

Integration of FAPEC as Data Compressor

Stage in a SpaceFibre Link

by

Alberto González Villafranca

Advisor: Enrique García-Berro Montilla

Co-advisor: Jordi Portell i de Mora

October 2016

If I have seen further it is by standing on the shoulders of giants

Isaac Newton

Acknowledgements

Este proyecto lo he realizado con muchas prisas por lo ajustado de los plazos. Sin embargo

lo he disfrutado mucho, y me apena no haberle podido dedicar más tiempo. Voy a acabarlo

justito justito y lo dejo con la sensación de que, con un poco más de trabajo, podría haber

cerrado muchos de los flecos pendientes.

En primer lugar, me gustaría agradecer el tiempo que me han dedicado mis dos tutores,

tanto Enrique como Jordi. Y esto no va solo por este proyecto, este agradecimiento se

prolonga hacia atrás en el tiempo unos once años, si no me falla la memoria. Gracias a ellos

estoy donde estoy y tengo la inmensa fortuna de haber cumplido el sueño de trabajar en el

sector espacial.

Dicho esto, me gustaría continuar por mi familia y, en especial, mis padres. Si Enrique y

Jordi me han dado la posibilidad de volar muy alto, mis padres me han dado la posibilidad

de hacer cualquier cosa. Siempre me han empujado a estudiar, en especial mi madre, y han

trabajado muchísimo para darnos a mí y a mi hermana todo lo que hemos necesitado y

mucho más. También a mi hermana Sara porque sé todo lo que me quiere, aunque le

cueste exteriorizarlo.

Deseo agradecer a STAR-Dundee Ltd. las facilidades para utilizar el código de SpaceFibre y

la unidad STAR Fire.

Y, para acabar, a mis amig@s, sin quienes mi vida sería insoportablemente aburrida.

¡Gracias a todos!

Gràcies a tothom!

Thank you everybody!

Integration of FAPEC as data compressor stage in a SpaceFibre link 7

Table of Contents

1. Introduction ... 9

 1.1 PEC .. 10

 1.2 FAPEC ... 11

 1.3 SpaceFibre .. 12

 1.4 Objectives of this work ... 15

2. Implementing FAPEC inside an FPGA .. 17

 2.1 Introduction .. 17

 2.2 FAPEC Reference Design .. 17

 2.2.1 Target Performance and Platform ... 17

 2.2.2 Architecture ... 18

 2.2.3 Performance .. 19

 2.3 The New Design of FAPEC ... 21

 2.3.1 Memories .. 21

 2.3.2 Pre-compressor .. 23

 2.3.3 Histogram Constructor ... 23

 2.3.4 Parallel-Output PEC Codec .. 23

 2.3.5 Generation of 32-bit FAPEC Output ... 26

 2.3.6 Optimising FAPEC Speed .. 27

 2.4 Verification procedure .. 28

 2.5 Performance Analisis ... 30

 2.5.1 ProASIC3L Resource Usage Analysis ... 30

 2.5.2 RTG4 Resource Usage Analysis ... 32

 2.5.3 ProASIC3L Timing Analysis .. 33

 2.5.4 RTG4 Timing Analysis ... 34

 2.5.5 Post Place and Routing Analysis ... 36

3. The STAR Fire Design ... 39

 3.1 Introduction .. 39

 3.2 Implementation of FAPEC inside STAR Fire Design ... 41

 3.2.1 Verifying the Design ... 43

 3.2.2 Building the design ... 45

 3.3 Validation of the design .. 47

4. Conclusions .. 49

 4.1 Forthcoming work .. 49

5. Annex ... 51

 5.1 Parallel-Output PEC VHDL Code ... 51

 5.2 Word Packer VHDL Code ... 58

6. Bibliography .. 63

8 Table of Contents

Index of figures

Cases

Fig. 1.1: PEC coding strategy .. 11

Fig. 1.2: SpFi protocol stack .. 14

Fig. 2.1: FAPEC hardware implementation architecture ... 18

Fig. 2.2: Different configuration options for a ProASIC3L VersaTile ... 19

Fig. 2.3: Resource usage for initial FAPEC code inside ProASIC3L FPGA ... 20

Fig. 2.4: Resource usage for initial FAPEC code inside ProASIC3L FPGA after Place & Routing 20

Fig. 2.5: Maximum compressed value sizes depending on the Coding Variant 24

Fig. 2.6: Example of PEC operation .. 24

Fig. 2.7: Operation of writing a large value in the 16-bit intermediate buffer 27

Fig. 2.8: Hexdump output example for the original file (bottom) and the new algorithm (top) 29

Fig. 2.9: Modelsim simulation of the IO ports of PEC_CODER and WORD_PACKER modules 30

Fig. 2.10: Resource usage in the ProASIC FPGA for the new FAPEC and its comparison against the

reference design ... 31

Fig. 2.11: Resource usage in the RTG4 FPGA for the new FAPEC design .. 32

Fig. 2.12: Maximum frequency of the clock domains in ProASIC for the initial and new FAPEC

designs ... 33

Fig. 2.13: Maximum frequency of the clock domains in RTG4 for the new FAPEC design 34

Fig. 2.14: Spartan-6 and Virtex-5QV utilisation after Place and Routing for the new FAPEC design . 37

Fig. 3.1: The STAR Fire Mk2 Unit front panel (left) and bottom panel (right) 39

Fig. 3.2: The STAR Fire software Configuration window ... 40

Fig. 3.3: The STAR Fire software Trigger window .. 40

Fig. 3.4: The STAR Fire design architecture. In blue the FAPEC modules added to the design 41

Fig. 3.5: The STAR Fire Analyser window .. 43

Fig. 3.6: The STAR Fire Frame View window .. 43

Fig. 3.7: View of the compressed output by the data pattern generator ... 43

Fig. 3.8: Modelsim simulations of the STAR Fire design .. 44

Fig. 3.9: STAR Fire unit in operation .. 47

Fig. 3.10: Data frame carrying the compressed data packet captured by the Analyser 48

Integration of FAPEC as data compressor stage in a SpaceFibre link 9

1. Introduction

The instruments used in modern space missions require increasing amounts of telemetry

resources to download the acquired data to the ground. Transmission link speed has

become the bottleneck of the data chain for many applications. One way to solve this issue

is to apply on-board data processing techniques to reduce the amount of data to be sent

down to ground, and its use is becoming increasingly necessary to deal with the large

amounts of data generated by modern spacecrafts. Remarkably, data compression is a data

processing technique that encodes information in fewer bits than the original

representation. It is therefore currently seen as a mandatory stage for many missions in

order to mitigate the saturation of the telemetry link. However, the available on-board

processing power has been traditionally modest. Compression systems have thus been

kept as simple as possible.

The Prediction Error Coder (PEC) is a lossless data compression algorithm belonging to

the family of the entropy coders [1,2]. PEC was developed considering the tight constraints

of a space mission and its main features are low complexity and resilience against

statistical outliers in the data. PEC needs to be calibrated for different types of data, and its

performance depends on the quality of this calibration. The Fully-Adaptive PEC (FAPEC) is

an adaptive version of PEC that was developed to address this calibration problem. FAPEC

typically delivers better ratios than the CCSDS 121.0 recommendation (General Purpose

Lossless Data Compression [3]) on realistic data sets [4].

Embedded hardware implementations of data processing algorithms are becoming

increasingly popular in space. Hardware data processing performs faster and uses less

power than the conventional approach of using general purpose CPUs. The most cost-

effective approach for custom data processing solutions as those used in space is usually

Field Programmable Gate Array (FPGA) devices, but space-qualified FPGAs have been

traditionally not very powerful. However, the capabilities of FPGAs are steadily improving,

thus enabling the implementation of more complex algorithms. The new generation of

radiation tolerant FPGAs such as Xilinx Virtex-5QV [5], Microsemi RTG4 [6] and

NanoXplore BRAVE [7] (a new European space-qualified FPGA project) offer faster speeds

and much more resources than the old Microsemi RTAX family traditionally used in space.

Thanks to this dedicated logic, algorithms can run much faster and with a fraction of the

power requirements necessary when they run in general purpose CPUs.

SpaceFibre (SpFi) is a new, multi-Gbits/s on-board network technology which runs over

both electrical and fibre optic cables. SpFi currently operates at 3.125 Gbits/s in flight-

qualified technology, and is capable of fulfilling a wide range of spacecraft on-board

communications applications because of its inbuilt quality of service (QoS) and fault

detection, isolation and recovery (FDIR) capabilities. SpaceFibre is now being

standardised by the European Cooperation for Space Standardization (ECSS) and is

expected to be published as a formal standard this year.

The aim of this project is to integrate the FAPEC data compressor into the SpFi codec. Both

SpFi and FAPEC have been designed to withstand the harsh space environment and, hence,

10 Introduction

it seems a logical step to combine the data compressor into the data link technology to

increase the net throughput achievable.

1.1 PEC

The Prediction Error Coder (PEC) is central in the operation of FAPEC. PEC was developed

within the frame of the Gaia mission [8]. The effort was focused on the development of a

very fast and robust compression algorithm, and PEC was the outcome – an entropy coder

based on a segmentation strategy. PEC is composed of three different coding strategies, or

variants, known as Low Entropy (LE), Double-Smoothed (DS) and Large Coding (LC). LE and

DS are both ranged Variable Length Codes, and LC is a unary prefix code [9]. The three

coding options share the same principle: the entire range of the data to be coded is split

into four smaller sub-ranges or segments. The appropriate segment is selected depending

on each individual value. In PEC the first segments are smaller than the original symbol

size, while the last segments can be slightly larger. PEC follows the assumption made for

most entropy coders that most values to be coded are close to zero [9]. Thus, the coding

efficiency depends on the segment sizes chosen and on their relation with the probability

density function of the data.

Compressing data with PEC requires only very few and simple calculations. The values

inside these ranges are coded in a plain binary form, implicitly assuming equiprobable

values inside each range. The resulting coding hierarchy is actually similar to a coding tree,

but with very short branches because these only represent the prefixes, not the values

themselves. In Fig. 1.1 a schematic view of PEC is shown and the coding strategy of each of

the ranges is unveiled. The coding scheme is completely different to that of other entropy

coders such as of the Rice coder, the compression core in the CCSDS 121.0 Lossless Data

Compression Recommendation [3].

PEC has a very low computational cost and an excellent resiliency to outliers and noise in

the data, also offering excellent efficiencies for a wide variety of data statistics. Using this

coder the usual strategy in space data compression – based on a two-stage scheme,

namely, an adequate pre-processing stage followed by an entropy coder – can be

improved in most cases, provided that the pre-processing stage is properly tailored. This

pre-processing can be seen as a prediction, and is defined in both the compressor and the

decompressor. Every sample entering PEC is compared (subtracted) against its predicted

value, thus leading to signed values (that is, prediction errors). Subsequently this

difference between the real value and the prediction is coded using PEC.

Coding signed values adds some redundancy because of the existence of codes for both +0

and

-0 values. The CCSDS recommendation uses a mapping algorithm to eliminate this

redundancy at the expense of a slightly more complex algorithm [3]. However, a different

alternative is possible, and this is a key feature of PEC. In PEC, both the LE and DS options

use the -0 code, as well as the last value of each segment (i.e. all bits set to one), as escape

sequences. These implicitly indicate which of the coding segments are used. On the other

hand, the LC option simply uses the unary coding to indicate the appropriate segment and

avoids the output of the sign bit when coding a zero, thus eliminating the -0 redundancy.

