
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322390693?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Developing FPGA-based Embedded Controllers using Matlab/Simulink 543

Developing FPGA-based Embedded Controllers using Matlab/Simulink

T. Barlas and M. Moallem

X

Developing FPGA-based Embedded
Controllers using Matlab/Simulink

T. Barlas and M. Moallem

Mechatronics System Engineering
Simon Fraser University

Surrey, BC, Canada
Email (corresponding author): mmoallem@sfu.ca

Abstract
Field Programmable Gate Arrays (FPGAs) are emerging as suitable platforms for
implementing embedded control systems. FPGAs offer advantages such as high
performance and concurrent computing which makes them attractive in many embedded
applications. As reconfigurable devices, they can be used to build the hardware and
software components of an embedded system on a single chip. Traditional FPGA design
flows and tools, requiring the use of Hardware Description Languages (HDLs), are in a
different domain than standard control system design tools such as MATLAB/Simulink.
This paper illustrates development of FPGA-based controllers by utilizing popular tools
such as MATLAB/Simulink available for the design and development of control systems.
The capability of DSP Builder is extended by developing a custom library of control system
building blocks that facilitates rapid development of FPGA-based controllers in the familiar
Matlab/Simulink environment. As a case study, this paper presents how the tools can be
utilized to develop a FPGA-based controller for a laboratory scale air levitation system.
Keywords: Embedded controllers, control firmware/software design, computer aided
design tools

1. Introduction

Embedded control systems are found in a wide range of applications such as consumer
electronics, medical equipment, robotics, automotive products, and industrial processes
(Chan, Moallem, & Wang, 2007). Embedded control systems typically use microprocessors,
microcontrollers or Digital Signal Processors (DSPs) for their implementation. For such
systems, control algorithms are implemented as software programs that execute on a fixed
architecture hardware processor. The processor itself is connected to various peripherals
such as memories, Analog to Digital converters, and other I/O devices. Alternatively,
FPGAs are increasingly becoming popular as implementation platforms on which the
control algorithms can be implemented by programming reconfigurable hardware logic
resources of the device. FPGAs have characteristics that make them suitable for realizing

27

www.intechopen.com

Factory Automation544

hardware implementations of algorithms and systems. They offer excellent features such as
computational parallelism, reconfigurable customization, and rapid-prototyping (Chan,
Moallem, & Wang, 2007; Tessier and W. Burleson, 2001). Recently, there has been a growing
interest in developing FPGA-based control systems. Casalino, Giorgi, Turetta, & Caffaz
(2003), and Oh, Kim, & Lim (2003) used an FPGA as part of an embedded solution for
controlling the motion of a four-fingered robotic hand. Koutroulis, Dollas, & Kalaitzakis
(2006) implemented a PWM generator on a FPGA that was capable of generating signals of
frequencies up to 3.985 MHz with a duty cycle resolution of 1.56%. Tjondronugroho, Al-
Anbuky, Round, & Duke (2004) and Jung, Chang, Jyang, Yeh, & Tzou (2002) compared
DSP-based and FPGA-based implementations of a multi-loop control strategy to control
single-phase inverters. The simulation capability of the system-level tool System Generator
from Xilinx was exploited by Ricci & Le-Huy (2002) to build the computational engine for
variable-speed drives using FPGAs. Ramos, Biel, Fossas, and Guinjoan implemented a fixed-
frequency quasi-sliding control algorithm on an FPGA for control of a buck inverter. In this
application, the high switching frequency (ranging from 20 to 40 kHz) required fast
computation of the control law, effectively ruling out software-based implementations on
microprocessors or DSPs. In addition to control algorithms, FPGAs can also be used to
implement various other components of the control system. For example, Zhao, Kim,
Larson, & Voyles (2005) used a FPGA to implement a control system-on-a-chip for a small-
scale robot.
While microcontrollers and DSPs have had the advantage of lower device cost over FPGAs,
the gap in cost is narrowing with advancing technology, making FPGAs more and more
attractive devices. Moreover, FPGA-based implementations may reduce overall cost of a
system since multiple components of the design can be implemented as a system-on-a-
programmable-chip. In some cases, FPGA-based implementations may give higher levels of
performance for a design as compared to other implementations. For such cases, FPGAs
may be the only choice for implementation because microcontrollers and DSPs would not
meet the performance requirements, and Application Specific Integrated Circuits (ASICs)
may have too high development costs.

2. Control System Design Tools and FPGA Design Flows

With FPGAs emerging as viable platforms for controller implementation, there exists a gap
between what typical control engineers are used to in a control system design tool and what
is required from existing FPGA tools and flows. Traditional FPGA design flows often
require the use of Hardware Description Languages such as Verilog or VHDL for
development. However, hardware description languages are in a low-level domain of bits,
registers and logic functions as opposed to the high-level domain of signals, variables and
mathematical functions. Nonetheless, high-level development tools for FPGAs are emerging
to reduce this gap. Some of these tools are based on existing design environments such as
Matlab/Simulink. In this work, a tool designed to work in Simulink, called DSP Builder, is
studied as a development tool for FPGA-based controllers. DSP Builder allows the familiar
and easy-to-use design environment of Simulink to be used for development for FPGAs. In
this way, the gap between the tools used by control engineers and FPGA development
environments is narrowed. Hence, FPGA platforms can utilized to build controllers
alongside microcontrollers and DSPs.

