

QUT Digital Repository:
http://eprints.qut.edu.au/

Whittington, Jim and Deo, Kapeel and Kleinschmidt, Tristan and Mason, Michael W.
(2008) FPGA Implementation of Spectral Subtraction for In-Car Speech Enhancement
and Recognition. In: International Conference on Signal Processing and Communication
Systems 2008, 15-17 December 2008, Gold Coast, Australia.

 © Copyright 2008 (please consult author)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10885904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FPGA Implementation of Spectral Subtraction for
In-Car Speech Enhancement and Recognition

Jim Whittington, Kapeel Deo
Department of Electronic Engineering

LaTrobe University
Melbourne, Victoria, Australia

{j.whittington, kapeel.deo}@latrobe.edu.au

Tristan Kleinschmidt, Michael Mason
Speech and Audio Research Laboratory
Queensland University of Technology

Brisbane, Queensland, Australia
{t.kleinschmidt, m.mason}@qut.edu.au

Abstract—The use of speech recognition in noisy environments
requires the use of speech enhancement algorithms in order to
improve recognition performance. Deploying these enhancement
techniques requires significant engineering to ensure algorithms
are realisable in electronic hardware. This paper describes
the design decisions and process to port the popular spectral
subtraction algorithm to a Virtex-4 field-programmable gate
array (FPGA) device. Resource analysis shows the final design
uses only 13% of the total available FPGA resources. Waveforms
and spectrograms presented support the validity of the proposed
FPGA design.

Index Terms—Field programmable gate arrays, speech en-
hancement, road vehicles.

I. INTRODUCTION

A key challenge of deploying automatic speech recogni-
tion (ASR) in real-world environments is the requirement to
perform well in the presence of high levels of noise. Most
current speech recognition systems are trained for use in con-
trolled scenarios (e.g. office environments or telephone-based
systems). Since these recognisers are trained on “clean speech”
they fail to produce satisfactory recognition performance under
more adverse conditions such as in automotive environments.

There are a number of methods available for making speech
recognition systems more robust. These include model com-
pensation, the use of robust feature extraction and recognition
algorithms, as well as speech enhancement. Enhancement
techniques aim to remove (or at least reduce) the levels of
noise present in the speech signals, allowing clean speech
models to be utilised in the recognition stage. This is a popular
approach as little-or-no prior knowledge of the operating envi-
ronment is required for improvements in recognition accuracy.

Popular speech enhancement algorithms (e.g. filter-and-
sum beamforming or spectral subtraction) have been designed
primarily to improve intelligibility and/or quality of the speech
signal without consideration of what effect that may have on
other speech processing systems [1]. Despite being optimised
using perception-based criteria, some of these techniques still
produce improvements in ASR word accuracy rates, making
them suitable for integration with speech recognisers.

The spectral subtraction method for the enhancement of
noisy speech signals was originally proposed by Boll in 1979
[2]. Since this time there have been numerous reviews of the
algorithm, although there are only limited examples where

spectral subtraction has been specifically applied to noisy
signals recorded in an automotive environment. Lockwood et.
al. [3] and Wahab et. al. [4] have both concluded that spectral
subtraction techniques can be successfully used to enhance
speech signals in the presence of adverse automotive environ-
ment noise, although no particular hardware implementations
were proposed.

Complete speech enhancement systems for use in automo-
tive environments have been proposed by [5], [6]. Cheng et.
al. [5] implement an adaptive beamformer with the majority
of the processing performed on a PC, while Yu et. al. [6]
propose the software implementation of a dual microphone
least mean square (LMS) algorithm running on an Analog
Devices Blackfin Digital Signal Processor (DSP). Neither of
these provide a low cost, single chip solution, likely to be of
greatest interest to automotive manufacturers.

Some examples of speech enhancement solutions on field-
programmable gate arrays (FPGA) are provided in the lit-
erature [7], [8]. Yiu et. al. [7] have implemented a multi-
microphone subband adaptive beamforming algorithm for
speech enhancement in a high-end Virtex-4 FPGA. The high-
end FPGA implementation was necessary to achieve real-time
performance. The focus of this work was not to produce
a stand-alone system, but rather a hardware accelerator for
a large speech processing system centred on a CPU. This
system showed “very similar” enhancement performance to a
floating-point implementation and a very large improvement in
processing performance. No automotive test data was included
in this work, nor was any suggestion made that the system may
be suitable for automotive applications.