Integration of FAPEC as data compressor stage in a SpaceFibre link 11

Fig. 1.1: PEC coding strategy

1.2 FAPEC

PEC is a low-complexity high-performance compressor which typically outperforms the

CCSDS recommendation. However, it needs to be calibrated for every set of data. The

Fully-Adaptive PEC (FAPEC) is an adaptive compression algorithm that calibrates PEC

once every some hundred samples, thus allowing it to rapidly adapt to changes in the

statistics of data. The operation of the FAPEC coder basically can be described as an

algorithm which selects the best PEC coding configuration for each data block, followed by

a PEC coding step that applies the optimal tables obtained on the first step.

FAPEC is a lossless data compression algorithm that typically offers better ratios than the

CCSDS 121.0 on realistic data sets. Its compression efficiency is higher than 90% of the

Shannon limit in most cases, even in the presence of large amounts of noise and outliers

[4]. FAPEC was designed for space communications, where requirements are very tight in

terms of energy consumption and efficiency. FAPEC low computing resources

consumption and high compression speed cover a wide range of possibilities that current

compressors cannot offer for high throughputs due to their high compression time. FAPEC

can be integrated into almost any data transfer flow, enhancing the data rate of the system

with very small energy and data processing time increment.

The data link in space missions, as any digital communications channel, is subject to noise

and transmission errors. Despite the powerful techniques available for error correction an

error-free transmission cannot be guaranteed. Also, re-transmissions of data blocks

received with unrecoverable errors are not always possible. Therefore, the use of small

independent data blocks in the data compression stage is highly advisable. Thus, adaptive

12 Introduction

algorithms requiring large amounts of data for their optimal operation, such as Huffman or

LZW, are not applicable. Furthermore, these algorithms are quite demanding when

compared with those studied here, and will usually yield little improvement in terms of

compression ratio. In short, data compression systems used in space missions must use

small and independent data blocks in order to guarantee the minimum possible losses in

case of transmission errors.

FAPEC accumulates the values to be compressed in blocks of a user-configured size –

typically ~200 samples. During this, an internal histogram of the moduli of the pre-

processed values is calculated on-the-fly. Once the block of values has been completed, the

algorithm analyses the histogram to obtain the best coding parameters, calculating the

accumulated probability for each value. The choice of the coding option (LE, DS or LC) and

the specific coding table are defined through a set of accumulated probability thresholds.

That is, FAPEC defines the coding segments (and hence the coding table) according to their

accumulated probability and code length. This nominal tuning offers excellent

compression ratios for almost any case. Furthermore, FAPEC threshold levels can be

modified to better suit other statistics if required. This is another significant advantage

with respect to the Rice coder used by the CCSDS 121.0 recommendation, which is only

optimal for noiseless Laplacian distributions.

Analysing a histogram of 16-bit values (which is the case studied in this project) can be

very time consuming, and can lead to prohibitive processing times if naively (or

exhaustively) implemented. For this reason FAPEC uses a logarithmic-like histogram, with

increasing bin sizes for larger values. That is, large values are grouped and mapped to a

single histogram bin, while full resolution is kept for the lowest values. This analysis is

precise enough for the case of ranged entropy coding, such as PEC, which does not require

a precise knowledge of the largest values. Once the coding parameters (coding table) have

been determined, they are explicitly output as a small header at the beginning of the

compressed data block. The decoder only has to invert the PEC process using the

parameters indicated by the header, without requiring any knowledge on the adaptive

algorithm used to calibrate the coder. In this way, the fine-tuning thresholds of FAPEC or

even the auto-calibration algorithm can be safely changed without requiring any

modification in the decoding stage. This is an advantage of FAPEC against other

compression algorithms.

There is an early FAPEC implementation in an FPGA developed as a feasibility

demonstrator. The benchmarked implementation on a Microsemi PROASIC3L successfully

proved its operation at 32 Mbit/s (2 Msample/s) with a relatively simple design [10].

1.3 SpaceFibre

SpaceFibre (SpFi) is a spacecraft on-board data-link and network technology developed by

STAR-Dundee Ltd. and the University of Dundee for the European Space Agency (ESA). It is

the next generation of the widely used SpaceWire (SpW) technology, offering higher

throughput, lower mass and new capabilities including quality of service (QoS) and fault

Integration of FAPEC as data compressor stage in a SpaceFibre link 13

detection, isolation and recovery (FDIR). Furthermore, it runs over both electrical and

fibre optic cables. SpFi will be released as an ECSS standard later this year [11].

Initially targeted at very high data rate payloads such as Synthetic Aperture Radar (SAR)

and high-resolution, multi-spectral imaging instruments, SpFi is capable of fulfilling a

wider set of spacecraft on-board communications applications because of its inbuilt QoS

and FDIR capabilities and its backwards compatibility at packet level with the ubiquitous

SpW technology. This allows simple interconnection of existing SpW devices into a SpFi

network and enables legacy equipment to take full advantage of the inbuilt QoS and FDIR

in SpFi.

SpFi provides high data rate capabilities in radiation-hardened technology: 3.125 Gbits/s

in Microsemi RTG4 and Xilinx Virtex-5QV FPGAs and 2.5 Gbits/s in Microsemi RTAX

FPGAs, with ASICs that operate at 6.25 Gbits/s currently under development [12]. This

high data rate currently provides more than 15 times the maximum throughput of a SpW

link (200 Mbit/s). This allows data from multiple SpW devices to be concentrated over a

single SpFi link, thus substantially reducing cable harness mass and simplifying

redundancy strategies. Multi-laning provides lane redundancy and can also be used to

achieve much higher data rates, e.g. 40 Gbits/s, sufficient for most spacecraft on-board

data-handling operations.

The innovative inbuilt QoS mechanism uses Virtual Channels (VCs) to provide multiple

independent communication channels over a single physical link. Each channel provides

priority, bandwidth reservation and scheduled QoS. These QoS mechanisms operate

together, resulting in a very versatile QoS which also provides “babbling node” protection

and scheduled, deterministic communication without wasting any network bandwidth.

This simplifies spacecraft system engineering, which reduces system engineering costs

and streamlines integration and test.

Novel integrated FDIR detects, isolates and recovers from faults at the link level, which

prevents faults from propagating and causing further errors. The FDIR capability of SpFi

provides galvanic isolation, transparent recovery from transient errors, error containment

in virtual channels and frames, enhancing on-board network robustness. This simplifies

system level error-handling software, reducing development and system validation time

and cost.

SpFi includes low latency event signalling and time distribution with broadcast messages.

This enables a single network to be used for several functions including: transporting very

high data rate payload data, carrying SpW traffic, deterministic delivery of

command/control information, time distribution and event signalling.

With these capabilities SpFi brings many benefits to spacecraft on-board data handling

systems:

 Very high data rates that meet the needs of very demanding instruments, mass-

memory internal networks, and telecommunications systems.

14 Introduction

 Reduction of harness mass by 33% and 50% when comparing the mass of a single

SpW cable to SpFi electrical and fibre optic cables respectively, and by more than

90% when comparing per bit transferred.

 Simplification of redundancy though integration of several on-board

communication functions into a single network, and through the carrying of the

traffic of multiple SpW links over a single SpFi link.

 Increase in reliability by requiring one network rather than two or three to carry

out the necessary on-board communication functions.

 Straightforward error recovery since transient errors are recovered on the link

and do not need to be considered at the system level.

 Deterministic data delivery enabling AOCS/GNC and other control applications to

be supported.

 Long distance communication enabling launcher applications to be addressed,

where a single network can provide control, monitoring and video capture

functions.

 Galvanic isolation improving system robustness by preventing fault propagation.

SpFi enables using a single, integrated network that carries instrument data, configuration

and control information, deterministic traffic, high-resolution time information, and event

signals. This improves reliability, saves mass, and reduces cost. Fig. 1.2 shows the SpFi

protocol stack and outlines the functions of the different layers.

Physical Layer

User Application

Lane Layer

Data Link Layer

Network Layer

Data &
Control
Words

SerDes
Driver/Receiver
Cables
Connectors

Link operation
Flow control
Quality of service
Link error recovery

Nodes
Routers and routing
Message broadcast
Packet definition

Packets
Broadcast
Messages

Lane initialisation
Encoding of data &
control words
Symbol & word
synchronisation

M
an

ag
em

en
t

In
fo

rm
at

io
n

B
as

e

Parameters Packets
Broadcast
Messages

Data &
Control
Words

Multi-Lane Layer

Data &
Control
Words

Data &
Control
Words

Lane
Control

Lane
Capabilities

Lane coordination
Lane failure recovery

TX Symbols RX Symbols

Broadcast
Messages

N-Chars
& Fills

N-Chars
& Fills

Broadcast
Messages

Physical
Control

Physical
Status

Link
Reset

Number of
Sending Lanes

Lane
State

Lane
Capabilities

Fig. 1.2: SpFi protocol stack

Integration of FAPEC as data compressor stage in a SpaceFibre link 15

1.4 Objectives of this work

The goal of this project is to integrate the FAPEC compressor with the SpaceFibre codec.

Together they will provide an efficient way to achieve higher data rates without the

penalties associated to resorting to higher line rates or using the SpFi multi-lane

extension, such as increased complexity and energy consumption.

Firstly, the initial FAPEC implementation in VHDL needs to be analysed. The design

delivered a throughput of 32 Mbit/s with a ProASIC3L FPGA. The output of FAPEC was

serial. SpFi currently can send up to 2.5 Gbit/s (3.125 Gbit/s line rate) over a single Virtual

Channel, and its input is a 32-bit parallel interface. Therefore, to integrate both FAPEC and

SpFi, FAPEC needs to be much faster and feature a parallel output instead. Going from a

throughput of 32 Mbit/s to 2.5 Gbit/s requires an 80-fold speed increase of the FAPEC

implementation. Thus, massive changes in the implementation architecture are required

to reach such performance gains.

Secondly, once FAPEC has been adapted to the SpFi constraints it needs to be integrated

into a hardware design. Fortunately, the STAR Fire unit from STAR-Dundee provides a

SpFi platform suitable for testing new designs. This unit features two SpFi interfaces and

its design can be modified to add FAPEC on top of the SpFi protocol stack. The target FPGA

family will be the Spartan-6 which is more representative than the ProAsic3L family used

for the initial FAPEC prototyping.

This memory is organised as follows. Chapter 2 describes the changes applied to FAPEC to

make it suitable for integration with SpaceFibre. The STAR Fire design and the

performance of FAPEC in hardware are described in Chapter 3. Finally, Chapter 4

summarizes the work, elaborates our conclusions and proposes some forthcoming work.

The annexes show the VHDL code developed for the new PEC coder module and the Word

Packer modules.

16 Introduction

Integration of FAPEC as data compressor stage in a SpaceFibre link 17

2. Implementing FAPEC inside an FPGA

2.1 Introduction

The simplicity and robustness of FAPEC places it as an interesting alternative to the

current standard for universal lossless data compression for space. However, the

performance of a hardware implementation needed to be assessed before seriously

considering FAPEC for such role. Considering the peculiarities of the internal operation

and architecture of FPGAs, it was clear that the hardware implementation of FAPEC was

not straightforward from its software counterpart or from its algorithmic definition. In

order to achieve an optimal hardware implementation, several features of the original

algorithm needed to be modified to be more hardware oriented. Specifically, floating-point

operations, multiplications and divisions had to be avoided. Also, a logarithmic-like

histogram used for lower complexity had to be modified to allow an easier (binary-like)

rule of construction and analysis. Finally, it was decided to limit block size to 255 samples.