3. Development of Custom Control Library for FPGAs

The mathematical frameworks for designing DSP systems and digital control systems are
similar. This section looks at the DSP Builder tool in more detail and discusses its
applicability as a high-level development tool for FPGA-based controllers. The capability of
DSP Builder for developing controllers is further extended by developing a Custom Control
Library in Simulink. The custom library provides DSP Builder-based blocks that can be used
to rapidly develop FPGA-based controllers. Development using DSP Builder requires both
Simulink and Quartus II software packages. The Simulink design flow is a block diagram
based design flow where predefined blocks, grouped in different libraries such as Math
Operations, Logic and Bit Operations, and Continuous/Discrete libraries, can be dragged
and dropped into a canvas model file. The blocks are then appropriately interconnected
with virtual wires that propagate signals amongst the blocks. Using this method, any kind
of static or dynamic system in various domains such as signal processing, control system,
imaging, and communications can be specified. The entire system can then be simulated by
using various numerical solvers to determine the time domain response of the system or the
behavior of internal signals.
The DSP Builder provides special libraries of blocks for use in Simulink that are directly
synthesizable into hardware logic for Altera FPGA devices. FPGA-implementable
algorithms and systems can be developed by simply dragging and dropping DSP Builder
Library blocks into Simulink model file and making desired connections between them.
Each DSP Builder block has a direct HDL representation (in either Verilog HDL or VHDL)
of the function it performs, i.e., the blocks encapsulate HDL modules. A special block, called
SignalCompiler, when invoked, reads the Simulink model file and translates each of the DSP
Builder blocks and their interconnections to corresponding HDL representations. Each of
the DSP Builder blocks can have their parameters specified via dialog boxes in Simulink,
and these parameter choices are propagated into their HDL representations. Finally,
SignalCompiler combines the whole design into one HDL top level entity that can be
processed through the FPGA design flow stages using Quartus II. The HDL entity will be
functionally equivalent to the system in the Simulink model file when it executes on the
FPGA (DSP Builder User Guide, 2005).
DSP Builder library blocks also come with bit- and cycle-accurate simulation models that
can be invoked by the Simulink discrete-time numerical solvers to perform design
simulation within the Simulink environment. Furthermore, for simulation purposes only,
existing Simulink blocks (such as input sources) can be interconnected with DSP Builder
blocks to perform richer simulations involving real-world subsystems that interact with the
FPGA. This has an obvious advantage for embedded control system design in the sense that
the expected behaviour of the DSP Builder-based controller can be simulated with a
Simulink based plant model. Thus the response of the controller can be conveniently
simulated and analyzed. This simulation uses Simulink’s numerical solvers and is different
from HDL-level simulation using RTL simulators. Nonetheless, because of the bit- and
cycle-accuracy, the behaviour of the DSP Builder-based design in Simulink will match the
behaviour of the generated HDL system when it executes on the FPGA. Thus the design can
be simulated, analyzed, and then modified at a higher level of abstraction than at HDL-
level. This process eliminates the need to go through FPGA design flow at each and every
design iteration, resulting in reduced development time.

www.intechopen.com

Developing FPGA-based Embedded Controllers using Matlab/Simulink 545

hardware implementations of algorithms and systems. They offer excellent features such as
computational parallelism, reconfigurable customization, and rapid-prototyping (Chan,
Moallem, & Wang, 2007; Tessier and W. Burleson, 2001). Recently, there has been a growing
interest in developing FPGA-based control systems. Casalino, Giorgi, Turetta, & Caffaz
(2003), and Oh, Kim, & Lim (2003) used an FPGA as part of an embedded solution for
controlling the motion of a four-fingered robotic hand. Koutroulis, Dollas, & Kalaitzakis
(2006) implemented a PWM generator on a FPGA that was capable of generating signals of
frequencies up to 3.985 MHz with a duty cycle resolution of 1.56%. Tjondronugroho, Al-
Anbuky, Round, & Duke (2004) and Jung, Chang, Jyang, Yeh, & Tzou (2002) compared
DSP-based and FPGA-based implementations of a multi-loop control strategy to control
single-phase inverters. The simulation capability of the system-level tool System Generator
from Xilinx was exploited by Ricci & Le-Huy (2002) to build the computational engine for
variable-speed drives using FPGAs. Ramos, Biel, Fossas, and Guinjoan implemented a fixed-
frequency quasi-sliding control algorithm on an FPGA for control of a buck inverter. In this
application, the high switching frequency (ranging from 20 to 40 kHz) required fast
computation of the control law, effectively ruling out software-based implementations on
microprocessors or DSPs. In addition to control algorithms, FPGAs can also be used to
implement various other components of the control system. For example, Zhao, Kim,
Larson, & Voyles (2005) used a FPGA to implement a control system-on-a-chip for a small-
scale robot.
While microcontrollers and DSPs have had the advantage of lower device cost over FPGAs,
the gap in cost is narrowing with advancing technology, making FPGAs more and more
attractive devices. Moreover, FPGA-based implementations may reduce overall cost of a
system since multiple components of the design can be implemented as a system-on-a-
programmable-chip. In some cases, FPGA-based implementations may give higher levels of
performance for a design as compared to other implementations. For such cases, FPGAs
may be the only choice for implementation because microcontrollers and DSPs would not
meet the performance requirements, and Application Specific Integrated Circuits (ASICs)
may have too high development costs.

2. Control System Design Tools and FPGA Design Flows

With FPGAs emerging as viable platforms for controller implementation, there exists a gap
between what typical control engineers are used to in a control system design tool and what
is required from existing FPGA tools and flows. Traditional FPGA design flows often
require the use of Hardware Description Languages such as Verilog or VHDL for
development. However, hardware description languages are in a low-level domain of bits,
registers and logic functions as opposed to the high-level domain of signals, variables and
mathematical functions. Nonetheless, high-level development tools for FPGAs are emerging
to reduce this gap. Some of these tools are based on existing design environments such as
Matlab/Simulink. In this work, a tool designed to work in Simulink, called DSP Builder, is
studied as a development tool for FPGA-based controllers. DSP Builder allows the familiar
and easy-to-use design environment of Simulink to be used for development for FPGAs. In
this way, the gap between the tools used by control engineers and FPGA development
environments is narrowed. Hence, FPGA platforms can utilized to build controllers
alongside microcontrollers and DSPs.

3. Development of Custom Control Library for FPGAs

The mathematical frameworks for designing DSP systems and digital control systems are
similar. This section looks at the DSP Builder tool in more detail and discusses its
applicability as a high-level development tool for FPGA-based controllers. The capability of
DSP Builder for developing controllers is further extended by developing a Custom Control
Library in Simulink. The custom library provides DSP Builder-based blocks that can be used
to rapidly develop FPGA-based controllers. Development using DSP Builder requires both
Simulink and Quartus II software packages. The Simulink design flow is a block diagram
based design flow where predefined blocks, grouped in different libraries such as Math
Operations, Logic and Bit Operations, and Continuous/Discrete libraries, can be dragged
and dropped into a canvas model file. The blocks are then appropriately interconnected
with virtual wires that propagate signals amongst the blocks. Using this method, any kind
of static or dynamic system in various domains such as signal processing, control system,
imaging, and communications can be specified. The entire system can then be simulated by
using various numerical solvers to determine the time domain response of the system or the
behavior of internal signals.
The DSP Builder provides special libraries of blocks for use in Simulink that are directly
synthesizable into hardware logic for Altera FPGA devices. FPGA-implementable
algorithms and systems can be developed by simply dragging and dropping DSP Builder
Library blocks into Simulink model file and making desired connections between them.
Each DSP Builder block has a direct HDL representation (in either Verilog HDL or VHDL)
of the function it performs, i.e., the blocks encapsulate HDL modules. A special block, called
SignalCompiler, when invoked, reads the Simulink model file and translates each of the DSP
Builder blocks and their interconnections to corresponding HDL representations. Each of
the DSP Builder blocks can have their parameters specified via dialog boxes in Simulink,
and these parameter choices are propagated into their HDL representations. Finally,
SignalCompiler combines the whole design into one HDL top level entity that can be
processed through the FPGA design flow stages using Quartus II. The HDL entity will be
functionally equivalent to the system in the Simulink model file when it executes on the
FPGA (DSP Builder User Guide, 2005).
DSP Builder library blocks also come with bit- and cycle-accurate simulation models that
can be invoked by the Simulink discrete-time numerical solvers to perform design
simulation within the Simulink environment. Furthermore, for simulation purposes only,
existing Simulink blocks (such as input sources) can be interconnected with DSP Builder
blocks to perform richer simulations involving real-world subsystems that interact with the
FPGA. This has an obvious advantage for embedded control system design in the sense that
the expected behaviour of the DSP Builder-based controller can be simulated with a
Simulink based plant model. Thus the response of the controller can be conveniently
simulated and analyzed. This simulation uses Simulink’s numerical solvers and is different
from HDL-level simulation using RTL simulators. Nonetheless, because of the bit- and
cycle-accuracy, the behaviour of the DSP Builder-based design in Simulink will match the
behaviour of the generated HDL system when it executes on the FPGA. Thus the design can
be simulated, analyzed, and then modified at a higher level of abstraction than at HDL-
level. This process eliminates the need to go through FPGA design flow at each and every
design iteration, resulting in reduced development time.

