[𝐿]} |
𝑠[𝑎31 𝑎32 𝑎33] ∙

[𝜇(1,0,0)𝑠  𝜇(0,1,0)𝑠  𝜇(0,0,1)𝑠]
𝑇   

(4.26) 

where [ ]𝑇 is the transpose of matrix [ ]. To solve the transformation [𝐿] (shown in 

equation (4.4)) that has 9 unknowns, a set of 3 different s values (the selection of 

the weight factor s follows the same choice as in [107]) is used in equation set  

(4.24), (4.25), (4.26) to arrive at 9 equations with 9 unknowns. As | 𝑑𝑒𝑡{[𝐿]} |𝑠 is 

unknown, we need to eliminate it. This is achieved by dividing the equation set 

(4.24), (4.25), (4.26) by equation (4.15) for the 3 different s values. This results in 

the linear equation 

 [𝑀𝑢𝑎] = [𝐿][𝑀𝑢] (4.27) 

with 
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 [𝑀𝑢] =

[
 
 
 
 
 
 
𝜇(1,0,0)𝑠1
𝜇(0,0,0)𝑠1

𝜇(1,0,0)𝑠2
𝜇(0,0,0)𝑠2

𝜇(1,0,0)𝑠3
𝜇(0,0,0)𝑠3

𝜇(0,1,0)𝑠1
𝜇(0,0,0)𝑠1

𝜇(0,1,0)𝑠2
𝜇(0,0,0)𝑠2

𝜇(0,1,0)𝑠3
𝜇(0,0,0)𝑠3

𝜇(0,0,1)𝑠1
𝜇(0,0,0)𝑠1

𝜇(0,0,1)𝑠2
𝜇(0,0,0)𝑠2

𝜇(0,0,1)𝑠3
𝜇(0,0,0)𝑠3]

 
 
 
 
 
 

 (4.28) 

 

 [𝑀𝑢𝑎] =

[
 
 
 
 
 
 
𝜇𝑎(1,0,0)𝑠1
𝜇𝑎(0,0,0)𝑠1

𝜇𝑎(1,0,0)𝑠2
𝜇𝑎(0,0,0)𝑠2

𝜇𝑎(1,0,0)𝑠3
𝜇𝑎(0,0,0)𝑠3

𝜇𝑎(0,1,0)𝑠1
𝜇𝑎(0,0,0)𝑠1

𝜇𝑎(0,1,0)𝑠2
𝜇𝑎(0,0,0)𝑠2

𝜇𝑎(0,1,0)𝑠3
𝜇𝑎(0,0,0)𝑠3

𝜇𝑎(0,0,1)𝑠1
𝜇𝑎(0,0,0)𝑠1

𝜇𝑎(0,0,1)𝑠2
𝜇𝑎(0,0,0)𝑠2

𝜇𝑎(0,0,1)𝑠3
𝜇𝑎(0,0,0)𝑠3]

 
 
 
 
 
 

 (4.29) 

The transformation [𝐿] is uniquely computed from (4.27). Once [𝐿] is found, 

the translation parameters 𝑩 can be obtained from equation (4.6). 

4.7 Aligning Fragments against Generic Models 

With the corresponding markings and the estimated transformations, the 

correspondence between fragments and generic models is to be determined. The 

matching of a fragment to one of many generic models should not be solely based 

on the matching markings on the fragment and the generic model since marking 

points are just a subset of the data on the fragment and not the entire 3D surface 

data of the fragment. Hence it is necessary and imperative to use the average 

distance error between all the 3D points (not only marking points) on the 

transformed fragment and their closest points on the vessel to evaluate the goodness 

of the alignment. The transforming of the fragment into the vessel coordinate space 

is done in accordance with the transformation estimated (as in the previous section) 

from the markings on the fragment and its corresponding one on the vessel. The 
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alignment error is computed in terms of the scanner’s resolution 𝑅𝑒𝑠 (shown in 

