377 research outputs found

    FPGA Implementation of Spectral Subtraction for In-Car Speech Enhancement and Recognition

    Get PDF
    The use of speech recognition in noisy environments requires the use of speech enhancement algorithms in order to improve recognition performance. Deploying these enhancement techniques requires significant engineering to ensure algorithms are realisable in electronic hardware. This paper describes the design decisions and process to port the popular spectral subtraction algorithm to a Virtex-4 field-programmable gate array (FPGA) device. Resource analysis shows the final design uses only 13% of the total available FPGA resources. Waveforms and spectrograms presented support the validity of the proposed FPGA design

    Fast self-reconfigurable embedded system on Spartan-3

    Get PDF
    Many image-processing algorithms require several stages to be processed that cannot be resolved by embedded microprocessors in a reasonable time, due to their high-computational cost. A set of dedicated coprocessors can accelerate the resolution of these algorithms, alt hough the main drawback is the area needed for their implementation. The main advantage of a reconfigurable system is that several coprocessors designed to perform different operations can be mapped on the same area in a time-multiplexed way. This work presents the architecture of an embedded system composed of a microprocessor and a run-time reconfigurable coprocessor, mapped on Spartan-3, the low-cost family of Xilinx FPGAs. Designing reconfigurable systems on Spartan-3 requires much design effort, since unlike higher cost families of Xilinx FPGAs, this device does not officially support partial reconfiguration. In order to overcome this drawback, the paper also describes the main steps used in the design flow to obtain a successful design. The main goal of the presented architecture is to reduce the coprocessor reconfiguration time, as well as accelerate image-processing algorithms. The experimental results demonstrate significant improvement in both objectives. The reconfiguration rate nearly achieves 320 Mb/s which is far superior to th e previous related works.Peer ReviewedPostprint (published version

    6502 emulator on FPGA

    Get PDF
    6502 microprocessor was once used in almost all of the microcomputer in the 80s, including the Apple II lines of computer, the Commodore PET, the Commodore 64, the Atari 8-bit series and even on the Nintendo Entertainment System (NES) video game console. The objective of this project is to emulate the once famous 6502 microprocessor onto a FPGA chip. The FPGA-based 6502 microprocessor had to emulate the functionality of a real 6502 microprocessor. Accurate pinouts emulation is desired but not a must. The 6502 assembly language is easy to learn and building a computer based on this microprocessor requires very few parts, thus making this project a great experiential learning process. The scope of this project requires the student to have an in-depth understanding on computer system architecture, especially on 6502 architecture; V erilog to understand existing 6502 source code from Bird Computer and also FPGA development process (synthesis tools) to transfer the Verilog code to the FPGA chip. Thus far, the resources and information on 6502 microprocessor looks promising. The student earlier scope was to come up with the 6502 code in Verilog HDL, but as there is available code from Bird Computer (State Machine coded) so the student had chanced his objectives to understand the existing code and implement it on FPGA only. But as along the way, problems occur on hardware implementation, focus had been switched again to simulate the existing code or ALU or simple processor to build up student understanding and for documentation for future project expansion. To test the functionality of the 6502 system, the student will either find existing application or come up with simple program to run using the FPGA-based 6502 system

    Insights into the Mind of a Trojan Designer: The Challenge to Integrate a Trojan into the Bitstream

    Full text link
    The threat of inserting hardware Trojans during the design, production, or in-field poses a danger for integrated circuits in real-world applications. A particular critical case of hardware Trojans is the malicious manipulation of third-party FPGA configurations. In addition to attack vectors during the design process, FPGAs can be infiltrated in a non-invasive manner after shipment through alterations of the bitstream. First, we present an improved methodology for bitstream file format reversing. Second, we introduce a novel idea for Trojan insertion

    Optimising and evaluating designs for reconfigurable hardware

    No full text
    Growing demand for computational performance, and the rising cost for chip design and manufacturing make reconfigurable hardware increasingly attractive for digital system implementation. Reconfigurable hardware, such as field-programmable gate arrays (FPGAs), can deliver performance through parallelism while also providing flexibility to enable application builders to reconfigure them. However, reconfigurable systems, particularly those involving run-time reconfiguration, are often developed in an ad-hoc manner. Such an approach usually results in low designer productivity and can lead to inefficient designs. This thesis covers three main achievements that address this situation. The first achievement is a model that captures design parameters of reconfigurable hardware and performance parameters of a given application domain. This model supports optimisations for several design metrics such as performance, area, and power consumption. The second achievement is a technique that enhances the relocatability of bitstreams for reconfigurable devices, taking into account heterogeneous resources. This method increases the flexibility of modules represented by these bitstreams while reducing configuration storage size and design compilation time. The third achievement is a technique to characterise the power consumption of FPGAs in different activity modes. This technique includes the evaluation of standby power and dedicated low-power modes, which are crucial in meeting the requirements for battery-based mobile devices

