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1. Introduction 
  

The instruments used in modern space missions require increasing amounts of telemetry 

resources to download the acquired data to the ground. Transmission link speed has 

become the bottleneck of the data chain for many applications. One way to solve this issue 

is to apply on-board data processing techniques to reduce the amount of data to be sent 

down to ground, and its use is becoming increasingly necessary to deal with the large 

amounts of data generated by modern spacecrafts. Remarkably, data compression is a data 

processing technique that encodes information in fewer bits than the original 

representation. It is therefore currently seen as a mandatory stage for many missions in 

order to mitigate the saturation of the telemetry link. However, the available on-board 

processing power has been traditionally modest. Compression systems have thus been 

kept as simple as possible.  

 

The Prediction Error Coder (PEC) is a lossless data compression algorithm belonging to 

the family of the entropy coders [1,2]. PEC was developed considering the tight constraints 

of a space mission and its main features are low complexity and resilience against 

statistical outliers in the data. PEC needs to be calibrated for different types of data, and its 

performance depends on the quality of this calibration. The Fully-Adaptive PEC (FAPEC) is 

an adaptive version of PEC that was developed to address this calibration problem. FAPEC 

typically delivers better ratios than the CCSDS 121.0 recommendation (General Purpose 

Lossless Data Compression [3]) on realistic data sets [4].  

 

Embedded hardware implementations of data processing algorithms are becoming 

increasingly popular in space. Hardware data processing performs faster and uses less 

power than the conventional approach of using general purpose CPUs. The most cost-

effective approach for custom data processing solutions as those used in space is usually 

Field Programmable Gate Array (FPGA) devices, but space-qualified FPGAs have been 

traditionally not very powerful. However, the capabilities of FPGAs are steadily improving, 

thus enabling the implementation of more complex algorithms. The new generation of 

radiation tolerant FPGAs such as Xilinx Virtex-5QV [5], Microsemi RTG4 [6] and 

NanoXplore BRAVE [7] (a new European space-qualified FPGA project) offer faster speeds 

and much more resources than the old Microsemi RTAX family traditionally used in space. 

Thanks to this dedicated logic, algorithms can run much faster and with a fraction of the 

power requirements necessary when they run in general purpose CPUs.  

 

SpaceFibre (SpFi) is a new, multi-Gbits/s on-board network technology which runs over 

both electrical and fibre optic cables. SpFi currently operates at 3.125 Gbits/s in flight-

qualified technology, and is capable of fulfilling a wide range of spacecraft on-board 

communications applications because of its inbuilt quality of service (QoS) and fault 

detection, isolation and recovery (FDIR) capabilities. SpaceFibre is now being 

standardised by the European Cooperation for Space Standardization (ECSS) and is 

expected to be published as a formal standard this year. 

 

The aim of this project is to integrate the FAPEC data compressor into the SpFi codec. Both 

SpFi and FAPEC have been designed to withstand the harsh space environment and, hence, 
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it seems a logical step to combine the data compressor into the data link technology to 

increase the net throughput achievable.  

 

1.1 PEC 
 

The Prediction Error Coder (PEC) is central in the operation of FAPEC. PEC was developed 

within the frame of the Gaia mission [8]. The effort was focused on the development of a 

very fast and robust compression algorithm, and PEC was the outcome – an entropy coder 

based on a segmentation strategy. PEC is composed of three different coding strategies, or 

variants, known as Low Entropy (LE), Double-Smoothed (DS) and Large Coding (LC). LE and 

DS are both ranged Variable Length Codes, and LC is a unary prefix code [9]. The three 

coding options share the same principle: the entire range of the data to be coded is split 

into four smaller sub-ranges or segments. The appropriate segment is selected depending 

on each individual value. In PEC the first segments are smaller than the original symbol 

size, while the last segments can be slightly larger. PEC follows the assumption made for 

most entropy coders that most values to be coded are close to zero [9]. Thus, the coding 

efficiency depends on the segment sizes chosen and on their relation with the probability 

density function of the data.  

 

Compressing data with PEC requires only very few and simple calculations. The values 

inside these ranges are coded in a plain binary form, implicitly assuming equiprobable 

values inside each range. The resulting coding hierarchy is actually similar to a coding tree, 

but with very short branches because these only represent the prefixes, not the values 

themselves. In Fig. 1.1 a schematic view of PEC is shown and the coding strategy of each of 

the ranges is unveiled. The coding scheme is completely different to that of other entropy 

coders such as of the Rice coder, the compression core in the CCSDS 121.0 Lossless Data 

Compression Recommendation [3].  

 

PEC has a very low computational cost and an excellent resiliency to outliers and noise in 

the data, also offering excellent efficiencies for a wide variety of data statistics. Using this 

coder the usual strategy in space data compression – based on a two-stage scheme, 

namely, an adequate pre-processing stage followed by an entropy coder – can be 

improved in most cases, provided that the pre-processing stage is properly tailored. This 

pre-processing can be seen as a prediction, and is defined in both the compressor and the 

decompressor. Every sample entering PEC is compared (subtracted) against its predicted 

value, thus leading to signed values (that is, prediction errors). Subsequently this 

difference between the real value and the prediction is coded using PEC.  

 

Coding signed values adds some redundancy because of the existence of codes for both +0 

and 

-0 values. The CCSDS recommendation uses a mapping algorithm to eliminate this 

redundancy at the expense of a slightly more complex algorithm [3]. However, a different 

alternative is possible, and this is a key feature of PEC. In PEC, both the LE and DS options 

use the -0 code, as well as the last value of each segment (i.e. all bits set to one), as escape 

sequences. These implicitly indicate which of the coding segments are used. On the other 

hand, the LC option simply uses the unary coding to indicate the appropriate segment and 

avoids the output of the sign bit when coding a zero, thus eliminating the -0 redundancy.  
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Fig. 1.1: PEC coding strategy 

 

1.2 FAPEC 
 

PEC is a low-complexity high-performance compressor which typically outperforms the 

CCSDS recommendation. However, it needs to be calibrated for every set of data. The 

Fully-Adaptive PEC (FAPEC) is an adaptive compression algorithm that calibrates PEC 

once every some hundred samples, thus allowing it to rapidly adapt to changes in the 

statistics of data. The operation of the FAPEC coder basically can be described as an 

algorithm which selects the best PEC coding configuration for each data block, followed by 

a PEC coding step that applies the optimal tables obtained on the first step.  

 

FAPEC is a lossless data compression algorithm that typically offers better ratios than the 

CCSDS 121.0 on realistic data sets. Its compression efficiency is higher than 90% of the 

Shannon limit in most cases, even in the presence of large amounts of noise and outliers 

[4]. FAPEC was designed for space communications, where requirements are very tight in 

terms of energy consumption and efficiency. FAPEC low computing resources 

consumption and high compression speed cover a wide range of possibilities that current 

compressors cannot offer for high throughputs due to their high compression time. FAPEC 

can be integrated into almost any data transfer flow, enhancing the data rate of the system 

with very small energy and data processing time increment. 

 

The data link in space missions, as any digital communications channel, is subject to noise 

and transmission errors. Despite the powerful techniques available for error correction an 

error-free transmission cannot be guaranteed. Also, re-transmissions of data blocks 

received with unrecoverable errors are not always possible. Therefore, the use of small 

independent data blocks in the data compression stage is highly advisable. Thus, adaptive 
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algorithms requiring large amounts of data for their optimal operation, such as Huffman or 

LZW, are not applicable. Furthermore, these algorithms are quite demanding when 

compared with those studied here, and will usually yield little improvement in terms of 

compression ratio. In short, data compression systems used in space missions must use 

small and independent data blocks in order to guarantee the minimum possible losses in 

case of transmission errors.  

 

FAPEC accumulates the values to be compressed in blocks of a user-configured size – 

typically ~200 samples. During this, an internal histogram of the moduli of the pre-

processed values is calculated on-the-fly. Once the block of values has been completed, the 

algorithm analyses the histogram to obtain the best coding parameters, calculating the 

accumulated probability for each value. The choice of the coding option (LE, DS or LC) and 

the specific coding table are defined through a set of accumulated probability thresholds. 

That is, FAPEC defines the coding segments (and hence the coding table) according to their 

accumulated probability and code length. This nominal tuning offers excellent 

compression ratios for almost any case. Furthermore, FAPEC threshold levels can be 

modified to better suit other statistics if required. This is another significant advantage 

with respect to the Rice coder used by the CCSDS 121.0 recommendation, which is only 

optimal for noiseless Laplacian distributions. 

 

Analysing a histogram of 16-bit values (which is the case studied in this project) can be 

very time consuming, and can lead to prohibitive processing times if naively (or 

exhaustively) implemented. For this reason FAPEC uses a logarithmic-like histogram, with 

increasing bin sizes for larger values. That is, large values are grouped and mapped to a 

single histogram bin, while full resolution is kept for the lowest values. This analysis is 

precise enough for the case of ranged entropy coding, such as PEC, which does not require 

a precise knowledge of the largest values. Once the coding parameters (coding table) have 

been determined, they are explicitly output as a small header at the beginning of the 

compressed data block. The decoder only has to invert the PEC process using the 

parameters indicated by the header, without requiring any knowledge on the adaptive 

algorithm used to calibrate the coder. In this way, the fine-tuning thresholds of FAPEC or 

even the auto-calibration algorithm can be safely changed without requiring any 

modification in the decoding stage. This is an advantage of FAPEC against other 

compression algorithms. 

 

There is an early FAPEC implementation in an FPGA developed as a feasibility 

demonstrator. The benchmarked implementation on a Microsemi PROASIC3L successfully 

proved its operation at 32 Mbit/s (2 Msample/s) with a relatively simple design [10]. 

 

1.3 SpaceFibre  

 
SpaceFibre (SpFi) is a spacecraft on-board data-link and network technology developed by 

STAR-Dundee Ltd. and the University of Dundee for the European Space Agency (ESA). It is 

the next generation of the widely used SpaceWire (SpW) technology, offering higher 

throughput, lower mass and new capabilities including quality of service (QoS) and fault 
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detection, isolation and recovery (FDIR). Furthermore, it runs over both electrical and 

fibre optic cables. SpFi will be released as an ECSS standard later this year [11]. 

 

Initially targeted at very high data rate payloads such as Synthetic Aperture Radar (SAR) 

and high-resolution, multi-spectral imaging instruments, SpFi is capable of fulfilling a 

wider set of spacecraft on-board communications applications because of its inbuilt QoS 

and FDIR capabilities and its backwards compatibility at packet level with the ubiquitous 

SpW technology. This allows simple interconnection of existing SpW devices into a SpFi 

network and enables legacy equipment to take full advantage of the inbuilt QoS and FDIR 

in SpFi.  

 

SpFi provides high data rate capabilities in radiation-hardened technology: 3.125 Gbits/s 

in Microsemi RTG4 and Xilinx Virtex-5QV FPGAs and 2.5 Gbits/s in Microsemi RTAX 

FPGAs, with ASICs that operate at 6.25 Gbits/s currently under development [12]. This 

high data rate currently provides more than 15 times the maximum throughput of a SpW 

link (200 Mbit/s). This allows data from multiple SpW devices to be concentrated over a 

single SpFi link, thus substantially reducing cable harness mass and simplifying 

redundancy strategies. Multi-laning provides lane redundancy and can also be used to 

achieve much higher data rates, e.g. 40 Gbits/s, sufficient for most spacecraft on-board 

data-handling operations. 

 

The innovative inbuilt QoS mechanism uses Virtual Channels (VCs) to provide multiple 

independent communication channels over a single physical link. Each channel provides 

priority, bandwidth reservation and scheduled QoS. These QoS mechanisms operate 

together, resulting in a very versatile QoS which also provides “babbling node” protection 

and scheduled, deterministic communication without wasting any network bandwidth. 

This simplifies spacecraft system engineering, which reduces system engineering costs 

and streamlines integration and test.  

 

Novel integrated FDIR detects, isolates and recovers from faults at the link level, which 

prevents faults from propagating and causing further errors. The FDIR capability of SpFi 

provides galvanic isolation, transparent recovery from transient errors, error containment 

in virtual channels and frames, enhancing on-board network robustness. This simplifies 

system level error-handling software, reducing development and system validation time 

and cost.  

 

SpFi includes low latency event signalling and time distribution with broadcast messages. 

This enables a single network to be used for several functions including: transporting very 

high data rate payload data, carrying SpW traffic, deterministic delivery of 

command/control information, time distribution and event signalling.  

 

With these capabilities SpFi brings many benefits to spacecraft on-board data handling 

systems: 

 

 Very high data rates that meet the needs of very demanding instruments, mass-

memory internal networks, and telecommunications systems. 
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 Reduction of harness mass by 33% and 50% when comparing the mass of a single 

SpW cable to SpFi electrical and fibre optic cables respectively, and by more than 

90% when comparing per bit transferred. 

 Simplification of redundancy though integration of several on-board 

communication functions into a single network, and through the carrying of the 

traffic of multiple SpW links over a single SpFi link. 

 Increase in reliability by requiring one network rather than two or three to carry 

out the necessary on-board communication functions. 

 Straightforward error recovery since transient errors are recovered on the link 

and do not need to be considered at the system level. 

 Deterministic data delivery enabling AOCS/GNC and other control applications to 

be supported. 

 Long distance communication enabling launcher applications to be addressed, 

where a single network can provide control, monitoring and video capture 

functions. 

 Galvanic isolation improving system robustness by preventing fault propagation. 

 

SpFi enables using a single, integrated network that carries instrument data, configuration 

and control information, deterministic traffic, high-resolution time information, and event 

signals. This improves reliability, saves mass, and reduces cost. Fig. 1.2 shows the SpFi 

protocol stack and outlines the functions of the different layers. 
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Fig. 1.2: SpFi protocol stack 
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1.4 Objectives of this work 
 

The goal of this project is to integrate the FAPEC compressor with the SpaceFibre codec. 

Together they will provide an efficient way to achieve higher data rates without the 

penalties associated to resorting to higher line rates or using the SpFi multi-lane 

extension, such as increased complexity and energy consumption. 

 

Firstly, the initial FAPEC implementation in VHDL needs to be analysed. The design 

delivered a throughput of 32 Mbit/s with a ProASIC3L FPGA. The output of FAPEC was 

serial. SpFi currently can send up to 2.5 Gbit/s (3.125 Gbit/s line rate) over a single Virtual 

Channel, and its input is a 32-bit parallel interface. Therefore, to integrate both FAPEC and 

SpFi, FAPEC needs to be much faster and feature a parallel output instead. Going from a 

throughput of 32 Mbit/s to 2.5 Gbit/s requires an 80-fold speed increase of the FAPEC 

implementation. Thus, massive changes in the implementation architecture are required 

to reach such performance gains.  