After implementing these changes the new FAPEC was validated and it was proved that

the modifications had little effect to the algorithm performance [10].

2.2 FAPEC Reference Design

In this section the initial hardware implementation of FAPEC is described. This

implementation has been used as a reference design for this project.

2.2.1 Target Performance and Platform

The initial goal of compression for FAPEC was derived from the Gaia mission constraints,

as FAPEC was developed from concepts proposed for this mission [4]. Specifically, the Gaia

payload uses 16-bit A/D converters (ADC) at a very high conversion rate. It was

established as an initial goal the compression of a raw CCD output stream of Gaia, which is

about 2 Msample/s or, in other words, 32 Mbit/s. Although modest, this allowed to

estimate the potential of the algorithm and to evaluate the possibility of further

modifications to adapt it to a faster scheme. The input interface adopted was 16-bit words

at 2 MHz, although a serial output interface able to operate up to 46 MHz (worst case) was

selected owing to the intrinsic variability of the output data rate. A parallel interface

allowing lower clock frequencies was discarded because it presented higher complexity

and power consumption in the hardware interface.

Regarding the platform target, FPGA technology naturally appeared as the best option:

reprogramming is usually allowed and it is a low-cost alternative. The preferred target for

a space application of FAPEC was the radiation-hardened ACTEL RTAX antifuse

technology, commonly used in space missions. However a flash-based FPGA from the same

manufacturer was selected for prototyping. It provided re-programmability and

portability of synthesis, thus reducing costs while assuring a high degree of similarity. An

ACTEL PROASIC3L development kit was finally chosen for the sake of development

simplicity. It included an M1A3P1000L FPGA, offering 24576 VersaTile logic elements and

18 Implementing FAPEC inside an FPGA

a 48 MHz reference clock. Also, the board contained a 1 MByte SRAM and a 16 MByte Flash

memory, used in the design to input and output files.

2.2.2 Architecture

In Fig. 2.1 we show the structure of the algorithm implemented. In the text below we

describe the different modules composing the whole FAPEC compressor. Note that in this

memory the actual names of the different VHDL modules are indicated in upper case and

Consolas font (e.g. EXAMPLE).

Fig. 2.1: FAPEC hardware implementation architecture

The pre-compressor (PRECOMPRESSOR) stage simply consists of a data predictor and a

differentiator. That is, it predicts an input value to be equal to its predecessor. This is the

simplest pre-compressor but it is still very effective when the sample values vary slowly,

and it also allows removing offset values. The histogram accumulator (HIST_CONSTRUCTOR)

analyses each of the pre-compressed samples and increments the appropriate bin value of

the histogram memory. Because of timing constraints, it is necessary to have two different

streams which alternatively process the incoming values to identify their corresponding

histogram bin. The values are then stored in the block memory, where they wait until their

coding table is ready. After processing the 255 samples of a block, the histogram boundary

extractor (HIST_BOUNDARY_EXTRACT) operation begins. It parses the histogram,

accumulating the occurrences stored in the bins and determining the ceilings for each of

the four PEC segments. Additionally, it selects the PEC variant and the size of the first

segment.

These initial modules plus their associated memory are in charge of performing the

analysis of the statistical distribution of the data. Essentially, they build and analyse the

histogram. Once the histogram procedure is complete, all the coding parameters are

implicitly set. The next stage is the table constructor (TABLE_CONSTRUCTOR), which derives

the size of the second, third and fourth PEC segments from the ceilings given by the

histogram boundary extractor. These segment sizes constitute the coding table. The table

Integration of FAPEC as data compressor stage in a SpaceFibre link 19

constructor also provides the maximum value that can be coded with each segment. We

must note that the use of a small bin-equivalence memory as a Look-Up Table (LUT) is

required to avoid the continuous calculation of the mapping between each of the

histogram bins and the input values. FAPEC uses a logarithmic-like histogram, mapping

the 216 possible values (16-bit samples) to just 37 bins. Storing the maximum value

associated to each bin in the bin-equivalence memory avoids unnecessary operations.

These modules constitute the adaptive stage of PEC, that is, the FAPEC algorithm. The last

module shown in Fig. 2.1 is the PEC coder (PEC_CODER). It receives the segment sizes and

maximum values from the table constructor for each block, outputting these coding

parameters as a packet header. Finally, the values stored in the block memory are coded

following the PEC algorithm.

The implementation of the FAPEC compressor was fully developed in VHDL. Apart from

the memory blocks, neither IP cores nor non-standard functions were used, thus

simplifying the porting of the algorithm to the RTAX model. A modular approach was

adopted for validating the prototype. The modules were validated incrementally, that is,

the validation of a module also included its predecessors in the compression chain.

2.2.3 Performance

ProASIC3L logic technology basically consists of a sea of VersaTiles [13]. Each VersaTile

can be configured as a three-input logic function, a D-flip-flop (with or without enable) or

a latch, by programming the appropriate flash switch interconnections (Fig. 2.2). This

means that, contrary to other FPGA technologies, a combinational or a sequential element

uses the same element in the ProASIC3L.

Fig. 2.2: Different configuration options for a ProASIC3L VersaTile

The table shown in Fig. 2.3 describes the number of VersaTiles used by the main modules

forming the FAPEC compressor. The central column shows the percentage of the whole

FPGA VersaTiles used by each module, and the right column represents the percentage of

the usage with respect to the total VersaTile elements used by the FAPEC module.

The most complex module is the PEC_CODER, using around a third of the total resources

used by FAPEC. The TABLE_CONSTRUCTOR and the HISTOGRAM_CONSTRUCTOR use around a

quarter of the total VersaTiles each, and the remaining is split between the PRECOMPRESSOR

and the HIST_BOUNDARY_EXTRACTOR (10% each). In total, the whole FAPEC module takes a

14% of the logical resources of the ProASIC3L 1000 FPGA.

20 Implementing FAPEC inside an FPGA

After place and routing, the results shown in Fig. 2.4 were obtained. As expected, they are

in line with the synthesis results, with a small difference which is due to optimisations that

are performed at a later stage by the placer tool. Interestingly enough, in the post-place

and routing report the number of tiles used for combinational and sequential purposes is

indicated. Note that there are as many as four times more VersaTiles used as

combinational cells than sequential cells. This is mainly due to the large number of

multiplexing operations required to generate the compressed codes.

 VersaTiles % % of FAPEC

PRECOMPRESSOR 334 1.4 9.6

HIST_CONSTRUCTOR 834 3.4 23.8

HIST_BOUNDARY_EXTRACT 349 1.4 10.0

TABLE_CONSTRUCTOR 855 3.5 24.4

PEC_CODER 1091 4.4 31.2

TOTAL 3499 14.2 100.0

Block RAMS 3 9.4

Fig. 2.3: Resource usage for initial FAPEC code inside ProASIC3L FPGA

 M1A3P1000L

 VersaTiles %

Combinational (LUTs) 2724 -

Sequencial (DFFs) 706 -

TOTAL 3430 14.0

Block RAM 3 9.4

Fig. 2.4: Resource usage for initial FAPEC code inside ProASIC3L FPGA after Place & Routing

Regarding the timing analysis, the critical path for the compressor implementation was

18.32 ns, thus defining a theoretical maximum clock speed of ~55 MHz for ProASIC3L

technology. This clock is used by the serial output, meaning that the maximum throughput

of the compressed data would be 55 Mbit/s. The initial processing throughput

requirement for this design was 2 Msample/s (i.e. 32 Mbit/s) and it was successfully

achieved.

The goal for this design in VHDL was to implement the code in an RTAX device.

Considering the information provided by the manufacturer (Microsemi), it would be

possible to comfortably implement in parallel 2 FAPEC cores (aggregate input of 64

Mbit/s) with the low-end RTAX250S. The high-end RTAX4000S would theoretically allow

more than 30 cores (aggregate input of more than 1 Gbit/s) using parallel data streams. It

is very difficult to calculate the exact power consumption for the RTAX case because the

underlying technology is different (antifuse in RTAX versus Flash in ProASIC). However,

Integration of FAPEC as data compressor stage in a SpaceFibre link 21

both technologies share the benefits of low start-up and static power consumption. In

addition, their dynamic consumption is similar as well. Therefore the estimated

consumption figure of a RTAX FPGA should be close to the 35 mW of the PROASIC3L

prototype developed

2.3 The New Design of FAPEC

This initial design of FAPEC is going to be used as a reference for the development of the

new FAPEC register-transfer level (RTL) design. This reference design presents a few

problems that need to be addressed before FAPEC is suitable for integration with SpFi. The

VHDL code developed in the reference design is not valid for integration in platforms

other than ProASIC FPGAs and we intend to implement FAPEC with newer FPGA

technologies. But the main issue is the fact that the compressed data output port is serial.

SpFi inherently works with 32-bit data words and building a serial to parallel module

would limit the throughput of FAPEC to that of the serial port (~55 Mbit/s for ProASIC3L).

In the following sections we present the different changes introduced in the initial code to

overcome all these problems.

2.3.1 Memories

The initial design used memory modules specifically generated for the Microsemi

ProASIC3L FPGA family. One of the goals of this project is to decouple the VHDL code from

a specific FPGA technology. Making the FAPEC compressor technology-agnostic provides a

big advantage: it allows implementing FAPEC in available technologies with little effort.

Equally important, this should guarantee support for future FPGAs, and even support ASIC

implementation if required. This is because most FPGA synthesisers can automatically

infer the memory modules if they are declared in specific ways. The original FAPEC design

instantiated three different memory modules. However, after examining the code it

appeared that only two different modules were strictly required.

The ROM_TABLE module was substituted by ROM_TABLE_GNRC. In the reference design this

ROM module was created and initialised with the Libero Core Generation tool. This means

that this module could only be used with a ProASIC3L. Instead, a generic VHDL module

declaring an array of constant values was defined. An input address determines which

array value is selected and output. This is what the code for this new module looks like:

 type array_Nx8_t is array (natural range <>) of std_logic_vector(7 downto 0);

 -- Replicate in this signal the LUT tables stored in the original

 -- ROM_TABLE.mem file used by the ROM_TABLE component

 constant lut_values : array_Nx8_t(0 to 127) := ("00000000",

 "00000001",

 ...
 "11111111");

 sync_proc : process (Clk) is

 begin

 if (rising_edge(Clk)) then

 -- Output selected value depending on the input address

 Dout <= lut_values(to_integer(unsigned(Addr)));

 end if;

 end process sync_proc;

22 Implementing FAPEC inside an FPGA

After synthesising this code with Synplify (synthesis tool provided by the Libero suite) the

result is that 43 VersaTiles are used. This is roughly 0.17% of the ProASIC total resources

or around 0.7% of the FAPEC implementation. Hence, we can conclude that the

functionality is successfully inferred by the tool.

On the other hand, both RAM_HIST and RAM_DATA_BLCK modules were initially substituted

by a generic DUAL_PORT_MEM module. This module corresponds to a dual-port memory

featuring a single clock. Hence, two independent ports are available, each with read and

write capabilities, although the same clock is used by both ports. During the verification

stage it was observed that one of the modules was not operating as expected. The solution

was to create two slightly different memory modules. DUAL_PORT_MEM_2 was created for

the RAM_DATA_BLCK and uses a standard approach in which the output is updated at the

next clock edge following an address port change. This is standard practice and the

synthesis results revealed that memory was inferred automatically as expected.