www.intechopen.com

Factory Automation546

There are five main categories of blocks provided by DSP Builder: Arithmetic blocks,
Logical operation and flow control blocks (in the Gate & Control library), Input, Output
ports and bus manipulation blocks (in the IO & Bus library), Clock domain and sampling
time blocks, and Blocks for storing signals and data (in the Storage library). Given a
mathematical description of a controller (particularly in canonical form), the controller can
be implemented by using three operators: multipliers, adders and delay elements. Hence
any controller can be easily implemented in DSP Builder and realized as hardware on an
FPGA. While the Multiplier, Adder and Delay blocks may be sufficient, development using
these blocks only may be tedious and time-consuming. A major contribution of this work is
to provide more sophisticated control system building blocks by developing what is
referred to as the Custom Control Library in this paper.

3.1 Custom Control Library
DSP Builder library blocks offer basic functionalities that can be used to develop custom
blocks for performing more complex functions. They can be utilized to develop a custom
library of control system building blocks for quick implementation of FPGA-based
embedded controllers.
An example of implementing a custom control library component is shown in Figure 1
where the “Parallel Adder” block adds the input e(k) to the previous input e(k-1), which is
produced from the “input_Delay” block, and then multiplied by Ts/2 (=T/2). The output of
the “Multiplier” block is added to the previous value of the output, which is stored and
made available from the “output_Delay” block. Because the current output is fed back to the
“output_Delay” block, the bit width of the signal into the block is indeterminate, and so
needs to be explicitly defined. This can be achieved by the “AltBus” block in Figure 1. The
bit width for “AltBus” is automatically chosen to be the same as the bit width of the result of
the multiplier. The bit width for the output signal “output” is also chosen to be the same as
that of the multiplier result.

Fig. 1. Implementation of Custom Control Library Integrator (Trapezoidal) block using DSP
Builder blocks.

Widely used transfer function blocks such as lead, lag, or PID, can be implemented in the
Custom Control Library. For example, Figure 2 shows a discretized PID block as it appears
in Simuink. The implementation uses the Integrator block (Trapezoidal implementation)
and the Discrete Derivative block from the Custom Control Library. The block has inputs for

specifying the gains (input ports labeled “Kp”, “Kd” and “Ki”), the sample rate (port “Ts”),
the sampling frequency (port “fs”) and the input to the block (labeled “input”). The
“output” port is the control signal computed by the PID algorithm. The bit widths for all the
ports can be specified via the block’s dialog box. Hardware implementation details such as
the number of bits can also be specified from the dialog box.

Fig. 2. Discretized PID controller.

3.1.1 Pulse Width Modulation Generator Block
Pulse Width Modulation (PWM) is frequently used in digital control systems, especially in
DC motor drives. A digital PWM Generator is implemented for the Custom Control Library.
Figure 3 shows the block as it appears in Simulink. In Figure 3, the counter counts up to a
value of Clock Frequency divided by the PWM frequency. This value is set as the modulo of
the counter so that the counter resets once it has counted up that value. While the count
value is less than a value representing the current duty cycle in terms of the number of clock
cycles, the output is logical high. Otherwise, the output is logical low. The number of clock
cycles representing the current duty cycle is calculated by multiplying the duty cycle input
in percentage by a value which, at 100% duty cycle would give the required clock cycles to
output a logical high for the entire duration of the pulse period.

www.intechopen.com

Developing FPGA-based Embedded Controllers using Matlab/Simulink 547

There are five main categories of blocks provided by DSP Builder: Arithmetic blocks,
Logical operation and flow control blocks (in the Gate & Control library), Input, Output
ports and bus manipulation blocks (in the IO & Bus library), Clock domain and sampling
time blocks, and Blocks for storing signals and data (in the Storage library). Given a
mathematical description of a controller (particularly in canonical form), the controller can
be implemented by using three operators: multipliers, adders and delay elements. Hence
any controller can be easily implemented in DSP Builder and realized as hardware on an
FPGA. While the Multiplier, Adder and Delay blocks may be sufficient, development using
these blocks only may be tedious and time-consuming. A major contribution of this work is
to provide more sophisticated control system building blocks by developing what is
referred to as the Custom Control Library in this paper.

3.1 Custom Control Library
DSP Builder library blocks offer basic functionalities that can be used to develop custom
blocks for performing more complex functions. They can be utilized to develop a custom
library of control system building blocks for quick implementation of FPGA-based
embedded controllers.
An example of implementing a custom control library component is shown in Figure 1
where the “Parallel Adder” block adds the input e(k) to the previous input e(k-1), which is
produced from the “input_Delay” block, and then multiplied by Ts/2 (=T/2). The output of
the “Multiplier” block is added to the previous value of the output, which is stored and
made available from the “output_Delay” block. Because the current output is fed back to the
“output_Delay” block, the bit width of the signal into the block is indeterminate, and so
needs to be explicitly defined. This can be achieved by the “AltBus” block in Figure 1. The
bit width for “AltBus” is automatically chosen to be the same as the bit width of the result of
the multiplier. The bit width for the output signal “output” is also chosen to be the same as
that of the multiplier result.

Fig. 1. Implementation of Custom Control Library Integrator (Trapezoidal) block using DSP
Builder blocks.

Widely used transfer function blocks such as lead, lag, or PID, can be implemented in the
Custom Control Library. For example, Figure 2 shows a discretized PID block as it appears
in Simuink. The implementation uses the Integrator block (Trapezoidal implementation)
and the Discrete Derivative block from the Custom Control Library. The block has inputs for

specifying the gains (input ports labeled “Kp”, “Kd” and “Ki”), the sample rate (port “Ts”),
the sampling frequency (port “fs”) and the input to the block (labeled “input”). The
“output” port is the control signal computed by the PID algorithm. The bit widths for all the
ports can be specified via the block’s dialog box. Hardware implementation details such as
the number of bits can also be specified from the dialog box.