Halupka et. al. [8] implemented a dual-microphone, phase-
based time-frequency masking speech enhancement system
on an Altera Stratix EP1S40 FPGA, and as a comparison,
also on an off-the-shelf Freescale Semiconductor 16-bit DSP
processor. An emphasis of this work was on producing a low
power consumption solution potentially suitable for integration
into hand-held devices. The FPGA and DSP implementations
were tested against each other and an equivalent floating-point
MATLAB implementation in terms of post-processing signal-
to-noise ratio. The FPGA implementation produced similar
real-time speech enhancement quality to the floating-point
software, and used 3.5x less power than the non real-time

Pre-emphasis
Filter

Framing &

Windowing
DFT

Speech

Signal

Inverse DFT &
Overlap-add

Reconstruction

Frequency
Domain

Enhancement

Enhanced Speech

Fig. 1. Block diagram of speech processing and enhancement in the frequency
domain.

DSP implementation. Test signals were artificially synthesised
and no automotive data was tested nor was suitability for use
in this environment discussed.

This paper focuses on the implementation of spectral
subtraction optimised for speech recognition purposes into
an FPGA design. Section II provides an overview of stan-
dard speech processing elements, followed by background
on spectral subtraction theory and its application to speech
recognition systems. Section III describes a fixed-point FPGA
implementation of the algorithm. Experimental results using
select samples from an in-car speech database verifying the
FPGA design are presented in Section IV. Discussion of these
results and possible improvements to the FPGA design are
provided in Section V.

II. SPEECH ENHANCEMENT

A. Speech Processing Basics

Speech enhancement algorithms typically perform their
primary processing in the frequency domain. The general
approach to processing a speech signal in the frequency
domain is presented in Fig. 1.

After a speech recording is acquired (via microphone), it
is passed through a pre-emphasis filter which ensures a flatter
spectrum of the signal by boosting the amplitude of the higher
frequencies relative to lower frequencies. The signal is then
decomposed into a series of frames of a set length (typically
32 ms – at 16 kHz this represents a frame length of 512
samples) and a Hamming window is applied to each frame.
The frames are created using a sliding window with frame
advances typically being 50% the length of the frame. This
framing and windowing operation is followed by a Discrete
Fourier Transform (DFT) which transforms the time-domain
acoustic waveform to a discrete frequency representation.

The enhancement process operates on the frequency domain
representation provided by the DFT, altering each frame’s
spectrum in an effort to improve the signal.

Following frequency domain enhancement, each frame is
transformed back to the time domain using an inverse DFT,
and adjacent frames are overlapped and added to resynthesise
an enhanced time-domain signal. If the enhancement technique
significantly alters the magnitude spectrum of the signal, a
Hamming window can be re-applied prior to the overlap-
add process in order to smooth discontinuities. The enhanced
signal can then be used for playback or as an input to further
speech processing such as automatic speech recognition.

A detailed description of the elements described in this
section which comprise a standard speech processing system
can be found in [9].

B. Spectral Subtraction

In a noisy environment, speech s(n) is assumed to be cor-
rupted by additive background noise d(n) to produce corrupted
speech y(n) as follows:

y(n) = s(n) + d(n) (1)

The signal is framed and the DFT is taken for each frame
i as explained in Section II-A to produce the short-time
frequency domain representation:

Y (i, ω) = S(i, ω) + D(i, ω) (2)

Generally in spectral subtraction algorithms, an estimate of
the magnitude (or power) spectra of the noise signal D̂(ω) is
subtracted from the corresponding spectra of the noisy signal
Y (i, ω) to give an estimate of the clean speech signal Ŝ(i, ω):

|Ŝ(i, ω)|γ = |Y (i, ω)|γ − |D̂(ω)|γ (3)

where γ is the exponent applied to the spectra, with γ = 1
providing magnitude spectral subtraction or γ = 2 for power
spectral subtraction [10]. The noise estimate is determined
by averaging frames deemed to be non-speech by a speech
activity detector (or alternatively using a series of frames at the
beginning of the utterance assuming the first 100-150 ms of a
speech recording contains only noise). Using the latter method,
around 8-10 frames are used to derive the noise magnitude
spectrum estimate.

The phase component of the noisy speech signal is left
unaltered and is kept for reconstruction into the time domain.

