159,519 research outputs found

    Performance on a Virtual Reality Angled Laparoscope Task Correlates with Spatial Ability of Trainees

    Get PDF
    The aim of the present study was to investigate whether trainees' performance on a virtual reality angled laparoscope navigation task correlates with scores obtained on a validated conventional test of spatial ability. 56 participants of a surgery workshop performed an angled laparoscope navigation task on the Xitact LS 500 virtual reality Simulator. Performance parameters were correlated with the score of a validated paper-and-pencil test of spatial ability. Performance at the conventional spatial ability test significantly correlated with performance at the virtual reality task for overall task score (p < 0.001), task completion time (p < 0.001) and economy of movement (p = 0.035), not for endoscope travel speed (p = 0.947). In conclusion, trainees' performance in a standardized virtual reality camera navigation task correlates with their innate spatial ability. This VR session holds potential to serve as an assessment tool for trainee

    FUTURE OF SPATIAL ABILITY RESEARCHES AND EDUCATION: A REVIEW

    Get PDF
    The present paper deals with the future trends of researches in the area of spatial ability and its implication on education. Researches on spatial ability are predicted to continue with two concurrent themes: its association with intelligence and the influence of technology and computer in redefining and molding spatial ability. Current technologies like 3D Imaging, virtual reality, simulations are redefining and molding spatial ability.  Article visualizations

    Spatial Transfiguration: Anamorphic Mixed-Reality in the Virtual Reality Panorama

    Get PDF
    Spatial illusion and immersion was achieved in Renaissance painting through the manipulation of linear perspective’s pictorial conventions and painterly technique. The perceptual success of a painted trompe l’œil, its ability to fool the observer into believing they were viewing a real three-dimensional scene, was constrained by the limited immersive capacity of the two-dimensional painted canvas. During the baroque period however, artists began to experiment with the amalgamation of the ‘real’ space occupied by the observer together with the pictorial space enveloped by the painting’s picture plane: real and pictorial space combined into one pictorial composition resulting in a hybridised ‘mixed-reality’. Today, the way architects, and designers generally, use the QuickTime Virtual Reality panorama to represent spaces of increasing visual density have much to learn from the way in which Renaissance and baroque artists manipulated the three-dimensional characteristics of the picture plane in order to offer more convincing spatial illusions. This paper outlines the conceptual development of the QuickTime VR panorama by Ken Turkowski and the Apple Advanced Technology Group during the late 1980s. Further, it charts the technical methods of the Virtual Reality panorama’s creation in order to reflect upon the VR panorama’s geometric construction and range and effectiveness of spatial illusion. Finally, through a brief analysis of Hans Holbein’s Ambassadors [1533] and Andrea Pozzo’s nave painting in Sant ‘Ignazio [1691-94] this paper proposes an alternative conceptual model for the pictorial construction of the VR panorama that is innovatively based upon an anamorphic ‘mixed-reality’

    Using Tangible Interaction and Virtual Reality to Support Spatial Perspective Taking Ability

