1,076 research outputs found

    A Virtual Testbed for Embedded Systems

    Get PDF
    Hardware-In-the-Loop (HIL) Simulation is a simulation approach in which a hardware embedded processor is connected to the simulation computer that simulates the electrical/mechanical devices controlled by the embedded processor. By using a real-time simulation computer and special-purpose hardware for connecting to the embedded processor, this method of simulation can be very precise but is costly. We are proposing an alternative method, HIL simulation with a network link, in which the device under test (the embedded processor) communicates with the simulation computer over a network connection (in our case a serial line) instead of through special-purpose hardware. We present an abstraction layer that facilitates the simulation of external devices. An earlier prototype had been developed for a 16-bit TMS320LF2407A DSP from Texas Instruments. We generalized the approach to the more advanced 32-bit TMS320F28335 DSP. We have made the changes in the DSP abstraction layer to enable more features and provide more flexibility to the programmer. For example, we introduced a shadow interrupt vector to make the simulation layer more general. We developed various scenarios to measure the performance of the system. In particular, we measure round-trip time and through-put for the communication between the simulator and the DSP. Also we rewrote the serial line drivers on the DSP to incorporate different working scenarios and to invoke the timers on the DSP for measuring the execution time. Our work helps to judge the performance of the system and to identify the application domains for this approach

    Didactic platform with a DSP to support the teaching of digital signal processing

    Get PDF
    Si ens posem en context d'un estudiant d'enginyeria, descobrirem que una de les majors motivacions de l'aprenentatge són les pràctiques de laboratori. Aquest treball de fi de grau tractarà sobre la recerca i el desenvolupament d'una plataforma didàctica per a l'assignatura de «Processament Digital del Senyal», impartida durant el tercer curs acadèmic del grau d'Enginyeria de Sistemes TIC. Aquesta plataforma que desenvoluparem inclourà un processador de senyals digitals (DSP) i els perifèrics necessaris perquè els estudiants i professors creïn projectes en un entorn de prototipatge ràpid. A més, els annexos proporcionats haurien de complir amb els requisits per a que aquells que estiguin interessats puguin fabricar el nostre disseny amb poques dificultats.If we put ourselves in the context of an engineering student, we will discover that one of the greatest motivations for learning are laboratory works. This final degree thesis will be about the research and development of a didactic platform for the subject of Digital Signal Processing, taught during the third academical year of the ICT Systems Engineering degree. This platform we are going to develop will encase a digital signal processor (DSP) and the required peripherals for the students and teachers to quickly create projects in a fast prototyping environment. Additionally, the provided annexes should meet with the requirements for those who are interested to manufacture our design with little trouble

    An architecture and technology for Ambient Intelligence Node

    Get PDF
    The era of separate networks is over. The existing technology leaders are preparing a big change in recreation of environment around us. There are several faces for this change. Names like Ambient Intelligence, Ambient Network, IP Multimedia Subsystem and others were created all over the Globe. Regardless of which name is used the new network will combine three main functional principles---it will be: contextual aware, ubiquitous access and intelligent interfaces unified network. Within this thesis two major aspects are defined. First, the definition of the Ambient Intelligence Environment concept is presented. Secondly the architecture vectors for the technology are named. A short overview of the existing technology is followed by details for the chosen technology---FPGA. The overall specifications are incorporated in the design and demonstration of a basic Ambient Intelligence Node created in the System on the Chip (SoC) FPGA technology

    An architecture for embedded system communication

    Get PDF
    Time is a major constraint in the development of most embedded systems. In many cases, the development of embedded software is directly dependent on the development of the embedded systems. This calls for a development framework that enables embedded software and hardware to be developed in parallel. In an attempt to solve the problem, a concept prototype hardware-in-the-loop (HIL) simulation methodology has been proposed and implemented at the Ohio State University for the TMS320LF2407A DSP board. We build on top of that HIL system by rewriting the low level device drivers that allow data and control information to be set simultaneously, thus, creating a software abstraction layer over various devices available on the DSP board. The device drivers allow data access at the processor and the pin level for the devices on the DSP board. This abstraction simulates external devices in a transparent manner using a device driver library that provides the same programming interface to the device simulators as to real devices. Also, it allows for the testing of both real and simulated hardware connected to the DSP board as a part of the embedded system. The main advantages of the framework are rapid prototyping, unit testing and monitoring. We also modify the existing serial line protocol and perform a comparison between the new and the existing protocol and show that the new protocol is efficient for large data transport. This protocol allows for the effective utilization of serial line bandwidth when the DSP board is used for signal processing or voice based applications. We present the virtual testbed as a software development tool. We conclude by exploring the future directions for the applications

    Developing FPGA-based Embedded Controllers Using Matlab/Simulink

    Get PDF
    Field Programmable Gate Arrays (FPGAs) are emerging as suitable platforms for implementing embedded control systems. FPGAs offer advantages such as high performance and concurrent computing which makes them attractive in many embedded applications. As reconfigurable devices, they can be used to build the hardware and software components of an embedded system on a single chip. Traditional FPGA design flows and tools, requiring the use of Hardware Description Languages (HDLs), are in a different domain than standard control system design tools such as MATLAB/Simulink. This paper illustrates development of FPGA-based controllers by utilizing popular tools such as MATLAB/Simulink available for the design and development of control systems. The capability of DSP Builder is extended by developing a custom library of control system building blocks that facilitates rapid development of FPGA-based controllers in the familiar Matlab/Simulink environment. As a case study, this paper presents how the tools can be utilized to develop a FPGA-based controller for a laboratory scale air levitation system

    A FPGA system for QRS complex detection based on Integer Wavelet Transform

    Get PDF
    Due to complexity of their mathematical computation, many QRS detectors are implemented in software and cannot operate in real time. The paper presents a real-time hardware based solution for this task. To filter ECG signal and to extract QRS complex it employs the Integer Wavelet Transform. The system includes several components and is incorporated in a single FPGA chip what makes it suitable for direct embedding in medical instruments or wearable health care devices. It has sufficient accuracy (about 95%), showing remarkable noise immunity and low cost. Additionally, each system component is composed of several identical blocks/cells what makes the design highly generic. The capacity of today existing FPGAs allows even dozens of detectors to be placed in a single chip. After the theoretical introduction of wavelets and the review of their application in QRS detection, it will be shown how some basic wavelets can be optimized for easy hardware implementation. For this purpose the migration to the integer arithmetic and additional simplifications in calculations has to be done. Further, the system architecture will be presented with the demonstrations in both, software simulation and real testing. At the end, the working performances and preliminary results will be outlined and discussed. The same principle can be applied with other signals where the hardware implementation of wavelet transform can be of benefit

    Architectures for Cognitive Radio Testbeds and Demonstrators – An Overview

    Get PDF
    Wireless communication standards are developed at an ever-increasing rate of pace, and significant amounts of effort is put into research for new communication methods and concepts. On the physical layer, such topics include MIMO, cooperative communication, and error control coding, whereas research on the medium access layer includes link control, network topology, and cognitive radio. At the same time, implementations are moving from traditional fixed hardware architectures towards software, allowing more efficient development. Today, field-programmable gate arrays (FPGAs) and regular desktop computers are fast enough to handle complete baseband processing chains, and there are several platforms, both open-source and commercial, providing such solutions. The aims of this paper is to give an overview of five of the available platforms and their characteristics, and compare the features and performance measures of the different systems
    corecore