Should the subtraction in (3) give negative values (i.e. the
noise estimate |D̂(ω)|γ is greater than the instantaneous signal
|Y (i, ω)|γ) a flooring factor is introduced. This leads to the
following formulation of spectral subtraction:

|Ŝ(i, ω)|γ =

{
|Y (i, ω)|γ − |D̂(ω)|γ |D̂(ω)|γ < |Y (i, ω)|γ
β|D̂(ω)|γ otherwise

(4)
where β is the noise floor factor, and 0 < β ¿ 1 [10].

Common values for this parameter range between 0.005 and
0.1 [10], [11].

Following enhancement of the magnitude spectrum, it is re-
combined with the original phase spectrum and reconstruction
to the time domain is performed as described in Section II-A.

It should be noted here that in order to derive the rules
for the two common spectra denoted in (3), two conflicting
assumptions are made. If the clean speech and noise signals
are assumed to be uncorrelated, the power spectral subtraction
rule (i.e. γ = 2) results. Alternatively, if the two signals
are assumed to be co-linear, the equation reduces to the
magnitude spectral subtraction rule. In practice, neither of
these assumptions is valid all the time.

C. Selection of Enhancement Parameters

Although common values for γ and β are those noted in
the previous section, there is actually no limitation on the
values that these parameters can take. The values of γ are
typically used for their conceptual meanings as opposed to
performance. Further, β is often chosen to optimise SNR given
a particular value of γ. It was also previously established
[12] that speech recognition performance differs greatly with
various combinations of γ and β.

In order to reduce processing requirements in the FPGA
implementation detailed in Section III, magnitude spectral sub-
traction (γ = 1) is chosen. Previous experiments in [12] showed
that performing magnitude spectral subtraction provided better
speech recognition accuracy than power spectral subtraction (if
the β values were optimised for both values of γ).

Preliminary experiments were performed to determine the
optimal value of β to use in the FPGA implementation. Using
the first 5 experimental folds from the evaluation protocol for
the AVICAR database [13], [14], values of β were varied
in linear increments through the range [0, 1] with γ = 1.
The results showed that a value of β = 0.5 provides best
recognition performance and was therefore chosen for the
FPGA implementation.

III. FPGA IMPLEMENTATION

The second part of this work involved adaptation of the
spectral subtraction algorithm on to a realisable hardware
platform suitable for use in an automotive environment.
Xilinx, a leading FPGA vendor has developed the Xilinx
Automotive (XA) product family specifically for automotive
applications [15], [16]. With this in mind, Xilinx devices and
development tools were chosen for this work since a clear
pathway to a commercialisable platform is available. Cost is a
key factor to eventual widespread adoption in the automotive
field. The spectral subtraction algorithm relies on considerable
DSP power. Thus, target devices must be cost effective while
still providing relatively high performance DSP. With well over
one million system gates, plus memory and XtremeDSPTM

slices, Xilinx XA Spartan-3A DSP FPGAs fit this requirement
well [16], [17], [18].

The Xilinx XA Spartan-3A DSP FPGA is a lower cost
member of the Xilinx XtremeDSPTM Device portfolio, which
also contains larger and higher performance Virtex-4 SX and
Virtex-5 SXT devices. Due to similarities in their architec-
ture, particularly the XtremeDSPTM slices, designs can be
transported between XtremeDSPTM devices in a reasonably
straight-forward manner. This feature enables designs to be ini-
tially developed in a high-end device and gradually reworked
towards a lower-end device solution [19].

A. Design Process

Moving from an algorithmic description to a quality, cost
effective FPGA solution is anything but trivial. The spectral
subtraction algorithm was originally developed as MATLAB
scripts using high precision, complex floating-point arithmetic.

A one-to-one conversion to an equivalent FPGA implemen-
tation cannot be achieved as many of the complex opera-
tions cannot be directly or easily implemented in an FPGA
with reasonable (ideally minimal) resource utilisation. Often
options for the implementation of such operations involve
use of approximations, either formulae-based or through the
use of look up tables, both of which can introduce error
to the system. Also, the precision of data in the FPGA
implementation is limited to a fixed number of bits (fixed-point
representation) which results in the addition of quantization
noise to the system. This necessitates a multi-step process with
considerable testing at each stage.