Fig. 2. Discretized PID controller.

3.1.1 Pulse Width Modulation Generator Block
Pulse Width Modulation (PWM) is frequently used in digital control systems, especially in
DC motor drives. A digital PWM Generator is implemented for the Custom Control Library.
Figure 3 shows the block as it appears in Simulink. In Figure 3, the counter counts up to a
value of Clock Frequency divided by the PWM frequency. This value is set as the modulo of
the counter so that the counter resets once it has counted up that value. While the count
value is less than a value representing the current duty cycle in terms of the number of clock
cycles, the output is logical high. Otherwise, the output is logical low. The number of clock
cycles representing the current duty cycle is calculated by multiplying the duty cycle input
in percentage by a value which, at 100% duty cycle would give the required clock cycles to
output a logical high for the entire duration of the pulse period.

www.intechopen.com

Factory Automation548

Fig. 3. Implementation of Custom Control Library PWM Generator block using DSP Builder
blocks.

3.1.2 Analog to Digital Converter Controller Block
Analog to Digital (A/D or A2D) converters are necessary in digital control systems. There
are various types of A/D converters based on different implementation technologies.
Nonetheless, the converted data is transmitted to digital devices either as a parallel word
over a digital bus or as a serial bit-stream over a single digital line.
Serial A/D converters are cheaper and simpler (in terms of circuit board placement) and
therefore more commonly used. Hence, a block was implemented for the Custom Control
Library that can be used to interface a FPGA with a serial A/D converter. When connected
to a serial A/D converter, the master device (microcontroller, or, in this case FPGA) pulls
the CS signal low to create a falling edge, which indicates to the A/D converter to initiate
the conversion process. The A/D converter starts the conversion process, and after a brief
waiting period, outputs the data word on the DOUT line in the form of a bit-stream starting
with the most significant bit and ending with the least significant bit. The data transfer is
usually synchronized to the falling edges of the CLK input from the master device. Then
there is a wait period in which the DOUT line goes to a high impedance state. After the wait
period, the CS signal has to go high again so that the next conversion can be initiated. The
rate of data conversion is determined by the CLK clock signal. The goal of the custom ADC
interface was to design a parameterizable block that can be used to interface FPGAs with a
variety of SPI serial A/D converters.
Figure 4 shows the block as it appears in Simulink. The block has three inputs for
configuring the A/D converter’s registers (“In_initialize”, “In_range_spec” and
“In_control_spec”); an input for starting the conversion (“In_acquire”); a reset input; and an

input for the serial converted data that comes from the A/D converter. The block outputs
two signals that are inputs to the A/D converter: the “Out_Cs_n” signal is CS; “Out_DIN” is
DIN. The third output of the block, “Out_data_out” is the converted data outputted as a
parallel word. The input at “In_range_spec” is the binary data that needs to be loaded onto
the A/D converters range register (for those converters that have programmable analog
input ranges). Similarly, the input at “In_control_spec” is the binary data for the A/D
converters control register (which is used to configure the A/D converters if it can operate
in multiple modes).

Fig. 4. A/D Controller block of the Custom Control Library.

In order to implement the interfacing process, the state machine shown in Figure 5 was
used. The outputs at each state are also given. The converted word in parallel form (at the
“Out_data_out” port) is available once the system moves out of the Acquire state. The
internal implementation is achieved by using two State Machine blocks, two Parallel to
Serial blocks to convert the range and control data into bit-streams for outputting on the
“Out_DIN” port, and a Shift Taps block is used to convert the incoming serial data on
“In_DOUT” into a parallel form.

Fig. 5. State machine that implements SPI interface for A/D Controller block of the Custom
Control Library.

www.intechopen.com

Developing FPGA-based Embedded Controllers using Matlab/Simulink 549

Fig. 3. Implementation of Custom Control Library PWM Generator block using DSP Builder
blocks.

3.1.2 Analog to Digital Converter Controller Block
Analog to Digital (A/D or A2D) converters are necessary in digital control systems. There
are various types of A/D converters based on different implementation technologies.
Nonetheless, the converted data is transmitted to digital devices either as a parallel word
over a digital bus or as a serial bit-stream over a single digital line.
Serial A/D converters are cheaper and simpler (in terms of circuit board placement) and
therefore more commonly used. Hence, a block was implemented for the Custom Control
Library that can be used to interface a FPGA with a serial A/D converter. When connected
to a serial A/D converter, the master device (microcontroller, or, in this case FPGA) pulls
the CS signal low to create a falling edge, which indicates to the A/D converter to initiate
the conversion process. The A/D converter starts the conversion process, and after a brief
waiting period, outputs the data word on the DOUT line in the form of a bit-stream starting
with the most significant bit and ending with the least significant bit. The data transfer is
usually synchronized to the falling edges of the CLK input from the master device. Then
there is a wait period in which the DOUT line goes to a high impedance state. After the wait
period, the CS signal has to go high again so that the next conversion can be initiated. The
rate of data conversion is determined by the CLK clock signal. The goal of the custom ADC
interface was to design a parameterizable block that can be used to interface FPGAs with a
variety of SPI serial A/D converters.
Figure 4 shows the block as it appears in Simulink. The block has three inputs for
configuring the A/D converter’s registers (“In_initialize”, “In_range_spec” and
“In_control_spec”); an input for starting the conversion (“In_acquire”); a reset input; and an

input for the serial converted data that comes from the A/D converter. The block outputs
two signals that are inputs to the A/D converter: the “Out_Cs_n” signal is CS; “Out_DIN” is
DIN. The third output of the block, “Out_data_out” is the converted data outputted as a
parallel word. The input at “In_range_spec” is the binary data that needs to be loaded onto
the A/D converters range register (for those converters that have programmable analog
input ranges). Similarly, the input at “In_control_spec” is the binary data for the A/D
converters control register (which is used to configure the A/D converters if it can operate
in multiple modes).

Fig. 4. A/D Controller block of the Custom Control Library.

In order to implement the interfacing process, the state machine shown in Figure 5 was
used. The outputs at each state are also given. The converted word in parallel form (at the
“Out_data_out” port) is available once the system moves out of the Acquire state. The
internal implementation is achieved by using two State Machine blocks, two Parallel to
Serial blocks to convert the range and control data into bit-streams for outputting on the
“Out_DIN” port, and a Shift Taps block is used to convert the incoming serial data on
“In_DOUT” into a parallel form.

