
Autonomous Quadrotor Navigation by Detecting

Vanishing Points in Indoor Environments

by

Nikhilesh Ravishankar

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved July 2017 by the
Graduate Supervisory Committee:

Armando A. Rodriguez, Chair
Konstantinos Tsakalis
Spring M. Berman

ARIZONA STATE UNIVERSITY

May 2018

ABSTRACT

Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous

Machines operating in an uncertain Environment (FAME), this thesis addresses vari-

ous perception and control problems in autonomous aerial robotics. The objective of

this thesis is to motivate the use of perspective cues in single images for the planning

and control of quadrotors in indoor environments. In addition to providing empirical

evidence for the abundance of such cues in indoor environments, the usefulness of

these perspective cues is demonstrated by designing a control algorithm for navigat-

ing a quadrotor in indoor corridors. An Extended Kalman Filter (EKF), implemented

on top of the vision algorithm, serves to improve the robustness of the algorithm to

changing illumination.

In this thesis, vanishing points are the perspective cues used to control and nav-

igate a quadrotor in an indoor corridor. Indoor corridors are an abundant source of

parallel lines. As a consequence of perspective projection, parallel lines in the real

world, that are not parallel to the plane of the camera, intersect at a point in the

image. This point is called the vanishing point of the image. The vanishing point is

sensitive to the lateral motion of the camera and hence the quadrotor. By tracking

the position of the vanishing point in every image frame, the quadrotor can navigate

along the center of the corridor.

Experiments are conducted using the Augmented Reality (AR) Drone 2.0. The

drone is equipped with the following componenets: (1) 720p forward facing camera

for vanishing point detection, (2) 240p downward facing camera, (3) Inertial Measure-

ment Unit (IMU) for attitude control , (4) Ultrasonic sensor for estimating altitude,

(5) On-board 1 GHz Processor for processing low level commands. The reliability of

the vision algorithm is presented by flying the drone in indoor corridors.

i

To my Parents and my Brother

ii

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Armando A. Rodriguez, for his guidance

and support throughout my graduate studies. I would also like to thank him for

his kindness and tremendous patience during difficult times. I would like to thank

Dr.Tsakalis and Dr.Berman for being a part of my thesis committee. I would also

like to thank Zhichao Li, Jesus Aldaco, Karan Puttannaiah and Shubham Sonawani

for their timely feedback on my research. Lastly, I would like to thank my parents

and my brother for their constant support and patience.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION AND OVERVIEW OF WORK . 1

1.1 Introduction and Motivation . 1

1.2 Literature Survey: Robotics - State of the Field 2

1.3 Contributions of Work: Questions to be Addressed 7

1.4 Organization of Thesis . 8

1.5 Summary and Conclusions . 10

2 OVERVIEW OF GENERAL FAME ARCHITECTURE AND C4S RE-

QUIREMENTS . 11

2.1 Introduction and Overview . 11

2.2 FAME Architecture and C4S Requirements . 11

2.3 Summary and Conclusions . 14

3 IMAGE PROCESSING PIPELINE FOR VANISHING POINT DETEC-

TION. 15

3.1 Introduction and Overview . 15

3.2 Line Detection . 15

3.3 Summary and Conclusion . 22

4 EXTENDED KALMAN FILTER DESIGN . 23

4.1 Introduction and Overview . 23

4.2 Kalman Filters . 23

4.3 Measurement and Motion Model . 24

4.4 Summary and Conclusion . 32

iv

CHAPTER Page

5 AR DRONE QUADROTOR MODEL AND CONTROL 33

5.1 Introduction and Overview . 33

5.2 AR Drone Platform . 33

5.3 AR Drone Hardware, Software and Control Inputs 34

5.4 AR Drone Dynamic Equations of Motion . 36

5.5 AR Drone Position Controller . 39

5.6 Experimental Results . 42

5.7 Summary and Conclusion . 43

6 QUADROTOR SIMULATION ENVIRONMENT . 44

6.1 Introduction and Overview . 44

6.2 Robot Operating System . 44

6.3 Gazebo Simulation Software . 46

6.4 Implementation Pipeline . 48

6.5 Simulation Results . 50

6.6 Summary and Conclusion . 50

7 PARALLEL IMPLEMENTATION OF VISION ALGORITHMS USING

GPU . 52

7.1 Introduction and Overview . 52

7.2 GPU Hardware . 52

7.3 GPU Software . 54

7.4 Kernel for Performing Convolution . 55

7.5 Parallel Implementation of the Hough Transform 60

7.6 Size, Weight and Power Constraints of Embedded GPU Boards 62

7.7 Summary and Conclusion . 63

v

CHAPTER Page

8 SUMMARY AND FUTURE DIRECTIONS . 65

8.1 Summary of Work . 65

8.2 Directions for Future Research . 65

REFERENCES . 68

APPENDIX

A SIMULATOR SETUP INSTRUCTIONS . 74

A.1 Instructions for Setting up the Ubuntu Environment 75

A.2 Project File Structure . 76

A.3 Instructions for Launching the Vanishing Point Detection, AR Drone

Simulator and AR Drone Controller Nodes. 76

A.4 Creating Custom ROS messages . 76

B PYTHON CODE . 77

vi

LIST OF TABLES

Table Page

4.1 Comparing Error and Update Rate at Different Resolutions 31

6.1 Position Error of the AR Drone for Different Distances 50

7.1 Comparison between GPU and CPU Processing Times 61

vii

LIST OF FIGURES

Figure Page

2.1 FAME Architecture to Accommodate Fleet of Cooperating Vehicles . . . 12

3.1 Indoor Corridor . 16

3.2 A Sinusoid in the (r, θ) Plane . 18

3.3 Intersection of Three Sinusoids in the (r, θ) Plane . 19

3.4 Indoor Corridor with Vanishing Point . 20

3.5 Vanishing Point Towards the Left . 20

3.6 Vanishing Point Towards the Right . 21

4.1 Angle Between Current State and Vanishing Point 26

4.2 Measurement v/s EKF at 0.8 Mega Pixels . 27

4.3 Measurement v/s EKF at 0.2 Mega Pixels . 28

4.4 Measurement v/s EKF at 0.05 Mega Pixels . 29

4.5 Measurement v/s EKF at 0.025 Mega Pixels . 29

4.6 Measurement vs EKF Under Good Measurement Conditions (Blue and

Green Circles Overlap) . 30

4.7 Measurement vs EKF Under Bad Measurement Conditions 30

4.8 Image Resolution vs Update Rate . 31

5.1 AR Drone with its Coordinate Axes in Body Fixed Frame 34

5.2 Plot of the True and Simulated Horizontal Velocities 39

5.3 Plot of the True and Simulated Vertical Velocities . 40

5.4 Plot of the Drone Trajectory Relative to the Center of the Corridor . . . 42

6.1 Da Vinci Surgical Robot . 45

6.2 Husky UGV . 45

6.3 AR Drone Simulation in Gazebo . 47

6.4 Image from the Drone Front Camera . 48

viii

Figure Page

6.5 Vanishing Point Detected on the Front Camera Image 48

6.6 ROS Control Flow . 49

6.7 [Xdes, Ydes, Zdes, ψdes] = [15, 0, 1, 0] . 51

6.8 [Xdes, Ydes, Zdes, ψdes] = [25, 0, 1, 0] . 51

7.1 Organization of Threads in a GPU . 54

7.2 Convolving a 5 x 5 Input with a 3 x 3 Filter . 56

7.3 CUDA Kernel Code for Convolution Operation . 57

7.4 CUDA Thread Blocks for Convolution Operation . 59

ix

Chapter 1

INTRODUCTION AND OVERVIEW OF WORK

1.1 Introduction and Motivation

Autonomous naviagation in indoor environments is an important problem in per-

ception because of the absence of GPS information. The advent of Real Time Kine-

matic (RTK) and Differential Global Positioning Systems (DGPS) have made accu-

rate outdoor localization of ground and aerial robots feasible. In order to accurately

estimate the position and orientation of a robot indoors, a combimation of sensors like

cameras, Light Detection and Ranging (LIDAR) sensor, gyroscopes and accelerome-

ters, will have to be used.

In aerial robots, specifically quadrotors, it is important to select components that

are light weight and consume minimal power in order to maximize flight time. For

example, a miniature LIDAR typically weighs 270 grams and consumes 10W of power

for operation and an additional 50-60W for mobility [43]. Comparing this with a

camera, which consumes 1.5W of power for operation and 8W for mobility, it is clear

why cameras are a popular choice among quadrotors. In this thesis, a single camera

has been used as the primary sensor for the quadrotor’s perception tasks.

The central objective of the thesis is to use the perspective cues in images of

indoor environments, like corridors, to design a simple outer loop controller for the

quadrotor, so that it can navigate from one end of the corridor to the other. The

primary motivation for using these cues comes from nature as birds like Gannets track

down fish by diving at speeds close to 24m/s by using simple visual features which

allow them to estimate the time-to-contact with the water surface quickly. There is

1

also evidence that house flies do not explicitly comprehend the 3D structure of their

environment but rather use simple visual cues like optical flow for navigation [17].

The work presented here is a step toward the longer-term goal of achieving a fleet

of Flexible Autonomous Machines operating in an uncertain Environment (FAME).

Such a fleet can involve multiple ground and air vehicles that work collaboratively to

accomplish coordinated tasks. Such a fleet may be called a swarm [15]. Potential ap-

plications can include: remote sensing, mapping, intelligence gathering, intelligence-

surveillance-reconnaissance (ISR), search and rescue, manufacturing, teleoperation

and much more. It is this vast application arena as well as the ongoing technological

revolution that continues to fuel robotic vehicle research.

The quadrotor used in the hardware demonstrations is the Augmented Reality

(AR) drone 2.0. The drone proprietary software offers an inner attitude stabiliza-

tion controller. The dynamics of the quadrotor are modeled using the Newton-Euler

equations of motion.

This chapter attempts to provide a fairly comprehensive literature survey - one

that summarizes relevant literature and how it has been used. This is then used as

the basis for outlining the central contributions of the thesis.

1.2 Literature Survey: Robotics - State of the Field

In an effort to shed light on the state of vision based aerial robots operating in

indoor environments, the following literature survey is offered.

❼ Vision Based Navigation of Aerial Vehicles.

Cooper Bills et.al. in [18] provides a good introduction to the notion of perspec-

tive cues in single images and its subsequent benefit when used for navigating a

co-axial helicopter and a toy quadrotor in indoor corridors and staircases. The

2

image processing algorithm and the associated navigation strategy proposed in

this paper provides the basic framework for designing an autonomous agent

operating in indoor environments. Indoor environments are automatically clas-

sified into one of three categories (corridors, staircases and open rooms) using

an image classifier tuned to differentiate among various perspective cues. Im-

ages in each of these categories has its own unique perspective cue. The MAV

(Micro Aerial Vehicle) is programmed to have a unique control behavior for

each of these categories. Parallel lines in the real world intersect at a point in

an image due to perspective projection (an artifact when going from 3D to 2D).

This point is called the Vanishing Point. One of the main contributions of this

work is to show that such vanishing points are sensitive to the lateral (side to

side) motion of the camera. This information was used to control the roll and

the yaw of the quadrotor as it traversed indoor corridors and staircases at a

constant forward speed and height.

Yong Woo-Seo in [27] offers a solution to one of the limitations of the work

summarized above. Frame by Frame detection methods are a function of the

number of lines detected every frame. As such, this method is sensitive to noise

such as changes in the illumination and slight shakes in the camera. In order

to improve the robustness of the algorithm and achieve smooth tracking, an

Extended Kalman Filter (EKF) is proposed. This state estimation filter, with

its non-linear observation model, is used to demonstrate the improved tracking

of the vanishing point on highways. The author highlights the reliablity of the

state estimation filter in varying illumination conditions. The vanishing points

were subsequently used to estimate the instantaneous driving direction and also

narrow the search for other vehicles driving on the road.

3

Davide Scaramuzza in [29],[30] provides a general framework for designing a

visual odometry pipeline for autonomous systems. The techniques summarized

and presented in this paper offer a glimpse of how a complete end-to-end vision

based system (pixels to motor control) can be created. Some of the early ac-

complishments in the field of computer vision such as fast feature detection and

outlier rejection along with some of the intial setbacks concerning featutre cor-

respondence and computation burden are clearly outlined in this paper. These

papers served as a guide book, offering tips and tricks to design custom image

processing pipelines for specific applications.

❼ Quadrotor Modeling. Robert Mahony, Vijay Kumar and Peter Corke in [31]

present a comprehensive literature on the model, design and control of quadro-

tors. They clearly explain the size, weight and power constraints of selecting the

various components of the quadrotor. Starting with the Newton-Euler dynamic

equations of motion, the paper describes how to perform frame of reference

transformations, design simple hover controllers and generate minimum snap

trajectories. The material presented in this paper provides a general framework

for modeling quadrotors of various sizes and analyzing the effect of various com-

ponents on the performance of the quadrotor.

❼ Vision Algorithms. The design and fine tuning of the vision algorithm to

detect vanishing points in indoor corridors is one of the primary contributions

of this thesis. The algorithm’s parameters have been tuned to work with the

images provided by the forward facing camera of the AR Drone. Thus the

camera calibration matrix and the image resolution play an integral part in

tuning the parameters of the vision algorithm. Once tuned, the algorithm is

general enough to work in any indoor corridor as long the noise (illumination

4

condition) is approximately constant. Relevant theory is presented within [9].

The basic image processsing pipeline is as follows: The RGB image from the

camera is converted into a grayscale image. Horizontal and Vertical image gra-

dients are extracted from the grayscale image. Image gradients represent edges

in the image (regions where there is significant variation in intensity among

neighboring pixels). Each pixel in the gradient is thresholded so as to extract

only the pixels relevant for our application. Once the relevant binary image of

the gradient directions has been formed, Hough transform is used to extract

lines present in the image. Hough transform essentially takes the coordinates

of each pixel in the binary image and draws hypothetical lines having different

orientations with respect to the origin. The number of pixels that fall under

a line of given orientation and distance from the origin is computed. A 2-D

accumulator matrix is formed with the various distances from the origin as the

rows of a matrix and the various line orientations as the columns of a matrix.

Each pixel votes for a distance and orientation pair. All tuples greater than

a specified threshold (minimum number of pixels) will be used generate the

dominant lines in the image.The intersection points of these lines is calculated

by taking a vector cross product of all non-collinear lines. The median of the

various intersection points obtained is defined to be the vanishing point of the

image. This process is repeated for every image frame.

The open source computer vision library OpenCV is greatly used in this thesis.