The first stage of this process involved identifying the main
functions of the floating-point algorithm that would become
key blocks in the hardware design (see Fig. 2). These were
then converted to a fixed-point (data and operations) MATLAB
implementation. MATLAB 7.3 with the fixed-point tool box
were used in this process. The fixed-point implementation was
then tested against the floating-point version.

Following validation of the fixed-point implementation, a
Xilinx System GeneratorTM (XSG) model was developed.
Xilinx System GeneratorTM is an FPGA hardware DSP devel-
opment environment that sits above MATLAB and Simulink
software packages [19]. The XSG package contains predefined
blocks that can be readily compiled into a hardware description
language (HDL) and subsequently synthesised for specific
Xilinx FPGAs. Designers can also incorporate their own HDL
descriptions into the model. An XSG model does not neces-
sarily provide an optimised FPGA solution, but is certainly
the fastest way to implement the complex functions of the
algorithm, such as the fast Fourier transform (FFT) and ob-
taining the argument of complex numbers, which are examples
of readily available functions. XSG provides a full simulation
environment where signals can be analysed by simply dragging
a ‘scope’ block on to the model and connecting the signal
to it. Signal input/output can also be performed with the
MATLAB workspace or file(s) as required. The development
of the spectral subtraction XSG model was conducted block-
by-block based on the fixed-point MATLAB implementation.
Each block was tested after it was completed to ensure correct
operation before the next block was developed.

Once the entire XSG model was complete, its performance
was checked against the equivalent floating-point and fixed-
point MATLAB models by comparing output waveforms. The
verified hardware design was then synthesised, using Xilinx
ISE 9.2 tools, and implemented on a high-end Xilinx Virtex-4
SX FPGA. For initial hardware development work the ML 402
development board (containing a Virtex-4 SX35 device) was
used. While not unexpected in early versions of an FPGA
design, the initial Virtex-4 implementation used more FPGA
resources than desirable. This was attributed to the predefined
XSG blocks that are often provided more as a rapid design
development solution than a highly optimised one. The direct
XSG model was then analysed and tested block-by-block to
determine where resource inefficiencies lay and refined to
use more appropriate resources. This was achieved through

D

FFT

| FFT| Phasearg{ FFT}

| FFT|

Acquire signal
Pre- emphasis

y[n] =x[n] – 0.97x[n-1]

-0.97

+
x[n] y[n]

Z
-1

Framing Windowing Hamming

f

| |

Initial Noise estimate

=

Mean of | FFT |

X

Y

D

+

-

D

 IF Z> D

 X = Z

ELSE

 X = D

 END

Z | FFT|
1/X

Recombine phase

And

magnitude

Overlap and Add

Spec

Enhanced Speech

Speech Signal

- Noise floor

Fig. 2. Block diagram of hardware implementation of spectral subtraction algorithm.

specific coding of key sections of a number of blocks.

B. Hardware Perspective of Spectral Subtraction Algorithm
A block diagram of the spectral subtraction algorithm is

provided in Fig. 2. Input signals consist of 16-bit speech wave-
forms sampled at 16 kHz. For this specific implementation, a
frame size of 512 samples was used with 50% overlap.

The pre-emphasis filter is a basic design consisting of a
delay, constant multiplication and sum. Framing and window-
ing can be readily achieved using an addressable shift register
(buffer), predefined Hamming function, multiplication, and
appropriate control logic.

For implementation of the DFT, an XSG forward and
inverse FFT block can be used. This block provides both real
and imaginary data outputs. As it is not used continuously,
with appropriate control logic the same block can be used
to perform the IFFT required after spectral subtraction. To
generate frequency domain magnitude and phase data from
the FFT block output, an XSG cordic arctan block is used.

At this point the algorithm calls for the magnitude data set
to be raised to the power γ. This is potentially a very complex
hardware operation, so as outlined in Section II-C, γ = 1 is
used as it greatly simplifies the design yet has no effect on
performance.

The initial noise magnitude estimate is calculated using a
circular buffer, an addition block and division. Each incoming
frequency bin data word is added to the previously accumu-
lated value for that frequency. To obtain an average, the final
sum must be divided by the number of frames used in the
calculation. Restricting the number of frames to a power of

two greatly simplifies the division operation. Therefore, this
implementation uses the initial 8 frames of data to calculate
the noise magnitude spectrum estimate.