Fig. 5. State machine that implements SPI interface for A/D Controller block of the Custom
Control Library.

www.intechopen.com

Factory Automation550

3.2 Resource Usage of Custom Control Library Blocks
Logic Elements (LEs) and embedded multipliers are the two main resources used frequently
in different designs. All FPGAs contain LEs but some devices may not contain embedded
multipliers. For such devices, the multiplication operation has to be implemented by a
group of LEs. However, multiplication is a resource intensive operation in terms of LE
usage; hence FPGAs with embedded multipliers are preferred for control systems because
the LEs can be freed up for more efficient use by other tasks. The results reported here are
for individual implementation of the blocks on the Stratix EP1S80 FPGA chip. Each block
was configured to use its default parameters. The Stratix family of chips contain DSP blocks
that can be used to perform multiply, multiply-add, and multiply-accumulate operations
found commonly in DSP systems. Each DSP block can implement 9×9 fixed-point
multiplication with each input 9 bits wide and the output 18 bits wide, for any fixed-point
bus format (unsigned integer, signed integer or signed fractional). For inputs greater than 9
bits, two or more DSP blocks configured as 18×18 multipliers or as 36×36 multipliers are
used. Each 18×18 multiplier uses two 9×9 multipliers and each 36×36 multiplier uses eight
9×9 multipliers.
The results indicate that a very small number of LEs are used by the custom blocks when
embedded multipliers are used. However, when embedded multipliers are not used, the
LEs usage increases dramatically. This illustrates the resource intensiveness of the
multiplication operation when implemented by LEs. Given a FPGA chip, a designer may
decide to implement some blocks with embedded multipliers and some blocks without
embedded multipliers, in order to fit the design into the FPGA chip. For example, the
designer may implement the discretized PID block using embedded multipliers, because
otherwise it would consume too many LEs (3036 LEs as compared to 205 LEs). However, the
designer may implement the PWM Generator block without using embedded multipliers,
thereby saving 8 embedded multipliers but only increasing the LE requirement from 40 LEs
to 239 LEs.

4. Implementation Case Study

In order to demonstrate usage of the Custom Control Library to develop FPGA-based
embedded controllers in the Simulink design environment, a control system was designed
and developed for controlling the position of a levitating ball. This chapter describes the air
levitation apparatus and the implementation of the control system. It is shown that all the
necessary components of the control system are developed using system-level tools and
then implemented on a single FPGA chip.
The air levitation apparatus consists of a transparent hollow tube, 43.5 cm in length, held
vertically by a base which consists of a fan that blows air upwards into the tube. A table
tennis ball is placed inside the hollow tube and has one degree of freedom to move either up
or down. The thrust from the air flow causes the ball to be pushed upwards against the
downward gravitational pull. The position of the ball is measured by an Infrared (IR) sensor
placed at the top of the tube (the sensor does not block the air flow). There is an onboard
serial A/D converter that can be used to convert the sensor voltage to a digital word; there
are four connectors on the apparatus that enable an external digital device to interface with
the converter. Figure 6 shows a block diagram of the apparatus with a picture of the system
given in Figure 7.

Fig. 6. Block diagram of the Air Levitation apparatus.

Fig. 7. Picture of the FPGA-based system.

The IR sensor is a Sharp GP2D120 Optoelectronic distance measuring sensor that outputs an
analog voltage. When the ball is at the highest position (5.5 cm from the sensor), the sensor
output voltage is 2.5 Volts. When the ball is at the lowest position (43.5 cm from the sensor
or 38 cm from the barrier), the sensor voltage is 0.2 Volts.
The onboard A/D converter is a 12-bit, 250 kilo-samples-per-second, 2-channel serial
converter with a 4-wire SPI compatible interface. It is capable of converting voltage from 0
to 5 Volts; thus it has a resolution of 1.2207 mV (5V/212bits). The four interface pins are: an
external clock input for synchronizing the serial data transfer; a data input pin for shifting-in
the A/D configuration 2-bit data word into the chip; a data-out pin for shifting-out the A/D
converted result; and a convert input used to signal the device to start the conversion. The
rate of conversion depends on the clock frequency: it takes 12 clock cycles plus the
conversion time (less than 3.2 microseconds) for the data to be available.

www.intechopen.com

Developing FPGA-based Embedded Controllers using Matlab/Simulink 551

3.2 Resource Usage of Custom Control Library Blocks
Logic Elements (LEs) and embedded multipliers are the two main resources used frequently
in different designs. All FPGAs contain LEs but some devices may not contain embedded
multipliers. For such devices, the multiplication operation has to be implemented by a
group of LEs. However, multiplication is a resource intensive operation in terms of LE
usage; hence FPGAs with embedded multipliers are preferred for control systems because
the LEs can be freed up for more efficient use by other tasks. The results reported here are
for individual implementation of the blocks on the Stratix EP1S80 FPGA chip. Each block
was configured to use its default parameters. The Stratix family of chips contain DSP blocks
that can be used to perform multiply, multiply-add, and multiply-accumulate operations
found commonly in DSP systems. Each DSP block can implement 9×9 fixed-point
multiplication with each input 9 bits wide and the output 18 bits wide, for any fixed-point
bus format (unsigned integer, signed integer or signed fractional). For inputs greater than 9
bits, two or more DSP blocks configured as 18×18 multipliers or as 36×36 multipliers are
used. Each 18×18 multiplier uses two 9×9 multipliers and each 36×36 multiplier uses eight
9×9 multipliers.
The results indicate that a very small number of LEs are used by the custom blocks when
embedded multipliers are used. However, when embedded multipliers are not used, the
LEs usage increases dramatically. This illustrates the resource intensiveness of the
multiplication operation when implemented by LEs. Given a FPGA chip, a designer may
decide to implement some blocks with embedded multipliers and some blocks without
embedded multipliers, in order to fit the design into the FPGA chip. For example, the
designer may implement the discretized PID block using embedded multipliers, because
otherwise it would consume too many LEs (3036 LEs as compared to 205 LEs). However, the
designer may implement the PWM Generator block without using embedded multipliers,
thereby saving 8 embedded multipliers but only increasing the LE requirement from 40 LEs
to 239 LEs.

4. Implementation Case Study

In order to demonstrate usage of the Custom Control Library to develop FPGA-based
embedded controllers in the Simulink design environment, a control system was designed
and developed for controlling the position of a levitating ball. This chapter describes the air
levitation apparatus and the implementation of the control system. It is shown that all the
necessary components of the control system are developed using system-level tools and
then implemented on a single FPGA chip.
The air levitation apparatus consists of a transparent hollow tube, 43.5 cm in length, held
vertically by a base which consists of a fan that blows air upwards into the tube. A table
tennis ball is placed inside the hollow tube and has one degree of freedom to move either up
or down. The thrust from the air flow causes the ball to be pushed upwards against the
downward gravitational pull. The position of the ball is measured by an Infrared (IR) sensor
placed at the top of the tube (the sensor does not block the air flow). There is an onboard
serial A/D converter that can be used to convert the sensor voltage to a digital word; there
are four connectors on the apparatus that enable an external digital device to interface with
the converter. Figure 6 shows a block diagram of the apparatus with a picture of the system
given in Figure 7.