RAM_HIST module simulation mismatch required the introduction of a slight variation in

the memory behaviour. The module used (DUAL_PORT_MEM) is very similar to

DUAL_PORT_MEM_2 with the exception that Port B output is pipelined. This means that port

B output changes two clocks after the address port changes, not in the next clock. Port A

output is not pipelined though. The following VHDL code shows in bold the difference

between the two ports.

 buf_memory : process (Clk) is

 variable v_mem : buf_array_t;

 begin

 -- clocked memory

 if (rising_edge(Clk)) then

 -- Port A

 if (A_EN_N = '0') then

 if (A_RW = '1') then

 -- Read operation

 A_DOut <= v_mem(to_integer(unsigned(A_Addr)));

 else

 -- Write operation

 v_mem(to_integer(unsigned(A_Addr))) := A_DIn;

 end if;

 end if;

 -- Port B

 if (B_EN_N = '0') then

 if (B_RW = '1') then

 -- Read operation

 b_dout_r <= v_mem(to_integer(unsigned(B_Addr)));

 B_DOut <= b_dout_r;

 else

 -- Write operation

 v_mem(to_integer(unsigned(B_Addr))) := B_DIn;

 end if;

 end if;

 end if;

 end process buf_memory;

By using these two different memory flavours, the operation of FAPEC was correctly

simulated. These new memory declarations should allow to automatically infer memory

blocks for most FPGAs. However, the asymmetric port behaviour of DUAL_PORT_MEM caused

an issue when synthesising the code. This issue has been analysed in Section 2.4.1.

Integration of FAPEC as data compressor stage in a SpaceFibre link 23

In general, it is recommended not to use pipelined output for memories. This produces a

more natural behaviour as the output word can be read out of the memory in a clock cycle.

If pipelined output is to be used, the same behaviour must be replicated in both ports of

the memory to reduce complexity and simplify development efforts. Asymmetric

behaviour can cause synthesis issues, as demonstrated with the DUAL_PORT_MEM module

(Section 2.4.1).

2.3.2 Pre-compressor

A small change was introduced in the PRECOMPRESSOR module. The input sample value was

not initially registered as the input model used kept this value constant for a few clock

cycles. With the new design the sample value is updated after a read operation and thus it

is required to internally register this value for the pre-compressor to operate as expected.

2.3.3 Histogram Constructor

The HIST_CONSTRUCTOR module has been optimised to reduce the number of clock cycles it

takes to process a sample. In the reference design the constructor parsed the whole 37 bin

values of the histogram each at a clock cycle. This meant that the minimum time between

each input sample was ~40 clock cycles. As there are two of these modules operating in

parallel this delay was effectively divided by two, but still constraining the input sample

rate to one every ~20 clock cycles. A special function has been designed to calculate the

corresponding bin number for the current value in a single clock cycle instead. This allows

to process the histogram input values much faster. Additionally, thanks to the new

memory modules, another optimisation has been done to save 2 clock cycles when

incrementing the corresponding bin value.

The aggregate effect of these changes is that the new histogram module is able to process a

new data value every 6 clock cycles. There is still room for improvement, but the changes

have effectively increased speed by a factor of 4. Furthermore, when analysing the

synthesis results, only 3% more VersaTile cells have been used with respect to the original

module (see Fig. 2.8). Timing is now more constrained, but the critical path for the whole

design is not related to this module.

2.3.4 Parallel-Output PEC Codec

The most important change applied to FAPEC, as explained before, has been to switch

from serial to parallel output. A complete PEC coder module (PEC_CODER) has been

designed. The inputs of this module are the same as the initial PEC coder, but instead of a

single serial output, it now features four different parallel output ports, one for the coding

table and three for each variant (i.e. LE, DS and LC). Each of these four parallel output

ports is composed of a vector with the compressed value plus an additional signal carrying

the number of bits valid in the compressed value output.

One of the firsts tasks to undertake when switching from serial to parallel is to dimension

the size of the outputs. The following table (Fig. 2.5) calculates the maximum output

values possible for any 16-bit input sample depending on the coding variant selected. Note

24 Implementing FAPEC inside an FPGA

that these are absolute maximum values regardless of the table coding values. The

information on the number of valid bits is required because the vectors containing the

compressed value have a fixed size which is determined by the worst case. However,

normally fewer bits will be actually used for a given compressed value. For example, the

maximum length for LE variant is 23 bits. Thus, the compressed value output port for LE

will be 23-bit wide. But if a given value only requires 5 bits, the remaining 18 bits must not

be used. So in this case the signal indicating the number of valid bits will indicate 5. In this

way, the WORD_PACKER module knows how many bits to use from this 23-bit wide input

every time a new value arrives. Additionally, a Valid signal validates the output whenever

there is a new compressed value (or a coding table) to output.

 LE DS LC

h 2 4 < 16

i 2 < 16 < 16

j < 16 < 16 < 16

k 16 16 16

Maximum Size
3+h+i+k

23 bits

3+h+k

23 bits

4+k

20 bits

Fig. 2.5: Maximum compressed value sizes depending on the Coding Variant

These values are important, as they will determine the maximum delay that can be

expected when trying to parallelise this output into chunks of a specific size. For example,

if 16-bit output words were to be used, this would mean that a single coded value could be

spread into 3 different words. This constraint will actually be used in the parallelising

module (WORD_PACKER) presented in the next section.

PEC

Packet
Calibration

Info

Values
Memory

Valid / Ready

Table_Num_Bits

Table_Vector[16:0]

0

16

14

15

LE_Num_Bits

LE_Comp_Val[22:0]

5 7 18 4

0

22

4

0

22

6

0

22
17

0

22

3

Fig. 2.6: Example of PEC operation

Integration of FAPEC as data compressor stage in a SpaceFibre link 25

Fig. 2.6 shows an example of the PEC module outputting a coding table of 15 bits length,

followed by four compressed values using the Low-Entropy variant (LE) with lengths of 5,

7, 18 and 4 bits respectively. These values are then received by the WORD_PACKER module

which concatenates them in order to form the final compressed bit stream. This bit stream

is output in chunks of 32 bits at a time. Obviously, not every clock cycle 32 bits will be

ready for output. A valid signal asserted for a clock cycle indicates when this data can

actually be read.

The module port declaration has been copied here. The whole file can be found at Annex

5.1.

entity pec_coder is

 port (

 Clk : in std_logic;

 Reset : in std_logic;

 Table_Valid : in std_logic;

 -- From encoder side

 Coding_Variant : in std_logic_vector(1 downto 0);

 Segment_1_Num_Bits : in unsigned(LOG2_SSYZE-1 downto 0);

 Segment_2_Num_Bits : in unsigned(LOG2_SSYZE-1 downto 0);

 Segment_3_Num_Bits : in unsigned(LOG2_SSYZE-1 downto 0);

 Segment_4_Num_Bits : in unsigned(LOG2_SSYZE-1 downto 0);

 Ceiling_1_Val : in unsigned(SYMBOL_SIZE-1 downto 0);

 Ceiling_2_Val : in unsigned(SYMBOL_SIZE-1 downto 0);

 Ceiling_3_Val : in unsigned(SYMBOL_SIZE-1 downto 0);

 -- To Word_Packer module

 Ready : in std_logic;

 Table_Valid_Out : out std_logic;

 Table_Num_Bits : out unsigned(LOG2_SSYZE downto 0);

 Table_Vector : out std_logic_vector(TAB_LONG_REF-1 downto 0);

 Comp_Sample_Valid : out std_logic;

 Coding_Variant_Out : out std_logic_vector(1 downto 0);

 LE_Num_Bits : out unsigned(4 downto 0);

 DS_Num_Bits : out unsigned(4 downto 0);

 LC_Num_Bits : out unsigned(4 downto 0);

 LE_Comp_Val : out std_logic_vector(22 downto 0);

 DS_Comp_Val : out std_logic_vector(22 downto 0);

 LC_Comp_Val : out std_logic_vector(19 downto 0);

 -- Memories Management

 RD : in std_logic_vector(SYMBOL_SIZE downto 0); -- Pixel/value + sign to

compress as read from the block RAM

 RADDR : out std_logic_vector(LOG2_BSIZE downto 0); -- Address to read of the

block RAM (2 x block size)

 REN : out std_logic -- read enable for the RAM / LOW ACTIVE

);

end entity pec_coder;

The fundamental operation of PEC has obviously not been altered as the compressed

output must be the same. However, the operation of this new module is radically different.

Table coding values are calculated in a single clock cycle. PEC compressed values, on the

other hand, require two clock cycles to reduce the timing stress on the operation. On the

first clock cycle the binary value to be coded within a given segment is calculated. This

value depends on the segment number to be used, which depends on the ceiling values

passed to PEC. In the second clock the entire bit stream is calculated (prefix/unary

sequence, escape sequences, etc.) together with the length of the output vector. Finally, an

additional clock cycle is added to wait for the ready signal coming from the WORD_PACKER

26 Implementing FAPEC inside an FPGA

module. When it is ready, the histogram memory address is incremented and in the next

clock cycle a new value to code arrives to the PEC module.

This PEC implementation can output compressed data much faster than the initial version.

Currently, the new PEC is limited to compressing one value every 3 clock cycles. This is

enough for the current operation as the HIST_CONSTRUCTOR can only process one sample

every 6 clock cycles. It is however important to remark that there is no fundamental

limitation on speed in the way PEC is currently constructed. By adding a pipeline stage and

optimising the way in which samples are obtained from the memory, the module can be

modified to compress a value every clock cycle. If these modifications are implemented

adequately, timing should not be noticeably affected.

2.3.5 Generation of 32-bit FAPEC Output

The new PEC coder outputs parallel data in a very particular way, as explained in the

previous section. There is a separate port output for the coding table and every coding

variant, together with a port stating the number of valid bits. However, the expected

output of a paralleliser is a single fixed-size port, e.g. 16 or 32 bits. Transmission modules

such as SerDes or data buses always have a fixed number of bits as input port width. For

example, the SpFi protocol uses a native bus width of 32 bits as user interface. This seems

a good trade-off value for the port width and has hence been the adopted width for FAPEC.

A new module (WORD_PACKER) has been created for this purpose. This module gets the

output ports of PEC and generates a fixed-width output of 32 bits. The module port

declaration has been copied here. The whole file can be found at Annex 5.2.

entity word_packer is

 port (

 Clk : in std_logic;

 Reset : in std_logic;

 -- From PEC compressor

 Ready : out std_logic;

 Table_Valid_Out : in std_logic;

 Table_Num_Bits : in unsigned(LOG2_SSYZE downto 0);

 Table_Vector : in std_logic_vector(TAB_LONG_REF-1 downto 0);

 Comp_Sample_Valid : in std_logic;

 Coding_Variant_Out : in std_logic_vector(1 downto 0);

 LE_Num_Bits : in unsigned(4 downto 0);

 DS_Num_Bits : in unsigned(4 downto 0);

 LC_Num_Bits : in unsigned(4 downto 0);

 LE_Comp_Val : in std_logic_vector(22 downto 0);

 DS_Comp_Val : in std_logic_vector(22 downto 0);

 LC_Comp_Val : in std_logic_vector(19 downto 0);

 -- To VC buffer

 VCB_Half_Full : in std_logic;

 Out_Valid : out std_logic;

 Out_Data : out std_logic_vector(31 downto 0)

);

end entity word_packer;

A two-stage strategy has been adopted inside this module to reduce the timing stress. This

module needs to multiplex between four different parallel data inputs – the Table Coding

and the three coding variants, LE, DS and LC – each with a variable number of bits. The

Integration of FAPEC as data compressor stage in a SpaceFibre link 27

first stage consists of merging the four different incoming data streams into a single

registered signal. There is a lot of multiplexing involved here, and this signal is registered

to improve the timing. In the next clock cycle, this signal is then used to pad the 16 bits of

an intermediate buffer. Note that depending on the size of the incoming data value, up to 3

clock cycles might be required to write all the input bits in this 16-bit buffer, as depicted in

the example of Fig. 2.7. In this example only 2 bits can be inserted in the buffer during the

first clock cycle. This is because the buffer already had 14 bits occupied by the previous

compressed value. Of the remaining 20 bits, 16 bits can then be written down in the

second clock cycle, while the last 4 bits have to wait until the third clock cycle.