The essence of the spectral subtraction technique oc-
curs through subtracting the stored noise magnitude estimate
|D̂(ω)| from the subsequent frequency magnitude for each
frame |Y (i, ω)| in the speech recording. The resulting frame
Z is compared with a scaled version of the average noise
magnitude by the factor β which is known as the noise
floor. An element of the resultant frame Z is retained if it
is greater than that of the noise floor, otherwise the noise
floor element is retained. If a noise estimate is not available
(i.e. the current frame is one of the first 8 frames of the signal),
the incoming data frame is ignored. Furthermore, β = 0.5
was used in conjunction with γ = 1, as it provides best
recognition performance [12]. Being a multiplication factor,
β = 0.5 could be very simply implemented using a hardware
shift operation as wiring between two registers. However,
to maintain flexibility in the design during evaluation, an
allowance for different β values was maintained by using a
multiplication block for the noise flooring operation.

This point in the algorithm requires the enhanced frames X
to be raised to the inverse power of γ. Once again potentially
complex hardware is avoided by using γ = 1.

Before a time-domain frame can be generated, the new mag-
nitude and previously retained phase frames must be combined
and converted to real and imaginary cartesian coordinates
required for input to the IFFT process (the XSG forward and
inverse FFT block discussed earlier). This is performed with

USB
Driver

Spectral

Subtraction

FPGA Device

USB
Host

device

Virtex- 4 ML 402Kit

PC

Fig. 3. PC-USB test bench for FPGA implementation of spectral subtraction.

an XSG cordic sin-cos block and two multipliers.
Finally, the resulting time-domain frames must be appropri-

ately overlapped and added to produce the final reconstructed
speech signal. This reverses the framing process performed
at the start of the algorithm. This is implemented using an
addressable shift register and an addition block.

IV. VERIFICATION OF FPGA DESIGN

A. Testing Xilinx Virtex-4 FPGA Implementation

To test the FPGA implementation, a method was required
to accept standard speech waveforms from a PC – where they
can also be passed through speech recognisers – and collect
the corresponding output data and pass it back to the PC for
storage and comparison. This requirement was met through the
development of a USB test harness. The basic block diagram
of this test harness is shown in Fig. 3.

The operation of the test harness is as follows.
1) A selected speech file is converted to a raw binary file

suitable for sending to the FPGA.
2) The raw binary file is sent to the FPGA via the test

bench PC application, through USB.
3) The USB driver/interface (an FPGA design) accepts

the incoming binary data, buffers it and feeds it to
the spectral subtraction implementation at the correct
sampling rate.

4) At the same time output data is separately buffered by
the USB driver/interface and sent to the PC via USB
link.

5) The output from the FPGA is collected by the test bench
PC application and stored as a raw binary file.

6) The file is then converted back to WAV format.
7) The resulting WAV file can then be played, plotted

and compared to the equivalent XSG model simulation
results or other versions of the spectral subtraction
algorithm.

B. Test Results

Initial testing of the effectiveness of the Virtex-4 FPGA
implementation was performed by comparing the output gen-
erated by the hardware implementation against equivalent
outputs produced by the floating-point (MATLAB) implemen-
tation (of the spectral subtraction algorithm) and the Xilinx
System Generator model. Test inputs comprised in-car speech

signals from the AVICAR database [13]. As an example,
a typical AVICAR speech sample under the 35mph with
windows down noise condition is shown in Fig. 4(a). The
corresponding spectral subtraction output from the floating-
point algorithm is shown in Fig. 4(b), while the XSG model
output is shown in Fig. 4(c). The Virtex-4 FPGA hardware
output is shown in Fig. 4(d). Corresponding spectrogram plots
for each of these waveforms are provided in Fig. 5.

Observing the waveforms and spectrograms it is clear that
all three implementations of the spectral subtraction algorithm
produce similar and noticeable reinforcement of the speech
content within the signal. The background noise signal appar-
ent in the original waveform (Fig. 4(a)) is noticeably reduced
in the processed waveforms. The greater contrast present in
the processed spectrograms reinforces this observation.

A synthesised waveform is required in order to analyse the
sample-by-sample performance of the FPGA implementation.
An amplitude-modulated chirp signal was corrupted by a
Gaussian white noise signal to produce a peak signal-to-
noise ratio of approximately 18 dB. This noisy reference
signal is shown in Fig. 6(a). The corresponding spectral
subtraction output from the floating-point implementation is
shown in Fig. 6(b), whilst output from the Virtex-4 FPGA
implementation is shown in Fig. 6(c). A sample-by-sample
difference between the two implementations is provided in
Fig. 6(d). The magnitude of the difference plot shows there is
good correlation between the two implementations, with peak
quantisation noise due to the fixed-point implementation of
approximately -33 dB.