Useful information for using this library is presented within [4].

❼ State Estimation Algorithm. In order to improve the robustness of the

above mentioned vision algorithm, an Extended Kalman filter is used, essen-

tially as a low pass filter, to eliminate noise and present reliable state estimates.

5

The filter assigns probabilistic weights to the previous state and the current

measurement to generate the current state. If the current measurement is un-

reliable i.e. the covariance matrix is large, then the algorithm assigns a higer

weight to the previous state in order to reflect the poor confindence in the

current measurement. This scheme seems to work well for detecting vanishing

points. Beacuse the lines detected in every frame are susceptible to changing

light conditions, irrelevant lines frequently contribute to the calculation of the

vanishing points and corrupt the estimate. The EKF resolves this by differ-

entially weighing the quality of measurements obtained in the current frame

compared to the previous frame.

❼ Augmented Reality Drone 2.0. The platform used for all the demonstra-

tions is the Augmented Reality Drone (2.0). This drone is a popular research

platform. It is affordable and encompasses a wide array of sensors. It includes

a 30 FPS, 720p forward facing camera and a 60 FPS, 240p downward facing

camera, an ultrasonic sensor for altitude measurement and a 3 axis gyroscope

and a 3 axis accelerometer for measuring the quadrotor orientation and linear

acceleration respectively. It can achieve a maximum vertical speed of 5m/s and

a maximum horizontal speed of 1.66 m/s. It has an internal attitude stabiliza-

tion controller and is not built for acrobatic/agile maneuvers.

6

1.3 Contributions of Work: Questions to be Addressed

Within this thesis, the following fundamental questions are addressed. The an-

swers to these questions are important to move toward the longer-term FAME goal.

1. How can visual information be extracted from the real world without

modifying the environment?

In order to develop a general framework for visual perception, it is important

to design algorithms that take advantage of the structural richness of the en-

vironment in which they are operating. Indoor environments are an abuntant

source of line segments. Thus it is not necessay to implant colored and fiduciary

markers in indoor environments for developing a navigation strategy. By know-

ing the camera calibration matrix and the coordinates of the vanishing point in

indoor environments, the camera lateral dispalcement can be estimated. The

entire vision algorithm is implemented in Python programming language using

OpenCV library functions.

2. How reliabile are the location estimates obtained from the visual

input? Can they be improved?

The high sensitivity of visual features (points, lines or colored markers), used to

compute location estimates, to even slight changes in illummination make any

derived measurement unreliable. Although the reliability can be improved by

further tuning of the parameters of the vision algorithm, it is laborious and un-

elegant. Designing a continous unimodal state estimation filter, like the Kalman

filter, helps remove the high frequency noise thus allowing improved tracking

and reliability.

7

3. What are typical outer-loop objectives?

For the quadrotor considered in this thesis, the primary outerloop objective is to

control the x, y and z position of the system so that the quadrotor can traverse

an indoor corridor with a stable attitude and a constant forward velocity.

When taken collectively, the contributions of this thesis are of importance especially

to those interested in conducting robotics/FAME research.

1.4 Organization of Thesis

The remainder of the thesis is organized as follows.

❼ Chapter 2 (page 11) presents an overview for a general FAME architecture de-

scribing candidate technologies (e.g. sensing, communications, computing, ac-

tuation).

❼ Chapter 3 (page 15) describes the image processing pipeline in detail and the

algorithm used to compute the vanishing points.

❼ Chapter 4 (page 23) presents how to design the Extended Kalman filter, with

a non-linear observation model, for state estimation.

❼ Chapter 5 (page 33) describes the AR Drone hardware, software and dynamic

model. The design of the outer loop position controller is also detailed in this

section.

❼ Chapter 6 (page 44) presents the AR Drone Gazebo Simulator and its features.

❼ Chapter 7 (page 52) describes the GPU programming framework and how they

can be exploited for improving the run time of image processing algorithms.

8

❼ Chapter 8 (page 65) summarizes the thesis and presents directions for future

robotics/FAME research. While much has been accomplished in this thesis, lots

remains to be done.

❼ Appendix A (page 74) describes how to set up AR Drone TUM simulator from

scratch. Appendix B (page 77) contains the Python files used to generate the

results for this thesis

9

1.5 Summary and Conclusions

In this chapter, an overview of the work presented in this thesis and the major

contributions have been provided. A central contibution of the thesis is the vast

empirical evidence provided for the reliable detection of vanishing points in indoor

environments and their use in developing robust navigation strategies for quadrotors.

10

Chapter 2

OVERVIEW OF GENERAL FAME ARCHITECTURE AND C4S

REQUIREMENTS

2.1 Introduction and Overview

In this chapter, a general architecture for the general FAME research is described.

The architecture described attempts to shed light on command, control, communi-

cations, computing (C4), and sensing (S) requirements needed to support a fleet of

collaborating vehicles. Collectively, the C4S and S requirements are referred to as

(C4S) requirements.

2.2 FAME Architecture and C4S Requirements

In this section, a candidate system-level architecture that can be used for a fleet

of robotic vehicles1 is described. The architecture can be visualized as shown in

Figure 2.1. The architecture addresses global/central as well as local command,

control, computing, communications (C4), and sensing (C4S) needs. Elements within

the figure are now described.

❼ Central Command: Global/Central Command, Control, Computing.

A global/central computer (or suite of computers) can be used to perform all

of the very heavy computing requirements. This computer gathers information

from a global/central (possibly distributed) suite of sensors (e.g. GPS, radar,

cameras). The information gathered is used for many purposes. This includes

temporal/spatial mission planning, objective adaptation, optimization, decision

1Here the term robotic vehicle can refer to a ground, air, space, sea or underwater vehicle.

11

Figure 2.1: FAME Architecture to Accommodate Fleet of Cooperating Vehicles

making (control), information transmission/broadcasting and the generation of

commands that can be issued to members of the fleet.

❼ Global/Central Sensing. In order to make global/central decisions, a suite

of sensors should be available (e.g. GPS, radar, cameras). This suite provides

information about the state of the fleet (or individual members) that can be

used by central command.

❼ Global/Central Communications. In order to communicate with mem-

bers of the fleet, a suite of communication devices must be available to central

command. Such devices can include (wideband) spread spectrum transmitter-

s/receivers, WiFi/Bluetooth adapters, etc.

12

❼ Fleet of Vehicles. The fleet of vehicles can consist of ground, air, space, sea

or underwater vehicles. Ground vehicles can consist of semi-autonomous or au-

tonomous robotic vehicles (e.g. differential-drive, rear-wheel drive, etc.). Here,

autonomous implies that no human intervention is involved (a longer-term ob-

jective). Semi-autonomous implies that some human intervention is involved.

Air vehicles can consist of quadrotors, micro/nano air vehicles, drones, other

air vehicles and space vehicles. Sea vehicles can consist of a variety of surface

and underwater vehicles. Within this thesis the focus is on ground vehicles

(e.g. enhanced Thunder Tumbler differential-drive).

❼ Local Computing. Every vehicle in the fleet will (generally speaking) have

some computing capability. Some vehicles may have more than others. Local

computing here is used to address command, control, computing, planning and

optimization needs for a single vehicle. The objective for the single vehicle,

however, may (in general) involve multiple vehicles in the fleet (e.g. maintain-

ing a specified formation, controlling the inter-vehicle spacing for a platoon of

vehicles). Local computing can consist of a computer, microcontroller or suite

of computers/microcontrollers. Within this thesis ARMv7, 1 Ghz processor is

exploited for local computing. They are low-cost, well supported and easy to

use.

❼ Local Sensing. Local sensing, in general, refers to sensors on individual vehi-

cles. As such, this can involve a variety of sensors. These can include encoders,

IMUs (containing accelerometers, gyroscopes, magnetometers), ultrasonic range

sensors, Lidar, GPS, radar, and cameras. Within this thesis, the Quadrotor is

equipped with the following sensors: 3 axis Accelerometer (+/- 50 mg precision)

13

, 3 axis Gyroscope (2000 degress/sec precision), Pressure sensor (+/- 10 Pa),

40Khz Ultrasonic sensor (0 -3m range), 720p Forward facing camera (30 fps)

and 240p Downward facing camera (60 fps). Lidar, GPS and radar are not used.

❼ Local Communications. Here, local communications refers to how fleet ve-

hicles communicate with one another as well as with central command.

2.3 Summary and Conclusions

In this chapter, a general (candidate) FAME architecture for a fleet of cooperating

robotic vehicles was described. Of critical importance to properly assess the utility

of a FAME architecture is understanding the fundamental limitations imposed by its

subsystems (e.g. bandwidth/dynamic, accuracy/static) [13].

14

Chapter 3

IMAGE PROCESSING PIPELINE FOR VANISHING POINT DETECTION

3.1 Introduction and Overview

This chapter describes the image processing pipeline in detail. The variation in

the quality of the computed features with image resolution is discussed. Empirical

evidence for the detection of vanishing points in indoor corridors is provided. The

changes in the location of the vanishing point with changes in the lateral motion of

the camera i.e. the sensitivity of the vanishing point to lateral camera movement is

analyzed.

3.2 Line Detection

Indoor corridors are an abundant source of parallel lines. Figure 3.1 depicts a

typical indoor corridor. Parallel lines at the intersection of the walls and the ceilings

are the lines most relevant to our application. It is the intersection of these lines

that will define the vanishing point for the corridor [18] [27]. An artifact of perspec-

tive projection is that depth information is lost as the world is scaled down from 3

dimensions to 2 dimensions. In fact human vision works on the same principle and

hence suffers from the same artifact [17]. It is common to observe that extremely

long stretches of railway lines appear to intersect at the horizon. In a similar vein,

these parallel lines in the indoor corridor intersect at a point.

We will now describe how lines are extracted from the image. The image is first

smoothened by passing it through a Gaussian filter and then a Median filter (helps

15

Figure 3.1: Indoor Corridor

remove salt and pepper noise). Often the size of these filters is empirically determined.

The procedure [36] for finding lines in an image consists of:

1. Computing the Horizontal and Vertical Image Gradients

2. Thresholding

3. Voting in the Hough Space

4. Post-Processing in the Hough Space

In order to extract the lines of interest, the horizontal and the vertical image

gradients have to be computed. This is accomplished by convolving the image with

the Sobel filter. A 3 x 3 horizontal Sobel filter is given by:

SX =













−1 0 1

−1 0 1

−1 0 1













(3.1)

16

Similarly, a 3 x 3 vertical Sobel filter is given by:

SY =













−1 −1 −1

0 0 0

1 1 1













(3.2)

The orientation of each pixel gradient is now computed by taking the inverse

tangent of the ratio of the vertica image gradient and the horizontal image gradient for

each pixel. Once direction of the gradient for each pixel is computed, it is thresholded

so as to extract only the pixels relevant for our application. Intuitively this amounts

to rejecting the responses below a certain threshold. Once the relevant binary image

of the gradient directions has been formed, Hough transform is used to extract lines

present in the image.

Hough transform is a popular technique for extracting shapes from images (pre-

dominantly lines and circles). We know that a line in the polar coordinate system

can be expressed as

y = −cos θ

sin θ
+

r

sin θ
(3.3)

This can be rewritten as:

r = x cos θ + y sin θ (3.4)

There are many lines that go through a given point (xi, yi). Each line can be

identified by the parameter (r, θ). Here r represents the distance of the line from the

origin and θ represents the orientation of the line. When we plot all these lines in the

r and θ plane, we get a sinusoid.This means that a point (x0, y0) gets mapped to a

sinusoid in the (r, θ) space (We consider only positive r and theta betweeen 0 and 2

π).This is depicted in the figure below for the point (x0, y0) = (8, 6).

17

0 0.5 1 1.5 2 2.5 3

Theta [radians]

-8

-6

-4

-2

0

2

4

6

8

10

R
 [

p
ix

e
ls

]

Figure 3.2: A Sinusoid in the (r, θ) Plane

If the sinusoids of two different points (x1, y1) and (x2, y2) intersect in the (r, θ)

plane, this means that the two points lie on a line given by the intersection point of

the sinusoids (rintersect, θintersect). We can repeat this procedure for each and every

pixel in the binary image. In general, the Hough transform keeps a tracks of these

intersections, greater the number of intersecting sinusoids, greater is the number of

points that belong to a line. We can define a threshold for the minimum number

of intersections necessary to declare a line. The figure below depicts three sinusoids

corresponding to three points ((x0, y0) = (4, 9), (x0, y0) = (12, 3), (x0, y0) = (8, 6).)

The Hough accumulator array is a 2D matrix that is used to keep a record of all the

intersecting sinusoids. The size of the matrix depends on the resolution with which

the distance and the orientation of the lines in the image have to be determined. If

two lines differing by 1 degree have to be resolved, then a 1 degree resolution Hough

accumulator array is necessary (this translates to 360 rows in the matrix). If two

18

0 0.5 1 1.5 2 2.5 3

Theta [radians]

-8

-6

-4

-2

0

2

4

6

8

10

12

14

R
 [

p
ix

e
ls

]

Figure 3.3: Intersection of Three Sinusoids in the (r, θ) Plane

lines differeing by 1 pixel distance from the origin have to be resolved, then a 1 pixel

resolution Hough accumulator is necessary (This translates to
√
H2 +W 2 columns in

the matrix, where H and W are the height and width of the image respectively). The

resolution of r and θ must be chosen according to your application. If you can trade

off accuracy for speed then you are better off choosing a lower resolution.

The domiant lines in the image correspond to the cells in the accumulator array

with the most number of votes. Once the dominant lines have been identified, they are

represented in the cartesian coordinate system. Lines that are collinear are discarded.

The intersection points of all the non-collinear lines are determined. The median of

the computed intersection points is defined to be the vanishing point of the image

(median is more robust to large outliers when compared to the mean).This process is

repeated for every image frame. Figure 3.4 depicts the vanishing point for an indoor

corridor.

19

Figure 3.4: Indoor Corridor with Vanishing Point

Once the algorithm is tuned to detect a sufficient number of dominant lines,

the camera can be displaced laterally to observe a proportional displacement in the

location of vanishing point. The magnitude of the displacement observed is a function

of the resolution of the image. For a 1.2 Mega Pixel image, we observed a 3 pixel/cm

displacement in the position of the vanishing point when the camera was moved along

the width of an indoor corridor 150cm wide.

Figure 3.5: Vanishing Point Towards the Left

20

Note that in order to process the images quickly, the OpenCV implementation

of the probabilistic Hough transform [37] randomly samples parts of the image to

extract line segments. This approacah works for our application only because of the

abundance of lines in indoor environments. Figures 3.5 and 3.6 depict the displace-

ment of the vansihing point towards the left and toward the right of center of the

corridor as the camera is moved towards the left and right of the center respectively.