 

Secondly, once FAPEC has been adapted to the SpFi constraints it needs to be integrated 

into a hardware design. Fortunately, the STAR Fire unit from STAR-Dundee provides a 

SpFi platform suitable for testing new designs. This unit features two SpFi interfaces and 

its design can be modified to add FAPEC on top of the SpFi protocol stack. The target FPGA 

family will be the Spartan-6 which is more representative than the ProAsic3L family used 

for the initial FAPEC prototyping.  

 

This memory is organised as follows. Chapter 2 describes the changes applied to FAPEC to 

make it suitable for integration with SpaceFibre. The STAR Fire design and the 

performance of FAPEC in hardware are described in Chapter 3. Finally, Chapter 4 

summarizes the work, elaborates our conclusions and proposes some forthcoming work. 

The annexes show the VHDL code developed for the new PEC coder module and the Word 

Packer modules.  
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2. Implementing FAPEC inside an FPGA 
 

2.1 Introduction 
 

The simplicity and robustness of FAPEC places it as an interesting alternative to the 

current standard for universal lossless data compression for space. However, the 

performance of a hardware implementation needed to be assessed before seriously 

considering FAPEC for such role. Considering the peculiarities of the internal operation 

and architecture of FPGAs, it was clear that the hardware implementation of FAPEC was 

not straightforward from its software counterpart or from its algorithmic definition. In 

order to achieve an optimal hardware implementation, several features of the original 

algorithm needed to be modified to be more hardware oriented. Specifically, floating-point 

operations, multiplications and divisions had to be avoided. Also, a logarithmic-like 

histogram used for lower complexity had to be modified to allow an easier (binary-like) 

rule of construction and analysis. Finally, it was decided to limit block size to 255 samples. 

After implementing these changes the new FAPEC was validated and it was proved that 

the modifications had little effect to the algorithm performance [10]. 

 

2.2 FAPEC Reference Design 
 

In this section the initial hardware implementation of FAPEC is described. This 

implementation has been used as a reference design for this project. 

 

2.2.1 Target Performance and Platform  

 

The initial goal of compression for FAPEC was derived from the Gaia mission constraints, 

as FAPEC was developed from concepts proposed for this mission [4]. Specifically, the Gaia 

payload uses 16-bit A/D converters (ADC) at a very high conversion rate. It was 

established as an initial goal the compression of a raw CCD output stream of Gaia, which is 

about 2 Msample/s or, in other words, 32 Mbit/s. Although modest, this allowed to 

estimate the potential of the algorithm and to evaluate the possibility of further 

modifications to adapt it to a faster scheme. The input interface adopted was 16-bit words 

at 2 MHz, although a serial output interface able to operate up to 46 MHz (worst case) was 

selected owing to the intrinsic variability of the output data rate. A parallel interface 

allowing lower clock frequencies was discarded because it presented higher complexity 

and power consumption in the hardware interface. 

 

Regarding the platform target, FPGA technology naturally appeared as the best option: 

reprogramming is usually allowed and it is a low-cost alternative. The preferred target for 

a space application of FAPEC was the radiation-hardened ACTEL RTAX antifuse 

technology, commonly used in space missions. However a flash-based FPGA from the same 

manufacturer was selected for prototyping. It provided re-programmability and 

portability of synthesis, thus reducing costs while assuring a high degree of similarity. An 

ACTEL PROASIC3L development kit was finally chosen for the sake of development 

simplicity. It included an M1A3P1000L FPGA, offering 24576 VersaTile logic elements and 
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a 48 MHz reference clock. Also, the board contained a 1 MByte SRAM and a 16 MByte Flash 

memory, used in the design to input and output files. 

 

2.2.2 Architecture  

 

In Fig. 2.1 we show the structure of the algorithm implemented. In the text below we 

describe the different modules composing the whole FAPEC compressor. Note that in this 

memory the actual names of the different VHDL modules are indicated in upper case and 

Consolas font (e.g. EXAMPLE). 

 

 
 

Fig. 2.1: FAPEC hardware implementation architecture 

 

The pre-compressor (PRECOMPRESSOR) stage simply consists of a data predictor and a 

differentiator. That is, it predicts an input value to be equal to its predecessor. This is the 

simplest pre-compressor but it is still very effective when the sample values vary slowly, 

and it also allows removing offset values. The histogram accumulator (HIST_CONSTRUCTOR) 

analyses each of the pre-compressed samples and increments the appropriate bin value of 

the histogram memory. Because of timing constraints, it is necessary to have two different 

streams which alternatively process the incoming values to identify their corresponding 

histogram bin. The values are then stored in the block memory, where they wait until their 

coding table is ready. After processing the 255 samples of a block, the histogram boundary 

extractor (HIST_BOUNDARY_EXTRACT) operation begins. It parses the histogram, 

accumulating the occurrences stored in the bins and determining the ceilings for each of 

the four PEC segments. Additionally, it selects the PEC variant and the size of the first 

segment. 

 

These initial modules plus their associated memory are in charge of performing the 

analysis of the statistical distribution of the data. Essentially, they build and analyse the 

histogram. Once the histogram procedure is complete, all the coding parameters are 

implicitly set. The next stage is the table constructor (TABLE_CONSTRUCTOR), which derives 

the size of the second, third and fourth PEC segments from the ceilings given by the 

histogram boundary extractor. These segment sizes constitute the coding table. The table 
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constructor also provides the maximum value that can be coded with each segment. We 

must note that the use of a small bin-equivalence memory as a Look-Up Table (LUT) is 

required to avoid the continuous calculation of the mapping between each of the 

histogram bins and the input values. FAPEC uses a logarithmic-like histogram, mapping 

the 216 possible values (16-bit samples) to just 37 bins. Storing the maximum value 

associated to each bin in the bin-equivalence memory avoids unnecessary operations. 

These modules constitute the adaptive stage of PEC, that is, the FAPEC algorithm. The last 

module shown in Fig. 2.1 is the PEC coder (PEC_CODER). It receives the segment sizes and 

maximum values from the table constructor for each block, outputting these coding 

parameters as a packet header. Finally, the values stored in the block memory are coded 

following the PEC algorithm. 

 

The implementation of the FAPEC compressor was fully developed in VHDL. Apart from 

the memory blocks, neither IP cores nor non-standard functions were used, thus 

simplifying the porting of the algorithm to the RTAX model. A modular approach was 

adopted for validating the prototype. The modules were validated incrementally, that is, 

the validation of a module also included its predecessors in the compression chain. 

 

2.2.3 Performance 

 

ProASIC3L logic technology basically consists of a sea of VersaTiles [13]. Each VersaTile 

can be configured as a three-input logic function, a D-flip-flop (with or without enable) or 

a latch, by programming the appropriate flash switch interconnections (Fig. 2.2). This 

means that, contrary to other FPGA technologies, a combinational or a sequential element 

uses the same element in the ProASIC3L. 

 

 
 

Fig. 2.2: Different configuration options for a ProASIC3L VersaTile  

 

The table shown in Fig. 2.3 describes the number of VersaTiles used by the main modules 

forming the FAPEC compressor. The central column shows the percentage of the whole 

FPGA VersaTiles used by each module, and the right column represents the percentage of 

the usage with respect to the total VersaTile elements used by the FAPEC module.  

 

The most complex module is the PEC_CODER, using around a third of the total resources 

used by FAPEC. The TABLE_CONSTRUCTOR and the HISTOGRAM_CONSTRUCTOR use around a 

quarter of the total VersaTiles each, and the remaining is split between the PRECOMPRESSOR 

and the HIST_BOUNDARY_EXTRACTOR (10% each). In total, the whole FAPEC module takes a 

14% of the logical resources of the ProASIC3L 1000 FPGA. 
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After place and routing, the results shown in Fig. 2.4 were obtained. As expected, they are 

in line with the synthesis results, with a small difference which is due to optimisations that 

are performed at a later stage by the placer tool. Interestingly enough, in the post-place 

and routing report the number of tiles used for combinational and sequential purposes is 

indicated. Note that there are as many as four times more VersaTiles used as 

combinational cells than sequential cells. This is mainly due to the large number of 

multiplexing operations required to generate the compressed codes. 

 

 VersaTiles % % of FAPEC 

PRECOMPRESSOR 334 1.4 9.6 

HIST_CONSTRUCTOR 834 3.4 23.8 

HIST_BOUNDARY_EXTRACT 349 1.4 10.0 

TABLE_CONSTRUCTOR 855 3.5 24.4 

PEC_CODER 1091 4.4 31.2 

TOTAL 3499 14.2 100.0 

Block RAMS 3 9.4  

 
Fig. 2.3: Resource usage for initial FAPEC code inside ProASIC3L FPGA  

 

 M1A3P1000L 

 VersaTiles % 

Combinational (LUTs) 2724 - 

Sequencial (DFFs) 706 - 

TOTAL 3430 14.0 

Block RAM 3 9.4 

 
Fig. 2.4: Resource usage for initial FAPEC code inside ProASIC3L FPGA after Place & Routing 

 

Regarding the timing analysis, the critical path for the compressor implementation was 

18.32 ns, thus defining a theoretical maximum clock speed of ~55 MHz for ProASIC3L 

technology. This clock is used by the serial output, meaning that the maximum throughput 

of the compressed data would be 55 Mbit/s. The initial processing throughput 

requirement for this design was 2 Msample/s (i.e. 32 Mbit/s) and it was successfully 

achieved. 

 

The goal for this design in VHDL was to implement the code in an RTAX device. 

Considering the information provided by the manufacturer (Microsemi), it would be 

possible to comfortably implement in parallel 2 FAPEC cores (aggregate input of 64 

Mbit/s) with the low-end RTAX250S. The high-end RTAX4000S would theoretically allow 

more than 30 cores (aggregate input of more than 1 Gbit/s) using parallel data streams. It 

is very difficult to calculate the exact power consumption for the RTAX case because the 

underlying technology is different (antifuse in RTAX versus Flash in ProASIC). However, 
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both technologies share the benefits of low start-up and static power consumption. In 

addition, their dynamic consumption is similar as well. Therefore the estimated 

consumption figure of a RTAX FPGA should be close to the 35 mW of the PROASIC3L 

prototype developed 

 

2.3 The New Design of FAPEC 
 

This initial design of FAPEC is going to be used as a reference for the development of the 

new FAPEC register-transfer level (RTL) design. This reference design presents a few 

problems that need to be addressed before FAPEC is suitable for integration with SpFi. The 

VHDL code developed in the reference design is not valid for integration in platforms 

other than ProASIC FPGAs and we intend to implement FAPEC with newer FPGA 

technologies. But the main issue is the fact that the compressed data output port is serial. 

SpFi inherently works with 32-bit data words and building a serial to parallel module 

would limit the throughput of FAPEC to that of the serial port (~55 Mbit/s for ProASIC3L). 

In the following sections we present the different changes introduced in the initial code to 

overcome all these problems.  

 

2.3.1 Memories 

 

The initial design used memory modules specifically generated for the Microsemi 

ProASIC3L FPGA family. One of the goals of this project is to decouple the VHDL code from 

a specific FPGA technology. Making the FAPEC compressor technology-agnostic provides a 

big advantage: it allows implementing FAPEC in available technologies with little effort. 

Equally important, this should guarantee support for future FPGAs, and even support ASIC 

implementation if required. This is because most FPGA synthesisers can automatically 

infer the memory modules if they are declared in specific ways. The original FAPEC design 

instantiated three different memory modules. However, after examining the code it 

appeared that only two different modules were strictly required. 

 

The ROM_TABLE module was substituted by ROM_TABLE_GNRC. In the reference design this 

ROM module was created and initialised with the Libero Core Generation tool. This means 

that this module could only be used with a ProASIC3L. Instead, a generic VHDL module 

declaring an array of constant values was defined. An input address determines which 

array value is selected and output. This is what the code for this new module looks like: 

 
   type array_Nx8_t is array (natural range <>) of std_logic_vector(7 downto 0); 

   -- Replicate in this signal the LUT tables stored in the original 

   -- ROM_TABLE.mem file used by the ROM_TABLE component 

   constant lut_values : array_Nx8_t(0 to 127) := ("00000000", 

                                                   "00000001", 

                                                   ...        
                                                   "11111111"); 

   sync_proc : process (Clk) is 

   begin 

      if (rising_edge(Clk)) then 

         -- Output selected value depending on the input address 

         Dout <= lut_values(to_integer(unsigned(Addr))); 

          

      end if; 

   end process sync_proc; 

 



22  Implementing FAPEC inside an FPGA 

 

After synthesising this code with Synplify (synthesis tool provided by the Libero suite) the 

result is that 43 VersaTiles are used. This is roughly 0.17% of the ProASIC total resources 

or around 0.7% of the FAPEC implementation. Hence, we can conclude that the 

functionality is successfully inferred by the tool. 

 

On the other hand, both RAM_HIST and RAM_DATA_BLCK modules were initially substituted 

by a generic DUAL_PORT_MEM module. This module corresponds to a dual-port memory 

featuring a single clock. Hence, two independent ports are available, each with read and 

write capabilities, although the same clock is used by both ports. During the verification 

stage it was observed that one of the modules was not operating as expected. The solution 

was to create two slightly different memory modules. DUAL_PORT_MEM_2 was created for 

the RAM_DATA_BLCK and uses a standard approach in which the output is updated at the 

next clock edge following an address port change. This is standard practice and the 

synthesis results revealed that memory was inferred automatically as expected.  

 

RAM_HIST module simulation mismatch required the introduction of a slight variation in 

the memory behaviour. The module used (DUAL_PORT_MEM) is very similar to 

DUAL_PORT_MEM_2 with the exception that Port B output is pipelined. This means that port 

B output changes two clocks after the address port changes, not in the next clock. Port A 

output is not pipelined though. The following VHDL code shows in bold the difference 

between the two ports. 

 
   buf_memory : process (Clk) is 

      variable v_mem : buf_array_t; 

   begin 

      -- clocked memory 

      if (rising_edge(Clk)) then 

 

         -- Port A 

         if (A_EN_N = '0') then 

            if (A_RW = '1') then 

               -- Read operation 

               A_DOut <= v_mem(to_integer(unsigned(A_Addr))); 

            else 

               -- Write operation 

               v_mem(to_integer(unsigned(A_Addr))) := A_DIn; 

            end if; 

         end if; 

 

         -- Port B 

         if (B_EN_N = '0') then 

            if (B_RW = '1') then 

               -- Read operation 

               b_dout_r <= v_mem(to_integer(unsigned(B_Addr))); 

               B_DOut   <= b_dout_r; 

            else 

               -- Write operation 

               v_mem(to_integer(unsigned(B_Addr))) := B_DIn; 

            end if; 

         end if; 

          

      end if; 

   end process buf_memory; 

 

By using these two different memory flavours, the operation of FAPEC was correctly 

simulated. These new memory declarations should allow to automatically infer memory 

blocks for most FPGAs. However, the asymmetric port behaviour of DUAL_PORT_MEM caused 

an issue when synthesising the code. This issue has been analysed in Section 2.4.1. 
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In general, it is recommended not to use pipelined output for memories. This produces a 

more natural behaviour as the output word can be read out of the memory in a clock cycle. 