(4.23)), and is given as 

 𝑒𝑎𝑙𝑖𝑔𝑛 =
∑ 𝑚𝑖𝑛

𝑗={1,2,…,𝑛}
‖𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑘 − 𝑉𝑒𝑠𝑠𝑒𝑙𝑗‖

𝑝
𝑘=1

𝑝 ∙ 𝑅𝑒𝑠
 (4.30) 

where 𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑘 is the 𝑘-th point of the transformed fragment that contains 𝑝 

points and 𝑉𝑒𝑠𝑠𝑒𝑙𝑗 the 𝑗-th point of the generic model that contains 𝑛 points. This 

error is useful to: (a) decide whether or not a fragment should be aligned to a given 

vessel after the markings on the fragment and the vessel are found to correspond by 

using equation (4.22). This is done by requiring the average distance error to be less 

than a predetermined threshold usually less than the scanner resolution; (b) select 

the best alignment when several markings on a fragment have their own respective 

true corresponding ones on a generic model. Each corresponding marking pair can 

generate a transformation and an alignment of the fragment to the generic model. 

Of all the possible alignments, the one with minimal alignment error is selected as 

the best one; and (c) disambiguate the case where there is more than one generic 

vessel that has markings that correspond to the ones on the fragment, by choosing 

the vessel for which that distance error is minimal. 

4.8 Experiments 

4.8.1 Data Collection 

The ceramic artifact collection dug from the National Constitution Center site 

in Independence Park is used as a data set in this paper. The artifact collection is 

currently kept at Independence Living History Center in Philadelphia, PA. Some of 
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the artifacts are mended by experts using glue or bands. Suitable samples of that 

artifact collection are chosen as to serve as important bases of generic models and 

test samples. Fragments are scanned at the INHP lab using a Konica Minolta Vivid 

910 3D scanner. The Konica scanner employs laser-beam light sectioning 

technology to scan work pieces using a slit beam. Light reflected from the work 

piece is acquired by a CCD camera, and 3D data is then created by triangulation to 

determine distance information. The scan setup and scanning equipment are shown 

in Figure 4.6. The black carpet on the floor is to create a clean background so that 

the scanned fragments do not blend in. 

The scanned raw data (discrete 3D points) is then transferred to the software 

Geomagic Studio via Konica designed plugins. Geomagic Studio performs a 

version of Delaunay triangulation producing a triangulation representation or 

triangle mesh of the discrete 3D point set. 

 

 

 

 

Figure 4.6: 3D scanner and scan setup 
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Figure 4.7: 3D scanned fragments from the vessels with marking on them 

 

 

 

4.8.2 Alignment Results 

We test our methods on 174 fragments that are from the vessels having 

markings and part of them are shown in Figure 4.7. According to archaeologists′ 

observations, the 174 fragments are from 5 types of vessels: cup, bowl, plate, vase, 

and jar. They provide 20+ generic models for each type of vessel, hence a total of 

100+ possible generic models. We show 3 generic models for each category (cup, 

bowl, and plate) in Figure 4.8. The 174 fragments are mixed when we do the virtual 

mending. 
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(a) 3 generic models for cups 

 

(b) 3 generic models for bowls 

 

(c) 3 generic models for plates 

Figure 4.8: Some of generic models for different types of vessels 

 

 

 

The reconstruction results of the 174 fragments are shown in Figure 4.9 and 

Table 4.1. The number of fragments for each vessel is determined after the experts 

finished mending all the fragments by hand. We find that most fragments from a 

vessel with markings are aligned against one generic model in each vessel category. 

The fragments bounded by red boundaries in Figure 4.9 are mended using the 

markings on the fragments and the generic models. We also find that a small 

number of fragments are not aligned to the correct generic model based on markings. 

These fragments, highlighted using green boundaries in Figure 4.9, are aligned to 

the corresponding generic model manually to show what the original vessels look 

like and illustrate our reconstruction result better. There are several reasons for the 
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result that not all the fragments are aligned: 1) the best generic model (the generic 

model that is closest to the original vessel in terms of shapes and colors) is not exact 

enough; or 2) the markings on the fragment are occluded; or 3) there is no color 

marking on the fragment although it is from a vessel with markings, i.e., markings 

reside on other fragments of the vessel, as shown in Figure 4.10 where the two 

fragments, from the vessels in Figure 4.9(e) and (g) respectively, have no marking 

on them. The remaining unrecovered parts, shown as the white ‘holes’ in Figure 

4.9, are the missing fragments which are usually small.  