Figure 3.6: Vanishing Point Towards the Right

From the above discussion, we now know that the computation time of the Hough

transorm is a function of the resolution of the input image. As the resolution of the

image decreases, the computation time of the algorithm also decreases. But a decrease

in image resolution will also cause a decrease in the resolution of the displacement

of the vanishing point. Extremely small displacements to the left and to the right of

center can no longer be differentiated. This will be discussed more thoroughly in the

next chapter. Experimental tests have shown that at 0.5 Mega pixel resolution i.e.

at a quarter of the full 2 Mega (1920 x 1080) pixel resolution, the displacement of

the vanishing point to lateral camera movement is significant enough to be reliably

detected (1 pixel/ cm displacement). In order to convert this displacement in pixels

21

to displacement in centimeters, we have to first determine the width of the corridor

(in our case, the width was 150 cm). Then we would need to displace the camera

laterally, along the width of the corridor. Using these reference measurements, we

now have enough information to compute the displacement in centimeters. This

displacement of the vanishing point from the center of the corridor helps us locate

the position of the AR Drone along the Y axis. Intitally, the drone would take off

from the center of the corridor and begin tracking the vanishing point. As it drifts

sidewards, information aboout the displacement is fed to the position controller that

reduces the drift and maintains the drone along the center of the corridor. The design

of position controller will be described in Chapter 5.

3.3 Summary and Conclusion

This chapter has presented a description of the vision algorithm used within this

thesis. The sensitivity of the vanishing point to lateral camera movement was ana-

lyzed. This algorithm is important since it is used in the subsequent chapters.

22

Chapter 4

EXTENDED KALMAN FILTER DESIGN

4.1 Introduction and Overview

In this chapter, we are going to explore what Kalman filters are and describe how

they can be used for the purpose of state estimation. We will look at the recursive

algorithm for implementing a version of the Kalman filter known as Extended Kalman

filte. With this state estimation technique, we will analyze the improvements in

tracking the vanishing point at various image resolutions. We will also determine

the algorithm run time at different image resolutions. With this information, we will

be able to decide what image resolution to use for our application of navigating the

drone along the center of the corridor.

4.2 Kalman Filters

Kalman filters are unimodal, continuous state estimation filters. They are very

popular in the field of robotics. They are extensively used in tracking neighboring

vehicles in self-driving cars. They are used in localization modules for the purpose

of fusing global position data with local odometric data. They are one of the most

popular implementations of the Bayes Filter.

Conceptually, the algorithm updates the state and uncertainty of the system prob-

abilistically (adhering to Bayes Rule). Like all state estimation filters, the Kalman

filter has a measurement cycle and a motion cycle. Under Gaussian noise assump-

tions and 1 dimensional state estimation, the mathematics of the state and covariance

updates are easy to understand. As the number of dimensions is increased, the core

23

intuition remains the same but the mathematics gets a little complicated. For a com-

plete mathematical treatment of the Kalman filters, please refer [34]. Note that the

Kalman filter assumes a linear measurement and a linear motion model.

An Extended Kalman filter is one in which the measurement model and/or the

motion model is nonlinear.The purpose of designing an Extended Kalman filter (EKF)

is to improve the robustess of the vanishing point tracking algorithm. In this thesis

a 2D Extended Kalman filter with a nonlinear observation model is used to estimate

the coordinates of the vansihing point from frame to frame as a quadrotor traverses

from one end of the corridor to the other.

4.3 Measurement and Motion Model

Like traditional Kalman filters, the motion model of the Extended Kalman filter

is linear in nature. The measurement models are usually designed ad hoc, to meet

the requirements of the application. For the purpose of detecting vanishing points, a

non-linear measurement model formulated in [27] is used. The equations below shows

the prediction step and measurement step for EKF.

Prediction Step

x̂k = x̂k−1; x = [vx, vy] (4.1)

P̂k = P̂k−1 (4.2)

Measurement Step

h(x̂k) = tan−1 (vy − y1)

(vx − x1)
(4.3)

ŷj = zj − h(x̂k) (4.4)

24

Hj =
∂(x̂k)

∂x
(4.5)

Sj = HjPjH
T
j (4.6)

Kj = HjPjH
T
j +Rj (4.7)

xk = x̂k +Kjyj (4.8)

Pj = (I −KjHj)Pj−1 (4.9)

Initially the state x is assigned to be equal to the coordinates of the center of

the image. The uncertainty matrix, represented by P , is set to a large value. In

the Measurement step, the difference in the angle between the detected lines and the

measured vanishing point is computed for each dominant line detected in the image.

The same is done to compute the angle between the detected lines and the state of the

system. The error of the measurement model is defined to be the difference between

these two sets of angles. This is depicted in figure 4.1. It is this difference in the

angles (the tan−1 computation) that introduces the non-linearity. The Jacobian of

the measurement matrix is computed to linearize the system.

In order to analyze the functionality of the Extended Kalman filter, consider a

video stream obtained by moving a camera sideways, from the center of the corridor

to the left, and then back to the center of the corridor and then to the right. Fig-

ure 4.2 shows how the vanishing point of the corridor is being tracked by the image

processing algorithm (frame by frame measurements) and by the Extended Kalman

filter algorithm.

25

Figure 4.1: Angle Between Current State and Vanishing Point

The green line in the plot indicates the center of the corridor. Since the resolution

of the image is high (1536 x 864 = 0.8 Mega pixels), the performance of both the

vision algorithm and the Extended Kalman filter algorithm are good. However, if the

resolution is decreased, noise is expected to play a greater role in the frame by frame

detection method. If the image resolution is decreased by a fourth, to 0.2 Mega pixels,

then the behavior of the two algorithms in tracking the vanishing point is shown in

Figure 4.3.

If the resolution is cut even further by a fourth, to 0.05 Mega pixels, the superiority

of the Extended Kalman filter in tracking the vanishing point, as compared to the

frame by frame line detection algorithm is clearly visible. Figure 4.4 clearly highlights

this behavior. It is important to note that the tracking results are only as good as

the long term quality of the image measurements [18]. At such low resolutions, the

RMS measurement error observed in tracking the vanishing point is as high as 75 cm.

The benefit of using a state estimation filter on top of your vision algorithm

26

Figure 4.2: Measurement v/s EKF at 0.8 Mega Pixels

is depicted in the figures 4.6 and 4.7. The blue circle represents the vanishing

point computed by the vision algorithm (frame by frame measurement) and the green

circle represents the vanishing point being tracked by the state estimation filter. In

situations were the number of dominant lines is below a certain threshold value,

our frame by frame measurement is erratic. In these sitautions our confidence in

the previous state of the vanishing point is high, hence the EKF algorithm correctly

weighs the vanishing point estimate of the previous state more than the curren erratic

measurement.

The variation in the measurement error and the algorithm update rate as a func-

tion of the image resolution is quantified in Table 4.1. Figure 4.8 highlights how

the computation time of the algorithm varies as the image resolution is varied. The

chosen image resolution depends on the operating requirements like, the speed with

which the quadrotor has to travel, the width of the corridor (which determines the

allowed margin for error) and constant/variable lighting conditions. In this thesis, the

quadrotor is programmed to travel at a maximum speed of 70 cm/s, in a corridor that

27

Figure 4.3: Measurement v/s EKF at 0.2 Mega Pixels

is 150 cm wide. Under such conditions, an image of 384 x 176 resolution resulted in

a vanishing point measurement error of 5.1 cm. This proved to sufficient to navigate

the quadrotor from one end of the corridor to the other.

28

Figure 4.4: Measurement v/s EKF at 0.05 Mega Pixels

Figure 4.5: Measurement v/s EKF at 0.025 Mega Pixels

29

Figure 4.6: Measurement vs EKF Under Good Measurement Conditions (Blue and

Green Circles Overlap)

Figure 4.7: Measurement vs EKF Under Bad Measurement Conditions

30

Image Resolution (Mp) Update Rate (Hz) Error (cm) (✩)

0.8 1.55 4.01

0.4 4.33 4.4

0.2 12.5 5.21

0.1 18.87 10.42

0.05 25.64 26.72

0.025 28.57 77.5

Table 4.1: Comparing Error and Update Rate at Different Resolutions

Figure 4.8: Image Resolution vs Update Rate

31

4.4 Summary and Conclusion

This chapter has explored the effectiveness of the Extended Kalman filter in track-

ing the vanishing point in an indoor corridor. The performamce of the filter and

the vision algorithm under different image resolutions was analyzed. The improved

tracking performace obtained under low image resolutions justify the inclusion of the

Extended Kalman filter as part of the vanishing point tracking algorithm.

32

Chapter 5

AR DRONE QUADROTOR MODEL AND CONTROL

5.1 Introduction and Overview

In this chapter, we will describe the AR Drone quadrotor platform, its dynamic

model, hardware and software. We will describe how to incorporate the vanishing

point coordinates along with the IMU measurements in order to get a more accurate

estimate of the position of the AR Drone. Finally, we will summarize the litera-

ture describing the linear model of the AR Drone quadorotor and describe how to

implement a closed loop position controller using this linear model.

5.2 AR Drone Platform

The quadrotor chosen for the experiments is the AR (Augmented Reality) Drone,

from Parrot Inc., version 2.0. AR Drone is a commercialized, autonomous quadrotor

that was primarily designed to be operated via smartphones or tablets, via Wi-Fi

networks with specific communication protocols. Compared to other commercial

quadrotors (AscTech Hummingbird III cost ✩4000) , the AR Drone is less expensive

(✩300). Its spare parts are easily available. In addition, Parrot provides a set of

software tools to easily communicate with and control the drone platform [33]. These

are some of the reasons why AR Drone 2.0 was chosen. Figure below shows the AR

Drone with the adopted co-ordinate system. The drone is 55cm wide and 55cm long

with the indoor hull. It weighs 450g with the indoor hull. The central cross of the

drone is made of carbon tubes. A brushless motor is mounted at the end of each arm.

The electronics are housed in a Poly Propylene basket at the center of the cross.

33

Figure 5.1: AR Drone with its Coordinate Axes in Body Fixed Frame

5.3 AR Drone Hardware, Software and Control Inputs

The AR Drone is equipped with two embedded boards. One of them is the sen-

sor board and contains a 3 Axis Accelerometer (+/- 50mg precision, measures linear

acceleration ax, ay, ax), a 3 Axis Gyroscope(2000 degree/second precision, measures

angular velocity wx, wy, wz), an Ultrasonic Sensor(Range 0- 3m, for altitude measure-

ment). The drone is also equipeed with a forward facing camera (120 x 720 resolution,

30 Hz frame rate), and a bottom facing camera (320 x 240 resolution, 60 Hz frame

rate).

The second embedded board is called the principal board and contains the ARM

Cortex A8 processor, with a 1GHz clock frequency, running an embedded Linux

34

operating system. The principal board handles the data coming in from the sensor

board, the video streams coming in from the front facing and the bottom facing

cameras and the Wi-Fi network of the UAV system. The firmware installed on the

quadrotor has the ability to perform tasks like take-off, landing, flight stabilization,

besides responding to external commands fed by the user.

The drone, using its on-board sensors, delivers the following variables: z, vx, vy, φ, θ, ψ.

The roll, pitch and yaw angles (φ, θ and ψ) represent the orientation of the drone

relative to the global coordinate system. z represents the height of the drone from

the ground plane, measured by the downward facing ultrasonic sensor. vx and vy

represent the linear velocities of the drone relative to the drones frame of reference

(along xb and yb)

Information about how these variables are generated can be found in [33]. Infor-

mation about the algorithms used to generate these variables can be found in [24].

Despite these capabilities, the AR Drone is incapable of hovering over a point

autonomously for a significant time period. It starts to drift (slide sideways). This

is due to the accumulation of measurement errors that are integrated over time.

Thus, the AR Drone must be continuously fed position information from an external

reference source in order to negate the drift.

The command signals to control the motion of the drone are normalized to have

values between -1 and 1. The commands that can be issued to the drone are:

1. ux - Inclination in the xw(roll) axis which translates to velocity in the yb direction

2. uy: Inclination in the yw (pitch) axis which translates to velocity in the xb

direction

3. ż: Linear velocity which causes displacement along the zw axis

4. ψ̇: Angular velocity which causes rotation (yaw) about the zw axis

35

In the following two sections, we will describe the approach suggested by [19], to

develop the controller for the drone. Before that, we would like to make a quick note

on the maximum velocity with which the drone can be controlled to fly in indoor

corridors (without colliding into the walls). The maximum velocity is a function

of the corridor width (WC = 150cm), drone width (WD = 55cm), measurement

error (∆YM = 5cm), maximum drift rate (ω = 20 degrees/second) and the time

interval between command rate transmissions (∆T = 10 ∗ (∆TIMG + ∆TWiFi) =

10 ∗ (80ms+50ms) = 1300ms). Their realtionship can be described by the following

equation:

vmax =
WC/2−WD/2− YM

sin (ω∆T)
(5.1)

The computations were done off-board, using a 2.5 GHz Intel Ivy Bridge CPU

(∆TIMG = 80ms), the maximum velocity was computed to be equal to 1 m/s. When

the image processing was performed off-board, on NVIDIA’S GeForce 970M GPU

(1280 Cores, 1024 threads/core, 960 MHz), the time interval between control com-

mands was ∆T = 10 ∗ (∆TGPU1+∆TWiFi) = 10 ∗ (11.43ms+50ms) = 614.3ms. The

maximum velocity was computed to be approximately 2 m/s. When the image pro-

cessing was performed on-board, using NVIDIA’S Jetson TX2 Embedded board (256

cores, 1024 threads/core, 1300MHz), the time interval between control commands

was ∆T = 10 ∗ (∆TGPU2) = 10 ∗ (30.21ms) = 300.21ms. The maximum velocity was

computed to be approximately 4 m/s.