1st buffer data allocationFILLED

015 14

22 bit compressed value

01217182122

2nd buffer data allocation

015

3rd buffer data allocationEMPTY

015 34

Fig. 2.7: Operation of writing a large value in the 16-bit intermediate buffer

Finally, the last stage consists of writing the 16-bit buffer into the corresponding half of

the

32-bit final output. Once the output vector has 32 valid bits the output is validated. This

output corresponds to the parallel output of the FAPEC module.

Note that only 16 bits are used as size for the intermediate buffer width instead of what

would be the natural 32 bit vector. This size has been adopted to reduce the risk of using

large vectors. The large number of multiplexors required by this operation would set

timing restrictions that could render impossible the effort to adapt FAPEC to high

operating frequencies.

2.3.6 Optimising FAPEC Speed

The initial VHDL version of FAPEC used a serial output and this output required a

dedicated clock. Current FPGA technologies (especially the space-qualified ones) do not

support operating frequencies beyond the 200-300 MHz range. Moreover, values in the

high part of the frequency range are really hard to achieve for applications other than

basic combinatorial operations. Consequently, there was an intrinsic strong limitation to

the speed of a FAPEC module inside an FPGA due to this serial output. The logical step to

overcome these limitations has been to switch to a parallel output. On the other hand,

28 Implementing FAPEC inside an FPGA

dedicated SerDes blocks are commonly available in modern FPGAs. They are analogue

modules integrated in the chip die, and they operate taking input parallel data streams and

outputting them in serial format. This is the technology that SpFi needs to use in its

physical layer (bottom layer of Fig. 1.2). FPGA that do not feature inbuilt SerDes (e.g.

radiation-tolerant RTAX family from Microsemi) can still make use of external SerDes

modules. For space, a variant of the TLK2711 WizardLink is available from Texas

Instruments. The TLK2711-SP is a space-rated transceiver reaching up to 2.5 Gbps [14].

The PROASIC3L reference design has its serial link operating at a 40 MHz. This limits the

output of the FAPEC codec at 40 Mbit/s. Thus, the input frequency of values is not

required to be very high, typically in the range of ~5 MHz. The new parallel output

eliminates this limitation. The new PEC module is able to compress a sample every three

clock cycles. This three-clock limitation arises from two facts: the steps the current

algorithm requires to code a sample, but also from the fact that the worst case maximum

length for a compressed value is 23 bits. The intermediate parallel size is 16 bits, which

produces a three clock cycle worst-case passing from 23 to 16 bits (see Fig. 2.7).

Nevertheless, if normal compression ratios are assumed, it is theoretically possible to

compress and output samples every clock cycle on average.

The current version of the histogram generator is now able to process one input sample

every 6 clock cycles. The initial performance was much worse, working at 1 sample every

~20 clock cycles. This is currently the most limiting module regarding speed. So the

histogram generation is the current bottleneck for the overall speed of FAPEC. There is no

theoretical reason as to why a sample could not be processed every clock cycle. The

histogram already works with two memories, so while one data block is being processed

and its histogram generated, the previous data block can be compressed. This allows not

stopping the input data flow while compressing data blocks. However, processing one

sample per clock requires major changes in the histogram generation logic.

2.4 Verification procedure

When developing new code, verification is always one of the most critical stages. Thanks

to the reference design presented above, there is already a FAPEC module that can be used

as a reference for verification. Thus, simulations of the new codec have benefited from the

fact that there was an initial version to compare with. This helped to reduce debugging

times. The strategy used to verify this new FAPEC was hence slightly different to the one

used for the reference design.

In the reference design an incremental verification approach was used. This allowed

verifying the different modules by taking advantage of the previously verified modules.

Also, a set of test files was created for the reference design. This set of files included

different scenarios, so that all the coding variants were tested. It also included corner-

cases to test the compressor under the most stressing scenarios (e.g. values after the pre-

compressing stage that were always 0 or always 65535). The compressed files were

compared at binary level against the output of the equivalent software version of FAPEC.

In this way it was guaranteed that the compressor was working correctly. As the main

functional changes in the new FAPEC have been applied at the last stage of the compressor

Integration of FAPEC as data compressor stage in a SpaceFibre link 29

(PEC), the verification has been performed by directly compressing the set of files. This is

in contrast with the incremental validation approach used for the reference design.

The Modelsim simulator tool has been used to verify the operation of FAPEC. The errors

have been found and debugged directly with the simulation of these files. Whenever there

was a mismatch between files, the difference was located in the binary file and then

tracked down to the simulation. For example, first a cmp command is run between the

reference and the compressed files:

alberto@Dell-Desktop-PC /cygdrive/e/FAPEC/Data2
$ cmp ngc0002.raw.cmp.parallel ngc0002.raw.cmp.FAPEC
ngc0002.raw.cmp.parallel ngc0002.raw.cmp.FAPEC differ: byte 7, line 1

If there is a difference, hexdump command is then used to find the exact difference with

the information provided by cmp (Fig. 2.8).

Fig. 2.8: Hexdump output example for the original file (bottom) and the new algorithm (top), marking the first

difference between files

Once the first failing bit is located, it is possible to go to the Modelsim simulation to track

down the problem. Fig 2.9 shows the input and output ports of the PEC_CODER and

WORD_PACKER modules in a simulation. The 32-bit words that FAPEC outputs are at the

bottom of the figure, in the Out_Data port. When the word to be examined is located, then

it is possible to further expand the WORD_PACKER module for a more in depth inspection. By

looking at the internal signals it is usually possible to figure out whether it is performing

correctly or not. If it is working fine, then the problem might be in the module coming

before (PEC_CODER). The operation is then repeated, find the outputs towards WORD_PACKER

that are causing the wrong output and then figure out what is the problem. With this

method all the bugs in the code of the new FAPEC design where identified and solved.

Once all the problems have been fixed, the binary comparison between the two files has to

report End Of File (EOF) found, meaning that the end of the file was reached without

30 Implementing FAPEC inside an FPGA

finding any difference. All the files in the set have been successfully compressed and

compared with the new FAPEC design.

alberto@Dell-Desktop-PC /cygdrive/e/FAPEC/Data2
$ cmp ngc0002.raw.cmp.parallel ngc0002.raw.cmp.FAPEC
cmp: EOF on ngc0002.raw.cmp.parallel

Fig. 2.9: Modelsim simulation of the IO ports of PEC_CODER and WORD_PACKER modules

2.5 Performance Analysis

In this section we analyse the differences in resource usage, timing and performance of the

new FAPEC design with respect to the reference design.

2.5.1 ProASIC3L Resource Usage Analysis

In Fig. 2.10 the table with the new FAPEC resource usage for ProASIC3L FPGA is indicated.

These values can be compared with Fig. 2.3 which contains the usage for the reference

design. An additional column has been added at the right side of the table in Fig. 2.10. This

represents the increase or decrease (in %) of the number of used VersaTiles from the

Integration of FAPEC as data compressor stage in a SpaceFibre link 31

reference design to this new design. A positive value means more resources used by the

new FAPEC compressor, and negative means fewer resources used, i.e. negative is good.

 M1A3P1000L

 VersaTiles % % of FAPEC % wrt Ref Design

PRECOMPRESSOR 358 1.5 5.9 + 7.2

HIST_CONSTRUCTOR 858 3.5 14.2 + 2.9

HIST_BOUNDARY_EXTRACT 346 1.4 5.7 - 0.9

TABLE_CONSTRUCTOR 1045 4.3 17.3 + 22.2

PEC_CODER 2612 10.6 43.2 + 139.4

WORD_PACKER 781 3.2 12.9 N/A

TOTAL 6043 24.6 100.0 + 72.7

Block RAMS 2 6.3 - 33.3

Fig. 2.10: Resource usage in the ProASIC FPGA for the new FAPEC and its comparison against the reference

design

Changes in the first three modules are irrelevant (PRECOMPRESSOR, HIST_CONSTRUCTOR and

HIST_BOUNDARY_EXTRACT). The 22% increase of the TABLE_CONSTRUCTOR is a curious case.

Its usage has significantly increased despite the fact that no changes at all have been

applied to this module. The reason for this variation is the way the synthesiser optimises

resources. The external ports of the TABLE_CONSTRUCTOR module are connected to the new

PEC Coder. The way in which PEC internally connects its inputs has been completely

changed, as it features now a parallel output. Therefore, the way in which the

TABLE_CONSTRUCTOR output ports are connected inside PEC has changed. This has

prevented Synplify from doing more optimisations, as it did with the reference design,

hence the different results.

A very important difference between the two memory modules has not been reflected in

the previous table but it is worth mentioning here. The DUAL_PORT_MEM_2 module has been

reported as not taking any logical resources at all (i.e. 0 VersaTiles). However, the

DUAL_PORT_MEM module uses roughly 3000 VersaTiles. This is a huge number of tiles,

considering the whole new FAPEC module uses ~6000 tiles (the 3000 tiles of the

DUAL_PORT_MEM are not included). The reason for this asymmetry between two almost

identical memory modules is the asymmetric operation of the output ports for

DUAL_PORT_MEM. This is causing the Synthesis tool to infer a large amount of wrapping logic

because a memory block alone cannot reproduce the behaviour indicated in the VHDL

code. Therefore, port B memory pipeline stage of the DUAL_PORT_MEM should be removed.

This port is connected to the HIST_BOUNDARY_EXTRACT and it seems that this behaviour can

be changed by placing the pipelining stage inside the HIST_BOUNDARY_EXTRACT module and

removing it from the memory declaration.

The parallel PEC_CODER has increased his usage in 140% – a huge increase – due to the big

difference in architecture. This means that the initial PEC module is more simple and

32 Implementing FAPEC inside an FPGA

compact than this new module, but also much slower. The higher speed does not come for

free.

If we pay attention to the usage percentage of the different modules with respect to the

full FAPEC coder, the most obvious consequence is that, due to the increase in resources

used by PEC, the rest of the modules now take a lower percentage than in the reference

design. This effect is further increased by the new WORD_PACKER module, which is not

present in the old design and that takes a 13% of the total number of VersaTiles used by

the new FAPEC.

Note also that the number of block RAM has gone from 3 to 2. This is due to the fact that

the ROM memory (ROM_TABLE_GNRC) is hardcoded in VHDL and not implemented with a

memory. As explained in Section 2.3.1, only 43 tiles (0.17% of the FPGA area) were used

by this ROM implemented with logical resources.

Finally, if we consider the total number of tiles used by FAPEC, we see that it has increased

a 73% in the new version. The reference design uses 3500 tiles for a total usage of 14% of

the FPGA, whereas the new version uses 6043 tiles for an almost 25% of FPGA used. The

change is significant, and this is the toll that FAPEC has paid for a faster operation and a

parallel output.