If pipelined output is to be used, the same behaviour must be replicated in both ports of 

the memory to reduce complexity and simplify development efforts. Asymmetric 

behaviour can cause synthesis issues, as demonstrated with the DUAL_PORT_MEM module 

(Section 2.4.1).  

 

2.3.2 Pre-compressor 

 

A small change was introduced in the PRECOMPRESSOR module. The input sample value was 

not initially registered as the input model used kept this value constant for a few clock 

cycles. With the new design the sample value is updated after a read operation and thus it 

is required to internally register this value for the pre-compressor to operate as expected. 

 

2.3.3 Histogram Constructor 

 

The HIST_CONSTRUCTOR module has been optimised to reduce the number of clock cycles it 

takes to process a sample. In the reference design the constructor parsed the whole 37 bin 

values of the histogram each at a clock cycle. This meant that the minimum time between 

each input sample was ~40 clock cycles. As there are two of these modules operating in 

parallel this delay was effectively divided by two, but still constraining the input sample 

rate to one every ~20 clock cycles. A special function has been designed to calculate the 

corresponding bin number for the current value in a single clock cycle instead. This allows 

to process the histogram input values much faster. Additionally, thanks to the new 

memory modules, another optimisation has been done to save 2 clock cycles when 

incrementing the corresponding bin value. 

 

The aggregate effect of these changes is that the new histogram module is able to process a 

new data value every 6 clock cycles. There is still room for improvement, but the changes 

have effectively increased speed by a factor of 4. Furthermore, when analysing the 

synthesis results, only 3% more VersaTile cells have been used with respect to the original 

module (see Fig. 2.8). Timing is now more constrained, but the critical path for the whole 

design is not related to this module. 

 

2.3.4 Parallel-Output PEC Codec 

 

The most important change applied to FAPEC, as explained before, has been to switch 

from serial to parallel output. A complete PEC coder module (PEC_CODER) has been 

designed. The inputs of this module are the same as the initial PEC coder, but instead of a 

single serial output, it now features four different parallel output ports, one for the coding 

table and three for each variant (i.e. LE, DS and LC). Each of these four parallel output 

ports is composed of a vector with the compressed value plus an additional signal carrying 

the number of bits valid in the compressed value output.  

 

One of the firsts tasks to undertake when switching from serial to parallel is to dimension 

the size of the outputs. The following table (Fig. 2.5) calculates the maximum output 

values possible for any 16-bit input sample depending on the coding variant selected. Note 
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that these are absolute maximum values regardless of the table coding values. The 

information on the number of valid bits is required because the vectors containing the 

compressed value have a fixed size which is determined by the worst case. However, 

normally fewer bits will be actually used for a given compressed value. For example, the 

maximum length for LE variant is 23 bits. Thus, the compressed value output port for LE 

will be 23-bit wide. But if a given value only requires 5 bits, the remaining 18 bits must not 

be used. So in this case the signal indicating the number of valid bits will indicate 5. In this 

way, the WORD_PACKER module knows how many bits to use from this 23-bit wide input 

every time a new value arrives. Additionally, a Valid signal validates the output whenever 

there is a new compressed value (or a coding table) to output. 

 

 

 LE DS LC 

h 2 4 < 16 

i 2 < 16 < 16 

j < 16 < 16 < 16 

k 16 16 16 

Maximum Size 
3+h+i+k 

23 bits 

3+h+k 

23 bits 

4+k 

20 bits 

 
Fig. 2.5: Maximum compressed value sizes depending on the Coding Variant  

 

These values are important, as they will determine the maximum delay that can be 

expected when trying to parallelise this output into chunks of a specific size. For example, 

if 16-bit output words were to be used, this would mean that a single coded value could be 

spread into 3 different words. This constraint will actually be used in the parallelising 

module (WORD_PACKER) presented in the next section. 

 

PEC

Packet
Calibration

Info

Values
Memory

Valid / Ready

Table_Num_Bits

Table_Vector[16:0]

0

16
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LE_Num_Bits

LE_Comp_Val[22:0]
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0

22

4
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0

22
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0
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3

 
 

Fig. 2.6: Example of PEC operation  
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Fig. 2.6 shows an example of the PEC module outputting a coding table of 15 bits length, 

followed by four compressed values using the Low-Entropy variant (LE) with lengths of 5, 

7, 18 and 4 bits respectively. These values are then received by the WORD_PACKER module 

which concatenates them in order to form the final compressed bit stream. This bit stream 

is output in chunks of 32 bits at a time. Obviously, not every clock cycle 32 bits will be 

ready for output. A valid signal asserted for a clock cycle indicates when this data can 

actually be read. 

 

The module port declaration has been copied here. The whole file can be found at Annex 

5.1. 

 
entity pec_coder is 

 

   port ( 

      Clk         : in std_logic; 

      Reset       : in std_logic; 

      Table_Valid : in std_logic; 

 

      -- From encoder side 

      Coding_Variant     : in std_logic_vector(1 downto 0); 

      Segment_1_Num_Bits : in unsigned(LOG2_SSYZE-1 downto 0); 

      Segment_2_Num_Bits : in unsigned(LOG2_SSYZE-1 downto 0); 

      Segment_3_Num_Bits : in unsigned(LOG2_SSYZE-1 downto 0); 

      Segment_4_Num_Bits : in unsigned(LOG2_SSYZE-1 downto 0); 

      Ceiling_1_Val      : in unsigned(SYMBOL_SIZE-1 downto 0); 

      Ceiling_2_Val      : in unsigned(SYMBOL_SIZE-1 downto 0); 

      Ceiling_3_Val      : in unsigned(SYMBOL_SIZE-1 downto 0); 

 

      -- To Word_Packer module 

      Ready           : in  std_logic; 

      Table_Valid_Out : out std_logic; 

      Table_Num_Bits  : out unsigned(LOG2_SSYZE downto 0); 

      Table_Vector    : out std_logic_vector(TAB_LONG_REF-1 downto 0); 

 

      Comp_Sample_Valid  : out std_logic; 

      Coding_Variant_Out : out std_logic_vector(1 downto 0); 

      LE_Num_Bits        : out unsigned(4 downto 0); 

      DS_Num_Bits        : out unsigned(4 downto 0); 

      LC_Num_Bits        : out unsigned(4 downto 0); 

      LE_Comp_Val        : out std_logic_vector(22 downto 0); 

      DS_Comp_Val        : out std_logic_vector(22 downto 0); 

      LC_Comp_Val        : out std_logic_vector(19 downto 0); 

 

      -- Memories Management       

      RD    : in  std_logic_vector(SYMBOL_SIZE downto 0);  -- Pixel/value + sign to 

compress as read from the block RAM 

      RADDR : out std_logic_vector(LOG2_BSIZE downto 0);  -- Address to read of the 

block RAM (2 x block size) 

      REN   : out std_logic  -- read enable for the RAM / LOW ACTIVE 

      ); 

 

end entity pec_coder; 

 

The fundamental operation of PEC has obviously not been altered as the compressed 

output must be the same. However, the operation of this new module is radically different. 

Table coding values are calculated in a single clock cycle. PEC compressed values, on the 

other hand, require two clock cycles to reduce the timing stress on the operation. On the 

first clock cycle the binary value to be coded within a given segment is calculated. This 

value depends on the segment number to be used, which depends on the ceiling values 

passed to PEC. In the second clock the entire bit stream is calculated (prefix/unary 

sequence, escape sequences, etc.) together with the length of the output vector. Finally, an 

additional clock cycle is added to wait for the ready signal coming from the WORD_PACKER 
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module. When it is ready, the histogram memory address is incremented and in the next 

clock cycle a new value to code arrives to the PEC module. 

 

This PEC implementation can output compressed data much faster than the initial version. 

Currently, the new PEC is limited to compressing one value every 3 clock cycles. This is 

enough for the current operation as the HIST_CONSTRUCTOR can only process one sample 

every 6 clock cycles. It is however important to remark that there is no fundamental 

limitation on speed in the way PEC is currently constructed. By adding a pipeline stage and 

optimising the way in which samples are obtained from the memory, the module can be 

modified to compress a value every clock cycle. If these modifications are implemented 

adequately, timing should not be noticeably affected. 

 

2.3.5 Generation of 32-bit FAPEC Output   

 

The new PEC coder outputs parallel data in a very particular way, as explained in the 

previous section. There is a separate port output for the coding table and every coding 

variant, together with a port stating the number of valid bits. However, the expected 

output of a paralleliser is a single fixed-size port, e.g. 16 or 32 bits. Transmission modules 

such as SerDes or data buses always have a fixed number of bits as input port width. For 

example, the SpFi protocol uses a native bus width of 32 bits as user interface. This seems 

a good trade-off value for the port width and has hence been the adopted width for FAPEC.  

 

A new module (WORD_PACKER) has been created for this purpose. This module gets the 

output ports of PEC and generates a fixed-width output of 32 bits. The module port 

declaration has been copied here. The whole file can be found at Annex 5.2. 

 
entity word_packer is 

 

   port ( 

      Clk   : in std_logic; 

      Reset : in std_logic; 

 

      -- From PEC compressor 

      Ready           : out std_logic; 

      Table_Valid_Out : in  std_logic; 

      Table_Num_Bits  : in  unsigned(LOG2_SSYZE downto 0); 

      Table_Vector    : in  std_logic_vector(TAB_LONG_REF-1 downto 0); 

 

      Comp_Sample_Valid  : in std_logic; 

      Coding_Variant_Out : in std_logic_vector(1 downto 0); 

      LE_Num_Bits        : in unsigned(4 downto 0); 

      DS_Num_Bits        : in unsigned(4 downto 0); 

      LC_Num_Bits        : in unsigned(4 downto 0); 

      LE_Comp_Val        : in std_logic_vector(22 downto 0); 

      DS_Comp_Val        : in std_logic_vector(22 downto 0); 

      LC_Comp_Val        : in std_logic_vector(19 downto 0); 

 

      -- To VC buffer       

      VCB_Half_Full : in  std_logic; 

      Out_Valid     : out std_logic; 

      Out_Data      : out std_logic_vector(31 downto 0) 

      ); 

 

end entity word_packer; 

 

A two-stage strategy has been adopted inside this module to reduce the timing stress. This 

module needs to multiplex between four different parallel data inputs – the Table Coding 

and the three coding variants, LE, DS and LC – each with a variable number of bits. The 
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first stage consists of merging the four different incoming data streams into a single 

registered signal. There is a lot of multiplexing involved here, and this signal is registered 

to improve the timing. In the next clock cycle, this signal is then used to pad the 16 bits of 

an intermediate buffer. Note that depending on the size of the incoming data value, up to 3 

clock cycles might be required to write all the input bits in this 16-bit buffer, as depicted in 

the example of Fig. 2.7. In this example only 2 bits can be inserted in the buffer during the 

first clock cycle. This is because the buffer already had 14 bits occupied by the previous 

compressed value. Of the remaining 20 bits, 16 bits can then be written down in the 

second clock cycle, while the last 4 bits have to wait until the third clock cycle. 

1st buffer data allocationFILLED

015 14

22 bit compressed value

01217182122

2nd buffer data allocation

015

3rd buffer data allocationEMPTY

015 34

 
 

Fig. 2.7: Operation of writing a large value in the 16-bit intermediate buffer  

 

Finally, the last stage consists of writing the 16-bit buffer into the corresponding half of 

the 

32-bit final output. Once the output vector has 32 valid bits the output is validated. This 

output corresponds to the parallel output of the FAPEC module. 

 

Note that only 16 bits are used as size for the intermediate buffer width instead of what 

would be the natural 32 bit vector. This size has been adopted to reduce the risk of using 

large vectors. The large number of multiplexors required by this operation would set 

timing restrictions that could render impossible the effort to adapt FAPEC to high 

operating frequencies.  

 

2.3.6 Optimising FAPEC Speed 

 

The initial VHDL version of FAPEC used a serial output and this output required a 

dedicated clock. Current FPGA technologies (especially the space-qualified ones) do not 

support operating frequencies beyond the 200-300 MHz range. Moreover, values in the 

high part of the frequency range are really hard to achieve for applications other than 

basic combinatorial operations. Consequently, there was an intrinsic strong limitation to 

the speed of a FAPEC module inside an FPGA due to this serial output. The logical step to 

overcome these limitations has been to switch to a parallel output. On the other hand, 
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dedicated SerDes blocks are commonly available in modern FPGAs. They are analogue 

modules integrated in the chip die, and they operate taking input parallel data streams and 

outputting them in serial format. This is the technology that SpFi needs to use in its 

physical layer (bottom layer of Fig. 1.2). FPGA that do not feature inbuilt SerDes (e.g. 

radiation-tolerant RTAX family from Microsemi) can still make use of external SerDes 

modules. For space, a variant of the TLK2711 WizardLink is available from Texas 

Instruments. The TLK2711-SP is a space-rated transceiver reaching up to 2.5 Gbps [14]. 

 

The PROASIC3L reference design has its serial link operating at a 40 MHz. This limits the 

output of the FAPEC codec at 40 Mbit/s. Thus, the input frequency of values is not 

required to be very high, typically in the range of ~5 MHz. The new parallel output 

eliminates this limitation. The new PEC module is able to compress a sample every three 

clock cycles. This three-clock limitation arises from two facts: the steps the current 

algorithm requires to code a sample, but also from the fact that the worst case maximum 

length for a compressed value is 23 bits. The intermediate parallel size is 16 bits, which 

produces a three clock cycle worst-case passing from 23 to 16 bits (see Fig. 2.7). 

Nevertheless, if normal compression ratios are assumed, it is theoretically possible to 

compress and output samples every clock cycle on average.  

 

The current version of the histogram generator is now able to process one input sample 

every 6 clock cycles. The initial performance was much worse, working at 1 sample every 

~20 clock cycles. This is currently the most limiting module regarding speed. So the 

histogram generation is the current bottleneck for the overall speed of FAPEC. There is no 

theoretical reason as to why a sample could not be processed every clock cycle. The 

histogram already works with two memories, so while one data block is being processed 

and its histogram generated, the previous data block can be compressed. This allows not 

stopping the input data flow while compressing data blocks. However, processing one 

sample per clock requires major changes in the histogram generation logic.  