5.4 AR Drone Dynamic Equations of Motion

The dynamic equations of motion of a quadrotor are given below [32].

mẍ = (cosψ sinφ+ cosψ cosφ sin θ)u1 (5.2)

36

mÿ = (− cosψ sinφ+ sinψ cosφ sin θ)u1 (5.3)

mz̈ = (cosφ cos θ)u1 −mg (5.4)

Ixxφ̈ = u2 − (Izz − Iyy)θ̇ψ̇ (5.5)

Iyyθ̈ = u3 − (Ixx − Izz)θ̇ψ̇ (5.6)

Izzψ̈ = u4 (5.7)

ẍ, ÿ, z̈ represent the linear accelerations along the x,y and z axis respectively. φ,θ

and ψ represnt the orientation (roll, pitch and yaw) of the quadrotor with respect

to the global x, y and z coordinate axis frames. ˙phi, ˙theta, ˙psi and ¨phi, ¨theta, p̈si

represent the angular velocities and anlular accelerations with respect to the x, y and

z axis respectively. m represnts the mass of the quadrotor. g is the acceleration due

to gravity. Ixx ,Iyy and Izz represnt the Moment of Inertia (resistance to rotation)

around the x, y and z axis respectively.

u1 represents the vertical thrust input signal to the drone, u2, u3 and u4 represent

the input torques with respect to the three body fixed coordinate axis of the drone

respectively.

Note that the model above does not take drag forces (resistance offered by the

wind) into consideration. According to [2], a model similar to the one described above

is used in the AR drone firmware, with the addition of other aerodynamic effects for

flight stabilization. However, the firmware algorithm and the model parameters are

37

restricted to developers. We will soon show how to take advantage of the drones

internal processing results by modeling its dynamics in terms of the control action u.

To achieve this we rely on the observations of [28],[26],[20],[22],[23] and assume

the behavior of the drone to be a linear function of the input command. Doing so, we

can avoid the complex dynamics of the quadrotor. This linear model is given below.

v̈x = K1ux −K2v̇x (5.8)

v̈y = K3uy −K4v̇y (5.9)

v̈z = K5uz −K6v̇z (5.10)

ψ̈ = K7uψ −K8ψ̇ (5.11)

Here, vx, vy and vz represents the linear velocities along the drone coordinate axes

xb, yb and zb respectively. The same holds true for the accelerations v̈x, v̈y and v̈z. ψ̇

and ψ̈ represents the angular velocity and angular acceleration with the respect to the

zb axis. The constants K1 to K8 are experimentally determined by minimining the

sum of squared differences between the actual values and the simulated values. Let’s

call this sum of squared difference function as the Energy function. We need to find

constant K1 and K2 such that the energy E(K1, K2) is minimum. Mathematically,

the energy function for horizontal velocity is described below.

E(K1, K2) = argminK1,K2
(ẍactual − ẍsimulated) (5.12)

ẍsimulated = K1uX −K2ẋactual (5.13)

38

Although, this model is not physically precise, it is sufficient for our application.

The actual horizontal and vertical velocities of the drone are plotted against the ones

generated using the linear model in the figures 5.2 and 5.3.

0 200 400 600 800 1000 1200 1400 1600 1800

Number of Samples

-0.2

0

0.2

0.4

0.6

0.8

1
V

e
lo

c
it
y
 V

x
 (

m
/s

)

True

Simulated

Figure 5.2: Plot of the True and Simulated Horizontal Velocities

5.5 AR Drone Position Controller

In order to design an outer loop position controller for the AR Drone, we need

to know its state at every time interval. Here, the state of the drone refers to the 3

dimensional postion and velocity estimates along the x,y and z axes, along with the

yaw angle and the yaw rate. The state vector is described below.

x = [x, y, z, ψ, ẋ, ẏ, ż, ψ̇] (5.14)

We can integrate the velocity measurements along each coordinate axis of the

drone to obtain the x, y and z position information of the drone. The yaw and

39

0 500 1000 1500 2000 2500 3000 3500

Number of Samples

-0.2

0

0.2

0.4

0.6

0.8

1

V
e

lo
c
it
y
 V

y
 (

m
/s

)

True

Simulated

Figure 5.3: Plot of the True and Simulated Vertical Velocities

the yaw rate are directly provided by the AR Drone IMU measurements (For more

information on how to subscribe to the necessary topics of the AR Drone, please refer

to the ROS code at the Appendix and also to [2]). As soon as the vanishing point

estimates are available, we update our state vector with a more accurate horizontal

position (represented by y) estimate. We do this by simply taking the weighted

average of the two measurements (a weight of 0.1 was chosen by trial and error).

yaccurate = wy + (1− w)yvp (5.15)

Here, yvp represents the horizontal position of the drone estimated by tracking the

vanishing point in the indoor corridor. The linear model of the drone described in

the previous section can be represented as:

Ẋ = f1U − f2Ẋ (5.16)

40

Here, X = [ẋ, ẏ, ż, ψ̇] and U = [uvx , uvy ,uż ,uψ̇].

f1 =



















K1 cosφ −K3 sinφ 0 0

K1 sinφ K2 cosφ 0 0

0 0 K5 0

0 0 0 K7



















f2 =



















K2 cosφ −K4 sinφ 0 0

K2 sinφ K4 cosφ 0 0

0 0 K6 0

0 0 0 K8



















Given a desired trajectory [xdes, ydes, zdes, ψdes], our goal is to minimize the error

e = [xdes − x, ydes − y, zdes − z, ψdes − ψ]

From control theory, we know that:

ë+Kpe+Kdė = 0 (5.19)

if Kp > 0 and Kd >= 0.

This means that if the two gains, Kp and Kd(proportional and derivative gains)

are positive, the error is gauranteed to asymptotically converge to zero. We can

rewrite the above equation :

ẍ = ẍdes +Kpe+Kdė = 0 (5.20)

Here ẍ (for the sake of notational convenience, let’s call this v) is the commanded

acceleration and ẍdes is referred to as the feedforward term. We can rewrite equation

5.15 as:

U = f−1
1 (Ẍ − f2Ẋ) (5.21)

41

This now gives us:

U = f−1
1 (v − f2Ẋ) (5.22)

Thus, we now know how to generate the control signals necessary to fly the AR Drone

so that it follows a given trajectory.

5.6 Experimental Results

Here, we will present the position error resulting from flying the AR Drone (max-

imum speed is limited to 1.2 m/s) in a straight line along the center of the corridor.

The desired trajecotry was set to [0.5t 0 1 0]. The figure 5.4 depicts the XY position

of the drone (in red) relative to the center of the corridor. The maximum lateral

position error (error along the Y axis) from the center of the corridor is 34 cm.

0 1 2 3 4 5 6 7

X Position [m]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Y
 P

o
s
it
io

n
 [

m
]

Figure 5.4: Plot of the Drone Trajectory Relative to the Center of the Corridor

42

5.7 Summary and Conclusion

In this chapter, we presented a brief description of the hardware and software

features of the AR Drone quadrotor. We described the simplified linear model of the

dynamics of the AR Drone and showed how to design a position controller using this

model.

43

Chapter 6

QUADROTOR SIMULATION ENVIRONMENT

6.1 Introduction and Overview

In this chapter, we will describe how the vision and the control algorithms de-

scribed in the previous chapters can be implemented and tuned on a simulated AR

Drone quadrotor using the Gazebo simulation software. The AR Drone simulator is

a popular open source quadrotor simulator developed by the Technical University of

Munich (TUM) [26]. The simulator model incoporates all the sensors on the Parrot

AR Drone 2.0. The simulation model also follows the same communication protocols

as the Parrot AR drone. The simulation world of an indoor corridor, is designed

using a varielty of pre-existing templates available in Gazebo. The vision, control

and simulation programs are implemented in the Robot Operating System (ROS)

environment. The implementation pipeline, from intializing the AR drone simulator

to running the vison and control algorithms on the drone, will be described in detail.

6.2 Robot Operating System

Robot operating system (ROS) is a useful software environment to program robots.

Surgical robotic arms like daVinci from Intuitive Surgical, and autonomous ground

robots like the Husky Unmanned Ground Vehicle (UGV), use ROS beacuse of its

simplicity and modular framework. ROS is different from a traditional operating

system with respect to process management and scheduling. ROS is more a structured

communication layer that sits on top of the host operating system. The primary

motivation for developing ROS was to simplify software design for robots. Often

44

Figure 6.1: Da Vinci Surgical Robot

Figure 6.2: Husky UGV

hardware compatibility issues necessitates developing custom software for different

hardware. As a result, a lot of time is spent reinventing the wheel and this slows

down research in the field of robotics. ROS was designed to make sure large scale

integrative robotics research will be possible [38]. .

The design goals for ROS can be summarized below:

1. Peer to Peer connectivity

A number of different executable programs (called nodes in ROS), running on

a number of different computers, can all be individually designed and loosely

coupled during runtime.

2. Language Agnostic

Framework is easy to implement in any programming language. ROS currently

supports four languages: C++, Python, Octave and LISP.

3. Modular Framework

45

A lot of small modules are used to build and run various components in ROS.

Such a modular approach tends to decrease efficiency but often reduces com-

plexity and increases stability.

4. Thin

By making sure all the complexity resides in standalone libraries, ROS is able

to create small executables that allows for easier code extraction and reuse.

5. Open-Source and Free

ROS is distributed under the terms of the BSD license and its source code is

publicly available. The ROS community is active and regularly updates existing

versions with new functionalities.

For an excellent introduction to ROS, please refer [39]

6.3 Gazebo Simulation Software

Gazebo is an open source, multi-robot, simulation environment that integrates

easily with the Robot Operating System (ROS) framework. It has become the de

facto standard in robotics research and allows contribution by other researchers to be

easily integrated. Gazebo allows sensors like stereo cameras, LIDARs, sonar sensors,

RGB-D cameras to be easily added to the robot. The simulation environment includes

dynamics simulation, provided by the ODE (ordinary differential equations) or bullet

physics engine. Although the simulator provides options for gravity and friction, it

does not cover aerodynamics and propulsion systems which are integral to research

in aerial robotics. For a comprehensive overview of a quadrotor simulation desgin

using Gazebo and ROS please refer [40]. In this research, we have used the quadrotor

simulator developed by the Technical University of Munich, called the TUM AR

46

DRONE SIMULATOR . Just like the actual AR Drone, the simulated drone accepts

roll angle, pich angle, yaw rate and vertical velocity as input. It has a forward and a

downward facing camera along with an ultrasonic sensor to measure the altitude. The

simulated corridor environment along with the drone is shown in the figure below.

Figure 6.3: AR Drone Simulation in Gazebo

The view from the front camera as well as the vanishing point, can be observed

in the figures below

Along with a simulation of the AR drone, the TUM AR Drone software package

has a number of built in simulation worlds. With this basic framework in hand,

creating a simulation environment with a ground plane, a roof and two enclosing

walls is trivial. Gazebo also offers extensive tutorials on how to build simulation

worlds from scratch.

47

Figure 6.4: Image from the Drone

Front Camera

Figure 6.5: Vanishing Point Detected

on the Front Camera Image

6.4 Implementation Pipeline

The setup guide in the appendix gives a detailed account of all the dependencies

required for installing and running the AR Drone simulator. At the time of writing,

the TUM AR Drone simulator was compatible only with ROS Fuerte and not with

any of the more modern versions of ROS. So in order to use the simualtor without

any glitches, it is necessary to make sure you are working with the Fuerte version

of ROS. Along with the AR Drone simulator package, it is necessary to install the

Ardrone Autonomy package which handles all the communication to and from the

drone. Once all the necessary packages are installed, the information flow among the

primary nodes (executable programs) is as shown in the figure below.

ROS allows users to tap into any sensor measurement via ROS Topics. A given

topic can be queried to obtain the sensor mesasurement as well as the update fre-

quency. An important topic published by the Ardrone Autonomy package is the

navdata topic. This topic contains the measurements pertaining to the IMU, cameras

and the ultrasonic sensor. The navdata topic contains the following information.

1. navdata.vx : Drone’s velocity along the xb axis

2. navdata.vy : Drone’s velocity along the yb axis

48

Figure 6.6: ROS Control Flow

3. navdata.vz: Drone’s velocity along the zb axis

4. navdata.altd: Height of the drone above the ground plane

5. navdata.rotX: Rotation about the xb axis

6. navdata.rotY: Rotation about the yb axis

7. navdata.rotZ: Rotation about the zb axis

8. navdata.batteryPercent: Indicates the remaining charge in battery.

9. navdata.tm: Timestamp of the data returned by the drone.

10. navdata.state: State of the drone. It can be Hovering, Initiated, Flying, Landed,

Landing or Take-off

We subscribe to this topic to get access to sensor measurements. Once this is done,

the controller is designed using the procedure described in the previous chapter. The

simulator can help provide approximate estimates for the proportional and derivative

49

gains before fine tuning it during real world experiments. The TUM Simulator is

light weight, intuitive and well documented. The procedure for creating your own

simulation environment is explained in detail in the Gazebo Tutorials Forum.

6.5 Simulation Results

In this section, we present the results of programming the AR drone to navigate

along the center of a simulated corridor. The trajectory of the drone, for a specified

[xdes, ydes, zdes, ψdes] is shown in the figures below. The position error in each trial is

tabulated below.

X desired (m) Speed (m/s) Max X Error (m) (✩) Max Y Error (m) (✩)

15 0.3 0.84 0.42

25 0.3 0.94 0.51

Table 6.1: Position Error of the AR Drone for Different Distances

6.6 Summary and Conclusion

This chapter has presented the ROS framework for robotics research and briefly

described the Gazebo simulation environment. The procedure for using open source

drone simulators for the purpose of indoor navigation and vanishing point detection

has been explored. Simulation results of the AR Drone navigating in a simulated

world (with a structure similar to that of an indoor corridor) were presented.

50

Figure 6.7: [Xdes, Ydes, Zdes, ψdes] = [15, 0, 1, 0]

Figure 6.8: [Xdes, Ydes, Zdes, ψdes] = [25, 0, 1, 0]

51

Chapter 7

PARALLEL IMPLEMENTATION OF VISION ALGORITHMS USING GPU

7.1 Introduction and Overview

In Chapter 4, we described a single threaded implementation (single CPU core)

of the line detection algorithm in the outer loop (A thread is a separate path of

execution that may converge or diverge from the main program flow as and when

needed). Current day GPU make use of millions of threads. The potential processing

speed-up that a GPU offers for parallel implementation of computer vision algorithms

is well documented [41].

In this chapter, we will provide an overview of NVIDIA GPU (Graphics Pro-

cessing Unit) hardware and software (CUDA: Compute Unified Device Architecture)

architecture. We will explain how the CUDA framework can be used to design a multi-

threaded implementation of a common operation in image processing, convolution.We

will summarize the approach taken towards designing a parallel implementation of

the Hough transform [35]. We will compare and analyze the runtimes of the single

threaded CPU and the multi-threaded GPU implementations. Lastly we will describe

the features of a modern embedded GPU platform, NVIDIAs Jetson TK1 board and

analyze its potential as a powerful outer loop processor on drones, taking into account

the size, weight, and power constraints.

