141 research outputs found

    Literature review - Energy saving potential of user-centered integrated lighting solutions

    Get PDF
    Measures for the reduction of electric energy loads for lighting have predominantly focussed on increasing the efficiency of lighting systems. This efficiency has now reached levels unthinkable a few decades ago. However, a focus on mere efficiency is physically limiting, and does not necessarily ensure that the anticipated energy savings actually materialize. There are technical and non-technical reasons because of which effective integration of lighting solutions and their controls, and thus a reduction in energy use, does not happen. This literature review aims to assess the energy saving potential of integrated daylight and electric lighting design and controls, especially with respect to user preferences and behaviour. It does so by collecting available scientific knowledge and experience on daylighting, electric lighting, and related control systems, as well as on effective strategies for their integration. Based on this knowledge, the review suggests design processes, innovative design strategies and design solutions which – if implemented appropriately – could improve user comfort, health, well-being and productivity, while saving energy as well as the operation and maintenance of lighting systems. The review highlights also regulatory, technical, and design challenges hindering energy savings. Potential energy savings are reported from the retrieved studies. However, these savings derived from separate studies are dependent on their specific contexts, which lowers the ecological validity of the findings. Studies on strategies based on behavioural interventions, like information, feedback, and social norms, did not report energy saving performance. This is an interesting conclusion, since the papers indicate high potentials that deserve further exploration. Quantifying potential savings is fundamental to fostering large scale adoption of user-driven strategies, since this would allow at least a rough estimation of returns for the investors. However, such quantification requires that studies are designed with an inter-disciplinary approach. The literature also shows that strategies, where there is more communication between façade and lighting designers, are more successful in integrated design, which calls for more communication between stakeholders in future building processes

    ThirdLight: low-cost and high-speed 3D interaction using photosensor markers

    No full text
    We present a low-cost 3D tracking system for virtual reality, gesture modeling, and robot manipulation applications which require fast and precise localization of headsets, data gloves, props, or controllers. Our system removes the need for cameras or projectors for sensing, and instead uses cheap LEDs and printed masks for illumination, and low-cost photosensitive markers. The illumination device transmits a spatiotemporal pattern as a series of binary Gray-code patterns. Multiple illumination devices can be combined to localize each marker in 3D at high speed (333Hz). Our method has strengths in accuracy, speed, cost, ambient performance, large working space (1m-5m) and robustness to noise compared with conventional techniques. We compare with a state-of-the-art instrumented glove and vision-based systems to demonstrate the accuracy, scalability, and robustness of our approach. We propose a fast and accurate method for hand gesture modeling using an inverse kinematics approach with the six photosensitive markers. We additionally propose a passive markers system and demonstrate various interaction scenarios as practical applications

    Passive visible light detection of humans

    Get PDF
    This paper experimentally investigates passive human visible light sensing (VLS). A passive VLS system is tested consisting of one light emitting diode (LED) and one photodiode-based receiver, both ceiling-mounted. There is no line of sight between the LED and the receiver, so only reflected light can be considered. The influence of a human is investigated based on the received signal strength (RSS) values of the reflections of ambient light at the photodiode. Depending on the situation, this influence can reach up to +/- 50%. The experimental results show the influence of three various clothing colors, four different walking directions and four different layouts. Based on the obtained results, a human pass-by detection system is proposed and tested. The system achieves a detection rate of 100% in a controlled environment for 21 experiments. For a realistic corridor experiment, the system keeps its detection rate of 100% for 19 experiments

    Energy audit experiences in foundries

    Get PDF
    Steel industry presents one of the highest energy demand of all the industrial sector. Foundries have a really relevant role both in economical terms and as regards the energy demand. The cost of energy represents several percentage points of the overall costs of a foundry. The electricity demand is very high, particularly for the induction melting furnaces. A large amount of thermal energy is obtained both from natural gas combustion and from the coal needed for the process of formation of cast iron in cupolas. Moreover, the plant services must be considered: one very energy consumer is compressed air production. Every factory is different from another so that the proposal of actions of energy savings or thermal recovers requires a detailed study of each plant considering the lay out and analysing the single processes with related energy needs and thermal levels. The co-operation of the University of Padua with the Centro Produttivita` Veneto allowed to plan a series of energy audits in some foundries located in Vicenza province. The experiences of the first facilities surveys and audits recommendations demonstrated both potential advantage of energy savings and the related difficulties, often due to the high investment costs. Anyhow the joint work of auditing between the university experts and the foundry technicians produced a better awareness on the critical points of the plant and a higher rationality level in the evaluation of investments for the renewable of the machinery. Here, the method of performing the energy audits is described together with the very first results in terms of roposals for energy savings evaluated technically and economically