C. FPGA Resource Utilisation

The initial Xilinx Virtex-4 FPGA implementation – a direct
synthesis of the XSG model – used approximately 29% of the
total resources available. Table I shows a summary of the key
FPGA resources used in this implementation. The following
paragraph explains the terms used.

DSP48 slices are dedicated specialised hardware arithmetic
blocks specifically tailored for the efficient implementation
of complex mathematical and DSP functions. Digital Clock
Manager (DCM) blocks are used to manage clock generation,
distribution and to minimise clock skew. Block RAM (BRAM)
are flexible blocks of RAM embedded in the FPGA fabric that
can be utilised in a wide variety of ways, e.g. dual port or FIFO

0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (secs)

Am
plit

ud
e

(a)

0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (secs)

Am
plit

ud
e

(b)

0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (secs)

Am
plit

ud
e

(c)

0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (secs)

Am
plit

ud
e

(d)

Fig. 4. (a) Noisy speech signal from AVICAR database. Output of
(b) floating-point MATLAB implementation of spectral subtraction,
(c) Xilinx System Generator implementation, and (d) Virtex-4 FPGA
implementation.

Fig. 5. Spectrograms of (a) noisy speech signal from AVICAR
database, output of (b) floating-point MATLAB implementation of
spectral subtraction, (c) Xilinx System Generator implementation, and
(d) fixed-point Virtex-4 FPGA implementation.

TABLE I
INITIAL VIRTEX-4 FPGA RESOURCE USAGE SUMMARY.

Resource Type Used Available Usage (%)
Slices 4505 15360 29.33

BRAM 8 192 4.17
DCM 1 8 12.50

DSP48 27 192 14.06

buffers, shift registers, large look-up tables (LUTs) etc. Slices
represent the basic FPGA fabric, which consists of two 4-input
LUTs, two flip-flops (FFs) plus interconnecting circuitry.

While this implementation fits comfortably into the Virtex-4
SX device, our aim is to produce a lower cost solution than
a Virtex-4 implementation can provide. To identify potential
resource savings, an analysis of block-by-block resource usage
was conducted. A summary of these results are shown in
Table II.

In general, the Xilinx Core blocks including the FFT,
cordic arctan and sin-cos blocks use a significant amount of
resources. This is not unexpected as these blocks perform
complex mathematical functions. Although these blocks are
provided by Xilinx as a core for rapid design development and
as such may not be highly optimised, significant effort would

be required to produce a more efficient tailor-made solution.
A more appropriate first candidate for resource reduction are
the Addressable Shift Registers. In the initial implementation
these blocks used more than half the 4-input LUTs in the
entire design. These circuit elements can be alternatively
implemented in BRAM, a resource initially under-utilised.
Finally, a number of additional slices, mostly FFs have been
used to implement pipelines for improved speed performance.

After modification of the design to implement Addressable
Shift Registers in BRAM, overall resource usage dropped by
over half to approximately 13% of the total resources available.
Table III shows a summary of the key FPGA resources used
in the modified design.

A block-by-block analysis of resource usage is provided in
Table IV. This table illustrates the significant savings made

TABLE II
BLOCK BASED FPGA RESOURCE USAGE – INITIAL DESIGN.

Block Slices Flip Flops BRAM LUTs DSP48
FFT Core 700 900 5 1000 12

Rescaling Blocks (2) 316 0 0 630 0
Embedded 3 cycle Multiplier 81 130 0 55 4
Embedded 4 cycle Multiplier 94 156 0 55 0

Cordic a-tan 702 137 0 1300 0
Cordic sin-cos 500 85 0 1000 0

Addressable Shift Register (512x4) 2000 0 0 4000 0
Addressable Shift Register (256) 256 0 0 500 0

TABLE III
VIRTEX-4 FPGA RESOURCE USAGE SUMMARY – MODIFIED DESIGN.