7.2 GPU Hardware

Modern CPUs are at a limit for how much instruction level parallelism (ILP) can

be extracted per cycle. Even as transistors have become smaller and more numerous

52

in number, the clock frequency has plateaued over the last few years because of the

inability to manage the large amount of heat generated by billions of transistors.

Power management has since become a crucial aspect of chip design. GPUs are

designed to achieve the most bang for the buck in terms of computations for a fixed

amount of power. They achieve this by having a much simpler control circuitry,

compared to the CPU. This leaves more transistors in the data path for computation.

But this causes GPUs to have a more restrictive programming model. Optimizing

GPU code for speed comes at the cost of more complex code. Complexity not only

in the number of source code lines but also in the degree with which parameters in

the code (like image size) can be adjusted. GPU designers have traded fewer complex

cores for many simpler cores. This means that unlike the CPU, the GPU is optimized

for throughput, not latency.

Each GPU (depending on the generation) has a:

❼ Global Memory

❼ 8 to 32 Streaming Multiprocessors (SM)

❼ 1 to 16 Thread Blocks per SM

❼ 256 to 2048 threads per block.

A thread based view of the GPU is shown in the figure below.

The code executed on the GPU is called the kernel. Each thread in the GPU

executes the same program not necessarily the same instructions. Each GPU can

run thousands to millions of threads. Threads are arranged into thread blocks. Each

thread block is part of a larger grid. All threads in a thread block are executed

on the same processor (SM) and communicate via shared memory (on-chip mem-

ory). Threads are organized into a cluster of (at most) 32 warps. A more complete

description of the GPU hardware is provided in [25].

53

Figure 7.1: Organization of Threads in a GPU

7.3 GPU Software

In 2006, NVIDIA unveiled the GeForce 8800 GTX GPU. This was the first GPU

to be built using NVIDIAs CUDA architecture. This was the first push towards

making GPUs adept at general purpose programming. CUDA stands for Computer

Unified Device Architecture. CUDA allows each and every arithmetic and logic unit

(ALU) on the chip to be orchestrated by a program intended to perform general

purpose (single precision floating point) arithmetic. Furthermore, the execution units

are allowed arbitrary read and write access to the memory along with access to a

software-managed cache known as shared memory [4]. These features allowed the

GPU to excel at general purpose computation, in addition to the graphics related

tasks. CUDA programming environment is very similar to C programming language.

It conveniently allows us to program both the CPU (referred to as the host) and the

GPU (referred to as the device) using a single program.

The CPU is typically responsible for the following tasks:

❼ Allocating memory on the GPU

❼ Copy data from CPU TO GPU

❼ Launch Kernels on the GPU

54

❼ Copy data from GPU to CPU

The GPU is responsible for expressing the computation on the kernel and exe-

cuting it on a large number of threads. This will soon be made clear in the next

section where we describe the kernel for convolving the image with a filter. But what

is evident is that GPU follows the SPMD (Single Program Multiple data) model.

Each thread performs the same computation but on different input data. To uti-

lize the GPU effectively, you need to have a high ratio of computation (in GPU) to

communication (between GPU and CPU).

7.4 Kernel for Performing Convolution

The goal of this section is to explain how the kernel function should be designed

for implementing the convolution operation. We will also talk about the dynamics of

launching multiple threads on the GPU. The two primary tasks to be executed prior

to launching the kernel are:

❼ Allocating memory on the GPU for the input image, filter and the output.

❼ Copying the input image and filter from CPU to GPU.

We are going to convolve each channel of the RGB image separately with the

given filter and then recombine them. Convolution entails sliding the filter across

each pixel of the input image and taking a weighted sum. The operation is pictorially

depicted for a 5 x 5 image and a 3 x3 filter below.

In image processing, we want the output of the convolution operation to be of the

same size as the input. This is done by padding the input array. The two popular

ways of padding are same padding and zero padding [42]. A good starting place to

design the kernel is to map each thread to a pixel. Once we have done this, we can

55

Figure 7.2: Convolving a 5 x 5 Input with a 3 x 3 Filter

use the filter to take a weighted average of the pixel and its neighbors. The CUDA

code for the GPU kernel is shown in the figure below.

Each channel of the image is flattened from a 2-D to 1-D array. The filter is also

flattened to a 1-D array. Let us walk through the important steps.

❼ In Line 1, the global prefix tells the compiler to generate GPU code and not

CPU code. It also makes the GPU code globally visible from within the GPU

code. We pass the necessary input and output pointers to the GPU memory

space as arguments to the kernel.

❼ The numRows and numCols represent the height and width of the image re-

56

Figure 7.3: CUDA Kernel Code for Convolution Operation

spectively.

❼ Thread Index and Block Index are provided as 3-D structures in CUDA: threa-

dIdx.x, threadIdx.y and threadIdx.z ; blockIdx.x, blockIdx.y and blockIdx.z

❼ threadIdx.x represents the offset with a block of the X thread index

❼ threadIdx.y represents the offset with a block of the Y thread index.

❼ blockDimx.x and blockDimx.y represent the number of threads in the X and Y

dimension of a thread block respectively.

❼ gridDimx.x and gridDimx.y represents the number of blocks along the X dimen-

sion and Y dimension of the grid respectively.

57

❼ For illustrative purposes, let the (number of columns) width of the image be

480 and the (number of rows) height be 360.

❼ Each processor, called Symmetric Multiprocessor (SM), in the GPU has a num-

ber of blocks and each block has a number of threads. To recap, a group of 32

threads is called a warp. Currently, the GPU hardware processes threads only

in multiples of warps. All threads in a warp execute the same instruction in

parallel (at the same clock cycle). Thus, it is good design practice to launch a

multiple of 32 threads per block.

❼ We can launch the maximum allowed threads per block, 1024 (the maximum

depends on the GPU generation). This is done by setting blockDim.x to 32 and

blockDimx.y to 32. This gives us 1024 threads per block.

❼ In order to calculate the number of blocks required, we divide the number of

pixels in the image by the number of threads per block and rounded it off to

the highest integer. This gives 169 blocks. Now we shall set the gridIdx.x to 1

and gridIdx.y to 169. This gives us a total of 169 blocks in the grid.

❼ The entire thread layout for this example is shown in the figure below.

❼ Now its clear that idx in Line 8 runs from 0 to number of pixels (slightly larger

than the number of pixels as the number of blocks is rounded off to the highest

integer) in the image. Thus we have mapped each thread to a pixel.

❼ Lines 10 -22 now perform the trivial convolution operation.

❼ Now, since the kernel is launched by the CPU. The number of threads per block

and the number of blocks per grid is also set by the CPU.

58

Figure 7.4: CUDA Thread Blocks for Convolution Operation

NVIDIA Kepler GK110b GPU, for example, has 15 SM units, and each unit has

16 blocks of threads. Thats a total of 240 blocks of thread that can be launched at a

given instant (our application requires 169). Thus, CUDA allows the programmer to

write the kernel in a serial fashion. Depending on the application, the programmer

has to decide the number of threads and blocks that has to launched, which plays a

critical part in determining the runtime of the algorithm.

59

7.5 Parallel Implementation of the Hough Transform

We have already described the Hough transform, in detail, in Chapter 4. To

outline, the Hough transform is a popular technique to locate shapes (predominantly

lines and circles) in images. The technique can be broken down into the following

parts:

❼ Edge Detection

❼ Thresholding

❼ Voting in the Hough Space

❼ Hough Space Post Processing

❼ Drawing the Dominant Line

Edge detection entails convolving the image with a special kernel called the So-

bel Kernel. We have already seen how to do this. The parallel implementation of

thresholding an image is also well documented [6], the most popular one being Otsus

binarization. Steps 3 and 4 are now handled by two separate kernels on the GPU.

The first kernel creates an array of pixels that have to be used in the voting process.

If the pixel value is greater than a specified threshold, its coordinate value is stored

in an array on the on-chip shared memory. Every thread in a warp reads a pixel. If

the pixel value is less than the threshold, the corresponding thread does not remain

idle but rather updates the location on the array where the valid pixel coordinates

are to be stored. And since the actually number of pixels that count towards voting is

significantly smaller (only 10 percent) compared to the total number of pixels in the

image, all of the valid pixels can be stored in the fast on-chip shared memory. This

60

avoids the very costly step of having to store values in the off-chip global memory

(usually consumes 400-600 GPU cycles).

The second kernel uses a single thread block to create a single line for every

element in the array generated by the first kernel in the two Hough spaces (recall

Cartesian parameterization has one space for lines with angles between -45 degrees to

+45 degrees, and another space for angles between 45 degrees to 135 degrees). The

number of lines depends on the accuracy of the angle parameterization. Each line is

first put together in the shared memory and then transferred to the global memory.

The CUDA code and the array creating process are detailed in [35].

A comparison between the different processing times for different parts of the line

detection algorithm is shown in the table below. The image sixe is 576 x 324 .The

computational hardware on the CPU side involves an Intel i7, 1.73 Ghz processor with

8 GB of RAM. On the GPU side (GeForce GTX 970M), the specification included

16 Streaming Multiprocessors, 280 cores, 960MHz base clock frequency and 6GB of

global memory. The total processing time in the CPU is 122 ms, while that on the

GPU is 18 ms. Thus an effective speed up in processing time of 7x is observed when

using the GPU.

Process CPU (ms) GPU (ms) Speed Up

Image Resizing 12.35 1.58 8

Noise Removal 9.66 3.3 9

Image Gradients 16.67 5.6 9

Thresholding 15.54 5.04 3

Hough Detection 64.21 2.64 25

Table 7.1: Comparison between GPU and CPU Processing Times

61

7.6 Size, Weight and Power Constraints of Embedded GPU Boards

NVIDIA Jetson TX2 is a modern computing platform with a CPU and a GPU.

Its features include.

❼ GPU : 256 Cores, 1024 Threads/Core

❼ CPU : ARM A57 processor + HMP Dual Denver architecture

❼ Memory : 8GB DDR4

❼ GPU Memory Bandwidth : 59.7 GB/s

❼ Video : 4K x 2K resolution, 60 FPS, H264 Encoder/Decoder

❼ Power Requirement: 19 Volts, 4.74 Amps (Max 90W)

❼ Weight: 1.58 Kg

Let us analyze how the addition of the Jetson board affects the performance of

the drone. Typically an on-board embedded processor used on drones weigh 350g

The Jetson board is 4.5 times heavier than traditional embedded processors. This

certainly places a limitation on the maximum payload capacity of the drone, if the

thrust to weight ratio is to remain constant. The Thrust to Weight ratio can be used

to assess the agility of a quadrotor. Although the required agility depends largely

on the application of the quadrotor, a thrust to weight ratio of 2.7 can be used as

a rule of thumb to categorize a quadrotor as agile. So if a quadrotor weighs 1.5 kg,

the addition of the Jetson board increases its weight to 3kg. This means that the

4 motors must produce a combined thrust of (3000g x 2.7) 8100g to maintain the

agility of the quadrotor.

62

The size of the Jetson board is 17cm x 17 cm. In addition to this, the central

frame of the drone must also accommodate for the autopilot , battery and sensors

(which would approximately require an additional 15 x 15 cm area).

If we assume that a typical quadrotor requires 200 W (each motor requires 50W

of power) of power to lift 1 kg of mass, the Jetson board would consume 316W

(200W/kg * 1.58 kg) of power for mobility and an additional 90W for operation.

Lithium Polymer (Li-Po) batteries are popular among drones because of their high

specific power, moderate specific energy, low cost, scalability, and high cycle life [43]

In order to understand the effect of the Jetson board on the drone flying time, let

us assume the battery energy capacity to be 200 Wh, the drone weight prior to the

addition of the Jetson board be 1.5 kg, each motor consumes 50W of power, and the

on board computer and sensors consume an additional 5W. Total Power consumed

by the drone = (1 * 200W/kg) + (50*4) + 5 = 405W. Flying time = 200 Wh/405

30 min.

❼ Total = (1+1.58)*200W/kg + (50 * 4) + 5 + 90 = 811W

❼ Flying time = 200 Wh/811W = 15 min

Thus the flying time is cut down by half due to the power requirements of the

Jetson board. The situation can be slightly improved if we are able to choose a

battery with a higher discharge capacity while ensuring its weight doesnt increase

significantly.

7.7 Summary and Conclusion

In this chapter, we have explored NVIDIA GPU’s hardware and software archi-

tecture. We have described how to parallelize the 2-D convolution operation using

CUDA C programming language. We have briefly described the mechanism by which

63

the line detection algorithm (Hough Transform) can be parallelized. A 7X effective

speed up in processing time was observed when comparing the GPU implementation

with that of a single threaded CPU implementation. And finally the potential of a

modern embedded GPU processor as an outer loop controller on the drone was ana-

lyzed with respect to the drone’s size, weight and power constraints. The addition of

the GPU board cut down the flying time of the drone to half of it’s original value.

64

Chapter 8

SUMMARY AND FUTURE DIRECTIONS

8.1 Summary of Work

This thesis addressed perception issues that are important to achieve the longer-

term FAME objective. The following summarizes key themes within the thesis.

1. Literature Survey. A brief literature survey of relevant work was presented.

2. FAME Architecture. A general FAME architecture has been described.

3. Image processing. A detailed description of the image processing pipeline

was presented

4. Extended Kalman filter. The design and effectiveness of the Extended

Kalman filter for tracking application was presented.

5. GPU. The potentail speed up that can be achieved by parallelizing our vision

algorithm was explored.

8.2 Directions for Future Research

Future work will involve each of the following:

❼ Onboard Sensing. Addition of multiple onboard sensors; e.g. additional

ultrasonics, camera, lidar, GPS, etc.

65

❼ Multi-Vehicle Cooperation. Cooperation between ground, air, and sea

vehicles - including quadrotors, micro-air vehicles and nano-air vehicles

[53] .

❼ Parallel Onboard Computing. Use of multiple processors on a robot

for computationally intensive work; e.g. onboard optimization and decision

making.

❼ Modeling and Control. More accurate dynamic models and control

laws. This can include the development of multi-rate control laws that can

significantly lower sampling requirements.

❼ Guaranteed Performance. Go beyond classical control techniques and

use H∞ methods to synthesize controllers to achieve stabilization with

guaranteed performance [51; 54; 55; 56; 57; 58; 59; 60].

❼ Control-Centric Vehicle Design. Understanding when simple control

laws are possible and when complex control laws are essential. This in-

cludes knowing how control-relevant specifications impact (or can drive)

the design of a vehicle [52].