 

2.4 Verification procedure 
 

When developing new code, verification is always one of the most critical stages. Thanks 

to the reference design presented above, there is already a FAPEC module that can be used 

as a reference for verification. Thus, simulations of the new codec have benefited from the 

fact that there was an initial version to compare with. This helped to reduce debugging 

times. The strategy used to verify this new FAPEC was hence slightly different to the one 

used for the reference design.  

 

In the reference design an incremental verification approach was used. This allowed 

verifying the different modules by taking advantage of the previously verified modules. 

Also, a set of test files was created for the reference design. This set of files included 

different scenarios, so that all the coding variants were tested. It also included corner-

cases to test the compressor under the most stressing scenarios (e.g. values after the pre-

compressing stage that were always 0 or always 65535). The compressed files were 

compared at binary level against the output of the equivalent software version of FAPEC. 

In this way it was guaranteed that the compressor was working correctly. As the main 

functional changes in the new FAPEC have been applied at the last stage of the compressor 



Integration of FAPEC as data compressor stage in a SpaceFibre link 29 

 

(PEC), the verification has been performed by directly compressing the set of files. This is 

in contrast with the incremental validation approach used for the reference design. 

 

The Modelsim simulator tool has been used to verify the operation of FAPEC. The errors 

have been found and debugged directly with the simulation of these files. Whenever there 

was a mismatch between files, the difference was located in the binary file and then 

tracked down to the simulation. For example, first a cmp command is run between the 

reference and the compressed files: 

 

alberto@Dell-Desktop-PC /cygdrive/e/FAPEC/Data2 
$ cmp ngc0002.raw.cmp.parallel ngc0002.raw.cmp.FAPEC 
ngc0002.raw.cmp.parallel ngc0002.raw.cmp.FAPEC differ: byte 7, line 1 

 

If there is a difference, hexdump command is then used to find the exact difference with 

the information provided by cmp (Fig. 2.8). 

 

 
 

Fig. 2.8: Hexdump output example for the original file (bottom) and the new algorithm (top), marking the first 

difference between files 

 

Once the first failing bit is located, it is possible to go to the Modelsim simulation to track 

down the problem. Fig 2.9 shows the input and output ports of the PEC_CODER and 

WORD_PACKER modules in a simulation. The 32-bit words that FAPEC outputs are at the 

bottom of the figure, in the Out_Data port. When the word to be examined is located, then 

it is possible to further expand the WORD_PACKER module for a more in depth inspection. By 

looking at the internal signals it is usually possible to figure out whether it is performing 

correctly or not. If it is working fine, then the problem might be in the module coming 

before (PEC_CODER). The operation is then repeated, find the outputs towards WORD_PACKER 

that are causing the wrong output and then figure out what is the problem. With this 

method all the bugs in the code of the new FAPEC design where identified and solved. 

 

Once all the problems have been fixed, the binary comparison between the two files has to 

report End Of File (EOF) found, meaning that the end of the file was reached without 
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finding any difference. All the files in the set have been successfully compressed and 

compared with the new FAPEC design. 

 
alberto@Dell-Desktop-PC /cygdrive/e/FAPEC/Data2 
$ cmp ngc0002.raw.cmp.parallel ngc0002.raw.cmp.FAPEC 
cmp: EOF on ngc0002.raw.cmp.parallel 

 

 

 
 

Fig. 2.9: Modelsim simulation of the IO ports of PEC_CODER and WORD_PACKER modules  

 

2.5 Performance Analysis 
 

In this section we analyse the differences in resource usage, timing and performance of the 

new FAPEC design with respect to the reference design. 

 

2.5.1 ProASIC3L Resource Usage Analysis 

 

In Fig. 2.10 the table with the new FAPEC resource usage for ProASIC3L FPGA is indicated. 

These values can be compared with Fig. 2.3 which contains the usage for the reference 

design. An additional column has been added at the right side of the table in Fig. 2.10. This 

represents the increase or decrease (in %) of the number of used VersaTiles from the 
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reference design to this new design. A positive value means more resources used by the 

new FAPEC compressor, and negative means fewer resources used, i.e. negative is good. 

 

 M1A3P1000L 

 VersaTiles % % of FAPEC % wrt Ref Design 

PRECOMPRESSOR 358 1.5 5.9 + 7.2 

HIST_CONSTRUCTOR 858 3.5 14.2 + 2.9 

HIST_BOUNDARY_EXTRACT 346 1.4 5.7 - 0.9 

TABLE_CONSTRUCTOR 1045 4.3 17.3 + 22.2 

PEC_CODER 2612 10.6 43.2 + 139.4 

WORD_PACKER 781 3.2 12.9 N/A 

TOTAL 6043 24.6 100.0 + 72.7 

Block RAMS 2 6.3  - 33.3 

 

Fig. 2.10: Resource usage in the ProASIC FPGA for the new FAPEC and its comparison against the reference 

design 

 

Changes in the first three modules are irrelevant (PRECOMPRESSOR, HIST_CONSTRUCTOR and 

HIST_BOUNDARY_EXTRACT). The 22% increase of the TABLE_CONSTRUCTOR is a curious case. 

Its usage has significantly increased despite the fact that no changes at all have been 

applied to this module. The reason for this variation is the way the synthesiser optimises 

resources. The external ports of the TABLE_CONSTRUCTOR module are connected to the new 

PEC Coder. The way in which PEC internally connects its inputs has been completely 

changed, as it features now a parallel output. Therefore, the way in which the 

TABLE_CONSTRUCTOR output ports are connected inside PEC has changed. This has 

prevented Synplify from doing more optimisations, as it did with the reference design, 

hence the different results. 

 

A very important difference between the two memory modules has not been reflected in 

the previous table but it is worth mentioning here. The DUAL_PORT_MEM_2 module has been 

reported as not taking any logical resources at all (i.e. 0 VersaTiles). However, the 

DUAL_PORT_MEM module uses roughly 3000 VersaTiles. This is a huge number of tiles, 

considering the whole new FAPEC module uses ~6000 tiles (the 3000 tiles of the 

DUAL_PORT_MEM are not included). The reason for this asymmetry between two almost 

identical memory modules is the asymmetric operation of the output ports for 

DUAL_PORT_MEM. This is causing the Synthesis tool to infer a large amount of wrapping logic 

because a memory block alone cannot reproduce the behaviour indicated in the VHDL 

code. Therefore, port B memory pipeline stage of the DUAL_PORT_MEM should be removed. 

This port is connected to the HIST_BOUNDARY_EXTRACT and it seems that this behaviour can 

be changed by placing the pipelining stage inside the HIST_BOUNDARY_EXTRACT module and 

removing it from the memory declaration. 

 

The parallel PEC_CODER has increased his usage in 140% – a huge increase – due to the big 

difference in architecture. This means that the initial PEC module is more simple and 
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compact than this new module, but also much slower. The higher speed does not come for 

free. 

 

If we pay attention to the usage percentage of the different modules with respect to the 

full FAPEC coder, the most obvious consequence is that, due to the increase in resources 

used by PEC, the rest of the modules now take a lower percentage than in the reference 

design. This effect is further increased by the new WORD_PACKER module, which is not 

present in the old design and that takes a 13% of the total number of VersaTiles used by 

the new FAPEC. 

 

Note also that the number of block RAM has gone from 3 to 2. This is due to the fact that 

the ROM memory (ROM_TABLE_GNRC) is hardcoded in VHDL and not implemented with a 

memory. As explained in Section 2.3.1, only 43 tiles (0.17% of the FPGA area) were used 

by this ROM implemented with logical resources. 

 

Finally, if we consider the total number of tiles used by FAPEC, we see that it has increased 

a 73% in the new version. The reference design uses 3500 tiles for a total usage of 14% of 

the FPGA, whereas the new version uses 6043 tiles for an almost 25% of FPGA used. The 

change is significant, and this is the toll that FAPEC has paid for a faster operation and a 

parallel output. 

 

 RTG4 

 Regs % LUTs % 

PRECOMPRESSOR 71 0.1 69 0.1 

HIST_CONSTRUCTOR 205 0.1 304 0.2 

HIST_BOUNDARY_EXTRACT 64 0.0 167 0.1 

TABLE_CONSTRUCTOR 153 0.1 337 0.2 

PEC_CODER 191 0.1 1548 1.0 

WORD_PACKER 111 0.1 609 0.4 

TOTAL 829 0.6 3078 2.0 

Block RAMS 2 0.5   

 
Fig. 2.11: Resource usage in the RTG4 FPGA for the new FAPEC design 

 

2.5.2 RTG4 Resource Usage Analysis 

 

RTG4 is a new radiation-tolerant FPGA developed by Microsemi [6]. It is the evolution of 

the successful RTAX family although, in this case, the technology used is completely 

different. RTG4 uses Flash technology, offering reprogrammability, and also has 24 

embedded SerDes cores, among other advanced characteristics. The original FAPEC 

reference design was aiming at RTAX as target for space applications. However, given that 

the new RTG4 platform has already been used to implement SpFi, and that it has created a 
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lot of interest in the space community, it makes sense to examine its performance with 

FAPEC.  

 

Fig. 2.11 shows the table with the usage values obtained for the RTG4. As the numbers in 

the table indicate, the RTG4 is a much bigger device. Furthermore, it also is much faster 

than the RTAX. In this case, RTG4 features separated combinational (Look-Up Tables, or 

LUTs) and sequential elements (registers). A register is a flip-flop, and it stores a bit of 

information that is updated every clock cycle. LUTs, on the other hand, are used to 

recreate the operation of logical functions and multiplexers. The PEC_CODER and 

WORD_PACKER modules make an intensive use of multiplexers to be able to place the 

compressed binary values into any given bit of the 32-bit output port. The effect of this 

large number of multiplexers required can be seen in the table values. This explains why 

the number of LUTs in the RTG4 is much higher than the number of registers. Note that 

the ratio between sequential (Registers) and combinational (LUTs) elements, 3.7, is 

similar to the one obtained with the reference design in the ProASIC device, 3.9 (see 

Fig. 2.10). 

 

In terms of total logical resources used by FAPEC, it can be claimed that the logic average 

usage of the device is only a 1.3%. This means that FAPEC can currently be implemented 

inside a design using the RTG4 with almost no impact. 

 

2.5.3 ProASIC3L Timing Analysis 

 

The target speed of the reference design for its fast clock was 40 MHz. The timing analysis 

determined that the theoretical maximum frequency for the output serial clock (CLK) was 

42.6 MHz (see Fig. 2.12). This limits the maximum output data rate to 42.6 Mbit/s. On the 

other hand, the new FAPEC presented a maximum estimated frequency of 31.6 MHz for 

the same clock. This shows how the changes used to optimise the FAPEC operation have 

increased its complexity. Higher complexity means a greater number of logical levels, 

which translate in more net delays due to the greater number of components crossed by 

the net paths and also the increased net lengths. These two effects cause higher delays in 

signals travelling from one register to another, thus limiting the maximum frequency 

speed. Nevertheless, maximum frequency can still be improved. The options to achieve 

better timing are analysed in next Section. 

 

 

 Ref Design 
(MHz) 

New FAPEC 
(MHz) 

Δ (%) 

CLK 42.6 31.6 - 25.8 

SCLK 31.3 52.1 + 66.5 

 
Fig. 2.12: Maximum frequency of the clock domains in ProASIC for the initial and new FAPEC designs 

 

Note that the new compressor output is now parallel. This would imply a theoretical 

maximum throughput of 31.6 Msamples/s (with 16 bit/sample ≈ 500 Mbit/s) – although 

to achieve this performance further changes in the compressor are required – while the 
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theoretical maximum speed for the reference design equals that of the clock domain (42.6 

Mbit/s) due to its serial output. 

 

The performance of the other clock (SCLK) is not that important. As a matter of fact, in the 

new implementation both clocks share the same clock source. Therefore, the timing 

limitation comes from the clock presenting the slowest path, i.e. CLK. 

2.5.4 RTG4 Timing Analysis 

 

It is more significant to analyse the potential of the new FAPEC with modern FPGAs. As 

mentioned before, the new RTG4 has created a lot of expectation among the space 

community. It is a big FPGA and SpFi only takes around 2 – 3 % of the resources [15]. It is 

thus realistic to think about the potential integration of FAPEC and SpFi modules inside a 

design running in an RTG4. 

 

 New FAPEC 
(MHz) 

CLK 55.0 

SCLK 127.2 

 
Fig. 2.13: Maximum frequency of the clock domains in RTG4 for the new FAPEC design 

 

When analysing the timing performance in the RTG4, the initial value observed does not 

seem very high. It is roughly a 30% higher than the ProASIC value, but still it does not 

imply a great performance increase (Fig. 2.13). However, after a close examination of the 

reported paths, it becomes obvious that this maximum frequency is far from being the 

limit of what can be expected from the new FAPEC. Specifically, the initial 60 critical paths 

reported by the tool all look similar to this one:  

 
Path information for path number 60:  

      Requested Period:                      4.557 

    - Setup time:                            0.229 

    + Clock delay at ending point:           0.000 (ideal) 

    = Required time:                         4.329 

 

    - Propagation time:                      5.980 

    - Clock delay at starting point:         0.000 (ideal) 

    = Slack (non-critical) :                 -1.652 

 

    Number of logic level(s):                0 

    Starting point:                          INSTANTIATE_HIST_BLCK_MEM\.block_mem_generic\.BLCK_MEM.v_mem_v_mem_0_0 / A_DOUT[16] 

    Ending point:                            INSTANTIATE_PEC\.PEC_COD.SIGN / D 

    The start point is clocked by            FAPEC|CLK [rising] on pin A_CLK 

    The end   point is clocked by            FAPEC|CLK [falling] on pin CLK 

 

Instance / Net                                                                            Pin            Pin               Arrival          

Name                                                                       Type           Name           Dir     Delay     Time         

---------------------------------------------------------------------------------------------------------------------------------- 

INSTANTIATE_HIST_BLCK_MEM\.block_mem_generic\.BLCK_MEM.v_mem_v_mem_0_0     RAM1K18_RT     A_DOUT[16]     Out     4.997     4.997           

RD[16]                                                                     Net            -              -       0.983     -                

INSTANTIATE_PEC\.PEC_COD.SIGN                                              SLE            D              In      -         5.980           

================================================================================================================================== 

Total path delay (propagation time + setup) of 6.209 is 5.225(84.2%) logic and 0.983(15.8%) route. 

