207 research outputs found

    Autonomous Quadrotor Navigation by Detecting Vanishing Points in Indoor Environments

    Get PDF
    abstract: Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses various perception and control problems in autonomous aerial robotics. The objective of this thesis is to motivate the use of perspective cues in single images for the planning and control of quadrotors in indoor environments. In addition to providing empirical evidence for the abundance of such cues in indoor environments, the usefulness of these perspective cues is demonstrated by designing a control algorithm for navigating a quadrotor in indoor corridors. An Extended Kalman Filter (EKF), implemented on top of the vision algorithm, serves to improve the robustness of the algorithm to changing illumination. In this thesis, vanishing points are the perspective cues used to control and navigate a quadrotor in an indoor corridor. Indoor corridors are an abundant source of parallel lines. As a consequence of perspective projection, parallel lines in the real world, that are not parallel to the plane of the camera, intersect at a point in the image. This point is called the vanishing point of the image. The vanishing point is sensitive to the lateral motion of the camera and hence the quadrotor. By tracking the position of the vanishing point in every image frame, the quadrotor can navigate along the center of the corridor. Experiments are conducted using the Augmented Reality (AR) Drone 2.0. The drone is equipped with the following componenets: (1) 720p forward facing camera for vanishing point detection, (2) 240p downward facing camera, (3) Inertial Measurement Unit (IMU) for attitude control , (4) Ultrasonic sensor for estimating altitude, (5) On-board 1 GHz Processor for processing low level commands. The reliability of the vision algorithm is presented by flying the drone in indoor corridors.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Coupling Vanishing Point Tracking with Inertial Navigation to Estimate Attitude in a Structured Environment

    Get PDF
    This research aims to obtain accurate and stable estimates of a vehicle\u27s attitude by coupling consumer-grade inertial and optical sensors. This goal is pursued by first modeling both inertial and optical sensors and then developing a technique for identifying vanishing points in perspective images of a structured environment. The inertial and optical processes are then coupled to enable each one to aid the other. The vanishing point measurements are combined with the inertial data in an extended Kalman filter to produce overall attitude estimates. This technique is experimentally demonstrated in an indoor corridor setting using a motion profile designed to simulate flight. Through comparison with a tactical-grade inertial sensor, the combined consumer-grade inertial and optical data are shown to produce a stable attitude solution accurate to within 1.5 degrees. A measurement bias is manifested which degrades the accuracy by up to another 2.5 degrees

    Real Time UAV Altitude, Attitude and Motion Estimation form Hybrid Stereovision

    Get PDF
    International audienceKnowledge of altitude, attitude and motion is essential for an Unmanned Aerial Vehicle during crit- ical maneuvers such as landing and take-off. In this paper we present a hybrid stereoscopic rig composed of a fisheye and a perspective camera for vision-based navigation. In contrast to classical stereoscopic systems based on feature matching, we propose methods which avoid matching between hybrid views. A plane-sweeping approach is proposed for estimating altitude and de- tecting the ground plane. Rotation and translation are then estimated by decoupling: the fisheye camera con- tributes to evaluating attitude, while the perspective camera contributes to estimating the scale of the trans- lation. The motion can be estimated robustly at the scale, thanks to the knowledge of the altitude. We propose a robust, real-time, accurate, exclusively vision-based approach with an embedded C++ implementation. Although this approach removes the need for any non-visual sensors, it can also be coupled with an Inertial Measurement Unit

    Trajectory optimization and motion planning for quadrotors in unstructured environments

    Get PDF
    Trajectory optimization and motion planning for quadrotors in unstructured environments Coming out from university labs robots perform tasks usually navigating through unstructured environment. The realization of autonomous motion in such type of environments poses a number of challenges compared to highly controlled laboratory spaces. In unstructured environments robots cannot rely on complete knowledge of their sorroundings and they have to continously acquire information for decision making. The challenges presented are a consequence of the high-dimensionality of the state-space and of the uncertainty introduced by modeling and perception. This is even more true for aerial-robots that has a complex nonlinear dynamics a can move freely in 3D-space. To avoid this complexity a robot have to select a small set of relevant features, reason on a reduced state space and plan trajectories on short-time horizon. This thesis is a contribution towards the autonomous navigation of aerial robots (quadrotors) in real-world unstructured scenarios. The first three chapters present a contribution towards an implementation of Receding Time Horizon Optimal Control. The optimization problem for a model based trajectory generation in environments with obstacles is set, using an approach based on variational calculus and modeling the robots in the SE(3) Lie Group of 3D space transformations. The fourth chapter explores the problem of using minimal information and sensing to generate motion towards a goal in an indoor bulding-like scenario. The fifth chapter investigate the problem of extracting visual features from the environment to control the motion in an indoor corridor-like scenario. The last chapter deals with the problem of spatial reasoning and motion planning using atomic proposition in a multi-robot environments with obstacles

    High-Performance Testbed for Vision-Aided Autonomous Navigation for Quadrotor UAVs in Cluttered Environments

    Get PDF
    This thesis presents the development of an aerial robotic testbed based on Robot Operating System (ROS). The purpose of this high-performance testbed is to develop a system capable of performing robust navigation tasks using vision tools such as a stereo camera. While ensuring the computation of robot odometery, the system is also capable of sensing the environment using the same stereo camera. Hence, all the navigation tasks are performed using a stereo camera and an inertial measurement unit (IMU) as the main sensor suite. ROS is used as a framework for software integration due to its capabilities to provide efficient communication and sensor interfaces. Moreover, it also allows us to use C++ which is efficient in performance especially on embedded platforms. Combining together ROS and C++ provides the necessary computation efficiency and tools to handle fast, real-time image processing and planning which are the vital parts of navigation and obstacle avoidance on such scale. The main application of this work revolves around proposing a real-time and efficient way to demonstrate vision-based navigation in UAVs. The proposed approach is developed for a quadrotor UAV which is capable of performing defensive maneuvers in case any obstacles are in its way, while constantly moving towards a user-defined final destination. Stereo depth computation adds a third axis to a two dimensional image coordinate frame. This can be referred to as the depth image space or depth image coordinate frame. The idea of planning in this frame of reference is utilized along with certain precomputed action primitives. The formulation of these action primitives leads to a hybrid control law for feasible trajectory generation. Further, a proof of stability of this system is also presented. The proposed approach keeps in view the fact that while performing fast maneuvers and obstacle avoidance simultaneously, many of the standard optimization approaches might not work in real-time on-board due to time and resource limitations. This leads to a need for the development of real-time techniques for vision-based autonomous navigation
    • …
    corecore