❼ Simultaneous Localization and Mapping. Concurrently estimate the

pose of the robot and the map (sparse/dense) of the surrounding environ-

ment [45; 46; 47; 48; 49]

66

❼ Reinforcement Learning. Use the multiple hours of collected flying

data to design an end to end (pixel to motor control) deep reinforcement

system for navigating previously unseen indoor corridors [50].

67

REFERENCES

[1] R. W. Brockett, “Asymptotic Stability and Feedback Stabilization,” in R.
W. Brockett, R. S. Millman, and H. J. Sussmann, editors, Differential Ge-
ometric Control Theory, Birkhauser, Boston, MA, 1983

[2] P.I. Corke, “Robotics, Vision and Control,” Springer, 2011.

[3] J. Gao and Y. Zhang, “An Improved Iterative Solution to the PnP Problem,”
International Conference on Virtual Reality and Visualization, 2013.

[4] G. Bradski and A. Kaehler, “Learning OpenCV: Computer vision with the
OpenCV Library,” O’Reilly Media, Inc., 2008.

[5] B. Jähne, Practical Handbook on Image Processing for Scientific and Tech-
nical Applications, CRC Press, Second Edition, 2004.

[6] R. Laganire, OpenCV 2 Computer Vision Application Programming Cook-
book, Packt Publishing, 2011.

[7] L. Shapiro, G. Stockman, Computer Vision, 2000.

[8] J.E. Solem, Programming Computer Vision with Python, 2012.

[9] R. Szeliski, Computer Vision Algorithms and Applications, Springer, 2011.

[10] A.A. Rodriguez, Analysis and Design of Feedback Control Systems, Con-
trol3D,L.L.C., Tempe, AZ, 2002.

[11] A.A. Rodriguez, Linear Systems: Analysis and Design, Control3D,L.L.C.,
Tempe, AZ, 2002.

[12] I. Anvari, “Non-holonomic Differential-Drive Mobile Robot Control & De-
sign: Critical Dynamics and Coupling Constraints”, Arizona State Univer-
sity, MS Thesis, 2013.

[13] Z. Lin, “Modeling, Design and Control of Multiple Low-Cost Robotic
Ground Vehicles,” Arizona State University, MS Thesis, 2015.

[14] Z. Li, “Modeling and Control of a Longitudinal Platoon of Ground Robotic
Vehicles,” Arizona State University, MS Thesis, 2016.

[15] M. Brambilla, E. Ferrante, M. Birattari, et al., “Swarm robotics: A review
from the swarm engineering perspective,” Swarm Intelligence, 2013, 7(1):
1-41.

[16] B. Siciliano, L. Sciavicco, L. Villani, et al., Robotics: Modeling, Planning
and Control, Springer Science & Business Media, 2009.

68

[17] D. Marr, S. Ullman, and T. Poggio, Vision: A Computational Investigation
into the human representation and processing of visual information. W.H.
Freeman, 1982.

[18] Cooper Bills, Joyce Chen, and Ashutosh Saxena. “Autonomous MAV
Flight in Indoor Environments using Single Image Perspective Cues”, In
Robotics and Automation (ICRA), 2011 IEEE conference on, pp. 5776-5783.
IEEE, 2011.

[19] Lucas Vago Santana, Alexandre Santos Brandao, Mario Sarcinelli-Filho
and Ricardo Carelli. “A Trajectory Tracking and 3D Positioning Controller
for the AR.Drone Quadrotor, Unmanned Aircraft Systems (ICUAS), 2014
International Conference on. IEEE, 2014.

[20] Lugo, Jacobo Jimnez, and Andreas Zell. “Framework for autonomous on-
board navigation with the AR. Drone.” Journal of Intelligent Robotic
Systems 73 no.1-4 (2014): pp. 401-412.

[21] Sanders, Jason, and Edward Kandrot. CUDA by example: an introduction
to general-purpose GPU programming. Addison-Wesley Professional, 2010.

[22] Hernandez, Andres, et al. “Identification and path following control of an
AR. Drone quadrotor.” System Theory, Control and Computing (ICSTCC),
2013 17th International Conference. IEEE, 2013.

[23] Hernandez, Andres, et al. “Model predictive path-following control of an
AR. Drone quadrotor.” Proceedings of the XVI Latin American Control Con-
ference (CLCA14), Cancun, Quintana Roo, Mexico. 2014.

[24] Bristeau, Pierre-Jean, et al. “The navigation and control technology inside
the ar. drone micro uav.” IFAC Proceedings Volumes 44.1 (2011): 1477-
1484.

[25] Cook, Shane. CUDA programming: a developer’s guide to parallel com-
puting with GPUs. Newnes, 2012.

[26] Engel, Jakob, Jrgen Sturm, and Daniel Cremers. “Camera-based naviga-
tion of a low-cost quadrocopter.” Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on. IEEE, 2012.

[27] Young Woo-Seo, “Detection and Tracking the Vanishing point on the Hori-
zon”, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, May
2014.

[28] Krajnk, Tom, et al. “AR-drone as a platform for robotic research and
education.” International conference on research and education in robotics.
Springer, Berlin, Heidelberg, 2011.

[29] Scaramuzza Davide and Friedrich Fraundorfer, “Visual odometry Part I:
The First 30 years and Fundamentals”, IEEE robotics and automation mag-
azine, vol. 18, no. 4, pp. 80-92, 2011.

69

[30] Scaramuzza Davide and Friedrich Fraundorfer, “Visual odometry Part II:
Matching, Robustness, Optimization, and Applications”, IEEE robotics and
automation magazine,vol. 19, no. 2, pp. 78-90, 2012.

[31] Robert Mahony, Vijay Kumar and Peter Corke, “Multirotor aerial vehi-
cles”, IEEE Robotics and Automation magazine,vol. 20, no. 32, 2012.

[32] Daniel Warren Mellinger, “Trajectory Generation and Control for Quadro-
tors,” University of Pennsylvania PhD Thesis, 2012

[33] Piskorski, Stephane, et al. “Ar. drone developer guide.” Parrot, sdk 1
(2012).

[34] Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. Probabilistic robotics.
MIT press, 2005.

[35] Van den Braak, Gert-Jan, et al. “Fast hough transform on GPUs: Ex-
ploration of algorithm trade-offs.” International Conference on Advanced
Concepts for Intelligent Vision Systems. Springer, Berlin, Heidelberg, 2011.

[36] Ballard, Dana H. “Generalizing the Hough transform to detect arbitrary
shapes.” Readings in computer vision.1987. 714-725.

[37] Kiryati, Nahum, Yuval Eldar, and Alfred M. Bruckstein. “A probabilistic
Hough transform.” Pattern recognition 24.4 (1991): 303-316.

[38] Quigley, Morgan, et al. “ROS: an open-source Robot Operating System.”
ICRA workshop on open source software. Vol. 3. No. 3.2. 2009.

[39] OKane, Jason M. “A gentle introduction to ROS, independently published
(2013).” Electronic copies freely available from the authors website.

[40] Meyer, Johannes, et al. “Comprehensive simulation of quadrotor uavs using
ros and gazebo.” International Conference on Simulation, Modeling, and
Programming for Autonomous Robots. Springer, Berlin, Heidelberg, 2012.

[41] Allusse, Yannick, et al. “Gpucv: an opensource gpu-accelerated framework
forimage processing and computer vision.” Proceedings of the 16th ACM
international conference on Multimedia. ACM, 2008.

[42] Dumoulin, Vincent, and Francesco Visin. “A guide to convolution arith-
metic for deep learning.” arXiv preprint arXiv:1603.07285 (2016).

[43] Mulgaonkar, Yash, et al. “Power and weight considerations in small, agile
quadrotors.” Micro-and Nanotechnology Sensors, Systems, and Applica-
tions VI. Vol. 9083. International Society for Optics and Photonics, 2014.

[44] Singh, Brij Mohan, et al. “Parallel implementation of Otsus binarization
approach on GPU.” Int J Comput Appl 32.2 (2011): 16.

70

[45] H. Durrant-Whyte and T. Bailey. “Simultaneous localization and mapping:
part I,” in IEEE Robotics Automation Magazine, vol. 13, no. 2, pp. 99-110,
June 2006.

[46] Bailey, Tim, and Hugh Durrant-Whyte. “Simultaneous localization and
mapping (SLAM): Part II.” IEEE Robotics Automation Magazine 13.3
(2006): 108-117.

[47] Klein, Georg, and David Murray. “Parallel tracking and mapping for small
AR workspaces.” Mixed and Augmented Reality, 2007. ISMAR 2007. 6th
IEEE and ACM International Symposium on. IEEE, 2007.

[48] Mur-Artal, Raul, Jose Maria Martinez Montiel, and Juan D. Tardos.
“ORB-SLAM: a versatile and accurate monocular SLAM system.” IEEE
Transactions on Robotics 31.5 (2015): 1147-1163.

[49] Engel, Jakob, Thomas Schps, and Daniel Cremers. “LSD-SLAM: Large-
scale direct monocular SLAM.” European Conference on Computer Vision.
Springer, Cham, 2014.

[50] Giusti, Alessandro, et al. “A machine learning approach to visual per-
ception of forest trails for mobile robots.” IEEE Robotics and Automation
Letters 1.2 (2016): 661-667.

[51] Puttannaiah, Karan, et al. “Analysis and use of several generalized H∞

mixed sensitivity frameworks for stable multivariable plants subject to simul-
taneous output and input loop breaking specifications.”Decision and Control
(CDC), 2015 IEEE 54th Annual Conference on. IEEE, 2015.

[52] Rodriguez, Armando A., et al. “Modeling, design and control of low-cost
differential-drive robotic ground vehicles: Part I: Single vehicle study.” Con-
trol Technology and Applications (CCTA), 2017 IEEE Conference on. IEEE,
2017.

[53] Rodriguez, Armando A., et al. “Modeling, design and control of low-cost
differential-drive robotic ground vehicles: Part II: Multiple vehicle study.”
Control Technology and Applications (CCTA), 2017 IEEE Conference on.
IEEE, 2017.

[54] Nandola, Naresh N., and Karan Puttannaiah. “Modeling and predictive
control of nonlinear hybrid systems using disaggregation of variables-A con-
vex formulation.” Control Conference (ECC), 2013 European. IEEE, 2013.

[55] Puttannaiah, K. H∞ control design via convex optimization: Toward a
comprehensive design environment. Diss. MS Thesis, Arizona State Univer-
sity, Tempe, AZ, 2013.

[56] Mondal, Kaustav. Multivariable control of fixed wing aircrafts. Arizona
State University, 2015.

71

[57] Justin A. Echols, et al. “Fundamental control system design issues for
scramjet-powered hypersonic vehicles.” AIAA Guidance, Navigation, and
Control Conference. 2015.

[58] K.Puttannaiah, Justin A. Echols, and Armando A. Rodriguez. “A gener-
alized H∞ control design framework for stable multivariable plants subject
to simultaneous output and input loop breaking specifications.” American
Control Conference (ACC), 2015. IEEE, 2015.

[59] K.Puttannaiah, Armando A. Rodriguezet, et al. “A generalized mixed-
sensitivity convex approach to hierarchical multivariable inner-outer loop
control design subject to simultaneous input and output loop breaking spec-
ifications.” American Control Conference (ACC), 2016. IEEE, 2016.

[60] A. Sarkar and K. Puttannaiah and A. A. Rodriguez “Inner-Outer Loop
based Robust Active Damping for LCL Resonance in Grid-Connected Invert-
ers using Grid Current Feedback”. American Control Conference (ACC),
2018. IEEE,2018

72

APPENDIX A

SIMULATOR SETUP INSTRUCTIONS

74

A.1 Instructions for Setting up the Ubuntu Environment

In order to play with all the features of the AR Drone simulator,
it is recommended that you install the necessary packages from the
source as several files were modified for the purposes of this project
(vanishing point detection and tracking).The instructions below were
implemented in Ubuntu 14.04, and should work for 16.04.

(a) The Primary goal is to install tum simulator package, the open
source ROS AR Drone simulator package. Unfortunately, at the
time of this writing, the simulator is only compatible with ROS
Fuerte.

(b) So we need to go back to rosbuild and rosws instructions instead
of catkin (This is used in ROS Indigo and later versions)

(c) Install ROS-Fuerte desktop version http://wiki.ros.org/fuerte/
Installation/Ubuntu

(d) Add source /opt/ros/fuerte/setup.bash. Add this statement to
the end of .bashrc

(e) Install Gazebo (4x series is the Indigo compatible one (seems
to work with Fuerte too), Fuerte compatible (1x series) was no
longer available

(f) Create and Initialize ROS workspace

❼ Rosws init /̃fuerte ws optrosfuerte

❼ Instructions in:http://wiki.ros.org/fuerte/Installation/
Overlays

(g) Download fuerte branch of ardrone autonomy

❼ https://github.com/AutonomyLab/ardrone_autonomy/tree/
fuerte-devel.

❼ Follow instructions in README.md in the above repository.

(h) After inserting a package into the fuerte ws (workspace), use
rosws set package name (Note: package name is a placeholder,
insert the name of the package in its place), and then source
/fuerte ws/setup.bash (The ROS workspace was named fuerte ws).
This will update ROS PACKAGE PATH. Lets call this step [*]

(i) Download tum simulator fuerte branch

❼ https://github.com/tum-vision/tum_simulator/tree/fuerte

❼ Rosmake necessary packages using instructions in http://
wiki.ros.org/tum_simulator

❼ If you are only interested in the simulations used in the
thesis, then instead of the github repository, copy the local
tum simulator package (in the project folder given to you).

75

(j) Copy ros2cv package (custom package with vision modules, cre-
ated for the purpose of detection vanishing points, can be found
in the project folder) in your workspace. Repeat step[*]

(k) Run roslaunch cvg sim gazebo test.launch. Have fun playing the
simulator!

A.2 Project File Structure

The ROS workspace in which all the programs are implemented is
named fuerte ws. Your workspace must contain the following pack-
ages:

ardrone autonomyadrone tutorials ros2cv tum simulator

Executable python/C++ nodes are found under the src directory in
each package.

A.3 Instructions for Launching the Vanishing Point Detection,
AR Drone Simulator and AR Drone Controller Nodes.