Path delay compensated for clock skew. Clock skew is added to clock-to-out value, and is subtracted from setup time value 

 

Basically, they indicate that the paths are related to the use of combination of rising and 

falling clock edges (in bold). This is not a recommended practice for RTL code and should 

be avoided whenever possible. The use of the different clock edges in the new FAPEC is 
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due to legacy, as this was already used in the reference design. There is no real 

justification for the new version to use this clocking scheme. Furthermore, fixing this does 

not seem very difficult. The consequence of mixing rising and falling edges is that the 

requested period is half of the real clock period, because the tool is analysing the timing 

between the falling and the rising edge of a clock for these paths. It is also worth noting 

that memories are slow and it typically takes almost 5ns for the value to be valid out of the 

memory in RD port (in bold). 

 

In the timing report 1000 paths were requested from the tool. After the initial 60 paths 

analysed above, the remaining 940 paths were all related to the multiplexing operations in 

the PEC module: 

 
Path information for path number 61:  

      Requested Period:                      9.115 

    - Setup time:                            0.264 

    + Clock delay at ending point:           0.000 (ideal) 

    = Required time:                         8.850 

 

    - Propagation time:                      10.459 

    - Clock delay at starting point:         0.000 (ideal) 

    = Slack (non-critical) :                 -1.609 

 

    Number of logic level(s):                30 

    Starting point:                          INSTANTIATE_HIST_BLCK_MEM\.block_mem_generic\.BLCK_MEM.v_mem_v_mem_0_0 / A_DOUT[0] 

    Ending point:                            pec_opt_1.segment_value_r[15] / D 

    The start point is clocked by            FAPEC|CLK [rising] on pin A_CLK 

    The end   point is clocked by            FAPEC|CLK [rising] on pin CLK 

 

. . . 

. . . 

. . . 

 

Path information for path number 1000:  

      Requested Period:                      9.115 

    - Setup time:                            0.264 

    + Clock delay at ending point:           0.000 (ideal) 

    = Required time:                         8.850 

 

    - Propagation time:                      10.253 

    - Clock delay at starting point:         0.000 (ideal) 

    = Slack (non-critical) :                 -1.403 

 

    Number of logic level(s):                20 

    Starting point:                          INSTANTIATE_HIST_BLCK_MEM\.block_mem_generic\.BLCK_MEM.v_mem_v_mem_0_0 / A_DOUT[8] 

    Ending point:                            pec_opt_1.segment_value_r[15] / D 

    The start point is clocked by            FAPEC|CLK [rising] on pin A_CLK 

    The end   point is clocked by            FAPEC|CLK [rising] on pin CLK 

 

The starting point of the path is always the output memory data port and the ending point 

is a register in the PEC coder. There are two problems here. Firstly, as shown above, the 

memory output is very slow and it takes 5 ns for the data to get out of the memory. This 

means that outputting data from the memory –  without doing any operation with this 

output value and not accounting for any net delay –  can only work at a maximum 

operation frequency of 200 MHz (1/5 ns). And this relates to the second problem, which is 

the large number of logic levels due to the multiplexing currently required by PEC. 

Specifically, path 61 has 30 logic levels, which is a huge number. When combined, these 

two issues considerably limit the maximum frequency. 

 

The first problem described above presents a relatively easy solution. The operation of the 

PEC coder can be modified to work with a registered value instead of directly working 

with the value coming from the memory. This way the memory delay will not apply to the 
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worst path, and also has the advantage of reducing net delays because in general registers 

can be placed much closer to the combinational logic (i.e. LUTs) than memories. A quick 

feasibility test has been run to examine the potential performance that FAPEC can achieve 

if the memory value were to be registered inside the PEC module. The RD input (the read 

value coming from the memory) in PEC has been registered with the CLK signal. The 

internals of PEC have not been further modified, meaning that the output of the PEC 

module is not correct, although this modified module presents a valid performance in 

terms of timing analysis. Now the timing is different: 

 
Path information for path number 61:  

      Requested Period:                      7.861 

    - Setup time:                            0.264 

    + Clock delay at ending point:           0.000 (ideal) 

    = Required time:                         7.596 

 

    - Propagation time:                      8.983 

    - Clock delay at starting point:         0.000 (ideal) 

    = Slack (non-critical) :                 -1.387 

 

    Number of logic level(s):                10 

    Starting point:                          word_packer_1.ptr_r_fast[1] / Q 

    Ending point:                            word_packer_1.half_word_r[4] / D 

    The start point is clocked by            FAPEC|CLK [rising] on pin CLK 

    The end   point is clocked by            FAPEC|CLK [rising] on pin CLK 

 

The results obtained are really promising. Requested period of 7.861 ns corresponds to 

127.2 MHz. Slack is -1.387 ns, which if added to the requested period, means that the 

module can potentially run up to ~108 MHz only by fixing falling edge clocks and 

registering the memory input of PEC. In fact, these results point to a much faster potential 

with a few other improvements. All the new paths down to number 1000 have been 

examined again. With no exception, all paths are either located inside the PEC_CODER or the 

WORD_PACKER modules. This is due to the large number of multiplexing operations 

performed inside these two modules. However, slack at path 1000 is -0.318 ns, which 

means that with additional effort to increase the pipelining in both modules we can expect 

FAPEC to run at least at 125 MHz. This is a magical figure for the SpFi integration. 

Typically, SpFi links run at 2.5 Gbit/s, meaning that continuous data input at 62.5 MHz is 

required for the link to saturate. This frequency is determined by the 32-bit user data 

path. As currently FAPEC operates with 16-bit samples, then running FAPEC at 125 MHz 

would be equivalent to 32-bit at 62.5 MHz. 

 

2.5.5 Post Place and Routing Analysis 

 

The place and routing operation has been carried out for the FAPEC compressor with a 

Xilinx Spartan-6 FPGA. The technology used by Spartan-6 is very similar to that of Virtex-

5QV (a space-qualified device also from Xilinx) and it can thus be used as a benchmark for 

the Virtex-5QV resource utilisation.  

 

Results are displayed in Fig. 2.14. As both Spartan and Virtex use LUT-6 tables, the number 

of LUT and DFF elements should be very similar. As noted for both ProASIC and RTG4 

devices, the number of combinatorial logic used is much larger than the number of 

sequential elements. In the case of Spartan-6 the ratio is ~5, considerably higher than 
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values (~4) obtained for the other two FPGAs. It is worth nothing that the values indicated 

in this table have been obtained from the actual implementation in the final design 

(integrated with SpFi). Hence, it could be that the Place and Route tool (Xilinx XST) has 

done certain changes to improve performance taking into consideration the whole design. 

 

 

 SPARTAN-6 75T VIRTEX-5QV 

 Cells % Cells % 

Combinational (LUTs) 3736 8.0 3736 4.3 

Sequential (DFFs) 763 0.8 763 0.9 

Logic Average Use  4.4  2.6 

Block RAM 1 0.6 1 0.3 

 
Fig. 2.14: Spartan-6 and Virtex-5QV utilisation after Place and Routing for the new FAPEC design 

 

As happened in the RTG4 resource analysis, the new FAPEC logic average usage is less 

than 3% for the Virtex-5QV. This means that FAPEC can too be implemented in a Virtex-

5QV device with a small impact in the global design. 



38  Implementing FAPEC inside an FPGA 

 

 

 



Integration of FAPEC as data compressor stage in a SpaceFibre link 39 

 

3. The STAR Fire Design  
 

In this section we explain the process of integrating the new version of the FAPEC 

compressor as an intermediate stage at the transmit Virtual Channel (VC) of a SpaceFibre 

codec. 

 

3.1 Introduction 
 

The STAR Fire is ground support equipment specifically designed to support the 

evaluation and early adoption of SpaceFibre technology (Fig. 3.1). It is a SpFi Diagnostic 

Interface and Analyser that provides a complete SpFi test and development solution. The 

STAR Fire unit has two SpFi interfaces with an embedded link analyser, two SpW ports, 

multiple very high data rate inbuilt data pattern generators and checkers, and an 

embedded SpW router. STAR Fire can operate as a bridge between SpW and SpFi, as a SpFi 

link analyser, as a rapid SpFi packet generation and checking unit, and as a decoder of SpFi 

signals for operation with a Logic Analyser.  

 

 
 

Fig. 3.1: The STAR Fire Mk2 Unit front panel (left) and bottom panel (right)  

 

STAR Fire features a USB port which provides communications with a host PC, allowing to 

interface SpFi with a computer. Unfortunately only USB 2.0 connection is allowed which 

does not allow sending enough data to saturate the link. Nevertheless, the inbuilt basic 

internal data generators and checkers can be used to force SpFi to send data at maximum 

speed. The USB interface also provides status and control communications from the PC, 

thanks to specially designed software. 

 

The STAR Fire software is based on a Graphical User Interface (GUI) that allows the 

configuration of the SpFi interfaces and the use of the embedded link analyser. It also 

controls the parameters of the data generators and monitors the status of the data 

checkers for virtual channels and broadcast data (Fig. 3.2). Furthermore, there is a trigger 

module (Fig. 3.3) that decodes the SpFi data stream which can be analysed using the Word 

or the Frame based view (described in the next section). 
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Fig. 3.2: The STAR Fire software Configuration window  

 

 
 

Fig. 3.3: The STAR Fire software Trigger window  

 

A SpFi link typically runs at 2.5 Gbit/s in RTAX FPGAs (using an external SerDes device 

like TLK2711-SP) and 3.125 Gbit/s in RTG4 or Virtex-5QV. SpFi also supports lane 

aggregation thanks to the multi-laning capabilities. This means that the link speed can be 

multiplied by using several lanes – physical connections – to form a link. However, this 

requires higher system complexity, and more mass (additional cables) and power 

consumption (to send the signals over the cables). An option to reduce this complexity, 

mass and power consumption is to compress the data prior to the transmission over the 

link. Thus, the new RTL version of FAPEC can be used to mitigate these problems. 
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3.2 Implementation of FAPEC inside STAR Fire Design 
 

The original design of the STAR Fire unit has been modified to integrate FAPEC. The unit 

features 2 SpFi ports of 8 VCs each. The lowest VCs (VC 0 and VC 1) are connected to the 

SpW Router over a SpW to SpFi data format converter. The remaining VCs (VC 2 to VC 7) 

are connected to independent data pattern generators and checkers. The reason for this 

embedded generator/checker is that the unit is connected to a host computer over a USB 

2.0 connection. The theoretical maximum data rate that can be achieved over USB 2.0 is 

480 Mbit/s (the actual rate is well below this figure). This means that it is impossible to 

stress a single SpFi link at its maximum capacity of 2 Gbit/s (2.5 Gbit/s line rate) over a PC 

connection. The internal data generator and checkers allow to generate and check data at 

the maximum rate supported by SpFi. They can work independently on different VCs and 

on any of the SpFi ports. This allows testing the QoS offered by the SpFi codec. STAR-

Dundee is working on a new version of the STAR Fire – called the STAR Fire Mk3 – that 

will feature a USB 3.0 connection, thus allowing much higher data rates to be directly sent 

from the PC. 
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Fig. 3.4: The STAR Fire design architecture. In blue the FAPEC modules added to the design. 

 

To optimise the development time and minimise risks, it was decided to insert the FAPEC 

codec between the data generator output and the transmit VC input, as shown in Fig. 3.4. 

To minimise resource usage only VC 2 has access to the FAPEC compressor. The original 
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STAR Fire design is the same as depicted in Fig. 3.4, except for the FAPEC modules (in 

blue). Originally VC 2 was directly connected to the data pattern and checker generators. 

This new design allows testing the FAPEC codec with the STAR Fire software Configurator 

window as shown in Fig. 3.2. The software is very powerful and apart from monitoring 

and controlling the status of the SpFi links, it also allows to trigger on different control 

words both in the transmission and reception sides in the Trigger window (Fig. 3.3). Upon 

triggering on a control word, a Frame View and Analyser windows appear. The Analyser 

window shows (Fig. 3.5) in the central part the SpFi words received (left half) and 

transmitted (right half) for the port selected in the trigger setup. Each word consists of 

four 8B10B symbols or characters that are shown at each side. The Frame View window 

shows data frames with a separate column for each VC (Fig. 3.6). 

 

Regarding the code, there have been a couple of changes required by this design related to 

the interface between the data pattern generator and FAPEC. As explained in Section 2.3.2, 

the PRECOMPRESSOR module was updated to guarantee that the right value was read from 

the input data stream. The data_generator module updates the data value immediately 

after being read by FAPEC and the PRECOMPRESSOR needed to be updated accordingly. 

 

 

 
 

Fig. 3.5: The STAR Fire Analyser window  

 

The data_generator module used by the STAR Fire design was also updated to meet the 

restrictions of timing between consecutive values of the HIST_CONSTRUCTOR module. 

Specifically, it had to be modified to guarantee that regardless of the configuration set up 
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by the control software, the maximum data generation rate never exceeded 1 data value 

every 6 clock cycles. Section 2.3.3 explains how the new FAPEC implementation still 

presents some limitations that prevent the module to work on a sample-per-clock basis. 

 
 

 
 

Fig. 3.6: The STAR Fire Frame View window  

 

3.2.1 Verifying the Design 

 

The data generator embedded in the STAR Fire is a very simple one. It consists of a simple 

increasing pattern, incrementing its output value by one every clock cycle. This means that 

differential values will always be ‘1’ with the exception of the leading value of each data 

block. This is not very representative of typical data, but bear in mind that this same 

algorithm has been successfully tested in simulation against different types of data sets. 

The purpose of the hardware set-up was to validate the operation of FAPEC with SpFi.  

 

 
 

Fig. 3.7: View of the compressed output by the data pattern generator  
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The pattern generated by the data_generator was printed into a file. Then this file was 

passed to the reference FAPEC design to obtain the FAPEC compressed master file. This is 

the file used to validate the operation of the STAR Fire design. Fig. 3.7 shows the 

compressed output of the master file. The red rectangles indicate the places where there is 

a boundary between packets. In the boundary the coding table is coded and these bit 

sequences can be easily identified. 

 

The verification of the design has again been carried out with Modelsim. The whole STAR 

Fire design has been simulated and the output has been inspected to verify that the 

compressed file is being correctly generated by FAPEC. Once this has been verified, the 

rest of the design verification is simple because the initial STAR Fire design was already 

working correctly.  

 

Fig. 3.8 shows the Modelsim simulation for the STAR Fire design. In the top panel the first 

two words are output (0x55554574 and 0x55555555). Note that they are only valid if 

Out_Valid signal is asserted. In the bottom panel the beginning of the second packet is 

displayed (0xBE267655 and 0xAAAAAAAA). The simulator output was binary compared 

against the compressed master file (Fig. 3.7) to verify that the output matched. Note the 

inverse endianness between the simulation and the file. 