    Reducing Barriers To The Use of High-Efficiency Lighting Systems

    Full text link

    SMART LIGHTING CONTROLS FOR ENERGY EFFICIENCY AND VISUAL COMFORT

    Get PDF
    Daylight-linked control systems (DLCSs) are automated control systems aiming at optimizing the integration between daylight and electric light. They are based on the use of photosensors detecting available light. Photosensor signals are received by controllers, that in turn regulate the luminous flux emitted by luminaires. Despite the benefits in terms of both energy savings (the use of daylight allows to reduce both the luminaires emitted flux and the number of lighting systems operating hours) and comfort improvement (the use of daylight affects both visual and non-visual comfort), such systems are not so spread as expected for different reasons: their functioning is affected by a big amounts of factors (daylight availability, lighting systems components -above all photosensors-, commissioning), but it is not completely clear what is the specific incidence of each one of them on DLCSs global functioning; calculation models implemented in the available software useful to model and simulate DLCSs functioning are not reliable, so it is difficult for designers to estimate the actual benefits connected to DLCSs installation and estimate both achievable energy savings and economic advantage; finally, currently shared parameters useful to evaluate DLCSs do not exist and these systems are evaluated exclusively considering energy savings they allow to achieve. Given these premises the goal of the thesis is to propose a research methodology useful to analyse DLCSs and evaluate their performances both during preliminary design stages and during commissioning. At this purpose the research is organized in the following phases: state-of-the-art analysis aiming at understanding what are the parameters mostly influencing DLCSs performances; proposal of new performance parameters able to evaluate the capability of DLCSs in integrating daylight (Daylight Integration Adequacy -DIA-, Percentage Intrinsic Light Excess -ILE%-, Percentage Light Waste -LW%-, Percentage Light Deficit LD%); development of a simulation tool (called DET- Daylight-linked control systems Evaluation Tool) useful to simulate DLCSs functioning, overcoming the limits of the available software, and to calculate the above-mentioned parameters; setting up of an experimental test-room, where daylight measurements were performed; use of the measured data to simulate the functioning of different control systems by using DET and to evaluate how they would operate, once installed in the test-room and what would be the parameters influencing their performances

    Device-free indoor localisation with non-wireless sensing techniques : a thesis by publications presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Electronics and Computer Engineering, Massey University, Albany, New Zealand

    Get PDF
    Global Navigation Satellite Systems provide accurate and reliable outdoor positioning to support a large number of applications across many sectors. Unfortunately, such systems do not operate reliably inside buildings due to the signal degradation caused by the absence of a clear line of sight with the satellites. The past two decades have therefore seen intensive research into the development of Indoor Positioning System (IPS). While considerable progress has been made in the indoor localisation discipline, there is still no widely adopted solution. The proliferation of Internet of Things (IoT) devices within the modern built environment provides an opportunity to localise human subjects by utilising such ubiquitous networked devices. This thesis presents the development, implementation and evaluation of several passive indoor positioning systems using ambient Visible Light Positioning (VLP), capacitive-flooring, and thermopile sensors (low-resolution thermal cameras). These systems position the human subject in a device-free manner (i.e., the subject is not required to be instrumented). The developed systems improve upon the state-of-the-art solutions by offering superior position accuracy whilst also using more robust and generalised test setups. The developed passive VLP system is one of the first reported solutions making use of ambient light to position a moving human subject. The capacitive-floor based system improves upon the accuracy of existing flooring solutions as well as demonstrates the potential for automated fall detection. The system also requires very little calibration, i.e., variations of the environment or subject have very little impact upon it. The thermopile positioning system is also shown to be robust to changes in the environment and subjects. Improvements are made over the current literature by testing across multiple environments and subjects whilst using a robust ground truth system. Finally, advanced machine learning methods were implemented and benchmarked against a thermopile dataset which has been made available for other researchers to use

    Distributed smart lighting systems : sensing and control

    Get PDF
    • …
    corecore