Fig. 6. Block diagram of the Air Levitation apparatus.

Fig. 7. Picture of the FPGA-based system.

The IR sensor is a Sharp GP2D120 Optoelectronic distance measuring sensor that outputs an
analog voltage. When the ball is at the highest position (5.5 cm from the sensor), the sensor
output voltage is 2.5 Volts. When the ball is at the lowest position (43.5 cm from the sensor
or 38 cm from the barrier), the sensor voltage is 0.2 Volts.
The onboard A/D converter is a 12-bit, 250 kilo-samples-per-second, 2-channel serial
converter with a 4-wire SPI compatible interface. It is capable of converting voltage from 0
to 5 Volts; thus it has a resolution of 1.2207 mV (5V/212bits). The four interface pins are: an
external clock input for synchronizing the serial data transfer; a data input pin for shifting-in
the A/D configuration 2-bit data word into the chip; a data-out pin for shifting-out the A/D
converted result; and a convert input used to signal the device to start the conversion. The
rate of conversion depends on the clock frequency: it takes 12 clock cycles plus the
conversion time (less than 3.2 microseconds) for the data to be available.

www.intechopen.com

Factory Automation552

The onboard fan uses a power supply of 8 Volts but its speed is controlled by a Pulse Width
Modulated (PWM) signal that ranges from 0 to 5 Volts. The fan is constrained to rotate in
one direction; therefore it cannot accept negative voltage at its PWM input.
The objective of the control system is to stabilize the position of the ball within the tube at
any level. Figure 8 shows the block diagram of a closed-loop control system architecture.
The input to the controller is the error signal between the desired voltage (representative of
the desired position of the ball) and the measured voltage (representative of the actual
position of the ball). The output of the controller is the control signal; which needs to be
converted to a PWM signal to control the speed of the fan such that the upward thrust on
the ball tries to negate the downward pull due to gravity and keep the ball level at a desired
position.

Fig. 8. Control system architecture used for air levitation controller.

The control system components were implemented on a single FPGA chip. The FPGA
interfaces with the A/D converter on the apparatus to control its data conversion and
acquisition. The 12-bit sampled data word acquired from the A/D converter is multiplied by
the resolution of the A/D converter and converted into a fixed-point signed fractional
number representing the real value of the sensor’s voltage. The reference input yref, error e,
control signal u, and all internal signals are represented in fixed-point signed fractional
number format. yref is the desired value of the sensor voltage. The computed error between
yref and yactual is fed into a discretized PID controller.

4.1 Controller Development on FPGA Board
The air levitation control system was implemented on an Altera FPGA development board.
The board was part of the Altera DSP Development Kit Professional Edition, which had the
Altera Stratix EP1S80 FPGA chip on it. The Stratix chip had 79,040 Logic Elements, 7,427,520
total RAM bits, 176 9×9 embedded multipliers, 12 PLLs, and 679 I/O pins. The development
board had an onboard 80 MHz oscillator that was used as the FPGA’s main clock source.
The Stratix EP1S80 FGPA is a high-end and expensive chip that is meant for development of

large and complex DSP algorithms and systems. However, other FPGAs such as Cyclone III
that are low-end, inexpensive and with fewer number of device resources.
The discretized PID, PWM and A/D controller blocks of the Custom Control Library are all
used for the corresponding components of the control system in Figure 8. The system is
developed in Simulink by dragging and dropping the custom blocks and DSP Builder
library blocks onto a model file, configuring their parameters and making connections
between the blocks. Figure 9 shows the Simulink model file of the developed system. The
model file was translated into VHDL using the SignalCompiler block of the DSP Builder
library and a Quartus II project file was generated. The Quartus II software was
subsequently used for the FPGA design flow steps of Analysis, Synthesis, Placement &
Routing, and Programming the design onto the FPGA chip.

Fig. 9. Implementation of the air levitation controller using Custom Control Library and DSP
Builder blocks.

The A/D Controller block is configured to operate at a clock frequency of 1 MHz (which is
generated by a PLL block that divides the 80 MHz clock signal from the oscillator on the
development board). It takes 21 clock cycles for the entire conversion process (the
conversion time plus the serial data read time); hence the rate of sampled data acquisition is

www.intechopen.com

Developing FPGA-based Embedded Controllers using Matlab/Simulink 553

The onboard fan uses a power supply of 8 Volts but its speed is controlled by a Pulse Width
Modulated (PWM) signal that ranges from 0 to 5 Volts. The fan is constrained to rotate in
one direction; therefore it cannot accept negative voltage at its PWM input.
The objective of the control system is to stabilize the position of the ball within the tube at
any level. Figure 8 shows the block diagram of a closed-loop control system architecture.
The input to the controller is the error signal between the desired voltage (representative of
the desired position of the ball) and the measured voltage (representative of the actual
position of the ball). The output of the controller is the control signal; which needs to be
converted to a PWM signal to control the speed of the fan such that the upward thrust on
the ball tries to negate the downward pull due to gravity and keep the ball level at a desired
position.

Fig. 8. Control system architecture used for air levitation controller.

The control system components were implemented on a single FPGA chip. The FPGA
interfaces with the A/D converter on the apparatus to control its data conversion and
acquisition. The 12-bit sampled data word acquired from the A/D converter is multiplied by
the resolution of the A/D converter and converted into a fixed-point signed fractional
number representing the real value of the sensor’s voltage. The reference input yref, error e,
control signal u, and all internal signals are represented in fixed-point signed fractional
number format. yref is the desired value of the sensor voltage. The computed error between
yref and yactual is fed into a discretized PID controller.

4.1 Controller Development on FPGA Board
The air levitation control system was implemented on an Altera FPGA development board.
The board was part of the Altera DSP Development Kit Professional Edition, which had the
Altera Stratix EP1S80 FPGA chip on it. The Stratix chip had 79,040 Logic Elements, 7,427,520
total RAM bits, 176 9×9 embedded multipliers, 12 PLLs, and 679 I/O pins. The development
board had an onboard 80 MHz oscillator that was used as the FPGA’s main clock source.
The Stratix EP1S80 FGPA is a high-end and expensive chip that is meant for development of

large and complex DSP algorithms and systems. However, other FPGAs such as Cyclone III
that are low-end, inexpensive and with fewer number of device resources.
The discretized PID, PWM and A/D controller blocks of the Custom Control Library are all
used for the corresponding components of the control system in Figure 8. The system is
developed in Simulink by dragging and dropping the custom blocks and DSP Builder
library blocks onto a model file, configuring their parameters and making connections
between the blocks. Figure 9 shows the Simulink model file of the developed system. The
model file was translated into VHDL using the SignalCompiler block of the DSP Builder
library and a Quartus II project file was generated. The Quartus II software was
subsequently used for the FPGA design flow steps of Analysis, Synthesis, Placement &
Routing, and Programming the design onto the FPGA chip.