    Get PDF
    According to several large-scale and longitudinal studies, spatial ability, one of the primary mental abilities, has been shown as a significant predictor for STEM learning (Science, Technology, Engineering, and Mathematics) and career success. Frameworks in HCI (Human-Computer Interaction) and TEI (Tangible and Embodied Interaction) also indicated how the spatial-related aspects of interaction are a common design theme for interfaces using emerging technologies. However, currently only very few interactive systems (using TEI) are designed around a target spatial ability. TEI’s direct effects on spatial ability are also not well-investigated. Meanwhile, a growing body of research from cognitive sciences, such as embodied cognition and Common Coding Theory, shows that physical movements can enhance cognition in aspects that involve spatial thinking. Also, virtual reality (VR) affords better 3D perception for digital environments, and provides design opportunities to engage users with spatial tasks that may not be otherwise imagined or achieved in the real world. This research describes how we designed and built the system TASC (Tangibles for Augmenting Spatial Cognition), which combines body movement tracking and tangible objects with VR. We recap our design process and design rationales, along with how the finalized system was designed to enhance embodiment as a means to activate, support, engage, and hopefully augment spatial perspective taking ability. We conducted a user study with qualitative and quantitative evaluation methods. Respectively, the qualitative evaluation aimed to understand how the participants used the system; the quantitative evaluation was a multi-condition experiment with pre-tests and post-tests used to investigate if and how the system could improve spatial perspective taking ability. We built the digital pre/post-tests based on PTSOT (Perspective Taking/Spatial Orientation Test) (Hegarty, Kozhevnikov, & Waller, 2008). The study in total involved 52 participants: 6 participants (3M/3F) in the pilot study, 46 in the main study (3 conditions, around 15 per condition, each condition was overall gender-balanced). The qualitative analysis focused on the VR-TEI condition (the “main system”). Using thematic analysis with the video clips and written notes (both taken during the participants’ interaction), and audio clips (recorded during the post-interaction interview), we synthesized the qualitative results into 4 themes: (1) Spatial strategies: akin but unique; (2) The use of gestures & verbalization; (3) Positive experience with the system; (4) The potentials of the system. The quantitative statistical analysis, using ANOVA and t-test for the 3-condition experiment, showed that every condition yielded perspective taking improvement from taking the test twice. However, only the VR-TEI condition led to statistically significant improvement. We conclude the research with discussion and future possibilities in these themes of: (a) The role of embodiment; (2) Further explorations of intermediate conditions; (3) A deeper look at sample size and validity; (4) Designing & evaluating TEIs for other spatial abilities; (5) Integration with STEM curriculum. The main contribution of this dissertation is that it reports how a VR-TEI system can be designed, built, and evaluated for a target spatial ability. We hope this research also contributes to bridging some knowledge gaps between interaction design, cognitive science, and STEM learning

    The Effects Of Visual Signalling Principle In A Desktop Virtual Reality Based Learning Environment On Students’ Performance, Cognitive Load And Perceived Motivation

    Get PDF
    The purpose of this study was to investigate the effect of learning science laboratory safety using visual signalling principle in a virtual reality environment on students’ performance, cognitive load and perceived motivation among students with different spatial ability. A 22 quasi experimental factorial design was adopted in this research. The independent variables used in the learning of science laboratory safety were the two modes of courseware which is virtual reality with signalling (VRS) and virtual reality with non-signalling (VRNS). The moderator variable was the spatial ability

    Visual communication in urban planning and urban design

    Get PDF
    This report documents the current status of visual communication in urban design and planning. Visual communication is examined through discussion of standalone and network media, specifically concentrating on visualisation on the World Wide Web(WWW).Firstly, we examine the use of Solid and Geometric Modelling for visualising urban planning and urban design. This report documents and compares examples of the use of Virtual Reality Modelling Language (VRML) and proprietary WWW based Virtual Reality modelling software. Examples include the modelling of Bath and Glasgow using both VRML 1.0 and 2.0. A review is carried out on the use of Virtual Worldsand their role in visualising urban form within multi-user environments. The use of Virtual Worlds is developed into a case study of the possibilities and limitations of Virtual Internet Design Arenas (ViDAs), an initiative undertaken at the Centre for Advanced Spatial Analysis, University College London. The use of Virtual Worlds and their development towards ViDAs is seen as one of the most important developments in visual communication for urban planning and urban design since the development plan.Secondly, photorealistic media in the process of communicating plans is examined.The process of creating photorealistic media is documented, examples of the Virtual Streetscape and Wired Whitehall Virtual Urban Interface System are provided. The conclusion is drawn that although the use of photo-realistic media on the WWW provides a way to visually communicate planning information, its use is limited. The merging of photorealistic media and solid geometric modelling is reviewed in the creation of Augmented Reality. Augmented Reality is seen to provide an important step forward in the ability to quickly and easily visualise urban planning and urban design information.Thirdly, the role of visual communication of planning data through GIS is examined interms of desktop, three dimensional and Internet based GIS systems. The evolution to Internet GIS is seen as a critical component in the development of virtual cities which will allow urban planners and urban designers to visualise and model the complexity of the built environment in networked virtual reality.Finally a viewpoint is put forward of the Virtual City, linking Internet GIS with photorealistic multi-user Virtual Worlds. At present there are constraints on how far virtual cities can be developed, but a view is provided on how these networked virtual worlds are developing to aid visual communication in urban planning and urban design