 RTG4

 Regs % LUTs %

PRECOMPRESSOR 71 0.1 69 0.1

HIST_CONSTRUCTOR 205 0.1 304 0.2

HIST_BOUNDARY_EXTRACT 64 0.0 167 0.1

TABLE_CONSTRUCTOR 153 0.1 337 0.2

PEC_CODER 191 0.1 1548 1.0

WORD_PACKER 111 0.1 609 0.4

TOTAL 829 0.6 3078 2.0

Block RAMS 2 0.5

Fig. 2.11: Resource usage in the RTG4 FPGA for the new FAPEC design

2.5.2 RTG4 Resource Usage Analysis

RTG4 is a new radiation-tolerant FPGA developed by Microsemi [6]. It is the evolution of

the successful RTAX family although, in this case, the technology used is completely

different. RTG4 uses Flash technology, offering reprogrammability, and also has 24

embedded SerDes cores, among other advanced characteristics. The original FAPEC

reference design was aiming at RTAX as target for space applications. However, given that

the new RTG4 platform has already been used to implement SpFi, and that it has created a

Integration of FAPEC as data compressor stage in a SpaceFibre link 33

lot of interest in the space community, it makes sense to examine its performance with

FAPEC.

Fig. 2.11 shows the table with the usage values obtained for the RTG4. As the numbers in

the table indicate, the RTG4 is a much bigger device. Furthermore, it also is much faster

than the RTAX. In this case, RTG4 features separated combinational (Look-Up Tables, or

LUTs) and sequential elements (registers). A register is a flip-flop, and it stores a bit of

information that is updated every clock cycle. LUTs, on the other hand, are used to

recreate the operation of logical functions and multiplexers. The PEC_CODER and

WORD_PACKER modules make an intensive use of multiplexers to be able to place the

compressed binary values into any given bit of the 32-bit output port. The effect of this

large number of multiplexers required can be seen in the table values. This explains why

the number of LUTs in the RTG4 is much higher than the number of registers. Note that

the ratio between sequential (Registers) and combinational (LUTs) elements, 3.7, is

similar to the one obtained with the reference design in the ProASIC device, 3.9 (see

Fig. 2.10).

In terms of total logical resources used by FAPEC, it can be claimed that the logic average

usage of the device is only a 1.3%. This means that FAPEC can currently be implemented

inside a design using the RTG4 with almost no impact.

2.5.3 ProASIC3L Timing Analysis

The target speed of the reference design for its fast clock was 40 MHz. The timing analysis

determined that the theoretical maximum frequency for the output serial clock (CLK) was

42.6 MHz (see Fig. 2.12). This limits the maximum output data rate to 42.6 Mbit/s. On the

other hand, the new FAPEC presented a maximum estimated frequency of 31.6 MHz for

the same clock. This shows how the changes used to optimise the FAPEC operation have

increased its complexity. Higher complexity means a greater number of logical levels,

which translate in more net delays due to the greater number of components crossed by

the net paths and also the increased net lengths. These two effects cause higher delays in

signals travelling from one register to another, thus limiting the maximum frequency

speed. Nevertheless, maximum frequency can still be improved. The options to achieve

better timing are analysed in next Section.

 Ref Design
(MHz)

New FAPEC
(MHz)

Δ (%)

CLK 42.6 31.6 - 25.8

SCLK 31.3 52.1 + 66.5

Fig. 2.12: Maximum frequency of the clock domains in ProASIC for the initial and new FAPEC designs

Note that the new compressor output is now parallel. This would imply a theoretical

maximum throughput of 31.6 Msamples/s (with 16 bit/sample ≈ 500 Mbit/s) – although

to achieve this performance further changes in the compressor are required – while the

34 Implementing FAPEC inside an FPGA

theoretical maximum speed for the reference design equals that of the clock domain (42.6

Mbit/s) due to its serial output.

The performance of the other clock (SCLK) is not that important. As a matter of fact, in the

new implementation both clocks share the same clock source. Therefore, the timing

limitation comes from the clock presenting the slowest path, i.e. CLK.

2.5.4 RTG4 Timing Analysis

It is more significant to analyse the potential of the new FAPEC with modern FPGAs. As

mentioned before, the new RTG4 has created a lot of expectation among the space

community. It is a big FPGA and SpFi only takes around 2 – 3 % of the resources [15]. It is

thus realistic to think about the potential integration of FAPEC and SpFi modules inside a

design running in an RTG4.

 New FAPEC
(MHz)

CLK 55.0

SCLK 127.2

Fig. 2.13: Maximum frequency of the clock domains in RTG4 for the new FAPEC design

When analysing the timing performance in the RTG4, the initial value observed does not

seem very high. It is roughly a 30% higher than the ProASIC value, but still it does not

imply a great performance increase (Fig. 2.13). However, after a close examination of the

reported paths, it becomes obvious that this maximum frequency is far from being the

limit of what can be expected from the new FAPEC. Specifically, the initial 60 critical paths

reported by the tool all look similar to this one:

Path information for path number 60:

 Requested Period: 4.557

 - Setup time: 0.229

 + Clock delay at ending point: 0.000 (ideal)

 = Required time: 4.329

 - Propagation time: 5.980

 - Clock delay at starting point: 0.000 (ideal)

 = Slack (non-critical) : -1.652

 Number of logic level(s): 0

 Starting point: INSTANTIATE_HIST_BLCK_MEM\.block_mem_generic\.BLCK_MEM.v_mem_v_mem_0_0 / A_DOUT[16]

 Ending point: INSTANTIATE_PEC\.PEC_COD.SIGN / D

 The start point is clocked by FAPEC|CLK [rising] on pin A_CLK

 The end point is clocked by FAPEC|CLK [falling] on pin CLK

Instance / Net Pin Pin Arrival

Name Type Name Dir Delay Time

--

INSTANTIATE_HIST_BLCK_MEM\.block_mem_generic\.BLCK_MEM.v_mem_v_mem_0_0 RAM1K18_RT A_DOUT[16] Out 4.997 4.997

RD[16] Net - - 0.983 -

INSTANTIATE_PEC\.PEC_COD.SIGN SLE D In - 5.980

==

Total path delay (propagation time + setup) of 6.209 is 5.225(84.2%) logic and 0.983(15.8%) route.

Path delay compensated for clock skew. Clock skew is added to clock-to-out value, and is subtracted from setup time value

Basically, they indicate that the paths are related to the use of combination of rising and

falling clock edges (in bold). This is not a recommended practice for RTL code and should

be avoided whenever possible. The use of the different clock edges in the new FAPEC is

Integration of FAPEC as data compressor stage in a SpaceFibre link 35

due to legacy, as this was already used in the reference design. There is no real

justification for the new version to use this clocking scheme. Furthermore, fixing this does

not seem very difficult. The consequence of mixing rising and falling edges is that the

requested period is half of the real clock period, because the tool is analysing the timing

between the falling and the rising edge of a clock for these paths. It is also worth noting

that memories are slow and it typically takes almost 5ns for the value to be valid out of the

memory in RD port (in bold).

In the timing report 1000 paths were requested from the tool. After the initial 60 paths

analysed above, the remaining 940 paths were all related to the multiplexing operations in

the PEC module:

Path information for path number 61:

 Requested Period: 9.115

 - Setup time: 0.264

 + Clock delay at ending point: 0.000 (ideal)

 = Required time: 8.850

 - Propagation time: 10.459

 - Clock delay at starting point: 0.000 (ideal)

 = Slack (non-critical) : -1.609

 Number of logic level(s): 30

 Starting point: INSTANTIATE_HIST_BLCK_MEM\.block_mem_generic\.BLCK_MEM.v_mem_v_mem_0_0 / A_DOUT[0]

 Ending point: pec_opt_1.segment_value_r[15] / D

 The start point is clocked by FAPEC|CLK [rising] on pin A_CLK

 The end point is clocked by FAPEC|CLK [rising] on pin CLK

. . .

. . .

. . .

Path information for path number 1000:

 Requested Period: 9.115

 - Setup time: 0.264

 + Clock delay at ending point: 0.000 (ideal)

 = Required time: 8.850

 - Propagation time: 10.253

 - Clock delay at starting point: 0.000 (ideal)

 = Slack (non-critical) : -1.403

 Number of logic level(s): 20

 Starting point: INSTANTIATE_HIST_BLCK_MEM\.block_mem_generic\.BLCK_MEM.v_mem_v_mem_0_0 / A_DOUT[8]

 Ending point: pec_opt_1.segment_value_r[15] / D

 The start point is clocked by FAPEC|CLK [rising] on pin A_CLK

 The end point is clocked by FAPEC|CLK [rising] on pin CLK

The starting point of the path is always the output memory data port and the ending point

is a register in the PEC coder. There are two problems here. Firstly, as shown above, the

memory output is very slow and it takes 5 ns for the data to get out of the memory. This

means that outputting data from the memory – without doing any operation with this

output value and not accounting for any net delay – can only work at a maximum

operation frequency of 200 MHz (1/5 ns). And this relates to the second problem, which is

the large number of logic levels due to the multiplexing currently required by PEC.

Specifically, path 61 has 30 logic levels, which is a huge number. When combined, these

two issues considerably limit the maximum frequency.

The first problem described above presents a relatively easy solution. The operation of the

PEC coder can be modified to work with a registered value instead of directly working

with the value coming from the memory. This way the memory delay will not apply to the

36 Implementing FAPEC inside an FPGA

worst path, and also has the advantage of reducing net delays because in general registers

can be placed much closer to the combinational logic (i.e. LUTs) than memories. A quick

feasibility test has been run to examine the potential performance that FAPEC can achieve

if the memory value were to be registered inside the PEC module. The RD input (the read

value coming from the memory) in PEC has been registered with the CLK signal. The

internals of PEC have not been further modified, meaning that the output of the PEC

module is not correct, although this modified module presents a valid performance in

terms of timing analysis. Now the timing is different:

Path information for path number 61:

 Requested Period: 7.861

 - Setup time: 0.264

 + Clock delay at ending point: 0.000 (ideal)

 = Required time: 7.596

 - Propagation time: 8.983

 - Clock delay at starting point: 0.000 (ideal)

 = Slack (non-critical) : -1.387

 Number of logic level(s): 10

 Starting point: word_packer_1.ptr_r_fast[1] / Q

 Ending point: word_packer_1.half_word_r[4] / D

 The start point is clocked by FAPEC|CLK [rising] on pin CLK

 The end point is clocked by FAPEC|CLK [rising] on pin CLK

The results obtained are really promising. Requested period of 7.861 ns corresponds to

127.2 MHz. Slack is -1.387 ns, which if added to the requested period, means that the

module can potentially run up to ~108 MHz only by fixing falling edge clocks and

registering the memory input of PEC. In fact, these results point to a much faster potential

with a few other improvements. All the new paths down to number 1000 have been

examined again. With no exception, all paths are either located inside the PEC_CODER or the

WORD_PACKER modules. This is due to the large number of multiplexing operations

performed inside these two modules. However, slack at path 1000 is -0.318 ns, which

means that with additional effort to increase the pipelining in both modules we can expect

FAPEC to run at least at 125 MHz. This is a magical figure for the SpFi integration.

Typically, SpFi links run at 2.5 Gbit/s, meaning that continuous data input at 62.5 MHz is

required for the link to saturate. This frequency is determined by the 32-bit user data

path. As currently FAPEC operates with 16-bit samples, then running FAPEC at 125 MHz

would be equivalent to 32-bit at 62.5 MHz.