Fig. 9. Implementation of the air levitation controller using Custom Control Library and DSP
Builder blocks.

The A/D Controller block is configured to operate at a clock frequency of 1 MHz (which is
generated by a PLL block that divides the 80 MHz clock signal from the oscillator on the
development board). It takes 21 clock cycles for the entire conversion process (the
conversion time plus the serial data read time); hence the rate of sampled data acquisition is

www.intechopen.com

Factory Automation554

47.619 kHz. The 12-bit sampled data is in unsigned integer format. It is converted to 13 bits
signed fractional format but with zero bits for the fractional part (the most significant bit is
the sign bit).
The discretized PID block is configured to operate at a frequency of 610 Hz resulting in a
controller period of 1.6 milliseconds. The frequency 610 Hz is generated by a clock divider.
The error signal into the PID block is represented using 16 bits for the integer part and 16
bits as for the fractional part (to allow for sufficient range and precision). The control signal
output of the PID block is represented using 24 bits for the fractional part and 24 bits for the
integer part allowing for sufficient range and precision. The control signal is then bounded
and shifted into a positive value and then converted into a duty cycle. The duty cycle value,
represented using 8 bits for the fractional part and 8 bits for the integer part, is inputted to
the PWM block, which generates a single logical pulse whose width corresponds to the duty
cycle. The PWM module uses a clock frequency of 1 MHz and the pulse frequency is 7.8125
kHz. This allows the duty cycle signal to have a resolution of 0.78%. The frequency 7.8125
kHz is also generated by a clock divider.

4.2 System Implementation Results
The control system was synthesized, placed & routed, and programmed into the Stratix
EP1S80 FPGA. The FPGA-based controller was connected to the air levitation apparatus.
Three sets of tests were carried out to evaluate the performance of the control system. The
first set investigated the step response, the second set investigated the steady state response,
and the third set of tests investigated the response to an external disturbance. A disturbance
was created by manually holding a hand at the top of the tube to obstruct the air flow. All
three tests used the following gains for the discretized PID controller: KP = 2, KI = 0.038 and
KD = 3. Figure 10 shows the response of the system once the ball has stabilized at a desired
reference value of 0.6V, which represents the mid-point of the effective length of the tube (19
cm from the bottom).

Fig. 10. Steady state response of air levitation controller to a reference input of 0.6V.

0 5 10

0.5

1

1.5

2

2.5
Ball position: yactual vs. yref

Time (seconds)

IR
 S

en
so

r v
ol

ta
ge

yactual

yref = 0.6

0 5 10

-0.1

-0.05

0

0.05

0.1

0.15
Error e=yref-yactual

Time (seconds)

V
ol

ta
ge

4.3 Reduced-size Controller
Large bit widths were used earlier in the development in order to capture signals at higher
precisions for purposes of data plotting and analysis. However, such large bit widths were
not required for the custom controller to operate correctly. Hence, in order to reduce the
embedded multiplier usage, the custom controller of Figure 9 was modified to use smaller
bit widths for its signals. The smaller bit widths take into account the possible range of the
signals as the controller operates. For instance, the reference input bit width was changed
from [16].[16] to [3].[13] because 3 bits for the integer part were sufficient to represent
references from 0.2V to 2.5V, and 13 bits for the fractional part were sufficient to represent
the reference in increments of 2-13µV. In addition to changes to the bit widths, certain
multiplier elements in the custom controller were purposely configured to be implemented
as Logic Elements instead of dedicated embedded multipliers. All changes were made in
Simulink using the dialog boxes of the blocks, and were propagated to their HDL
representations automatically.
The reduced custom controller required 1875 LEs and 14 9×9 dedicated embedded
multipliers, as compared to 955 LEs and 70 9×9 embedded multipliers required by the
original custom controller. This represents a 96% increase in LE usage, but a 400% decrease
in 9×9 embedded multiplier usage. Consequently, the reduced custom controller can fit into
a smaller and less expensive FPGA, such as the Cyclone II EP2C5, which contains 4,608 LEs
and 26 9×9 embedded multipliers. Thus, the reduction in bit widths and tradeoffs between
LE usage and embedded multiplier usage was worthwhile in this case. In conclusion, the
reduced controller had more favorable resource usage but equivalent performance as the
original controller.

5. Conclusions

The use of the system-level tool DSP Builder for high-level development of FPGA-based
controllers was studied. The capabilities of the DSP Builder tool were further extended by
developing the Custom Control Library. The custom library is comprised of widely used
components such as discretized integrators, PID controller, PWM generator, and A/D
controller. DSP Builder and the Custom Control Library together can be used to rapidly
develop controllers in the familiar and standard Simulink design environment for FPGA
implementation. An implementation case study demonstrated usage of DSP Builder and the
Custom Control Library to develop a FPGA-based controller for an air levitation system in
the Matlab/Simulink environment.

6. Acknowledgement

This research was supported in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and by the Canadian Microlelectronics Corporation (CMC),
Kingston, ON, Canada.

www.intechopen.com

Developing FPGA-based Embedded Controllers using Matlab/Simulink 555

47.619 kHz. The 12-bit sampled data is in unsigned integer format. It is converted to 13 bits
signed fractional format but with zero bits for the fractional part (the most significant bit is
the sign bit).
The discretized PID block is configured to operate at a frequency of 610 Hz resulting in a
controller period of 1.6 milliseconds. The frequency 610 Hz is generated by a clock divider.
The error signal into the PID block is represented using 16 bits for the integer part and 16
bits as for the fractional part (to allow for sufficient range and precision). The control signal
output of the PID block is represented using 24 bits for the fractional part and 24 bits for the
integer part allowing for sufficient range and precision. The control signal is then bounded
and shifted into a positive value and then converted into a duty cycle. The duty cycle value,
represented using 8 bits for the fractional part and 8 bits for the integer part, is inputted to
the PWM block, which generates a single logical pulse whose width corresponds to the duty
cycle. The PWM module uses a clock frequency of 1 MHz and the pulse frequency is 7.8125
kHz. This allows the duty cycle signal to have a resolution of 0.78%. The frequency 7.8125
kHz is also generated by a clock divider.

4.2 System Implementation Results
The control system was synthesized, placed & routed, and programmed into the Stratix
EP1S80 FPGA. The FPGA-based controller was connected to the air levitation apparatus.
Three sets of tests were carried out to evaluate the performance of the control system. The
first set investigated the step response, the second set investigated the steady state response,
and the third set of tests investigated the response to an external disturbance. A disturbance
was created by manually holding a hand at the top of the tube to obstruct the air flow. All
three tests used the following gains for the discretized PID controller: KP = 2, KI = 0.038 and
KD = 3. Figure 10 shows the response of the system once the ball has stabilized at a desired
reference value of 0.6V, which represents the mid-point of the effective length of the tube (19
cm from the bottom).

