284 research outputs found

    OutFlank Routing: Increasing Throughput in Toroidal Interconnection Networks

    Full text link
    We present a new, deadlock-free, routing scheme for toroidal interconnection networks, called OutFlank Routing (OFR). OFR is an adaptive strategy which exploits non-minimal links, both in the source and in the destination nodes. When minimal links are congested, OFR deroutes packets to carefully chosen intermediate destinations, in order to obtain travel paths which are only an additive constant longer than the shortest ones. Since routing performance is very sensitive to changes in the traffic model or in the router parameters, an accurate discrete-event simulator of the toroidal network has been developed to empirically validate OFR, by comparing it against other relevant routing strategies, over a range of typical real-world traffic patterns. On the 16x16x16 (4096 nodes) simulated network OFR exhibits improvements of the maximum sustained throughput between 14% and 114%, with respect to Adaptive Bubble Routing.Comment: 9 pages, 5 figures, to be presented at ICPADS 201

    Assessing the Suitability of King Topologies for Interconnection Networks

    Get PDF
    In the late years many different interconnection networks have been used with two main tendencies. One is characterized by the use of high-degree routers with long wires while the other uses routers of much smaller degree. The latter rely on two-dimensional mesh and torus topologies with shorter local links. This paper focuses on doubling the degree of common 2D meshes and tori while still preserving an attractive layout for VLSI design. By adding a set of diagonal links in one direction, diagonal networks are obtained. By adding a second set of links, networks of degree eight are built, named king networks. This research presents a comprehensive study of these networks which includes a topological analysis, the proposal of appropriate routing procedures and an empirical evaluation. King networks exhibit a number of attractive characteristics which translate to reduced execution times of parallel applications. For example, the execution times NPB suite are reduced up to a 30 percent. In addition, this work reveals other properties of king networks such as perfect partitioning that deserves further attention for its convenient exploitation in forthcoming high-performance parallel systems

    Computer interconnection networks with virtual cut-through routing

    Get PDF
    This paper considers a model of a toroidal computer interconnection network with the virtual cut-through routing. The interrelationships between network parameters, load and performance are analyzed. An exact analytical expression for the saturation point and expressions for the latency as a function of the message generation rate under the mean field theory approximation have been obtained. The theoretical results have been corroborated with the results of simulation experiments for various values of network parameters. The network behavior has been found not depending on the torus linear dimensions provided that they are at least twice as large as the message path length. The saturation point has been found to be inversely proportional to the message length in good agreement with the analytical results. A good agreement with Little’s theorem has been found if the network remains in the steady state during the experiment.Accepted manuscrip

    Task mapping in rectangular twisted tori

    Get PDF
    Twisted torus topologies have been proposed as an alternative to toroidal rectangular networks, improving distance parameters and providing network symmetry. However, twisting is apparently less amenable to task mapping algorithms of real life applications. In this paper we make an analytical study of different mapping and concentration techniques on 2D twisted tori that try to compensate for the twisted peripheral links. We introduce a performance model based on the network average distance and the detection of the set of links which receive the highest load. The model also considers the amount of local and global communications in the network. Our model shows that the twisted torus can improve latency and maximum throughput over rectangular torus, especially when global communications dominate over local ones and when some concentration is employed. Simulation results corroborate our synthetic model. For real applications from the NPB benchmark suite, the use of the twisted topologies with an appropriate mapping provides overall average application speedups of 2.9%, which increase to 4.9% when concentrated topologies (c = 2) are considered.This work has been supported by the Spanish Ministry of Science under contracts TIN2010-21291-C02-02, TIN-2007- 60625, AP2010-4900 and CONSOLIDER Project CSD2007-00050, and by the European HiPEAC Network of Excellence. M. Moreto is supported by a MEC/Fulbright Fellowship.Postprint (author’s final draft

    An analytical model for virtual cut-through routing

    Full text link
    An analytical model of a network with 2-dim torus topology and virtual cut-through routing has been considered in order to find out and analyze certain relationships between network parameters, load and performance. An exact expression for the saturation point (message generation rate at which network saturates) and expressions for the latency as a function of the message generation rate under the assumptions of the “mean field” theory have been obtained. It has been found that the saturation point is inversely proportional to the message length and to the distance between the source and destination. The theoretical results are in a good agreement with small-scale simulation experiments.Accepted manuscrip

    System data communication structures for active-control transport aircraft, volume 2

    Get PDF
    The application of communication structures to advanced transport aircraft are addressed. First, a set of avionic functional requirements is established, and a baseline set of avionics equipment is defined that will meet the requirements. Three alternative configurations for this equipment are then identified that represent the evolution toward more dispersed systems. Candidate communication structures are proposed for each system configuration, and these are compared using trade off analyses; these analyses emphasize reliability but also address complexity. Multiplex buses are recognized as the likely near term choice with mesh networks being desirable for advanced, highly dispersed systems

    Symmetric Interconnection Networks from Cubic Crystal Lattices

    Full text link
    Torus networks of moderate degree have been widely used in the supercomputer industry. Tori are superb when used for executing applications that require near-neighbor communications. Nevertheless, they are not so good when dealing with global communications. Hence, typical 3D implementations have evolved to 5D networks, among other reasons, to reduce network distances. Most of these big systems are mixed-radix tori which are not the best option for minimizing distances and efficiently using network resources. This paper is focused on improving the topological properties of these networks. By using integral matrices to deal with Cayley graphs over Abelian groups, we have been able to propose and analyze a family of high-dimensional grid-based interconnection networks. As they are built over nn-dimensional grids that induce a regular tiling of the space, these topologies have been denoted \textsl{lattice graphs}. We will focus on cubic crystal lattices for modeling symmetric 3D networks. Other higher dimensional networks can be composed over these graphs, as illustrated in this research. Easy network partitioning can also take advantage of this network composition operation. Minimal routing algorithms are also provided for these new topologies. Finally, some practical issues such as implementability and preliminary performance evaluations have been addressed
    corecore