(a)(b)(c)(a) Run roscore

(b) Run roslaunch cvg sim test competition.launch

(c) Run the vision module rosrun ros2cv ros to cv.py

(d) Run the module that publishes the altitude rosrun ros2cv
test navdata.py

(e) Run the drone controller module rosrun ardrone tutorials
height control.py

A.4 Creating Custom ROS messages

(a) Custom ROS messages were created in ros2cv package for pub-
lishing vanishing point coordinated

(b) For more information on how to create custom messages, please
refer http://wiki.ros.org/ROS/Tutorials/CreatingMsgAndSrv\
#Creating_a_msg and http://wiki.ros.org/ROS/Tutorials/
CustomMessagePublisherSubscriber\%28python\%29

76

APPENDIX B

PYTHON CODE

77

1 # Program to ex t r a c t l i n e s in an image us ing p r o b a b i l i s t i c Hough trans form
2

3 import cv2
4 import numpy as np
5 import imu t i l s
6 from Kalman Fi lter import matrix
7 from Kalman Fi lter import EKF
8 import i n t e r s e c t i o n l i b r a r y
9

10 de f HoughDetect May 13 (img , x ,P, r e s o l u t i o n = 1) :
11

12 # Read s t a t e in fo rmat ion
13 v x = x . va lue [0] [0]
14 v y = x . va lue [1] [0]
15 i x = x . va lue [0] [0]
16 i y = x . va lue [1] [0]
17 i w = in t (img . shape [1] ✯ r e s o l u t i o n)
18 img = imu t i l s . r e s i z e (img , width = i w)
19 i h = in t (img . shape [0])
20 img gray = cv2 . cvtColor (img , cv2 .COLORBGR2GRAY)
21 img gray = cv2 . medianBlur (img gray , 7)
22 img gray = cv2 . GaussianBlur (img gray , (9 , 9) , 0)
23

24 # Find image g rad i en t along the y ax i s
25 s ob e l y 6 4 f = cv2 . Sobel (img gray , cv2 . CV 64F , 0 , 1 , k s i z e = 3)
26 abs sobe lx64F = np . abso lu t e (s ob e l y 6 4 f)
27 abs sobe lx64F = abs sobe lx64F / abs sobe lx64F .max() ✯ 255
28 sobe ly 8u = np . u int8 (abs sobe lx64F)
29 y g rad th r e sho ld = sobe ly 8u . copy ()
30

31

32 # Find image g rad i en t along the x ax i s
33 s ob e l x 6 4 f = cv2 . Sobel (img gray , cv2 . CV 64F , 1 , 0 , k s i z e = 3)
34 abs sobe lx = np . abso lu t e (s ob e l x 6 4 f)
35 abs sobe lx = abs sobe lx / abs sobe lx .max() ✯ 255
36 sobe lx 8u = np . u int8 (ab s sobe l x)
37

38 # Find grad i en t d i r e c t i o n
39 #grad magnitude = cv2 . add (sobe ly 8u , sobe lx 8u)
40 g r ad d i r e c t i o n s = np . arctan2 (sobe ly 8u , sobe lx 8u)
41

42

43 # Fine tuning f o r AR drone f r on t camera
44 #y grad th r e sho ld [y g rad th r e sho ld < 20] = 0
45 y g rad th r e sho ld [y g rad th r e sho ld > 30] = 255
46

47

48 # Threshold g rad i en t image to proce s s e s s e n t i a l p i x e l s only
49 g r ad d i r e c t i o n s [y g rad th r e sho ld < 10] = −np . p i
50

51 g r ad d i r e c t i on s no rma l i z ed = ((g r a d d i r e c t i o n s ✯180/np . p i) \
52 + 180)/360
53 g r ad d i r e c t i o n s 8u = np . u int8 (g r ad d i r e c t i on s no rma l i z ed \
54 ✯ 255)
55

56

57 # Hough Transform
58 maxLineGap = 2
59 adapt ive = in t (100✯ r e s o l u t i o n)
60 minLineLength = adapt ive
61 l i n e s = cv2 . HoughLinesP (g r ad d i r e c t i on s 8u , 1 ,\
62 np . p i /180 ,250 , minLineLength , maxLineGap)
63

64 anys 1 = []
65 anys 2 = []
66 l r = []
67 l l = []

78

68 G x = []
69 G y = []
70 j=0
71 m1 = 0
72 m2 = 1000
73 c1 = 0
74 Gr id l o c a t i on s = []
75 weight = []
76 w l = []
77 w r = []
78 ka = i h
79 kb = (i w)/2 . 0 + 1
80 l i n e s new = []
81 l ines EKF = []
82 l i n e s i n t e r = []
83 l i n e s r l = []
84 l i n e s l e n g t h = []
85

86 # Yellow l i n e to v i s u a l i z e vp change with
87 # l a t e r a l camera movement
88 cv2 . l i n e (img , (0 , i n t (i h / (3))) ,\
89 (i w , i n t (i h / (3))) , (2 5 5 , 2 55 , 0) , 2)
90

91

92

93 # Se l e c t l i n e s that s a t i s f y app l i c a t i o n c on s t r a i n t s
94 i f l i n e s i s not None :
95

96 f o r f e a t u r e in range (l en (l i n e s)) :
97 f o r x1 , y1 , x2 , y2 in l i n e s [f e a t u r e] :
98 i f (x1− x2) !=0 :
99 theta = np . arctan2 ((y2−y1) , (x2−x1))

100 m2= np . tan (theta)
101 i n t e r c e p t c 1 = y1 − m2✯x1
102 d v = abs ((v y − m2✯v x) − \
103 (y1 − m2✯x1))/\
104 np . s q r t (1+np . square (m2))
105 h d = min (y1 , y2) − v y
106 const = 20✯ r e s o l u t i o n
107

108 i f True :
109 pr in t (”Pass”)
110 d i s t = np . s q r t (max((np . square (x1−v x)+\
111 np . square (y1 − v y)) , (np . square (x2 − v x)\
112 + np . square (y2 − v y))))
113 l mag = np . sq r t (np . square (x1 − x2)\
114 + np . square (y1 − y2))
115 l i n e s l e n g t h . append (l mag)
116 mid 1 = in t ((x1+x2) / 2 . 0)
117 mid 2 = in t ((y1+y2) / 2 . 0)
118 c2 = y1 − m2✯x1
119 x3 = in t (1000 + x1)
120 y3 = in t (m2✯x3 + c2)
121 x4 = in t (x1 − 1000)
122 y4 = in t (m2✯x4 + c2)
123 k = mid 2 + (ka✯mid 1) − (ka✯kb)
124 k new = mid 1 − (i w /2)
125

126 i f abs (theta) > 0 .2 and l mag > 20 \
127 and abs (theta) < 1 . 3 :
128

129 l ines EKF . append ((x1 , y1 ,m2, c2 , d i s t , l mag))
130 l i n e s r l . append ((x3 , y3 , x4 , y4))
131 cv2 . l i n e (img , (x3 , y3) , (x4 , y4) , (0 , 0 , 2 55) , 3)
132

133

134 e l s e :

79

135 r e turn img , x ,P, x
136

137 i f l en (l i n e s r l) !=0 :
138 l i n e s a l l = i n t e r s e c t i o n l i b r a r y .\
139 l i n e s f r om po i n t s (l i n e s r l)
140

141 f o r j in range (l en (l i n e s a l l) − 1) :
142 l i n e s i n t e r . append ((l i n e s a l l [j] ,\
143 l i n e s a l l [j +1]))
144

145

146 i f l en (l i n e s i n t e r) != 0 :
147 i x , i y = i n t e r s e c t i o n l i b r a r y \
148 . p o i n t s f r om l i n e s (l i n e s i n t e r , x)
149

150

151

152

153 # Line from i n t e r s e c t i o n l i b r a r y
154 cv2 . c i r c l e (img , (i x , i y) ,\
155 i n t (i w /50) , (0 , 255 , 0) , 3)
156

157

158 l i n e s new = np . array (l ines EKF)
159

160 measurements = matrix ([[i x] , [i y]])
161

162

163 # Blue c i r c l e f o r EKF tracked van i sh ing po in t s
164 x ,P = EKF(x ,P, l ine s new , measurements , r e s o l u t i o n)
165 v 1 = in t (x . va lue [0] [0])
166 v 2 = in t (x . va lue [1] [0])
167

168 cv2 . c i r c l e (img , (v 1 , i n t (i h /3)) \
169 , i n t (i w /48) , (255 , 0 , 0) , 3)
170

171 r e turn img , x ,P, measurements

1 # Module to compute the i n t e r s e c t i o n po int
2

3 import numpy as np
4

5

6 de f c r o s s p roduc t (x , y) :
7 r e s = np . dot (np . matrix ([[0 , − x [2] , x [1]] , \
8 [x [2] ,0 , −x [0]] , [− x [1] , x [0] , 0]]) , \
9 np . array (y) .T)

10 r e turn np . array (r e s)
11

12 de f l i n e s f r om po i n t s (po in t s) :
13 l i n e s = []
14 l e f t l i m i t = min (min (z ip (✯ po in t s) [0]) , \
15 min(z ip (✯ po in t s) [2]))
16 r i g h t l i m i t = max(max(z ip (✯ po in t s) [0]) , \
17 max(z ip (✯ po in t s) [2]))
18

19 f o r x1 , y1 , x2 , y2 in po in t s :
20 po in t 1 = np . array ([x1 , y1 , 1])
21 po in t 2 = np . array ([x2 , y2 , 1])
22 l i n e = c ro s s p roduc t (po in t 1 \
23 , po in t 2)
24 l i n e s . append (l i n e)
25

26 r e turn l i n e s
27

28 de f p o i n t s f r om l i n e s (l i n e s , s t a t e) :

80

29 i n t e r s e c t i o n s = []
30

31 f o r l i n e r i g h t , l i n e l e f t in l i n e s :
32 r i g h t s l o p e = − (l i n e r i g h t [0] [0] / \
33 l i n e r i g h t [0] [1])
34 l e f t s l o p e = − (l i n e l e f t [0] [0] / \
35 l i n e l e f t [0] [1])
36 i n t e r s e c t i o n = cro s s p roduc t (l i n e r i g h t [0] \
37 , l i n e l e f t [0])
38 i f i n t e r s e c t i o n [0] [2] != 0 \
39 and (l e f t s l o p e != r i g h t s l o p e) :
40 i n t e r s e c t i o n = i n t e r s e c t i o n /\
41 i n t e r s e c t i o n [0] [2]
42 i n t e r s e c t i o n = np . array (i n t e r s e c t i o n)
43 i f i n t e r s e c t i o n [0] [0] >= 0 and\
44 i n t e r s e c t i o n [0] [1] >= 0 :
45 i n t e r s e c t i o n s . append (i n t e r s e c t i o n [0])
46

47 i f l en (i n t e r s e c t i o n s) != 0 :
48 x co rd i na t e s = z ip (✯ i n t e r s e c t i o n s) [0]
49 y coo rd ina t e s = z ip (✯ i n t e r s e c t i o n s) [1]
50

51

52 v x = in t (np . median (x co rd i na t e s))
53 v y = in t (np . median (y coo rd ina t e s))
54

55 e l s e :
56 v x = in t (s t a t e . va lue [0] [0])
57 v y = in t (s t a t e . va lue [1] [0])
58

59 r e turn v x , v y

1 # Write a func t i on that implements a multi−
2 # dimens iona l Kalman F i l t e r
3 import numpy as np
4

5 c l a s s matrix :
6

7 # Implements ba s i c ope ra t i on s o f a matrix c l a s s
8

9 de f i n i t (s e l f , va lue) :
10 s e l f . va lue = value
11 s e l f . dimx = len (va lue)
12 s e l f . dimy = len (va lue [0])
13 i f va lue == [[]] :
14 s e l f . dimx = 0
15

16 de f ze ro (s e l f , dimx , dimy) :
17 # check i f v a l i d dimensions
18 i f dimx < 1 or dimy < 1 :
19 r a i s e ValueError , ” I nva l i d s i z e o f matrix ”
20 e l s e :
21 s e l f . dimx = dimx
22 s e l f . dimy = dimy
23 s e l f . va lue = [[0 f o r row in range (dimy)] \
24 f o r c o l in range (dimx)]
25

26 de f i d e n t i t y (s e l f , dim) :
27 # check i f v a l i d dimension
28 i f dim < 1 :
29 r a i s e ValueError , ” I nva l i d s i z e o f matrix ”
30 e l s e :
31 s e l f . dimx = dim
32 s e l f . dimy = dim
33 s e l f . va lue = [[0 f o r row in range (dim)] \
34 f o r c o l in range (dim)]

81

35 f o r i in range (dim) :
36 s e l f . va lue [i] [i] = 1
37

38 de f show (s e l f) :
39 f o r i in range (s e l f . dimx) :
40 pr in t s e l f . va lue [i]
41 pr in t ✬ ✬

42

43 de f add (s e l f , o ther) :
44 # check i f c o r r e c t dimensions
45 i f s e l f . dimx != other . dimx or \
46 s e l f . dimy != other . dimy : \
47 r a i s e ValueError , ”Matr ices must be o f \
48 equal dimensions to add”
49 e l s e :
50 # add i f c o r r e c t dimensions
51 r e s = matrix ([[]])
52 r e s . ze ro (s e l f . dimx , s e l f . dimy)
53 f o r i in range (s e l f . dimx) :
54 f o r j in range (s e l f . dimy) :
55 r e s . va lue [i] [j] = s e l f . va lue [i] [j] \
56 + other . va lue [i] [j]
57 r e turn r e s
58

59 de f s u b (s e l f , o ther) :
60 # check i f c o r r e c t dimensions
61 i f s e l f . dimx != other . dimx or s e l f . dimy != other . dimy :
62 r a i s e ValueError , ”Matr ices must be o f equal //
63 // dimensions to subt rac t ”
64 e l s e :
65 # subt rac t i f c o r r e c t dimensions
66 r e s = matrix ([[]])
67 r e s . ze ro (s e l f . dimx , s e l f . dimy)
68 f o r i in range (s e l f . dimx) :
69 f o r j in range (s e l f . dimy) :
70 r e s . va lue [i] [j] = s e l f . va lue [i] [j] \
71 − other . va lue [i] [j]
72 r e turn r e s
73

74 de f mu l (s e l f , o ther) :
75 # check i f c o r r e c t dimensions
76 i f s e l f . dimy != other . dimx :
77 r a i s e ValueError , ”Matr ices must be m✯n //
78 //and n✯p to mult ip ly ”
79 e l s e :
80 # mult ip ly i f c o r r e c t dimensions
81 r e s = matrix ([[]])
82 r e s . ze ro (s e l f . dimx , other . dimy)
83 f o r i in range (s e l f . dimx) :
84 f o r j in range (other . dimy) :
85 f o r k in range (s e l f . dimy) :
86 r e s . va lue [i] [j] += s e l f . va lue [i] [k] \
87 ✯ other . va lue [k] [j]
88 r e turn r e s
89

90 de f t ranspose (s e l f) :
91 # compute t ranspose
92 r e s = matrix ([[]])
93 r e s . ze ro (s e l f . dimy , s e l f . dimx)
94 f o r i in range (s e l f . dimx) :
95 f o r j in range (s e l f . dimy) :
96 r e s . va lue [j] [i] = s e l f . va lue [i] [j]
97 r e turn r e s
98

99 de f Cholesky (s e l f , z t o l =1.0e−5):
100 # Computes the upper t r i a n gu l a r Cholesky f a c t o r i z a t i o n o f
101 # a po s i t i v e d e f i n i t e matrix .

