6,639 research outputs found

    DIVERSE: a Software Toolkit to Integrate Distributed Simulations with Heterogeneous Virtual Environments

    Get PDF
    We present DIVERSE (Device Independent Virtual Environments- Reconfigurable, Scalable, Extensible), which is a modular collection of complimentary software packages that we have developed to facilitate the creation of distributed operator-in-the-loop simulations. In DIVERSE we introduce a novel implementation of remote shared memory (distributed shared memory) that uses Internet Protocol (IP) networks. We also introduce a new method that automatically extends hardware drivers (not in the operating system kernel driver sense) into inter-process and Internet hardware services. Using DIVERSE, a program can display in a CAVEā„¢, ImmersaDeskā„¢, head mounted display (HMD), desktop or laptop without modification. We have developed a method of configuring user programs at run-time by loading dynamic shared objects (DSOs), in contrast to the more common practice of creating interpreted configuration languages. We find that by loading DSOs the development time, complexity and size of DIVERSE and DIVERSE user applications is significantly reduced. Configurations to support different I/O devices, device emulators, visual displays, and any component of a user application including interaction techniques, can be changed at run-time by loading different sets of DIVERSE DSOs. In addition, interpreted run-time configuration parsers have been implemented using DIVERSE DSOs; new ones can be created as needed. DIVERSE is free software, licensed under the terms of the GNU General Public License (GPL) and the GNU Lesser General Public License (LGPL) licenses. We describe the DIVERSE architecture and demonstrate how DIVERSE was used in the development of a specific application, an operator-in-the-loop Navy ship-board crane simulator, which runs unmodified on a desktop computer and/or in a CAVE with motion base motion queuing

    ImageJ2: ImageJ for the next generation of scientific image data

    Full text link
    ImageJ is an image analysis program extensively used in the biological sciences and beyond. Due to its ease of use, recordable macro language, and extensible plug-in architecture, ImageJ enjoys contributions from non-programmers, amateur programmers, and professional developers alike. Enabling such a diversity of contributors has resulted in a large community that spans the biological and physical sciences. However, a rapidly growing user base, diverging plugin suites, and technical limitations have revealed a clear need for a concerted software engineering effort to support emerging imaging paradigms, to ensure the software's ability to handle the requirements of modern science. Due to these new and emerging challenges in scientific imaging, ImageJ is at a critical development crossroads. We present ImageJ2, a total redesign of ImageJ offering a host of new functionality. It separates concerns, fully decoupling the data model from the user interface. It emphasizes integration with external applications to maximize interoperability. Its robust new plugin framework allows everything from image formats, to scripting languages, to visualization to be extended by the community. The redesigned data model supports arbitrarily large, N-dimensional datasets, which are increasingly common in modern image acquisition. Despite the scope of these changes, backwards compatibility is maintained such that this new functionality can be seamlessly integrated with the classic ImageJ interface, allowing users and developers to migrate to these new methods at their own pace. ImageJ2 provides a framework engineered for flexibility, intended to support these requirements as well as accommodate future needs

    The virtual environment display system

    Get PDF
    Virtual environment technology is a display and control technology that can surround a person in an interactive computer generated or computer mediated virtual environment. It has evolved at NASA-Ames since 1984 to serve NASA's missions and goals. The exciting potential of this technology, sometimes called Virtual Reality, Artificial Reality, or Cyberspace, has been recognized recently by the popular media, industry, academia, and government organizations. Much research and development will be necessary to bring it to fruition

    Real-time, interactive, visually updated simulator system for telepresence

    Get PDF
    Time delays and limited sensory feedback of remote telerobotic systems tend to disorient teleoperators and dramatically decrease the operator's performance. To remove the effects of time delays, key components were designed and developed of a prototype forward simulation subsystem, the Global-Local Environment Telerobotic Simulator (GLETS) that buffers the operator from the remote task. GLETS totally immerses an operator in a real-time, interactive, simulated, visually updated artificial environment of the remote telerobotic site. Using GLETS, the operator will, in effect, enter into a telerobotic virtual reality and can easily form a gestalt of the virtual 'local site' that matches the operator's normal interactions with the remote site. In addition to use in space based telerobotics, GLETS, due to its extendable architecture, can also be used in other teleoperational environments such as toxic material handling, construction, and undersea exploration

    Snap2Diverse: Coordinating Information Visualizations and Virtual Environments

    Get PDF
    The field of Information Visualization is concerned with improving with how users perceive, understand, and interact with visual representations of data sets. Immersive Virtual Environments (VEs) excel at providing researchers and designers a greater comprehension of the spatial features and relations of their data, models, and scenes. This project addresses the intersection of these two fields where information is visualized in a virtual environment. Specifically we are interested in visualizing abstract information in relation to spatial information in the context of a virtual environment. We describe a set of design issues for this type of integrated visualization and demonstrate a coordinated, multiple-views system supporting 2D and 3D visualization tasks such as overview, navigation, details-on-demand, and brushing-and-linking selection. Software architecture issues are discussed with details of our implementation applied to the domain of chemical information and visualization. Lastly, we subject our system to an informal usability evaluation and identify usability issues with interaction and navigation that may guide future work in these situations

    Kassiopeia: A Modern, Extensible C++ Particle Tracking Package

    Full text link
    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease of use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and stochastic surface processes occuring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopei

    Semi-automated creation of converged iTV services: From macromedia director simulations to services ready for broadcast

    Get PDF
    While sound and video may capture viewersā€™ attention, interaction can captivate them. This has not been available prior to the advent of Digital Television. In fact, what lies at the heart of the Digital Television revolution is this new type of interactive content, offered in the form of interactive Television (iTV) services. On top of that, the new world of converged networks has created a demand for a new type of converged services on a range of mobile terminals (Tablet PCs, PDAs and mobile phones). This paper aims at presenting a new approach to service creation that allows for the semi-automatic translation of simulations and rapid prototypes created in the accessible desktop multimedia authoring package Macromedia Director into services ready for broadcast. This is achieved by a series of tools that de-skill and speed-up the process of creating digital TV user interfaces (UI) and applications for mobile terminals. The benefits of rapid prototyping are essential for the production of these new types of services, and are therefore discussed in the first section of this paper. In the following sections, an overview of the operation of content, service, creation and management sub-systems is presented, which illustrates why these tools compose an important and integral part of a system responsible of creating, delivering and managing converged broadcast and telecommunications services. The next section examines a number of metadata languages candidates for describing the iTV services user interface and the schema language adopted in this project. A detailed description of the operation of the two tools is provided to offer an insight of how they can be used to de-skill and speed-up the process of creating digital TV user interfaces and applications for mobile terminals. Finally, representative broadcast oriented and telecommunication oriented converged service components are also introduced, demonstrating how these tools have been used to generate different types of services

    Scene integration for online VR advertising clouds

    Get PDF
    This paper presents a scene composition approach that allows the combinational use of standard three dimensional objects, called models, in order to create X3D scenes. The module is an integral part of a broader design aiming to construct large scale online advertising infrastructures that rely on virtual reality technologies. The architecture addresses a number of problems regarding remote rendering for low end devices and last but not least, the provision of scene composition and integration. Since viewers do not keep information regarding individual input models or scenes, composition requires the consideration of mechanisms that add state to viewing technologies. In terms of this work we extended a well-known, open source X3D authoring tool
    • ā€¦
    corecore