Fig. 10. Steady state response of air levitation controller to a reference input of 0.6V.

0 5 10

0.5

1

1.5

2

2.5
Ball position: yactual vs. yref

Time (seconds)

IR
 S

en
so

r v
ol

ta
ge

yactual

yref = 0.6

0 5 10

-0.1

-0.05

0

0.05

0.1

0.15
Error e=yref-yactual

Time (seconds)

V
ol

ta
ge

4.3 Reduced-size Controller
Large bit widths were used earlier in the development in order to capture signals at higher
precisions for purposes of data plotting and analysis. However, such large bit widths were
not required for the custom controller to operate correctly. Hence, in order to reduce the
embedded multiplier usage, the custom controller of Figure 9 was modified to use smaller
bit widths for its signals. The smaller bit widths take into account the possible range of the
signals as the controller operates. For instance, the reference input bit width was changed
from [16].[16] to [3].[13] because 3 bits for the integer part were sufficient to represent
references from 0.2V to 2.5V, and 13 bits for the fractional part were sufficient to represent
the reference in increments of 2-13µV. In addition to changes to the bit widths, certain
multiplier elements in the custom controller were purposely configured to be implemented
as Logic Elements instead of dedicated embedded multipliers. All changes were made in
Simulink using the dialog boxes of the blocks, and were propagated to their HDL
representations automatically.
The reduced custom controller required 1875 LEs and 14 9×9 dedicated embedded
multipliers, as compared to 955 LEs and 70 9×9 embedded multipliers required by the
original custom controller. This represents a 96% increase in LE usage, but a 400% decrease
in 9×9 embedded multiplier usage. Consequently, the reduced custom controller can fit into
a smaller and less expensive FPGA, such as the Cyclone II EP2C5, which contains 4,608 LEs
and 26 9×9 embedded multipliers. Thus, the reduction in bit widths and tradeoffs between
LE usage and embedded multiplier usage was worthwhile in this case. In conclusion, the
reduced controller had more favorable resource usage but equivalent performance as the
original controller.

5. Conclusions

The use of the system-level tool DSP Builder for high-level development of FPGA-based
controllers was studied. The capabilities of the DSP Builder tool were further extended by
developing the Custom Control Library. The custom library is comprised of widely used
components such as discretized integrators, PID controller, PWM generator, and A/D
controller. DSP Builder and the Custom Control Library together can be used to rapidly
develop controllers in the familiar and standard Simulink design environment for FPGA
implementation. An implementation case study demonstrated usage of DSP Builder and the
Custom Control Library to develop a FPGA-based controller for an air levitation system in
the Matlab/Simulink environment.

6. Acknowledgement

This research was supported in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and by the Canadian Microlelectronics Corporation (CMC),
Kingston, ON, Canada.

www.intechopen.com

Factory Automation556

7. References

Altera Corporation (2005). DSP Builder User Guide, Version 5.1.0.
Casalino, G., Giorgi, F., Turetta, A., & Caffaz, A. (2003). Embedded FPGA-based control of a

multifingered robotic hand, IEEE Int. Conf. on Robotics & Auto.m, pp. 2786-2791.
Chan, Y.F., Moallem, M. & Wang, W. (2007). Design and implementation of modular FPGA-

based PID controllers, IEEE Transactions on Industrial Electronics, 54(4), pp. 1898-
1906.

Jung, S-L., Chang, M-Y., Jyang, J-Y., Yeh, L-C., & Tzou, Y-Y. (1999). Design and
implementation of an FPGA-based control IC for AC-voltage regulation, IEEE
Transactions on Power Electronics, 14(3), pp. 522-532.

Koutroulis, E., Dollas, A., & Kalaitzakis, K. (2006). High-frequency pulse width modulation
implementation using FPGA and CPLD ICs,” Journal of Systems Architecture, 52(6),
pp. 332-344.

Oh, S-N., Kim, K-I., & Lim, S. (2003). Motion control of biped robots using a single-chip
drive", IEEE Int.l Conf. on Robotics & Autom., pp. 2461-2465.

Tessier, R., & Burleson, W. (2001). Reconfigurable computing for digital signal processing: A
Survey, The Journal of VLSI Signal Processing, 28(1), pp. 7-27.

Tjondronugroho, A., Al-Anbuky, A., Round, S., & Duke, R. (2004). Evaluation of DSP and
FPGA based digital controllers for a single-phase PWM inverter,” in Australasian
Universities Power Engineering Conference (AUPEC 2004), Sept. 2004. [Online].
Available: http://www.itee.uq.edu.au/~aupec/aupec04/
papers/PaperID56.pdf. [Accessed: May 26, 2007].

Ramos, R.R., Biel, D., Fossas, E., and Guinjoan, F. (2003). A fixed-frequency quasi-sliding
control algorithm: application to power inverters design by means of FPGA
implementation, IEEE Transactions on Power Electronics, 18(1), pp. 344-355.

Ricci, F., & Le-Huy, H. (2002). An FPGA-based rapid prototyping platform for variable-
speed drives, 28th Annual Conference of the IEEE Industrial Electronics Society, pp.
1156-1161.

Zhao, W., Kim, B.H., Larson, A.C., & Voyles, R.M. (2005). FPGA implementation of closed-
loop control system for a small-scale robot,” 12th International Conference on
Advanced Robotics, pp. 70-77.

www.intechopen.com

Factory Automation

Edited by Javier Silvestre-Blanes

ISBN 978-953-307-024-7

Hard cover, 602 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Factory automation has evolved significantly in the last few decades, and is today a complex, interdisciplinary,

scientific area. In this book a selection of papers on topics related to factory automation is presented, covering

a broad spectrum, so that the reader may become familiar with the various fields, and also study them in more

depth where required. Within various chapters in this book, special attention is given to distributed applications

and their use of networks, since it is one of the most relevant subjects in the evolution of factory automation.

Different Medium Access Control and networks are analyzed, while Ethernet and Wireless networks are looked

at in more detail, since they are among the hottest topics in recent research. Another important subject is

everything concerning the increase in the complexity of factory automation, and the need for flexibility and

interoperability. Finally the use of multi-agent systems, advanced control, formal methods, or the application in

this field of RFID, are additional examples of the ideas and disciplines that experts around the world have

analyzed in their work.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

T. Barlas and M. Moallem (2010). Developing FPGA-based Embedded Controllers Using Matlab/Simulink,

Factory Automation, Javier Silvestre-Blanes (Ed.), ISBN: 978-953-307-024-7, InTech, Available from:

http://www.intechopen.com/books/factory-automation/developing-fpga-based-embedded-controllers-using-

matlab-simulink

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