    Integration of FAPEC as data compressor stage in a SpaceFibre link

    Get PDF
    SpaceFibre is a new technology for use onboard spacecraft that provides point-to-point and networked interconnections at 3.125 Gbits/s in flight qualified technology. SpaceFibre is an European Space Agency (ESA) initiative and will substitute the ubiquitous SpaceWire for high speed applications in space. FAPEC is a lossless data compression algorithm that typically offers better ratios than the CCSDS 121.0 Lossless Data Compression Recommendation on realistic data sets. FAPEC was designed for space communications, where requirements are very strong in terms of energy consumption and efficiency. In this project we have demonstrated that FAPEC can be easily integrated on top of SpaceFibre to reduce the amount of information that the spacecraft network has to deal with. The integration of FAPEC with SpaceFibre has successfully been validated in a representative FPGA platform. In the developed design FAPEC operated at ~12 Msamples/s (~200 Mbit/s) using a Xilinx Spartan-6 but it is expected to reach Gbit/s speeds with some additional work. The speed of the algorithm has been improved by a factor 6 while the resource usage remains low, around 2% of a Xilinx Virtex-5QV or a Microsemi RTG4. The combination of these two technologies can help to reduce the large amounts of data generated by some satellite instruments in a transparent way, without the need of user intervention, and to provide a solution to the increasing data volumes in spacecrafts. Consequently the combination of FAPEC with SpaceFibre can help to save mass, power consumption and reduce system complexity.SpaceFibre es una nueva tecnología para uso embarcado en satélites que proporciona conexiones punto a punto y de red a 3.125 Gbit/s en tecnología calificada para espacio. SpaceFibre es una iniciativa de la Agencia Espacial Europea (ESA) y sustituirá al popular SpaceWire en aplicaciones espaciales de alta velocidad. FAPEC es un algoritmo de compresión sin pérdidas que normalmente ofrece relaciones de compresión para conjuntos de datos realistas mejores que las de la recomendación CCSDS 121.0. FAPEC ha sido diseñado para las comunicaciones espaciales, donde las restricciones de consumo de energía y eficiencia son muy fuertes. En este proyecto hemos demostrado que FAPEC puede ser integrado fácilmente con SpaceFibre para reducir la cantidad de información que la red del satélite tiene que procesar. La integración de FAPEC con SpaceFibre ha sido validada con éxito en una plataforma FPGA representativa. En el diseño desarrollado, FAPEC funciona a ~12 Mmuestras/s (~200 Mbit/s) usando una Xilinx Spartan-6 pero se espera que alcance velocidades de Gbit/s con un poco más de trabajo. La velocidad del algoritmo se ha mejorado un factor 6 mientras que el uso de recursos continua siendo bajo, alrededor de un 2% de una Xilinx Virtex-5QV o Microsemi RTG4. La combinación de estas dos tecnologías puede ayudar a reducir las grandes cantidades de datos generados por los instrumentos de los satélites de una manera transparente, sin necesidad de una intervención por parte del usuario, y de proporcionar una solución al continuo incremento de datos generados. En consecuencia, la combinación de FAPEC y SpaceFibre puede ayudar a ahorrar masa y consumo de energía, y reducir la complejidad de los sistemas.SpaceFibre és una nova tecnologia per a ús embarcat en satèl·lits que proporciona connexions punt a punt i de xarxa a 3.125 Gbit/s en tecnologia qualificada per espai. SpaceFibre és una iniciativa de l'Agència Espacial Europea (ESA) i substituirà el popular SpaceWire en aplicacions espacials d'alta velocitat. FAPEC és un algorisme de compressió sense pèrdues que normalment ofereix relacions de compressió per a conjunts de dades realistes millors que les de la recomanació CCSDS 121.0. FAPEC ha estat dissenyat per a les comunicacions espacials, on les restriccions de consum d'energia i eficiència són molt fortes. En aquest projecte hem demostrat que FAPEC pot ser integrat fàcilment amb SpaceFibre per reduir la quantitat d'informació que la xarxa del satèl·lit ha de processar. La integració de FAPEC amb SpaceFibre ha estat validada amb èxit en una plataforma FPGA representativa. En el disseny desenvolupat, FAPEC funciona a ~12 Mmostres/s (~200 Mbit/s) utilitzant una Xilinx Spartan-6 però s'espera que arribi velocitats de Gbit/s amb una mica més de feina. La velocitat de l'algorisme s'ha millorat un factor 6 mentre que l'ús de recursos continua sent baix, al voltant d'un 2% d'una Xilinx Virtex-5QV o Microsemi RTG4. La combinació d'aquestes dues tecnologies pot ajudar a reduir les grans quantitats de dades generades pels instruments dels satèl·lits d'una manera transparent, sense necessitat d'una intervenció per part de l'usuari, i de proporcionar una solució al continu increment de dades generades. En conseqüència, la combinació de FAPEC i SpaceFibre pot ajudar a estalviar massa i consum d'energia, i reduir la complexitat dels sistemes

    OLT(RE)2: an On-Line on-demand Testing approach for permanent Radiation Effects in REconfigurable systems

    Get PDF
    Reconfigurable systems gained great interest in a wide range of application fields, including aerospace, where electronic devices are exposed to a very harsh working environment. Commercial SRAM-based FPGA devices represent an extremely interesting hardware platform for this kind of systems since they combine low cost with the possibility to utilize state-of-the-art processing power as well as the flexibility of reconfigurable hardware. In this paper we present OLT(RE)2: an on-line on-demand approach to test permanent faults induced by radiation in reconfigurable systems used in space missions. The proposed approach relies on a test circuit and on custom place-and-route algorithms. OLT(RE)2 exploits partial dynamic reconfigurability offered by today’s SRAM-based FPGAs to place the test circuits at run-time. The goal of OLT(RE)2 is to test unprogrammed areas of the FPGA before using them, thus preventing functional modules of the reconfigurable system to be placed on areas with faulty resources. Experimental results have shown that (i) it is possible to generate, place and route the test circuits needed to detect on average more than 99 % of the physical wires and on average about 97 % of the programmable interconnection points of an arbitrary large region of the FPGA in a reasonable time and that (ii) it is possible to download and run the whole test suite on the target device without interfering with the normal functioning of the system
    corecore