 

 
 

 
 

Fig. 3.8: Modelsim simulations of the STAR Fire design  
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3.2.2 Building the design 

 

The original STAR Fire design took most of the FPGA resources. One problem encountered 

with the new design integrating the FAPEC compressor is that this new design was setting 

the FPGA tools at the limit of what is possible with the target device (Spartan-6 75T). The 

new parallel PEC module uses few registers but the number of multiplexers that uses in 

comparison is high. So the tool (Xilinx XST) presented several problems when trying to 

place the whole design inside the FPGA. In some runs (in 3 out of 4 tries) it got stuck for 

several hours before crashing, indicating that it was impossible to place the design. In the 

fourth try the design was successfully placed, but then in the routing phase there were 

plenty of timing errors. The device utilisation and logic distribution summary for that run 

was: 

 
Slice Logic Utilization: 

  Number of Slice Registers:                24,884 out of  93,296   26% 

  Number of Slice LUTs:                     37,855 out of  46,648   81% 

 

Slice Logic Distribution: 

  Number of occupied Slices:                11,218 out of  11,662   96% 

  Number of MUXCYs used:                     6,772 out of  23,324   29% 

  Number of LUT Flip Flop pairs used:       39,715 

    Number with an unused Flip Flop:        15,323 out of  39,715   38% 

    Number with an unused LUT:               1,860 out of  39,715    4% 

    Number of fully used LUT-FF pairs:      22,532 out of  39,715   56% 

    Number of slice register sites lost 

      to control set restrictions:               0 out of  93,296    0% 

 

Whereas the original STAR Fire design without FAPEC required: 

 
Slice Logic Utilization: 

  Number of Slice Registers:                23,394 out of  93,296   25% 

  Number of Slice LUTs:                     30,404 out of  46,648   65% 

 

Slice Logic Distribution: 

  Number of occupied Slices:                10,657 out of  11,662   91% 

  Number of MUXCYs used:                     6,460 out of  23,324   27% 

  Number of LUT Flip Flop pairs used:       34,014 

    Number with an unused Flip Flop:        11,118 out of  34,014   32% 

    Number with an unused LUT:               3,610 out of  34,014   10% 

    Number of fully used LUT-FF pairs:      19,286 out of  34,014   56% 

    Number of slice register sites lost 

      to control set restrictions:               0 out of  93,296    0% 

 

The design with FAPEC is congested, with 96% of occupied slices. If we compare the 

difference obtained while building these two designs, we can see that it is:  

 

Δ Registers = 1490 

Δ LUTs = 7451 

 

In Section 2.5.5 the resources required for the FAPEC codec have been presented. A FAPEC 

module requires roughly 750 registers and 3750 LUTs. As there are two modules in this 

new design, ~1500 additional registers and ~7500 additional LUTs are needed. This 

matches almost perfectly the observed difference. 
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With a 96% of occupied slices, the FPGA is so congested by the addition of FAPEC that it is 

not possible to find suitable routes that meet timing for all the nets. Note that during the 

synthesis phase timing issues were not reported and constraints were easily met. This is a 

clear indication that the problem is not intrinsic of the design itself but related to the 

routing phase inside the FPGA. The solution to correctly place and route the design is to 

reduce complexity. An easy way to avoid changing large parts of the design is to remove 

the data generators and checkers connected to VCs 4 to 7. This change is easy to 

implement and the results obtained are satisfactory. The aggregate design requirements 

for LUTs descend from 81% to 74% and Registers usage goes from 26% down to 23%: 

 
Slice Logic Utilization: 

  Number of Slice Registers:                21,705 out of  93,296   23% 

  Number of Slice LUTs:                     34,739 out of  46,648   74% 

 

Slice Logic Distribution: 

  Number of occupied Slices:                10,943 out of  11,662   93% 

  Number of MUXCYs used:                     5,844 out of  23,324   25% 

  Number of LUT Flip Flop pairs used:       36,909 

    Number with an unused Flip Flop:        15,548 out of  36,909   42% 

    Number with an unused LUT:               2,170 out of  36,909    5% 

    Number of fully used LUT-FF pairs:      19,191 out of  36,909   51% 

    Number of slice register sites lost 

      to control set restrictions:               0 out of  93,296    0% 

 

 The most important parameter here, the number of occupied slices has not been altered 

that much: it simply has gone from 96% to 93%. But this 3% decrease makes all the 

difference, because congestion effects are not linear. Routing is a problem with 

exponential complexity, so small reductions in complexity can provide large gains in 

routing time. Routing issues become patent when approaching device saturation and then 

quickly disappear when resources are freed, especially when timing constraints are not 

very tight. 

 

After this change, only one timing error is reported. As a matter of fact, this is not truly an 

error because it corresponds to the maximum skew allowed for the SpW clock recovery 

networks. Up to 1 ns is tolerated, but the constraint is set to 0.5 ns to force the tool to 

minimise this skew. The last clock in this timing report corresponds to the system clock 

used by FAPEC and most of the SpFi related logic.  

 
---------------------------------------------------------------------------------------------------------- 

  Constraint                                |    Check    | Worst Case |  Best Case | Timing |   Timing    

                                            |             |    Slack   | Achievable | Errors |    Score    

---------------------------------------------------------------------------------------------------------- 

* NET "i_din(0)" MAXSKEW = 0.5 ns           | NETSKEW     |    -0.026ns|     0.526ns|       1|          26 

---------------------------------------------------------------------------------------------------------- 

  NET "i_din(1)" MAXSKEW = 0.5 ns           | NETSKEW     |     0.023ns|     0.477ns|       0|           0 

---------------------------------------------------------------------------------------------------------- 

  TS_txusrclk_sys = PERIOD TIMEGRP "TNM_txu | SETUP       |     0.158ns|    15.842ns|       0|           0 

  srclk_sys" 16 ns HIGH 50%                 | HOLD        |     0.124ns|            |       0|           0 

---------------------------------------------------------------------------------------------------------- 

 

The slack value indicates that timing is met for a worst case scenario – that is operating at 

the maximum of the temperature range, 85º Celsius, and at the minimum voltage of the 

range, 1.14 V. The frequency required for 2.5 Gbit/s link operation is 62.5 MHz for this 

clock (i.e. 16 ns of period). Worst path has a delay of 15.842 ns, which gives 0.158 ns of 
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margin. This indicates that timing closure has been achieved and that no set-up violations 

will occur even in the worst case scenario. 

 

3.3 Validation of the design 
 

The hardware build procedure generates an .mcs file that can then be programmed in the 

target FPGA. The STAR Fire unit was reprogrammed with this new design featuring SpFi 

and FAPEC. VC 3 (not using FAPEC) was tested first to check that data frames were passing 

fine over the SpFi link. The trigger was configured to trigger on SDF (Start of Data Frame) 

control word. In this way the next data frame being sent over the link is captured. After 

setting the trigger, VC 2 data generation (using FAPEC) was enabled. Fig. 3.9 shows the 

STAR Fire unit sending data from SpFi Port 1 to Port 2. 

 

 
 

Fig. 3.9: STAR Fire unit in operation  

 

Upon starting the data generation in VC 2, the STAR Fire software immediately triggers. 

The contents of the data frame can be inspected in the Word Analyser window. Fig. 3.10 

shows the initial frame being sent over SpFi as captured by the trigger. On the left panel 

the initial data words travelling over the SpFi link are displayed. The word highlighted in 

yellow is the SDF, the word that caused the trigger event. The word above (PRBS) is simply 

a Pseudo-Random Binary Sequence that is sent over the link when there is nothing to be 

sent. After the SDF it can be seen as data exactly matches the compressed master file. Note 

that endianness between the master file and the data frames is reversed. This has to do 

with the way in which SpFi sends data produced by FAPEC. The right panel of the Fig. 3.10 

shows the start of the second compressed block. 
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In summary, once the congestion issue was solved (Section 3.2.2) no problems were 

encountered during the validation phase. The verification performed with simulations 

showed that the design was working fine. When testing the hardware device the results 

matched the simulations as expected. 

 

 

             
 

Fig. 3.10: Data frame carrying the compressed data packet captured by the Analyser  
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4. Conclusions 
 

In this project a new register-transfer level (RTL) implementation of the FAPEC 

compressor has been developed. This implementation offers a greater throughput than the 

previous version, while maintaining a relatively small footprint. The main weaknesses of 

the initial prototype have been addressed. The initial implementation of FAPEC had been 

developed in the past to demonstrate the feasibility of an FPGA implementation, and 

offered a throughput of 32 Mbit/s. The new VHDL generated can target any FPGA 

technology, and its serial output has been substituted by a 32-bit parallel interface. This 

allows a much higher throughput, as the parallel interface can be easily used to interface a 

SerDes device or an AXI-like bus to send data at high speeds to other applications. 

Specifically, the speed of the algorithm has been improved by a factor 6 while the resource 

usage remains low, around 2% of a Virtex-5QV or an RTG4.  

 

SpaceFibre (SpFi) is a new technology for use onboard spacecraft that provides 

point-to-point and networked interconnections at Gigabit rates. SpFi is an ESA initiative 

and will substitute the ubiquitous SpaceWire for high speed applications in space. In this 

work we have demonstrated that FAPEC can be easily integrated on top of SpFi to reduce 

the amount of information that the spacecraft network has to deal with. The integration of 

FAPEC with SpFi has successfully been validated in a representative FPGA platform. In this 

design FAPEC operated at ~12 Msamples/s (~200 Mbit/s) using a Xilinx Spartan-6 but it 

is expected to reach Gbit/s speeds with some additional work. This can increase the 

effective bandwidth of a single lane SpFi link well over the original 2.5/3.125 Gbit/s 

currently achieved with space-qualified technology, typically enabling effective 

throughputs of > 5 Gbit/s for common high-speed applications (e.g. instrument data). The 

combination of these two technologies can help to reduce the large amounts of data 

generated by some instruments in a transparent way, without the need of user 

intervention, and to provide a solution to the increasing data volumes in spacecrafts. 

Consequently the combination of FAPEC with SpFi can help to save mass, power 

consumption and reduce system complexity. 

 

4.1 Forthcoming work 
 

In the near future FAPEC is expected to be able to achieve more than 65 Msample/s (~ 1 

Gbit/s) capability with some additional effort. Resource usage inside the FPGA is also 

expected to be slightly reduced with the adoption of optimised strategies to deal with the 

data compression. Specifically, the following tasks need to be done to improve FAPEC 

performance: 

 

 Remove the pipeline stage inside the memory module: 

Depending on the technology it is better to have a register stage outside the 

memory, if required. In double-port or dual-port memories the operation for both 

ports must be symmetric. 
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 Remove falling edge logic: 

This is not normally used unless justified in some parts of the code. Sometimes 

used when changing data between clock domains to guarantee that data is 

sampled around the central bit time. This is not the case for FAPEC. 

 

 Optimise the histogram generation logic: 

One sample value per clock should be processed. This would allow FAPEC to 

process one sample per clock cycle. 

 

 Improve the calculation of the coding tables: 

The coding tables should mirror as much as possible the software version. The 

compression ratios of the software version are better due to a more complex 

algorithm calculating the coding tables. 

 

 Use a more complex data generator: 

It is required a more complex data source to further validate FAPEC in real 

hardware. One possibility is to connect FAPEC to VC 1 too, so it can be accessed 

through the SpW Router. In this way it would be possible to send data directly 

from the computer over USB, although this will be relatively low-speed (USB 2.0). 

 

 Increase the pipelining in PEC_CODER and WORD_PACKER modules: 

These two modules perform large multiplexing operations. It seems possible to 

reduce the number of operations (i.e. to use less FPGA resources) and to improve 

timing by increasing the number of pipelining stages inside them. 
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5. Annex 
 

The calibration algorithm for PEC used by FAPEC is patented. This algorithm is kept secret 

to protect the know-how that allows to exploit the benefits of PEC with a low-complexity 

fast adaptive calibration method. However the PEC codec itself is of public domain. In the 

following sections the VHDL code for the parallel-output PEC_CODER and the WORD_PACKER 

modules is shown. The PEC_CODER represents the most important modification done to the 

initial FAPEC VHDL code. The WORD_PACKER, on the other hand, is a newly developed 

module presenting the compressed data in 32-bit chunks. This module was not present in 

the initial FAPEC.  

 

5.1 Parallel-Output PEC VHDL Code  
 

--==========================================================================-- 

-- 

-- Design Units   :  

--  

-- Entity         : pec_opt(rtl) 

--  

-- File           : pec_opt.vhd 

-- 

--    Function: 

-- 

--      - This module takes the compression table and samples to compress and 

--        generates the compressed bit stream. It has a separate parallel 

--        output for the different fields instead of the original serial output 

--        used by 1st version of FAPEC@FPGA 

--         

-- 

-- Limitations    :  

-- 

-- Dependencies   :  

-- 

-- Author       = Alberto Gonzalez 

-- 

-- Last update: 2016-09-08 

------------------------------------------------------------------------------- 

 

 

-- IEEE library includes 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

use work.constants_definition_package.all;  -- the constants are defined here 

 

------------------------------------------------------------------------------- 

-- entity declaration. 

-- 

entity pec_opt is 

 

   port ( 

      Clk         : in std_logic; 

      Reset       : in std_logic; 

      Table_Valid : in std_logic; 

 

      -- From encoder side 

      Coding_Variant     : in std_logic_vector(1 downto 0); 

      Segment_1_Num_Bits : in unsigned(LOG2_SSYZE-1 downto 0); 

      Segment_2_Num_Bits : in unsigned(LOG2_SSYZE-1 downto 0); 

      Segment_3_Num_Bits : in unsigned(LOG2_SSYZE-1 downto 0); 

      Segment_4_Num_Bits : in unsigned(LOG2_SSYZE-1 downto 0); 

      Ceiling_1_Val      : in unsigned(SYMBOL_SIZE-1 downto 0); 

      Ceiling_2_Val      : in unsigned(SYMBOL_SIZE-1 downto 0); 

      Ceiling_3_Val      : in unsigned(SYMBOL_SIZE-1 downto 0); 

 

      -- To Word_Packer module 

      Ready           : in  std_logic; 

      Table_Valid_Out : out std_logic; 
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      Table_Num_Bits  : out unsigned(LOG2_SSYZE downto 0); 

      Table_Vector    : out std_logic_vector(TAB_LONG_REF-1 downto 0); 

 

      Comp_Sample_Valid  : out std_logic; 

      Coding_Variant_Out : out std_logic_vector(1 downto 0); 

      LE_Num_Bits        : out unsigned(4 downto 0); 

      DS_Num_Bits        : out unsigned(4 downto 0); 

      LC_Num_Bits        : out unsigned(4 downto 0); 

      LE_Comp_Val        : out std_logic_vector(22 downto 0); 

      DS_Comp_Val        : out std_logic_vector(22 downto 0); 

      LC_Comp_Val        : out std_logic_vector(19 downto 0); 

 

      -- Memories Management       

      RD    : in  std_logic_vector(SYMBOL_SIZE downto 0);  -- Pixel/value + sign to compress as read 

from the block RAM 

      RADDR : out std_logic_vector(LOG2_BSIZE downto 0);  -- Address to read of the block RAM (2 x 

block size) 

      REN   : out std_logic  -- read enable for the RAM / LOW ACTIVE ??? 