82

102 r e s = matrix ([[]])
103 r e s . ze ro (s e l f . dimx , s e l f . dimx)
104

105 f o r i in range (s e l f . dimx) :
106 S = sum ([(r e s . va lue [k] [i])✯✯2 f o r k in range (i)])
107 d = s e l f . va lue [i] [i] − S
108 i f abs (d) < z t o l :
109 r e s . va lue [i] [i] = 0 .0
110 e l s e :
111 i f d < 0 . 0 :
112 r a i s e ValueError , ”Matrix not //
113 // po s i t i v e−d e f i n i t e ”
114 r e s . va lue [i] [i] = np . sq r t (d)
115 f o r j in range (i +1, s e l f . dimx) :
116 S = sum ([r e s . va lue [k] [i] ✯ r e s . va lue [k] [j] \
117 f o r k in range (s e l f . dimx)])
118 i f abs (S) < z t o l :
119 S = 0 .0
120 r e s . va lue [i] [j] = (s e l f . va lue [i] [j] − S)\
121 / r e s . va lue [i] [i]
122 r e turn r e s
123

124 de f CholeskyInverse (s e l f) :
125 r e s = matrix ([[]])
126 r e s . ze ro (s e l f . dimx , s e l f . dimx)
127

128 # Backward step f o r i nv e r s e .
129 f o r j in r eve r s ed (range (s e l f . dimx)) :
130 t j j = s e l f . va lue [j] [j]
131 S = sum ([s e l f . va lue [j] [k]✯ r e s . va lue [j] [k] \
132 f o r k in range (j +1, s e l f . dimx)])
133 r e s . va lue [j] [j] = 1 .0/ t j j ✯✯2 − S/ t j j
134 f o r i in r eve r s ed (range (j)) :
135 r e s . va lue [j] [i] = r e s . va lue [i] [j] = \
136 −sum ([s e l f . va lue [i] [k]✯ r e s . va lue [k] [j] \
137 f o r k in range (i +1, s e l f . dimx)]) / s e l f . va lue [i] [i]
138 r e turn r e s
139

140 de f i nv e r s e (s e l f) :
141 aux = s e l f . Cholesky ()
142 r e s = aux . Cho leskyInverse ()
143 r e turn r e s
144

145 de f r e p r (s e l f) :
146 r e turn repr (s e l f . va lue)
147

148 # Extended Kalman f i l t e r f unc t i on
149 de f EKF(x ,P, l i n e s , measurements , r e s o l u t i on , count=0):
150 count = 0
151 I = matrix ([[1 . , 0 .] , [0 . , 1 .]])
152 f o r x1 , y1 ,m1, c1 , d1 , l 1 in l i n e s :
153 theta = np . arctan2 (measurements . va lue [1] [0] − y1 ,\
154 measurements . va lue [0] [0] − x1)
155 h theta = np . arctan2 ((x . va lue [1] [0] − y1) ,\
156 (x . va lue [0] [0] − x1))
157 y = theta − h theta
158 d square = np . square (x . va lue [0] [0] − x1) \
159 + np . square (x . va lue [1] [0] − y1)
160 H = matrix ([[− (x . va lue [1] [0] − y1)/ d square ,\
161 (x . va lue [0] [0] − x1)/ d square]])
162 omega = abs (measurements . va lue [0] [0] \
163 − x . va lue [0] [0])
164

165 i f omega > 3 :
166 f a c t o r = (omega /3 .0 ✯ np . p i) % (np . p i − 0 . 01)
167 R = matrix ([[f a c t o r ✯✯2 + 0 . 0 1]])

83

168 e l s e :
169 R = matrix ([[0 . 0 1]])
170

171 i f count < 5 :
172 i f abs (y) < (1) :
173 count+= 1
174 # Measurement Model
175 S = H✯P✯H. t ranspose () + R
176 K = P✯H. t ranspose ()✯S . i nv e r s e ()
177 y = matrix ([[y]])
178 x = x + K✯y
179 P = (I − K✯H)✯P
180 e l s e :
181 P = matrix ([[1 2 5 0 . , 0 .] , \
182 [0 . , 1 2 5 0 .]])
183 e l s e :
184 i f abs (y) < (. 2) :
185 count+= 1
186 # Measurement Model
187 S = H✯P✯H. t ranspose () + R
188 K = P✯H. t ranspose ()✯S . i nv e r s e ()
189 y = matrix ([[y]])
190 x = x + K✯y
191 P = (I − K✯H)✯P
192 e l s e :
193 P = matrix ([[1 2 5 0 . , 0 .] , [0 . , 1 2 5 0 .]])
194 r e turn x ,P

1 # Program to Convert ROS Image to OpenCV image and de te c t Vanishing Points
2

3 #!/ usr /bin /env python
4 from f u t u r e import p r i n t f u n c t i o n
5 import rospy
6 from sensor msgs .msg import Image , CameraInfo
7 import numpy as np
8 import cv2
9 import sys

10 from cv br idge import CvBridge , CvBridgeError
11 from Robust detect ion import HoughDetect May 13
12 from Kalman Fi lter import matrix
13

14

15 c l a s s cvBridgeDemo () :
16 de f i n i t (s e l f) :
17 s e l f . node name = ” ro s to opencv ”
18

19 # I n i t i a l i z e ROS node
20 rospy . i n i t n od e (s e l f . node name)
21

22 # During Shutdown
23 rospy . on shutdown (s e l f . c leanup)
24

25 # Modifying the code to update s t a t e and unce r ta in ty
26 s e l f . r e s = 1
27 s e l f . s t a t e = matrix ([[3 2 0 . ✯ s e l f . r e s] , [1 6 0 . ✯ s e l f . r e s]])
28 s e l f . unce r ta in ty = matrix ([[1 0 0 0 . , 0 .] , [0 . , 1 0 0 0 .]])
29 s e l f . i n i t i a l v x = 320
30

31

32 # Create the cv br idge ob j e c t
33 s e l f . b r idge = CvBridge ()
34

35 # Subscr ibe to camera image and s e t the appropr ia te c a l l b a c k s
36 s e l f . image sub = rospy . Subsc r ibe r (”/ ardrone / image raw” , \
37 Image , s e l f . image ca l lback)
38

39

84

40 rospy . l o g i n f o (”Waiting f o r image t op i c s . . . ”)
41

42

43

44

45

46 de f image ca l lback (s e l f , ros image) :
47

48 # Use cv br idge () to convert the ROS image to OpenCV format
49 t ry :
50 frame = s e l f . b r idge . imgmsg to cv2 (ros image , ”bgr8”)
51 except CvBridgeError as e :
52 pr in t (e)
53

54 #Convert image to numpy array
55 frame = np . array (frame , dtype = np . u int8)
56

57 #Process the frame
58 temp = matrix ([[1 . 0] , [1 . 0]])
59 disp lay image , x ,P = s e l f . p roces s image (frame)
60 s e l f . s t a t e = x
61 s e l f . unce r ta in ty = P
62 pr in t (”Vanishing Point coord inate s , \
63 from EKF = {0}” . format (x))
64

65 pr in t (” I n t i a l h o r i z on t a l van i sh ing Point \
66 coord ina te = {0}” . format (s e l f . i n i t i a l v x))
67

68 t ime pre s en t = rospy . ge t t ime ()
69

70 #Display the image
71

72 cv2 . namedWindow(✬Window ✬ , 1)
73 cv2 . setWindowProperty (✬Window ✬ ,\
74 cv2 .WND PROP FULLSCREEN, 1)
75 cv2 . imshow (”Window” , d i sp lay image)
76

77 #Process keyboard command
78 s e l f . keys t roke = cv2 . waitKey (1)
79 i f 32 <= s e l f . keys t roke and s e l f . keys t roke < 128 :
80 cc = chr (s e l f . keys t roke) . lower ()
81

82 i f (cc == ✬q ✬) :
83 rospy . s igna l shutdown (”User has ,\
84 h i t q to e x i t ”)
85 i f (cc == ✬ r ✬) :
86 s e l f . i n i t i a l v x = x . va lue [0] [0]
87

88 de f proces s image (s e l f , frame) :
89 img re su l t , x ,P, = HoughDetect May 13 (frame ,\
90 s e l f . s ta te , s e l f . uncerta inty ,\
91 r e s o l u t i o n = s e l f . r e s)
92 r e turn img re su l t , x ,P
93

94

95 de f c leanup (s e l f) :
96 pr in t (” Shutt ing down ,\
97 v i s i o n node”)
98 cv2 . destroyAllWindows ()
99

100

101 de f main (args) :
102 t ry :
103 cvBridgeDemo ()
104 rospy . sp in ()
105 except KeyboardInterrupt :
106 pr in t (” Shutt ing down ,\

85

107 v i s i o n node”)
108 cv2 . destroyAllWindows ()
109

110 i f name == ✬ main ✬ :
111 main (sys . argv)

1 # Program to f l y the drone in the TUM Simualtor
2

3 #!/ usr /bin /env python
4

5 # Import the ROS l i b r a r i e s , and load the mani f e s t
6 # f i l e through which <depend package = . . . /> \
7 # w i l l g ive us a c c e s s to the p r o j e c t dependenc ies
8 import r o s l i b ; r o s l i b . l oad man i f e s t (✬ a r d r o n e t u t o r i a l s ✬)
9 import rospy

10 import numpy as np
11 import cv2
12 from ros2cv .msg import AR ALTD
13 from ros2cv .msg import Vpoint
14 import sys
15 # Load the DroneContro l l e r c l a s s , which handles
16 # in t e r a c t i o n s with the drone
17 from d r on e c on t r o l l e r import Bas i cDroneContro l l e r
18 import time
19 from Pan t i l t import r e t r i e v e a n g l e
20

21

22

23 de f main (args) :
24 g l oba l a l td
25 g l oba l p a s t a l t d
26 g l oba l vx
27 g l oba l vy
28 g l oba l vx past
29 g l oba l past pan
30 g l oba l num l ines
31 g l oba l key
32 g l oba l count
33 g l oba l pas t num l ine s
34 t ry :
35 rospy . i n i t n od e (✬ He i g h t c on t r o l l e r ✬)
36 subNavdata = rospy . Subsc r ibe r (✬ Drone Alt i tude ✬ \
37 ,AR ALTD, ReadHeight)
38 ###
39 subVpoint = rospy . Subsc r ibe r (✬ van i sh ing po in t ✬ ,\
40 Vpoint , ReadVpoint)
41 ###
42 c o n t r o l l e r = Bas icDroneContro l l e r ()
43 rospy . s l e e p (1)
44 c o n t r o l l e r . SendTakeoff ()
45 pr in t (✬ Takeof f ✬)
46 rospy . s l e e p (2)
47 whi le not rospy . i s shutdown () :
48 van i sh po in t = np . array ([[vx] , [1 8 0] , [1]])
49 pan , t i l t = r e t r i e v e a n g l e (van i sh po int , r e s = 0 . 5)
50 pan = pan ✯ 180 ./ np . p i
51 t i l t = t i l t ✯ 180 ./ np . p i
52 # working param kp = 0.02 and de s i r ed pan = 0
53 cmd yaw = 0.02 ✯ (−0.5 − pan) + 0 .0 ✯ (past pan − pan)
54 c d r o l l = 0
55 cd p i t ch = 0 .1
56 R pan = np . matrix ([[np . cos (pan ✯ np . p i /180) ,\
57 −np . s i n (pan ✯ np . p i /180)] , [np . s i n (pan ✯ np . p i /180) \
58 , np . cos (pan ✯ np . p i / 1 8 0)]])
59 cd rp = np . array ([[c d r o l l] , [cd p i t ch]])
60

61 t f cmds = np . array (np . dot (R pan , cd rp))

86

62 cmd ro l l = tf cmds [0] [0]
63 cmd pitch = tf cmds [1] [0]
64

65 # Good parameters 0 .05 and 0 .9
66 cmd z = 0.05 ✯ (1000 − a l td)/100 + 0 .9 \
67 ✯ (p a s t a l t d − a l td)/100
68

69 cmd z = max(min (cmd z , 0 . 2) , −0 . 2)
70

71 pr in t (✬Command yaw = {0} ✬ . format (cmd yaw))
72 c o n t r o l l e r . SetCommand(r o l l = cmd ro l l ,\
73 p i t ch = cmd pitch , yaw ve loc i ty = \
74 cmd yaw , z v e l o c i t y = cmd z)
75

76

77 i f (num l ines) < 10 and count > 1000 :
78 rospy . s l e e p (1)
79 c o n t r o l l e r . SendLand ()
80 rospy . s l e e p (1)
81 rospy . s igna l shutdown \
82 (”Landing Requested”)
83 rospy . s igna l shutdown (✬Great Fly ing ! ✬)
84

85 count+=1
86 pa s t a l t d = a l td
87 past pan = pan
88 vx past = vx
89 pas t num l ine s = num lines
90

91

92 except KeyboardInterrupt :
93 rospy . s igna l shutdown \
94 (”Landing Requested”)
95 rospy . s l e e p (1)
96 rospy . SendLand ()
97 rospy . s igna l shutdown \
98 (✬Great Fly ing ! ✬)
99

100

101

102

103 de f ReadHeight (data) :
104 g l oba l a l td
105 a l td = data . he ight
106

107 de f ReadVpoint (img data) :
108 g l oba l vx
109 g l oba l vy
110 g l oba l key
111 g l oba l num l ines
112 vx = img data . vpoint1
113 vy = img data . vpoint2
114 key = img data . key
115 num l ines = img data . n l i n e s
116

117

118 # Setup the app l i c a t i o n
119 i f name == ✬ main ✬ :
120 a l td = 0
121 pa s t a l t d = 0
122 past pan = 0
123 vx = 160
124 vy = 100
125 vx past = 160
126 num l ines = 10
127 pas t num l ine s = 0
128 count = 0
129 t ry :
130 main (sys . argv)

87

131 except rospy . ROSInterruptException :
132 pass

88