 

 

 

                                           

       (a)                                       (b)                                          (c) 

                           

(d)                                                   (e) 

                                     

(f)                                                   (g) 

Figure 4.9: Alignment results where fragments with red boundaries are aligned 

using our method and those with green boundaries are aligned manually 
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(a) A fragment from Figure 4.9(d)              (b) A fragment from Figure 4.9(f) 

Figure 4.10: Fragments without any markings on them  

 

 

 

Table 4.1: Reconstruction results and errors 

Vessel 

ID 

# of 

fragments 

from each 

vessel 

# of 

correctly  

mended 

fragments  

# of not 

aligned 

fragments  

# of 

misaligned 

fragments 

Normalized 

reconstruction 

error 

(a) 21 17 4 1 0.64 

(b) 13 13 0 0 0.69 

(c) 4 3 1 1 0.74 

(d) 14 10 4 0 0.58 

(e) 47 33 14 2 0.70 

(f) 34 25 9 1 0.67 

(g) 41 36 5 0 0.61 

 

 

 

From Table 4.1, around 80% of fragments (137 out of 174 fragments) are 

aligned to the best generic models. The misaligned fragments are those aligned to 

other generic models instead of the best ones. Among the fragments that are not 

aligned to the best generic models (highlighted using green boundaries in Figure 

4.9), a small portion (5 out of 37) are misaligned. For instance, 2 fragments from 
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Figure 4.9(a) and (c) are misaligned to other generic models, as shown in Figure 

4.12. The reconstruction errors are normalized using the resolution of the 3D data 

and are smaller than the resolution, as shown in Table 4.1. If we look at the 3D 

reconstructed results, around 85% of surface areas of the vessels are recovered 

using our method, shown as the surface surrounded by the red boundaries in Figure 

4.9. For the very small portion of the surface of a vessel that are not reconstructed, 

the experts can manage to mend them manually without too much effort, or 

different aspects of a fragment other than markings, such as parabolic contours [108] 

of on a fragment surface, can be exploited. This can deal with fragments and even 

a whole vessel without any color markings. Figure 4.11 shows 2 vessels of this kind. 

 

 

 

                    

Figure 4.11: Two misaligned fragments 

 

 

 

                     

Figure 4.12: Two vessels without any color markings 
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4.9 Conclusions  

We present a method to reconstruct vessels virtually by utilizing both the color 

and geometric cues of surface markings on fragments. 3D scanned fragments are 

aligned against generic vessels based on surface markings. This is one of many 

tools that computational archaeology can exploit towards helping in the mending 

of archaeological artifacts. The method weighs between expert opinion (with 

expected uncertainties) and total lack of prior knowledge. Built-in uncertainties in 

the generic models allow for rotation, scaling, shifting, and shearing between 

markings on the generic models and their corresponding ones on the fragments. 

The method is shown to be reliable on the sample set most of which is chosen 

from the INPH ceramic artifact collection recovered from the National Constitution 

Center site. The results are reported in terms of normalized residual error statistics 

and the reconstructed 3D surfaces, and the reported average errors are within the 

range of the 3D scanner’s resolution. The work has focused on the use of one aspect 

(surface markings) amongst many embedded in the shards. This, in conjunction 

with many other aspects such as surface color, texture, or cracks, could be 

collectively used as enabling technology helping in the mending process for 

fragments with/without markings. The whole project as an application of computer 

vision in archaeology is unique for timely analysis, interpretation, and presentation 

of history evidence. It is also considered as a great need by the U.S. Department of 

the Interior National Park Service.  
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5. CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

In this thesis, a smart camera network consisting of two overhead cameras and 

a set of PTZ cameras are used to approximate an ‘ideal tracker’ which generates 

the 3D positions of pedestrians in crowded scenes and captures close-up frontal 

face image of a person(s) of interest (target(s)) in the image center across time and 

space. Overhead cameras track people in 3D by fusing extracted geometric and 

color cues. A potential head top segment for each person in the scene is detected 

mainly using projective geometry, from which the 3D head point is obtained 

efficiently without using the full disparity map that is usually used to do 3D 

localization. If the detected head point is not accurate enough, the head top color 

distribution over frames (mutual information) is used to correct the estimated head 

position across consecutive frames. With these two complementary information 

people are tracked accurately and robustly. For the crowded scene with 14 people 

inside an area of around 4 square meters, the tracking errors for ground positions 

and heights are around 4 cm and 3 cm, respectively. 