      ); 

 

end entity pec_opt; 

 

 

-- architecture 

architecture rtl of pec_opt is 

 

   constant TBSZ : positive := TAB_LONG_REF; 

 

   ---[ signals ]----------------------------------------------------------- 

   type fsm_state is (S_IDLE, S_TABLE_CODING, S_WAIT_1, S_WAIT_2, S_OUTPUT_COMP_VAL); 

   signal state_n, state_r : fsm_state; 

 

   signal sign_n : std_logic; 

   signal sign_r : std_logic; 

 

   signal seg_1_n : unsigned(LOG2_SSYZE-1 downto 0); 

   signal seg_1_r : unsigned(LOG2_SSYZE-1 downto 0); 

   signal seg_2_n : unsigned(LOG2_SSYZE-1 downto 0); 

   signal seg_2_r : unsigned(LOG2_SSYZE-1 downto 0); 

   signal seg_3_n : unsigned(LOG2_SSYZE-1 downto 0); 

   signal seg_3_r : unsigned(LOG2_SSYZE-1 downto 0); 

   signal seg_4_n : unsigned(LOG2_SSYZE downto 0); 

   signal seg_4_r : unsigned(LOG2_SSYZE downto 0); 

 

   signal table_num_bits_n : unsigned(LOG2_SSYZE downto 0); 

   signal table_num_bits_r : unsigned(LOG2_SSYZE downto 0); 

   signal table_vector_n   : unsigned(TBSZ-1 downto 0); 

   signal table_vector_r   : unsigned(TBSZ-1 downto 0); 

 

   signal le_num_bits_n : unsigned(4 downto 0); 

   signal le_num_bits_r : unsigned(4 downto 0); 

   signal ds_num_bits_n : unsigned(4 downto 0); 

   signal ds_num_bits_r : unsigned(4 downto 0); 

   signal lc_num_bits_n : unsigned(4 downto 0); 

   signal lc_num_bits_r : unsigned(4 downto 0); 

 

   signal le_compressed_val_n : unsigned(22 downto 0); 

   signal le_compressed_val_r : unsigned(22 downto 0); 

   signal ds_compressed_val_n : unsigned(22 downto 0); 

   signal ds_compressed_val_r : unsigned(22 downto 0); 

   signal lc_compressed_val_n : unsigned(19 downto 0); 

   signal lc_compressed_val_r : unsigned(19 downto 0); 

 

   signal segment_n       : unsigned(1 downto 0); 

   signal segment_r       : unsigned(1 downto 0); 

   signal segment_value_n : unsigned(SYMBOL_SIZE-1 downto 0); 

   signal segment_value_r : unsigned(SYMBOL_SIZE-1 downto 0); 

 

   signal table_valid_out_n   : std_logic; 

   signal comp_sample_valid_n : std_logic; 

 

   signal coding_variant_r : std_logic_vector(1 downto 0); 

 

   signal word_count_n : unsigned(LOG2_BSIZE downto 0); 

   signal word_count_r : unsigned(LOG2_BSIZE downto 0); 

 

begin 
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   -- Alias 

   sign_n <= RD(SYMBOL_SIZE);           -- Highest bit codes the sign 

 

   -- Segment 4 can be up to 16 bits. Coded with 4 bits, this is represented by 

   -- "0000" 

   seg_4_n <= "10000" when (Segment_4_Num_Bits = 0) else ('0' & Segment_4_Num_Bits); 

   seg_3_n <= Segment_3_Num_Bits; 

   seg_2_n <= Segment_2_Num_Bits; 

   seg_1_n <= Segment_1_Num_Bits; 

 

 

   ---------------------------------------------------------------------------- 

   -- FSM controlling the encoding of a data block 

   -- 

   encod_fsm : process (all) is 

   begin 

      -- Default is to hold state 

      state_n             <= state_r; 

      table_valid_out_n   <= '0'; 

      comp_sample_valid_n <= '0'; 

      word_count_n        <= word_count_r; 

 

      -- next state is dependent on current state 

      case (state_r) is 

 

         when S_IDLE => 

            if (Table_Valid = '1') then 

               state_n <= S_TABLE_CODING; 

            end if; 

 

         when S_TABLE_CODING => 

            state_n           <= S_WAIT_1; 

            table_valid_out_n <= '1'; 

 

         when S_WAIT_1 => 

            state_n <= S_WAIT_2; 

 

         when S_WAIT_2 => 

            state_n <= S_OUTPUT_COMP_VAL; 

                         

         when S_OUTPUT_COMP_VAL => 

            if (Ready = '1') then 

               -- Only if module getting this data is Ready to accept it 

               comp_sample_valid_n <= '1'; 

                

               if (word_count_r = to_unsigned(509, LOG2_BSIZE+1)) then 

               -- End of the memory. Reset the counter counter init 

               word_count_n <= (others => '0'); 

            else 

               word_count_n <= word_count_r + 1; 

            end if; 

                

               if (word_count_r = to_unsigned(509, LOG2_BSIZE+1)) or 

                  (word_count_r = to_unsigned(254, LOG2_BSIZE+1)) then 

                  state_n <= S_IDLE; 

               else 

                  state_n <= S_WAIT_1; 

               end if; 

            end if; 

             

      end case; 

   end process encod_fsm; 

 

 

   ---------------------------------------------------------------------------- 

   -- Initialisation table calculation 

   -- 

   table_const : process (all) is 

   begin 

      -- Default 

      table_vector_n <= (others => '0'); 

 

      if (Coding_Variant(1) = '0') then 

         -- LE variant 

         table_num_bits_n                                  <= to_unsigned(LE_TAB_LONG, 

LOG2_SSYZE+1);  -- 10 bits 
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         table_vector_n(TBSZ-1 downto TBSZ-2)              <= "01";  -- flag 

         table_vector_n(TBSZ-3)                            <= Segment_1_Num_Bits(0); 

         table_vector_n(TBSZ-4)                            <= Segment_2_Num_Bits(0); 

         table_vector_n(TBSZ-5 downto TBSZ-6)              <= Segment_3_Num_Bits(1 downto 0); 

         table_vector_n(TBSZ-7 downto TBSZ -LOG2_SSYZE -6) <= Segment_4_Num_Bits; 

          

      elsif (Coding_Variant(0) = '0') then 

         -- DS variant 

         table_num_bits_n                                   <= to_unsigned(DS_TAB_LONG, 

LOG2_SSYZE+1);  -- 13 bits 

         table_vector_n(TBSZ-1 downto TBSZ-2)               <= "00";  -- flag 

         table_vector_n(TBSZ-3 downto TBSZ-4)               <= Segment_1_Num_Bits(1 downto 0); 

         table_vector_n(TBSZ-5 downto TBSZ-6)               <= Segment_2_Num_Bits(1 downto 0); 

         table_vector_n(TBSZ-7 downto TBSZ-9)               <= Segment_3_Num_Bits(2 downto 0); 

         table_vector_n(TBSZ-10 downto TBSZ -LOG2_SSYZE -9) <= Segment_4_Num_Bits; 

          

      else 

         -- LC variant 

         table_num_bits_n                                                   <= 

to_unsigned(LC_TAB_LONG, LOG2_SSYZE+1);  -- 13 bits 

         table_vector_n(TBSZ-1)                                             <= '1';  -- flag 

         table_vector_n(TBSZ-2 downto TBSZ -LOG2_SSYZE -1)                  <= Segment_1_Num_Bits; 

         table_vector_n(TBSZ -LOG2_SSYZE -2 downto TBSZ -2*LOG2_SSYZE -1)   <= Segment_2_Num_Bits; 

         table_vector_n(TBSZ -2*LOG2_SSYZE -2 downto TBSZ -3*LOG2_SSYZE -1) <= Segment_3_Num_Bits; 

         table_vector_n(TBSZ -3*LOG2_SSYZE -2 downto TBSZ -4*LOG2_SSYZE -1) <= Segment_4_Num_Bits; 

      end if; 

 

   end process table_const; 

 

 

 

   ---------------------------------------------------------------------------- 

   -- Segment calculation 

   -- 

   segment_calc : process (all) is 

      variable abs_value : unsigned(SYMBOL_SIZE-1 downto 0); 

   begin 

      -- Default (segment 0) 

      abs_value       := unsigned(RD(SYMBOL_SIZE-1 downto 0)); 

      segment_n       <= "00"; 

      segment_value_n <= abs_value; 

 

      if (abs_value > Ceiling_3_Val) then 

         segment_value_n <= abs_value - Ceiling_3_Val - 1; 

         segment_n       <= "11"; 

 

      elsif (abs_value > Ceiling_2_Val) then 

         segment_value_n <= abs_value - Ceiling_2_Val - 1; 

         segment_n       <= "10"; 

 

      elsif (abs_value > Ceiling_1_Val) then 

         segment_value_n <= abs_value - Ceiling_1_Val - 1; 

         segment_n       <= "01"; 

 

      end if; 

   end process segment_calc; 

 

 

   ---------------------------------------------------------------------------- 

   -- Assign the output bit sequence depending on the selected variant and the 

   -- coding table 

   -- 

   bit_assign : process (all) is 

      variable s_1        : integer; 

      variable s_2        : integer; 

      variable s_3        : integer; 

      variable s_4        : integer; 

      variable v_num_bits : integer; 

      variable abs_value  : unsigned(SYMBOL_SIZE-1 downto 0); 

   begin 

      -- Default 

      le_compressed_val_n <= (others => '0'); 

      ds_compressed_val_n <= (others => '0'); 

      lc_compressed_val_n <= (others => '0'); 

      le_num_bits_n       <= (others => '0'); 

      ds_num_bits_n       <= (others => '0'); 

      lc_num_bits_n       <= (others => '0'); 
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      v_num_bits          := 0; 

      -- 

      abs_value           := segment_value_r; 

      s_1                 := to_integer(seg_1_r); 

      s_2                 := to_integer(seg_2_r); 

      s_3                 := to_integer(seg_3_r); 

      s_4                 := to_integer(seg_4_r); 

 

      case (coding_variant_r) is 

 

         ---------------------------------------------------------------------- 

         when LE_VAR => 

            if (segment_r = 0) then 

               le_compressed_val_n(0)            <= sign_r; 

               le_compressed_val_n(s_1 downto 1) <= abs_value(s_1 -1 downto 0); 

               v_num_bits                        := s_1 + 1; 

            end if; 

 

            if (segment_r = 1) then 

               le_compressed_val_n(0)                         <= '1'; 

               le_compressed_val_n(s_1 downto 1)              <= (others => '0'); 

               le_compressed_val_n(s_1 + 1)                   <= sign_r; 

               le_compressed_val_n(s_1 +1 +s_2 downto s_1 +2) <= abs_value(s_2 -1 downto 0); 

               v_num_bits                                     := 1 + s_1 + 1 + s_2; 

            end if; 

 

            if (segment_r > 1) then 

               -- For both 3rd and 4th segments 

               le_compressed_val_n(0)                                   <= '1'; 

               le_compressed_val_n(s_1 downto 1)                        <= (others => '0'); 

               le_compressed_val_n(s_1 + 1)                             <= sign_r; 

               le_compressed_val_n(s_1 +1 +s_2 downto s_1 +2)           <= (others => '1'); 

               -- '0' for 3rd segment 

               -- '1' for 4th segment 

               le_compressed_val_n(s_1 +2 +s_2)                         <= segment_r(0); 

                

               if (segment_r = 2) then 

                  -- This is required because s_3 can be greater than s_4 

                  -- E.g. s_3 = 2 and s_4 = 1 

                  -- This adds a little bit more complexity 

                  le_compressed_val_n(s_1 +2 +s_2 +s_3 downto s_1 +3 +s_2) <= abs_value(s_3 -1 

downto 0); 

               else 

                  le_compressed_val_n(s_1 +2 +s_2 +s_4 downto s_1 +3 +s_2) <= abs_value(s_4 -1 

downto 0); 

               end if; 

            end if; 

 

            if (segment_r = 2) then 

               v_num_bits := 1 + s_1 + 1 + s_2 + 1 + s_3; 

            elsif (segment_r = 3) then 

               v_num_bits := 1 + s_1 + 1 + s_2 + 1 + s_4; 

            end if; 

 

            le_num_bits_n <= to_unsigned(v_num_bits, 5); 

 

         ---------------------------------------------------------------------- 

         when DS_VAR => 

            if (segment_r = 0) then 

               ds_compressed_val_n(0)            <= sign_r; 

               ds_compressed_val_n(s_1 downto 1) <= abs_value(s_1 -1 downto 0); 

               v_num_bits                        := 1 + s_1; 

            end if; 

 

            if (segment_r = 1) then 

               ds_compressed_val_n(0)                       <= sign_r; 

               ds_compressed_val_n(s_1 downto 1)            <= (others => '1'); 

               ds_compressed_val_n(s_1 + s_2 downto s_1 +1) <= abs_value(s_2 -1 downto 0); 

               v_num_bits                                   := 1 + s_1 + s_2; 

            end if; 

 

            if (segment_r > 1) then 

               -- For both 3rd and 4th segments 

               ds_compressed_val_n(0)                            <= '1'; 

               ds_compressed_val_n(s_1 downto 1)                 <= (others => '0'); 

               ds_compressed_val_n(s_1 + 1)                      <= sign_r; 

               -- '0' for 3rd segment 
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               -- '1' for 4th segment 

               ds_compressed_val_n(s_1 + 2)                      <= segment_r(0); 

                

               if (segment_r = 2) then 

                  -- This is required because s_3 can be greater than s_4 

                  -- E.g. s_3 = 2 and s_4 = 1 

                  -- This adds a little bit more complexity 

                  ds_compressed_val_n(s_1 + 2 + s_3 downto s_1 + 3) <= abs_value(s_3 -1 downto 0); 

               else 

                  ds_compressed_val_n(s_1 + 2 + s_4 downto s_1 + 3) <= abs_value(s_4 -1 downto 0); 

               end if; 

                

            end if; 

 

            if (segment_r = 2) then 

               v_num_bits := 1 + s_1 + 2 + s_3; 

            elsif (segment_r = 3) then 

               v_num_bits := 1 + s_1 + 2 + s_4; 

            end if; 

 

            ds_num_bits_n <= to_unsigned(v_num_bits, 5); 

 