Resource Type Available Used Usage (%)
Initial Modified Initial Modified

Slices 15360 4505 2040 29.33 13.28
BRAM 192 8 13 4.17 6.77
DCM 8 1 1 12.50 12.50

DSP48 192 27 27 14.06 14.06

through conversion of the Addressable Shift Registers to a
BRAM implementation.

V. DISCUSSION

The initial Virtex-4 implementation used approximately
29% of the total FPGA resources available. While this was a
reasonable result for a first cut of the design, a cost effective
solution demands a more efficient implementation. A block-
by-block analysis of resource usage quickly identified an
obvious path to significant resource savings. By redesigning
the Addressable Shift Registers (used in the Framing and
Hamming Window, Noise Floor Calculation, IFFT buffers and
Overlap & Add blocks) so that they are constructed from
Block RAM rather than general LUT logic fabric, a very
significant drop in overall resource usage to approximately
13% was achieved. If required, further efficiencies may be
found through redesign of the complex mathematical function
blocks, although these are likely to require significant design
effort which – given current positive results – is probably only
justified for a final product design. Removing some of the
various pipelines used to improve processing speed and reduce
latency could be used for a modest reduction in resource
usage, although significant care would be needed to ensure
appropriate performance is maintained.

Whilst the general structure of the enhanced waveforms
from the floating-point and FPGA implementations are very
similar, the peak quantisation difference between the floating-
point and FPGA implementations was found to be approx-
imately -33 dB, representing 5 bits. The true test of the
effectiveness of the FPGA implementation for use in in-
car speech recognition will be to evaluate FPGA processed
waveforms using speech recognition engines. In the future,
continuous speech recognition experiments using the phone
numbers task of the AVICAR database [13] will be performed.
The results of these experiments may lead to alteration of the
precision of some hardware blocks in order to improve the
accuracy of the speech recognition. The current overall Virtex-

4 resource usage of roughly 13% will easily accommodate
adjustments to the word widths used in various sections of the
design. Also, β values can be easily changed in the current
FPGA as a check of their impact on recognition performance.

Finally, the relatively modest resource usage of the Virtex-4
FPGA implementation bodes well for a reasonably straight-
forward transition of the design to a Spartan-3A DSP FPGA.
Once complete, the performance of the Spartan-3A DSP im-
plementation will be tested in the same manner as the Virtex-
4 implementation described in this paper. Being identical to
the Xilinx Automotive Spartan-3A DSP except in performance
specification, an implementation on this platform will provide
a good indication of the potential to produce a low cost
realisation of spectral subtraction for in-car speech recognition
and other applications.

VI. CONCLUSION

The common frequency-domain spectral subtraction en-
hancement algorithm has been described both theoretically and
practically with respect to integration with any arbitrary speech
recognition engine. It has also been analysed with respect to
hardware implementation on a Virtex-4 FPGA.

Design paths have been described which have shown an
initial resource usage of 29% reduced to approximately 13%
of the total available FPGA resources. Waveforms and spec-
trograms of the spectral subtraction outputs from both the
floating-point and FPGA implementations show the hardware
design effectively realises the enhancement algorithm.

Future directions include porting the Virtex-4 design onto
a smaller, more cost-effective Spartan-3A FPGA as well as
performing continuous speech recognition for both designs
using data collected in automotive environments.

ACKNOWLEDGMENT

This work was supported in part by the Australian Coop-
erative Research Centre for Advanced Automotive Technol-
ogy (AutoCRC).

TABLE IV
BLOCK BASED FPGA RESOURCE USAGE – MODIFIED DESIGN.

Block Slices Flip Flops BRAM LUTs DSP48
FFT Core 700 900 5 1000 12

Rescaling Blocks (2) 316 0 0 630 0
Embedded 3 cycle Multiplier 81 130 0 55 4
Embedded 4 cycle Multiplier 94 156 0 55 0

Cordic a-tan 702 137 0 1300 0
Cordic sin-cos 500 85 0 1000 0

Addressable Shift Register (512x4) 44 38 4 74 0
Addressable Shift Register (256) 6 5 1 10 0

0 0.5 1 1.5 2 2.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
(a)

Time (secs)

Am
plit

ud
e

0 0.5 1 1.5 2 2.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
(b)

Time (secs)

Am
plit

ud
e

0 0.5 1 1.5 2 2.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
(c)

Time (secs)

Am
plit

ud
e

0 0.5 1 1.5 2 2.5
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05
(d)

Time (secs)

Err
or

Am
plit

ud
e

Fig. 6. (a) Noise modulated chirp signal. Output of (b) floating-point
MATLAB implementation of spectral subtraction, (c) fixed-point Virtex-4
FPGA implementation, and (d) the sample-by-sample difference between the
floating-point and fixed-point implementations.