    The Role of Spatial Ability in Learning with Virtual Reality: A Literature Review

    Get PDF
    No research has systematically reviewed the role of spatial ability in virtual reality (VR) learning. This has resulted in inefficiencies in educators’ ability to adopt personalized teaching strategies based on learners’ spatial ability to maximize the effectiveness of VR. Therefore, this study conducted a literature review on spatial ability in VR learning to provide researchers and educators with a comprehensive understanding of how spatial ability affects VR learning. After searching Scopus with keywords and applying inclusion and exclusion criteria, the researchers identified 30 relevant research articles for the review. This literature review mainly analyzed research trends, contexts, theories, methodologies, and findings from the identified articles. The contradictory role of spatial ability in VR learning was also summarized. Based on the literature analysis, this study identified research gaps and indicated directions for future research

    Detecting Spatial Orientation Demands during Virtual Navigation using EEG Brain Sensing

    Get PDF
    This study shows how brain sensing can offer insight to the&nbsp;evaluation of human spatial orientation in virtual reality (VR) and establish&nbsp;a role for electroencephalogram (EEG) in virtual navigation. Research&nbsp;suggests that the evaluation of spatial orientation in VR benefits by goingbeyond performance measures or questionnaires to measurements of the user’s&nbsp;cognitive state. While EEG has emerged as a practical brain sensing&nbsp;technology in cognitive research, spatial orientation tasks often rely on&nbsp;multiple factors (e.g., reference frame used, ability to update simulated&nbsp;rotation, and/or left-right confusion) which may be inaccessible to this&nbsp;measurement. EEG has been shown to correlate with human spatial orientation&nbsp;in previous research. In this paper, we use convolutional neural network&nbsp;(CNN), an advanced technique in machine learning, to train a detection model&nbsp;that can identify moments in which VR users experienced some increase in&nbsp;spatial orientation demands in real-time. Our results demonstrate that we can&nbsp;indeed use machine learning technique to detect such cognitive state of&nbsp;increasing spatial orientation demands in virtual reality research with 96%&nbsp;accurate on average

    Individual differences in teleporting through virtual environments: A latent profile analysis

    Get PDF
    Teleportation in virtual reality (VR) affords the ability to explore beyond the physical space. Previous work has demonstrated that this interface comes at a spatial cognitive cost – though, upon closer inspection, not everyone appears similarly affected. A latent profile analysis identified three groups that significantly differed on spatial updating performance and follow-up analyses showed significant differences in objective measures of spatial ability (e.g., mental rotation and perspective-taking). These results suggest that there are individual differences in domains of spatial cognition that are related to how well a user may keep track of his or her location while teleporting in VR

    Virtual Reality Learning Activities for Multimedia Students to Enhance Spatial Ability

    Get PDF
    Virtual Reality is an incipient technology that is proving very useful for training different skills. Our hypothesis is that it is possible to design virtual reality learning activities that can help students to develop their spatial ability. To prove the hypothesis, we have conducted an experiment consisting of training the students using an on-purpose learning activity based on a virtual reality application and assessing the possible improvement of the students’ spatial ability through a widely accepted spatial visualization test. The learning activity consists of a virtual environment where some simple polyhedral shapes are shown and manipulated by moving, rotating and scaling them. The students participating in the experiment are divided into a control and an experimental group, carrying out the same learning activity with the only difference of the device used for the interaction: a traditional computer with screen, keyboard and mouse for the control group, and virtual reality goggles with a smartphone for the experimental group. To assess the experience, all the students have completed a spatial visualization test twice: just before performing the activities and four weeks later, once all the activities were performed. Specifically, we have used the well-known and widely used Purdue Spatial Visualization Test—Rotation (PSVT-R), designed to test rotational visualization ability. The results of the test show that there is an improvement in the test results for both groups, but the improvement is significantly higher in the case of the experimental group. The conclusion is that the virtual reality learning activities have shown to improve the spatial ability of the experimental group.This work was funded by the Ministry of Economy and Competitiveness of Spain (Ministerio de Economía y Competitividad de España), through Reference TIN2017-89266-R Project
    corecore