         ------------------------------------------------------------------- 

         when LC_VAR => 

            if (segment_r = 0) then 

               lc_compressed_val_n(0)            <= '0'; 

               lc_compressed_val_n(s_1 downto 1) <= abs_value(s_1 -1 downto 0); 

               lc_compressed_val_n(s_1 + 1)      <= sign_r; 

               if (abs_value = 0) then 

                  v_num_bits := 1 + s_1; 

               else 

                  v_num_bits := 2 + s_1; 

               end if; 

            end if; 

 

            if (segment_r = 1) then 

               lc_compressed_val_n(1 downto 0)       <= "01"; 

               lc_compressed_val_n(s_2 + 1 downto 2) <= abs_value(s_2 -1 downto 0); 

               lc_compressed_val_n(s_2 + 2)          <= sign_r; 

               v_num_bits                            := 3 + s_2; 

            end if; 

 

            if (segment_r = 2) then 

               lc_compressed_val_n(2 downto 0)       <= "011"; 

               lc_compressed_val_n(s_3 + 2 downto 3) <= abs_value(s_3 -1 downto 0); 

               lc_compressed_val_n(s_3 + 3)          <= sign_r; 

               v_num_bits                            := 4 + s_3; 

            end if; 

 

            if (segment_r = 3) then 

               lc_compressed_val_n(2 downto 0)       <= "111"; 

               lc_compressed_val_n(s_4 + 2 downto 3) <= abs_value(s_4 -1 downto 0); 

               lc_compressed_val_n(s_4 + 3)          <= sign_r; 

               v_num_bits                            := 4 + s_4; 

            end if; 

 

            lc_num_bits_n <= to_unsigned(v_num_bits, 5); 

 

 

         when others => 

            null; 

 

      end case; 

   end process bit_assign; 

 

 

   ---------------------------------------------------------------------------- 

   -- 

   control_path : process (all) is 

   begin 

      if (rising_edge(Clk)) then 

         if (Reset = '1') then 

             

            state_r           <= S_IDLE; 

            Table_Valid_Out   <= '0'; 

            Comp_Sample_Valid <= '0'; 

            word_count_r      <= (others => '0'); 
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         else 

            state_r           <= state_n; 

            Table_Valid_Out   <= table_valid_out_n; 

            Comp_Sample_Valid <= comp_sample_valid_n; 

            word_count_r      <= word_count_n; 

             

         end if; 

      end if; 

   end process control_path; 

 

 

   ------------------------------------------------------------------------- 

   -- 

   data_proc : process (Clk) is 

   begin 

      if (rising_edge(Clk)) then 

          

            sign_r             <= sign_n; 

            coding_variant_r   <= Coding_Variant; 

            Coding_Variant_Out <= coding_variant_r; 

 

            seg_1_r <= seg_1_n; 

            seg_2_r <= seg_2_n; 

            seg_3_r <= seg_3_n; 

            seg_4_r <= seg_4_n; 

 

            segment_r       <= segment_n; 

            segment_value_r <= segment_value_n; 

 

            table_num_bits_r <= table_num_bits_n; 

            table_vector_r   <= table_vector_n; 

 

            le_num_bits_r <= le_num_bits_n; 

            ds_num_bits_r <= ds_num_bits_n; 

            lc_num_bits_r <= lc_num_bits_n; 

 

            le_compressed_val_r <= le_compressed_val_n; 

            ds_compressed_val_r <= ds_compressed_val_n; 

            lc_compressed_val_r <= lc_compressed_val_n; 

 

      end if; 

   end process data_proc; 

 

 

   -- Map Outputs 

 

   -- Signal assignments for the memories 

   REN   <= LOW;  -- low level active. We are always reading the memory, but only take the value 

when we are interested... 

   RADDR <= std_logic_vector(word_count_r);  -- the addressed is always the value of the register 

 

   Table_Num_Bits <= table_num_bits_r; 

   Table_Vector   <= reverse_bits(std_logic_vector(table_vector_r)); 

 

   LE_Num_Bits <= le_num_bits_r; 

   DS_Num_Bits <= ds_num_bits_r; 

   LC_Num_Bits <= lc_num_bits_r; 

 

   LE_Comp_Val <= std_logic_vector(le_compressed_val_r); 

   DS_Comp_Val <= std_logic_vector(ds_compressed_val_r); 

   LC_Comp_Val <= std_logic_vector(lc_compressed_val_r); 

 

    

end architecture rtl; 
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5.2 Word Packer VHDL Code  
 

--==========================================================================-- 

-- 

-- Design Units   :  

--  

-- Entity         : word_packer(rtl) 

--  

-- File           : word_packer.vhd 

-- 

--    Function: 

-- 

--      - Takes the parallel-like compressed stream generated by the new PEC 

--        coder and sets it into chunks of 32 bits. They can then be directly 

--        interfaced to a VC buffer 

-- 

-- Limitations    :  

-- 

-- Dependencies   :  

-- 

-- Author       = Alberto Gonzalez 

-- 

-- Last update: 2016-09-08 

------------------------------------------------------------------------------- 

 

 

-- IEEE library includes 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

use work.constants_definition_package.all;  -- the constants are defined here 

 

------------------------------------------------------------------------------- 

-- entity declaration. 

-- 

entity word_packer is 

 

   port ( 

      Clk   : in std_logic; 

      Reset : in std_logic; 

 

      -- From PEC compressor 

      Ready           : out std_logic; 

      Table_Valid_Out : in  std_logic; 

      Table_Num_Bits  : in  unsigned(LOG2_SSYZE downto 0); 

      Table_Vector    : in  std_logic_vector(TAB_LONG_REF-1 downto 0); 

 

      Comp_Sample_Valid  : in std_logic; 

      Coding_Variant_Out : in std_logic_vector(1 downto 0); 

      LE_Num_Bits        : in unsigned(4 downto 0); 

      DS_Num_Bits        : in unsigned(4 downto 0); 

      LC_Num_Bits        : in unsigned(4 downto 0); 

      LE_Comp_Val        : in std_logic_vector(22 downto 0); 

      DS_Comp_Val        : in std_logic_vector(22 downto 0); 

      LC_Comp_Val        : in std_logic_vector(19 downto 0); 

 

      -- To VC buffer       

      VCB_Half_Full : in  std_logic; 

      Out_Valid     : out std_logic; 

      Out_Data      : out std_logic_vector(31 downto 0) 

      ); 

 

end entity word_packer; 

 

 

-- architecture 

architecture rtl of word_packer is 

 

   ---[ signals ]----------------------------------------------------------- 

   type fsm_state is (S_1ST_STAGE, S_2ND_STAGE, S_3RD_STAGE); 

   signal state_n, state_r : fsm_state; 

 

   signal in_value_n       : std_logic_vector(22 downto 0); 

   signal in_value_r       : std_logic_vector(22 downto 0); 

   signal num_bits_n       : unsigned(LOG2_SSYZE+1 downto 0); 
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   signal num_bits_r       : unsigned(LOG2_SSYZE+1 downto 0); 

   signal remaining_bits_n : unsigned(LOG2_SSYZE downto 0); 

   signal remaining_bits_r : unsigned(LOG2_SSYZE downto 0); 

 

   signal write_half_word_n : std_logic; 

   signal write_half_word_r : std_logic; 

   signal half_word_valid_n : std_logic; 

   signal half_word_valid_r : std_logic; 

   signal half_word_n       : std_logic_vector(15 downto 0); 

   signal half_word_r       : std_logic_vector(15 downto 0); 

   -- Point to the location of the next bit to be filled up with incoming data 

   -- in 'half_word' signal 

   signal ptr_n             : unsigned(4 downto 0); 

   signal ptr_r             : unsigned(4 downto 0); 

 

   signal full_word_n          : std_logic_vector(31 downto 0); 

   signal full_word_r          : std_logic_vector(31 downto 0); 

   signal full_word_valid_n    : std_logic; 

   signal full_word_valid_r    : std_logic; 

   signal full_word_1st_half_n : std_logic; 

   signal full_word_1st_half_r : std_logic; 

 

begin 

 

   write_half_word_n <= Table_Valid_Out or Comp_Sample_Valid; 

 

   ---------------------------------------------------------------------------- 

   -- Places the next chunk of bits to be added to the bit stream in a 

   -- register. Also, the length of the sequence is registered too 

   -- 

   input_mux : process (all) is 

   begin 

      -- Default 

      in_value_n <= in_value_r; 

      num_bits_n <= num_bits_r; 

 

      if (Table_Valid_Out = '1') then 

         -- Conding Table to go out 

         in_value_n(TAB_LONG_REF-1 downto 0) <= Table_Vector; 

         num_bits_n                          <= '0' & Table_Num_Bits; 

 

      elsif (Comp_Sample_Valid = '1') then 

 

         if (Coding_Variant_Out = LE_VAR) then 

            in_value_n <= LE_Comp_Val; 

            num_bits_n <= '0' & LE_Num_Bits; 

 

         elsif (Coding_Variant_Out = DS_VAR) then 

            in_value_n <= DS_Comp_Val; 

            num_bits_n <= '0' & DS_Num_Bits; 

 

         else 

            -- LC_VAR 

            in_value_n(19 downto 0) <= LC_Comp_Val; 

            num_bits_n              <= '0' & LC_Num_Bits; 

 

         end if; 

      end if; 

   end process input_mux; 

 

 

   ---------------------------------------------------------------------------- 

   -- 

   halfword_writing : process (all) is 

   begin 

      -- Default 

      half_word_valid_n <= '0'; 

      state_n           <= state_r; 

      ptr_n             <= ptr_r; 

 

      remaining_bits_n <= remaining_bits_r; 

      half_word_n      <= half_word_r; 

       

      case (state_r) is 

          

         when S_1ST_STAGE => 

            if (write_half_word_r = '1' and VCB_Half_Full = '0') then 
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               if (ptr_r + num_bits_r >= 16) then 

                  half_word_valid_n <= '1'; 

               end if; 

 

               if (ptr_r + num_bits_r > 16) then 

                  state_n                                  <= S_2ND_STAGE; 

                  ptr_n                                    <= 16 - ptr_r;  -- Use as pointer 

for last bit of current value written 

                  remaining_bits_n                         <= num_bits_r(4 downto 0) - (16 - 

unsigned(ptr_r)); 

                  half_word_n(15 downto to_integer(ptr_r)) <= in_value_r(to_integer(15 - 

ptr_r) downto 0); 

               else 

                  state_n                                                                 <= 

S_1ST_STAGE; 

                  -- Use this unsigned(integer(), 4) cast formula to wrap-up on 15 

                  ptr_n                                                                   <= 

'0' & to_unsigned(to_integer(ptr_r + num_bits_r), 4);  -- Use as pointer for last bit of 

next 'half-word' 

                  remaining_bits_n                                                        <= 

(others => '0'); 

                  half_word_n(to_integer(ptr_r + num_bits_r -1) downto to_integer(ptr_r)) <= 

in_value_r(to_integer(num_bits_r -1) downto 0); 

               end if; 

            end if; 

 

             

         when S_2ND_STAGE => 

            if (remaining_bits_r >= 16) then 

               half_word_valid_n <= '1'; 

            end if; 

 

            if (remaining_bits_r > 16) then 

               state_n          <= S_3RD_STAGE; 

               ptr_n            <= ptr_r + 16; 

               remaining_bits_n <= remaining_bits_r - 16; 

               half_word_n      <= in_value_r(to_integer(15 + unsigned('0' & ptr_r)) downto 

to_integer(ptr_r)); 

            else 

               state_n                                                <= S_1ST_STAGE; 

               ptr_n                                                  <= '0' & 

remaining_bits_r(3 downto 0); 

               remaining_bits_n                                       <= (others => '0'); 

               half_word_n(to_integer(remaining_bits_r - 1) downto 0) <= 

in_value_r(to_integer(remaining_bits_r + ptr_r - 1) downto to_integer(ptr_r)); 

            end if; 

             

 

         when S_3RD_STAGE => 

            state_n                                                <= S_1ST_STAGE; 

            ptr_n                                                  <= '0' & remaining_bits_r(3 

downto 0); 

            remaining_bits_n                                       <= (others => '0'); 

            half_word_n(to_integer(remaining_bits_r - 1) downto 0) <= 

in_value_r(to_integer(remaining_bits_r + ptr_r - 1) downto to_integer(ptr_r)); 

             

      end case; 

   end process halfword_writing; 

 

 

   ---------------------------------------------------------------------------- 

   -- 

   fullword_writing : process (all) is 

   begin 

      -- Default 

      full_word_1st_half_n <= full_word_1st_half_r; 

      full_word_n          <= full_word_r; 

      full_word_valid_n    <= '0'; 

 

      if (half_word_valid_r = '1') then 

         if (full_word_1st_half_r = '0') then 

            -- 1st half of the world 

            full_word_1st_half_n     <= '1'; 

            full_word_n(15 downto 0) <= half_word_r; 

 

         else 
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            -- 2nd half of the world 

            -- Output the word 

            full_word_valid_n         <= '1'; 

            full_word_1st_half_n      <= '0'; 

            full_word_n(31 downto 16) <= half_word_r; 

             

         end if; 

      end if; 

 

   end process fullword_writing; 

 

 

 

   ---------------------------------------------------------------------------- 

   -- 

   control_path : process (all) is 

   begin 

      if (rising_edge(Clk)) then 

         if (Reset = '1') then 

 

            state_r              <= S_1ST_STAGE; 

            ptr_r                <= (others => '0'); 

            num_bits_r           <= (others => '0'); 

            half_word_valid_r    <= '0'; 

            write_half_word_r    <= '0'; 

            full_word_valid_r    <= '0'; 

            full_word_1st_half_r <= '0'; 

             

         else 

            state_r              <= state_n; 

            ptr_r                <= ptr_n; 

            num_bits_r           <= num_bits_n; 

            half_word_valid_r    <= half_word_valid_n; 

            write_half_word_r    <= write_half_word_n; 

            full_word_valid_r    <= full_word_valid_n; 

            full_word_1st_half_r <= full_word_1st_half_n; 

 

         end if; 

      end if; 

   end process control_path; 

 

 

 

   ------------------------------------------------------------------------- 

   -- 

   data_proc : process (Clk) is 

   begin 

      if (rising_edge(Clk)) then 

 

         in_value_r       <= in_value_n; 

         remaining_bits_r <= remaining_bits_n; 

         half_word_r      <= half_word_n; 

         full_word_r      <= full_word_n; 

 

      end if; 

   end process data_proc; 

 

   -- Map Outputs 

   Out_Valid <= full_word_valid_r; 

   Out_Data  <= full_word_r; 

 

   Ready <= '1' when (state_r = S_1ST_STAGE and state_n = S_1ST_STAGE) else '0'; 

 

 

end architecture rtl; 
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