16,555 research outputs found

    A demonstration of a service oriented virtual environment for complex system analysis

    Get PDF
    Distributed virtual simulation is increasingly in demand within the automotive industry. A distributed and networked approach to system level design and simulation stands to benefit from a unifying relational oriented modeling and simulation framework. This will permit innovative use of existing independent simulations for increased concurrency in design and verification and validation. This paper demonstrates an analysis of the vehicle as a complex system through the combination of a relational framework, high level syntax and semantics for representing models and distributed simulation. This promises to provide a rigorous, traceable and agile approach to conceptual vehicle design and analysis

    Paving the Roadway for Safety of Automated Vehicles: An Empirical Study on Testing Challenges

    Full text link
    The technology in the area of automated vehicles is gaining speed and promises many advantages. However, with the recent introduction of conditionally automated driving, we have also seen accidents. Test protocols for both, conditionally automated (e.g., on highways) and automated vehicles do not exist yet and leave researchers and practitioners with different challenges. For instance, current test procedures do not suffice for fully automated vehicles, which are supposed to be completely in charge for the driving task and have no driver as a back up. This paper presents current challenges of testing the functionality and safety of automated vehicles derived from conducting focus groups and interviews with 26 participants from five countries having a background related to testing automotive safety-related topics.We provide an overview of the state-of-practice of testing active safety features as well as challenges that needs to be addressed in the future to ensure safety for automated vehicles. The major challenges identified through the interviews and focus groups, enriched by literature on this topic are related to 1) virtual testing and simulation, 2) safety, reliability, and quality, 3) sensors and sensor models, 4) required scenario complexity and amount of test cases, and 5) handover of responsibility between the driver and the vehicle.Comment: 8 page

    Automatic generation of human machine interface screens from component-based reconfigurable virtual manufacturing cell

    Get PDF
    Increasing complexity and decreasing time-tomarket require changes in the traditional way of building automation systems. The paper describes a novel approach to automatically generate the Human Machine Interface (HMI) screens for component-based manufacturing cells based on their corresponding virtual models. Manufacturing cells are first prototyped and commissioned within a virtual engineering environment to validate and optimise the control behaviour. A framework for reusing the embedded control information in the virtual models to automatically generate the HMI screens is proposed. Finally, for proof of concept, the proposed solution is implemented and tested on a test rig

    Testing in the incremental design and development of complex products

    Get PDF
    Testing is an important aspect of design and development which consumes significant time and resource in many companies. However, it has received less research attention than many other activities in product development, and especially, very few publications report empirical studies of engineering testing. Such studies are needed to establish the importance of testing and inform the development of pragmatic support methods. This paper combines insights from literature study with findings from three empirical studies of testing. The case studies concern incrementally developed complex products in the automotive domain. A description of testing practice as observed in these studies is provided, confirming that testing activities are used for multiple purposes depending on the context, and are intertwined with design from start to finish of the development process, not done after it as many models depict. Descriptive process models are developed to indicate some of the key insights, and opportunities for further research are suggested

    A service oriented virtual environment for complex system analysis: Preliminary report

    Get PDF
    Distributed virtual simulation is a capability that is increasing in demand within the automotive manufacturing industry. The distributed and networked approach to system level design and simulation stands to benefit from a unifying relational oriented modeling and simulation framework due to the large number of simulation technologies that must be integrated. This will also permit innovative use of existing independent simulations for increased concurrency in design and verification and validation. Through relational orientation, high level syntax and semantics for representing models and simulations have been developed for proof of concept analysis. This paper presents an approach to drive a process of analysis of the vehicle as a complex system through the combination of a relational trade-off analysis framework and a distributed simulation execution delivered through a service-oriented integration architecture. This promises to provide a rigorous, traceable and agile approach to early stage conceptual vehicle design and analysis

    Safety-related challenges and opportunities for GPUs in the automotive domain

    Get PDF
    GPUs have been shown to cover the computing performance needs of autonomous driving (AD) systems. However, since the GPUs used for AD build on designs for the mainstream market, they may lack fundamental properties for correct operation under automotive's safety regulations. In this paper, we analyze some of the main challenges in hardware and software design to embrace GPUs as the reference computing solution for AD, with the emphasis in ISO 26262 functional safety requirements.Authors would like to thank Guillem Bernat from Rapita Systems for his technical feedback on this work. The research leading to this work has received funding from the European Re-search Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 772773). This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717. Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness and FEDER funds through grant TIN2014-60404-JIN.Peer ReviewedPostprint (author's final draft
    • …
    corecore