REFERENCES

[1] M. Seltzer, B. Raj, and R. Stern, “Likelihood-maximizing beamforming
for robust hands-free speech recognition,” IEEE Transactions on Speech
and Audio Processing, vol. 12, no. 5, pp. 489–498, 2004.

[2] S. Boll, “Suppression of acoustic noise in speech using spectral subtrac-
tion,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 27, no. 2, pp. 113–120, 1979.

[3] P. Lockwood, J. Boudy, and M. Blanchet, “Non-linear spectral subtrac-
tion (NSS) and hidden Markov models for robust speech recognition in
car noise environments,” in IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 1, 1992, pp. 265–268.

[4] A. Wahab, E. C. Tan, and H. Abut, “CMAC spectral subtraction
for speech enhancement,” in Sixth International Symposium on Signal
Processing and its Applications, vol. 2, 2001, pp. 707–710.

[5] C.-C. Cheng, W.-H. Liu, C.-H. Yang, and J.-S. Hu, “A robust speech
enhancement system for vehicular applications using H∞ adaptive
filtering,” in IEEE International Conference on Systems, Man and
Cybernetics, vol. 3, 2006, pp. 2541–2546.

[6] S. Yu, “Hybrid speech enhancement and speech recognition system for
car telematics platform for hands-free control GPS navigator and voice
dialer for handphone,” ASEAN Virtual Instrument Applications Contest
Submission, 2006.

[7] K.-F. C. Yiu, Y. Lu, X. Shi, and W. Luk, “FPGA acceleration of a
subband beamforming algorithm for speech enhancement,” in Congress
on Image and Signal Processing, vol. 5, 2008, pp. 742–746.

[8] D. Halupka, A. Rabi, P. Aarabi, and A. Sheikholeslami, “Low-power
dual-microphone speech enhancement using field programmable gate
arrays,” IEEE Transactions on Signal Processing, vol. 55, no. 7, pp.
3526–3535, 2007.

[9] X. Huang, A. Acero, and H.-W. Hon, Spoken Language Processing: A
Guide to Theory, Algorithm, and System Development. Prentice Hall
PTR, 2001.

[10] M. Berouti, R. Schwartz, and J. Makhoul, “Enhancement of speech
corrupted by acoustic noise,” in IEEE Int. Conf. on Acoustics, Speech,
and Signal Processing, 1979, pp. 208–211.

[11] R. Martin, “Spectral subtraction based on minimum statistics,” in EU-
SIPCO, Edinburgh, 1994, pp. 1182–1185.

[12] T. Kleinschmidt, S. Sridharan, and M. Mason, “A modified LIMA frame-
work for spectral subtraction applied to in-car speech recognition,” in
1st International Conference on Signal Processing and Communication
Systems, Gold Coast, Australia, 2007, pp. 335–338.

[13] B. Lee, M. Hasegawa-Johnson, C. Goudeseune, S. Kamdar, S. Borys,
M. Liu, and T. Huang, “AVICAR: Audio-visual speech corpus in a car
environment,” in INTERSPEECH, Jeju Island, Korea, 2004, pp. 2489–
2492.

[14] T. Kleinschmidt, D. Dean, S. Sridharan, and M. Mason, “A continuous
speech recognition protocol for the AVICAR database,” in 1st Interna-
tional Conference on Signal Processing and Communication Systems,
Gold Coast, Australia, 2007, pp. 339–344.

[15] K. Kitagawa, “At the heart of consumer and automotive innovation,”
XCell Journal, no. 63, pp. 12–13, 2007.

[16] Xilinc Inc., “Xilinx Automotive - flexible solutions beyond silicon,”
2007.

[17] D. Bagni and P. Zoratti, “Block matching for automotive applications
on Spartan-3A DSP devices,” XCell Journal, no. 63, pp. 16–19, 2007.

[18] V. Sardana, “Slash your total cost by up to 50% with Spartan-3
generation FPGAs,” Xilinc Inc., Tech. Rep., 2008.

[19] Xilinx Inc., “XtremeDSPtm solutions selection guide,” 2008.