2.5.5 Post Place and Routing Analysis

The place and routing operation has been carried out for the FAPEC compressor with a

Xilinx Spartan-6 FPGA. The technology used by Spartan-6 is very similar to that of Virtex-

5QV (a space-qualified device also from Xilinx) and it can thus be used as a benchmark for

the Virtex-5QV resource utilisation.

Results are displayed in Fig. 2.14. As both Spartan and Virtex use LUT-6 tables, the number

of LUT and DFF elements should be very similar. As noted for both ProASIC and RTG4

devices, the number of combinatorial logic used is much larger than the number of

sequential elements. In the case of Spartan-6 the ratio is ~5, considerably higher than

Integration of FAPEC as data compressor stage in a SpaceFibre link 37

values (~4) obtained for the other two FPGAs. It is worth nothing that the values indicated

in this table have been obtained from the actual implementation in the final design

(integrated with SpFi). Hence, it could be that the Place and Route tool (Xilinx XST) has

done certain changes to improve performance taking into consideration the whole design.

 SPARTAN-6 75T VIRTEX-5QV

 Cells % Cells %

Combinational (LUTs) 3736 8.0 3736 4.3

Sequential (DFFs) 763 0.8 763 0.9

Logic Average Use 4.4 2.6

Block RAM 1 0.6 1 0.3

Fig. 2.14: Spartan-6 and Virtex-5QV utilisation after Place and Routing for the new FAPEC design

As happened in the RTG4 resource analysis, the new FAPEC logic average usage is less

than 3% for the Virtex-5QV. This means that FAPEC can too be implemented in a Virtex-

5QV device with a small impact in the global design.

38 Implementing FAPEC inside an FPGA

Integration of FAPEC as data compressor stage in a SpaceFibre link 39

3. The STAR Fire Design

In this section we explain the process of integrating the new version of the FAPEC

compressor as an intermediate stage at the transmit Virtual Channel (VC) of a SpaceFibre

codec.

3.1 Introduction

The STAR Fire is ground support equipment specifically designed to support the

evaluation and early adoption of SpaceFibre technology (Fig. 3.1). It is a SpFi Diagnostic

Interface and Analyser that provides a complete SpFi test and development solution. The

STAR Fire unit has two SpFi interfaces with an embedded link analyser, two SpW ports,

multiple very high data rate inbuilt data pattern generators and checkers, and an

embedded SpW router. STAR Fire can operate as a bridge between SpW and SpFi, as a SpFi

link analyser, as a rapid SpFi packet generation and checking unit, and as a decoder of SpFi

signals for operation with a Logic Analyser.

Fig. 3.1: The STAR Fire Mk2 Unit front panel (left) and bottom panel (right)

STAR Fire features a USB port which provides communications with a host PC, allowing to

interface SpFi with a computer. Unfortunately only USB 2.0 connection is allowed which

does not allow sending enough data to saturate the link. Nevertheless, the inbuilt basic

internal data generators and checkers can be used to force SpFi to send data at maximum

speed. The USB interface also provides status and control communications from the PC,

thanks to specially designed software.

The STAR Fire software is based on a Graphical User Interface (GUI) that allows the

configuration of the SpFi interfaces and the use of the embedded link analyser. It also

controls the parameters of the data generators and monitors the status of the data

checkers for virtual channels and broadcast data (Fig. 3.2). Furthermore, there is a trigger

module (Fig. 3.3) that decodes the SpFi data stream which can be analysed using the Word

or the Frame based view (described in the next section).

40 The STAR Fire design

Fig. 3.2: The STAR Fire software Configuration window

Fig. 3.3: The STAR Fire software Trigger window

A SpFi link typically runs at 2.5 Gbit/s in RTAX FPGAs (using an external SerDes device

like TLK2711-SP) and 3.125 Gbit/s in RTG4 or Virtex-5QV. SpFi also supports lane

aggregation thanks to the multi-laning capabilities. This means that the link speed can be

multiplied by using several lanes – physical connections – to form a link. However, this

requires higher system complexity, and more mass (additional cables) and power

consumption (to send the signals over the cables). An option to reduce this complexity,

mass and power consumption is to compress the data prior to the transmission over the

link. Thus, the new RTL version of FAPEC can be used to mitigate these problems.

Integration of FAPEC as data compressor stage in a SpaceFibre link 41

3.2 Implementation of FAPEC inside STAR Fire Design

The original design of the STAR Fire unit has been modified to integrate FAPEC. The unit

features 2 SpFi ports of 8 VCs each. The lowest VCs (VC 0 and VC 1) are connected to the

SpW Router over a SpW to SpFi data format converter. The remaining VCs (VC 2 to VC 7)

are connected to independent data pattern generators and checkers. The reason for this

embedded generator/checker is that the unit is connected to a host computer over a USB

2.0 connection. The theoretical maximum data rate that can be achieved over USB 2.0 is

480 Mbit/s (the actual rate is well below this figure). This means that it is impossible to

stress a single SpFi link at its maximum capacity of 2 Gbit/s (2.5 Gbit/s line rate) over a PC

connection. The internal data generator and checkers allow to generate and check data at

the maximum rate supported by SpFi. They can work independently on different VCs and

on any of the SpFi ports. This allows testing the QoS offered by the SpFi codec. STAR-

Dundee is working on a new version of the STAR Fire – called the STAR Fire Mk3 – that

will feature a USB 3.0 connection, thus allowing much higher data rates to be directly sent

from the PC.

Pattern
Gen/Chk

DDR

USB

3

Router
SpW 2

SpW 1

2

1

6
7

SpaceFibre
Port 1

(8 Virtual
Channels)

SpFi

Analyser
Mictor

SpaceFibre
Port 2

(8 Virtual
Channels)

DDR Analyser

SpFi

Mictor

RMAP Configuration
(RMAP Target)

5

Configuration Bus

Router
Configuration

0

VC2

VC7

…

BC

VC0
VC1

VC2

VC7

…

BC

Pattern
Gen/Chk

8
9

VC2

VC7

…

BC

VC0
VC1

VC2

VC7

…

BC

4

FAPEC

FAPEC

VC3

Fig. 3.4: The STAR Fire design architecture. In blue the FAPEC modules added to the design.

To optimise the development time and minimise risks, it was decided to insert the FAPEC

codec between the data generator output and the transmit VC input, as shown in Fig. 3.4.

To minimise resource usage only VC 2 has access to the FAPEC compressor. The original

42 The STAR Fire design

STAR Fire design is the same as depicted in Fig. 3.4, except for the FAPEC modules (in

blue). Originally VC 2 was directly connected to the data pattern and checker generators.

This new design allows testing the FAPEC codec with the STAR Fire software Configurator

window as shown in Fig. 3.2. The software is very powerful and apart from monitoring

and controlling the status of the SpFi links, it also allows to trigger on different control

words both in the transmission and reception sides in the Trigger window (Fig. 3.3). Upon

triggering on a control word, a Frame View and Analyser windows appear. The Analyser

window shows (Fig. 3.5) in the central part the SpFi words received (left half) and

transmitted (right half) for the port selected in the trigger setup. Each word consists of

four 8B10B symbols or characters that are shown at each side. The Frame View window

shows data frames with a separate column for each VC (Fig. 3.6).

Regarding the code, there have been a couple of changes required by this design related to

the interface between the data pattern generator and FAPEC. As explained in Section 2.3.2,

the PRECOMPRESSOR module was updated to guarantee that the right value was read from

the input data stream. The data_generator module updates the data value immediately

after being read by FAPEC and the PRECOMPRESSOR needed to be updated accordingly.

Fig. 3.5: The STAR Fire Analyser window

The data_generator module used by the STAR Fire design was also updated to meet the

restrictions of timing between consecutive values of the HIST_CONSTRUCTOR module.

Specifically, it had to be modified to guarantee that regardless of the configuration set up

Integration of FAPEC as data compressor stage in a SpaceFibre link 43

by the control software, the maximum data generation rate never exceeded 1 data value

every 6 clock cycles. Section 2.3.3 explains how the new FAPEC implementation still

presents some limitations that prevent the module to work on a sample-per-clock basis.

Fig. 3.6: The STAR Fire Frame View window

3.2.1 Verifying the Design

The data generator embedded in the STAR Fire is a very simple one. It consists of a simple

increasing pattern, incrementing its output value by one every clock cycle. This means that

differential values will always be ‘1’ with the exception of the leading value of each data

block. This is not very representative of typical data, but bear in mind that this same

algorithm has been successfully tested in simulation against different types of data sets.

The purpose of the hardware set-up was to validate the operation of FAPEC with SpFi.

Fig. 3.7: View of the compressed output by the data pattern generator

44 The STAR Fire design

The pattern generated by the data_generator was printed into a file. Then this file was

passed to the reference FAPEC design to obtain the FAPEC compressed master file. This is

the file used to validate the operation of the STAR Fire design. Fig. 3.7 shows the

compressed output of the master file. The red rectangles indicate the places where there is

a boundary between packets. In the boundary the coding table is coded and these bit

sequences can be easily identified.

The verification of the design has again been carried out with Modelsim. The whole STAR

Fire design has been simulated and the output has been inspected to verify that the

compressed file is being correctly generated by FAPEC. Once this has been verified, the

rest of the design verification is simple because the initial STAR Fire design was already

working correctly.

Fig. 3.8 shows the Modelsim simulation for the STAR Fire design. In the top panel the first

two words are output (0x55554574 and 0x55555555). Note that they are only valid if

Out_Valid signal is asserted. In the bottom panel the beginning of the second packet is

displayed (0xBE267655 and 0xAAAAAAAA). The simulator output was binary compared

against the compressed master file (Fig. 3.7) to verify that the output matched. Note the

inverse endianness between the simulation and the file.

Fig. 3.8: Modelsim simulations of the STAR Fire design

Integration of FAPEC as data compressor stage in a SpaceFibre link 45

3.2.2 Building the design

The original STAR Fire design took most of the FPGA resources. One problem encountered

with the new design integrating the FAPEC compressor is that this new design was setting

the FPGA tools at the limit of what is possible with the target device (Spartan-6 75T). The

new parallel PEC module uses few registers but the number of multiplexers that uses in

comparison is high. So the tool (Xilinx XST) presented several problems when trying to

place the whole design inside the FPGA. In some runs (in 3 out of 4 tries) it got stuck for

several hours before crashing, indicating that it was impossible to place the design. In the

fourth try the design was successfully placed, but then in the routing phase there were

plenty of timing errors. The device utilisation and logic distribution summary for that run

was:

Slice Logic Utilization:

 Number of Slice Registers: 24,884 out of 93,296 26%

 Number of Slice LUTs: 37,855 out of 46,648 81%

Slice Logic Distribution:

 Number of occupied Slices: 11,218 out of 11,662 96%

 Number of MUXCYs used: 6,772 out of 23,324 29%

 Number of LUT Flip Flop pairs used: 39,715

 Number with an unused Flip Flop: 15,323 out of 39,715 38%

 Number with an unused LUT: 1,860 out of 39,715 4%

 Number of fully used LUT-FF pairs: 22,532 out of 39,715 56%

 Number of slice register sites lost

 to control set restrictions: 0 out of 93,296 0%

Whereas the original STAR Fire design without FAPEC required:

Slice Logic Utilization:

 Number of Slice Registers: 23,394 out of 93,296 25%

 Number of Slice LUTs: 30,404 out of 46,648 65%

Slice Logic Distribution:

 Number of occupied Slices: 10,657 out of 11,662 91%

 Number of MUXCYs used: 6,460 out of 23,324 27%

 Number of LUT Flip Flop pairs used: 34,014

 Number with an unused Flip Flop: 11,118 out of 34,014 32%

 Number with an unused LUT: 3,610 out of 34,014 10%

 Number of fully used LUT-FF pairs: 19,286 out of 34,014 56%

 Number of slice register sites lost

 to control set restrictions: 0 out of 93,296 0%

The design with FAPEC is congested, with 96% of occupied slices. If we compare the

difference obtained while building these two designs, we can see that it is:

Δ Registers = 1490

Δ LUTs = 7451

In Section 2.5.5 the resources required for the FAPEC codec have been presented. A FAPEC

module requires roughly 750 registers and 3750 LUTs. As there are two modules in this

new design, ~1500 additional registers and ~7500 additional LUTs are needed. This

matches almost perfectly the observed difference.