The 3D position of a person generated by the static overhead cameras is used 

to guide a set of PTZ cameras to capture close-up frontal face images of a target 

across time. The best PTZ camera is selected in each frame for face image 

acquisition, based on capture quality and handoff success probabilities that take 

into account the degree and origin of occlusion, the constraints on camera 

movement and its physical parameters (pan, tilt and zoom), and the quality of the 
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frontal face image of the target at any time. Experiments show that the scheduling 

scheme is effective to capture high-quality close-up frontal face images. 

The geometric and color cues of ceramic fragments are used to reconstruct 

broken vessels virtually. The experts’ knowledge is also integrated by using the 

prior generic models created by them. A degree of uncertainty and variability is 

allowed in the building of the generic model. The expert model is learned through 

approximations to the excavated vessel or through knowledge of the historical era. 

The markings on the surface of fragments and generic vessel models are extracted 

based on colors, and then fragments are aligned to the corresponding generic 

models using the geometric relations between them. The approach is tested on some 

fragments from INHP, and the reconstruction errors are smaller than the 3D 

scanner’s resolution. 

5.2 Future Directions 

In the thesis, pedestrians are tracked using geometric cues under common 

motion assumption using the mean shift algorithm based on color cues between 

frames to improve on the head position estimates over frames. Either the detected 

or the predicted head point is taken as a pedestrian’s position. In the case of real 

videos, the uncertainties of detected head point can be larger, thus other schemes 

such as an extended Kalman filter [109] that weighs between the detected head 

position based on the current frame (i.e., the measurement) and the predicted value 

originating from the estimated motion derived from previous frames can be 

employed. Based on the positon in the previous frame and a transition model, the 
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pedestrian’s position in the current frame would be determined. The transition 

model would consider the uncertainties of measurements and predicted values. One 

can also relax the assumption of constant velocity between frames to improve the 

tracking robustness and allow for abrupt motions (as abrupt stop or turn).  

In the thesis, we extract the foreground using background subtraction in HSV 

color space. It works for virtual scenes, however, this method is apt to fail in the 

real world scenario where more background clutter exists. A mixture of Gaussians 

can be used to model the color of each pixel, yielding a robust segmentation of the 

foreground in spite of the background clutter. This would allow the extension of 

our tracking method to outdoor as well as indoor scenes.       

When close-up face image capture is needed for multiple persons, additional 

factors not mentioned in this thesis are considered. For example, we would need to 

consider a capture priority factor, where more attention is given to people who 

would be the first to walk outside of the FOV; or in some other applications more 

attention would be given to pedestrians who just enter the FOV (high security areas, 

or “do not enter” areas, etc.). Hence, the relative positions of people in the scene 

compared with the FOV boundaries and the walking directions would be important 

factors to be considered. We also need to create a mechanism which recognizes 

when the task of capturing the face image of one target is achieved so that the 

occupying PTZ camera can be released and be available if needed in tracking the 

target of next highest priority. The ending of the capturing task will be triggered 

when an adequate number of high quality frontal face images are captured.  
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For the reconstruction of broken vessels, only the markings on the ceramic 

fragments and expert generic modes are considered in the thesis. This approach 

would then fail if there are no markings on the fragments or markings are severely 

eroded. There are many other aspects on fragments and vessels that one can exploit, 

such as break boundaries of fragments and intrinsic surface features (e.g., 

differential geometry features on fragment surface [108]). We should also integrate 

many aspects/tools to improve the virtual reconstruction result where more vessels 

with/without markings are recovered more accurate. As a start, we have used 2 

aspects [110], surface markings and anchor points on break boundaries in vessel 

reconstruction. To utilize multiple aspects of fragments, we need to first investigate 

the features on each fragment (such as color markings, reliefs, textures and 

conditions of break boundaries) to figure out what aspects can be used and then 

decide on optimal ways of combining them. 
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