46 The STAR Fire design

With a 96% of occupied slices, the FPGA is so congested by the addition of FAPEC that it is

not possible to find suitable routes that meet timing for all the nets. Note that during the

synthesis phase timing issues were not reported and constraints were easily met. This is a

clear indication that the problem is not intrinsic of the design itself but related to the

routing phase inside the FPGA. The solution to correctly place and route the design is to

reduce complexity. An easy way to avoid changing large parts of the design is to remove

the data generators and checkers connected to VCs 4 to 7. This change is easy to

implement and the results obtained are satisfactory. The aggregate design requirements

for LUTs descend from 81% to 74% and Registers usage goes from 26% down to 23%:

Slice Logic Utilization:

 Number of Slice Registers: 21,705 out of 93,296 23%

 Number of Slice LUTs: 34,739 out of 46,648 74%

Slice Logic Distribution:

 Number of occupied Slices: 10,943 out of 11,662 93%

 Number of MUXCYs used: 5,844 out of 23,324 25%

 Number of LUT Flip Flop pairs used: 36,909

 Number with an unused Flip Flop: 15,548 out of 36,909 42%

 Number with an unused LUT: 2,170 out of 36,909 5%

 Number of fully used LUT-FF pairs: 19,191 out of 36,909 51%

 Number of slice register sites lost

 to control set restrictions: 0 out of 93,296 0%

 The most important parameter here, the number of occupied slices has not been altered

that much: it simply has gone from 96% to 93%. But this 3% decrease makes all the

difference, because congestion effects are not linear. Routing is a problem with

exponential complexity, so small reductions in complexity can provide large gains in

routing time. Routing issues become patent when approaching device saturation and then

quickly disappear when resources are freed, especially when timing constraints are not

very tight.

After this change, only one timing error is reported. As a matter of fact, this is not truly an

error because it corresponds to the maximum skew allowed for the SpW clock recovery

networks. Up to 1 ns is tolerated, but the constraint is set to 0.5 ns to force the tool to

minimise this skew. The last clock in this timing report corresponds to the system clock

used by FAPEC and most of the SpFi related logic.

--

 Constraint | Check | Worst Case | Best Case | Timing | Timing

 | | Slack | Achievable | Errors | Score

--

* NET "i_din(0)" MAXSKEW = 0.5 ns | NETSKEW | -0.026ns| 0.526ns| 1| 26

--

 NET "i_din(1)" MAXSKEW = 0.5 ns | NETSKEW | 0.023ns| 0.477ns| 0| 0

--

 TS_txusrclk_sys = PERIOD TIMEGRP "TNM_txu | SETUP | 0.158ns| 15.842ns| 0| 0

 srclk_sys" 16 ns HIGH 50% | HOLD | 0.124ns| | 0| 0

--

The slack value indicates that timing is met for a worst case scenario – that is operating at

the maximum of the temperature range, 85º Celsius, and at the minimum voltage of the

range, 1.14 V. The frequency required for 2.5 Gbit/s link operation is 62.5 MHz for this

clock (i.e. 16 ns of period). Worst path has a delay of 15.842 ns, which gives 0.158 ns of

Integration of FAPEC as data compressor stage in a SpaceFibre link 47

margin. This indicates that timing closure has been achieved and that no set-up violations

will occur even in the worst case scenario.

3.3 Validation of the design

The hardware build procedure generates an .mcs file that can then be programmed in the

target FPGA. The STAR Fire unit was reprogrammed with this new design featuring SpFi

and FAPEC. VC 3 (not using FAPEC) was tested first to check that data frames were passing

fine over the SpFi link. The trigger was configured to trigger on SDF (Start of Data Frame)

control word. In this way the next data frame being sent over the link is captured. After

setting the trigger, VC 2 data generation (using FAPEC) was enabled. Fig. 3.9 shows the

STAR Fire unit sending data from SpFi Port 1 to Port 2.

Fig. 3.9: STAR Fire unit in operation

Upon starting the data generation in VC 2, the STAR Fire software immediately triggers.

The contents of the data frame can be inspected in the Word Analyser window. Fig. 3.10

shows the initial frame being sent over SpFi as captured by the trigger. On the left panel

the initial data words travelling over the SpFi link are displayed. The word highlighted in

yellow is the SDF, the word that caused the trigger event. The word above (PRBS) is simply

a Pseudo-Random Binary Sequence that is sent over the link when there is nothing to be

sent. After the SDF it can be seen as data exactly matches the compressed master file. Note

that endianness between the master file and the data frames is reversed. This has to do

with the way in which SpFi sends data produced by FAPEC. The right panel of the Fig. 3.10

shows the start of the second compressed block.

48 The STAR Fire design

In summary, once the congestion issue was solved (Section 3.2.2) no problems were

encountered during the validation phase. The verification performed with simulations

showed that the design was working fine. When testing the hardware device the results

matched the simulations as expected.

Fig. 3.10: Data frame carrying the compressed data packet captured by the Analyser

Integration of FAPEC as data compressor stage in a SpaceFibre link 49

4. Conclusions

In this project a new register-transfer level (RTL) implementation of the FAPEC

compressor has been developed. This implementation offers a greater throughput than the

previous version, while maintaining a relatively small footprint. The main weaknesses of

the initial prototype have been addressed. The initial implementation of FAPEC had been

developed in the past to demonstrate the feasibility of an FPGA implementation, and

offered a throughput of 32 Mbit/s. The new VHDL generated can target any FPGA

technology, and its serial output has been substituted by a 32-bit parallel interface. This

allows a much higher throughput, as the parallel interface can be easily used to interface a

SerDes device or an AXI-like bus to send data at high speeds to other applications.

Specifically, the speed of the algorithm has been improved by a factor 6 while the resource

usage remains low, around 2% of a Virtex-5QV or an RTG4.

SpaceFibre (SpFi) is a new technology for use onboard spacecraft that provides

point-to-point and networked interconnections at Gigabit rates. SpFi is an ESA initiative

and will substitute the ubiquitous SpaceWire for high speed applications in space. In this

work we have demonstrated that FAPEC can be easily integrated on top of SpFi to reduce

the amount of information that the spacecraft network has to deal with. The integration of

FAPEC with SpFi has successfully been validated in a representative FPGA platform. In this

design FAPEC operated at ~12 Msamples/s (~200 Mbit/s) using a Xilinx Spartan-6 but it

is expected to reach Gbit/s speeds with some additional work. This can increase the

effective bandwidth of a single lane SpFi link well over the original 2.5/3.125 Gbit/s

currently achieved with space-qualified technology, typically enabling effective

throughputs of > 5 Gbit/s for common high-speed applications (e.g. instrument data). The

combination of these two technologies can help to reduce the large amounts of data

generated by some instruments in a transparent way, without the need of user

intervention, and to provide a solution to the increasing data volumes in spacecrafts.

Consequently the combination of FAPEC with SpFi can help to save mass, power

consumption and reduce system complexity.

4.1 Forthcoming work

In the near future FAPEC is expected to be able to achieve more than 65 Msample/s (~ 1

Gbit/s) capability with some additional effort. Resource usage inside the FPGA is also

expected to be slightly reduced with the adoption of optimised strategies to deal with the

data compression. Specifically, the following tasks need to be done to improve FAPEC

performance:

 Remove the pipeline stage inside the memory module:

Depending on the technology it is better to have a register stage outside the

memory, if required. In double-port or dual-port memories the operation for both

ports must be symmetric.

50 Conclusions

 Remove falling edge logic:

This is not normally used unless justified in some parts of the code. Sometimes

used when changing data between clock domains to guarantee that data is

sampled around the central bit time. This is not the case for FAPEC.

 Optimise the histogram generation logic:

One sample value per clock should be processed. This would allow FAPEC to

process one sample per clock cycle.

 Improve the calculation of the coding tables:

The coding tables should mirror as much as possible the software version. The

compression ratios of the software version are better due to a more complex

algorithm calculating the coding tables.

 Use a more complex data generator:

It is required a more complex data source to further validate FAPEC in real

hardware. One possibility is to connect FAPEC to VC 1 too, so it can be accessed

through the SpW Router. In this way it would be possible to send data directly

from the computer over USB, although this will be relatively low-speed (USB 2.0).

 Increase the pipelining in PEC_CODER and WORD_PACKER modules:

These two modules perform large multiplexing operations. It seems possible to

reduce the number of operations (i.e. to use less FPGA resources) and to improve

timing by increasing the number of pipelining stages inside them.

Integration of FAPEC as data compressor stage in a SpaceFibre link 51

5. Annex

The calibration algorithm for PEC used by FAPEC is patented. This algorithm is kept secret

to protect the know-how that allows to exploit the benefits of PEC with a low-complexity

fast adaptive calibration method. However the PEC codec itself is of public domain. In the

following sections the VHDL code for the parallel-output PEC_CODER and the WORD_PACKER

modules is shown. The PEC_CODER represents the most important modification done to the

initial FAPEC VHDL code. The WORD_PACKER, on the other hand, is a newly developed

module presenting the compressed data in 32-bit chunks. This module was not present in

the initial FAPEC.

5.1 Parallel-Output PEC VHDL Code

--==--

--

-- Design Units :

--

-- Entity : pec_opt(rtl)

--

-- File : pec_opt.vhd

--

-- Function:

--

-- - This module takes the compression table and samples to compress and

-- generates the compressed bit stream. It has a separate parallel

-- output for the different fields instead of the original serial output

-- used by 1st version of FAPEC@FPGA

--

--

-- Limitations :

--

-- Dependencies :

--

-- Author = Alberto Gonzalez

--

-- Last update: 2016-09-08

-- IEEE library includes

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use work.constants_definition_package.all; -- the constants are defined here

-- entity declaration.

--

entity pec_opt is

 port (

 Clk : in std_logic;

 Reset : in std_logic;

 Table_Valid : in std_logic;

 -- From encoder side

 Coding_Variant : in std_logic_vector(1 downto 0);

 Segment_1_Num_Bits : in unsigned(LOG2_SSYZE-1 downto 0);

 Segment_2_Num_Bits : in unsigned(LOG2_SSYZE-1 downto 0);

 Segment_3_Num_Bits : in unsigned(LOG2_SSYZE-1 downto 0);

 Segment_4_Num_Bits : in unsigned(LOG2_SSYZE-1 downto 0);

 Ceiling_1_Val : in unsigned(SYMBOL_SIZE-1 downto 0);

 Ceiling_2_Val : in unsigned(SYMBOL_SIZE-1 downto 0);

 Ceiling_3_Val : in unsigned(SYMBOL_SIZE-1 downto 0);

 -- To Word_Packer module

 Ready : in std_logic;

 Table_Valid_Out : out std_logic;

52 Annex

 Table_Num_Bits : out unsigned(LOG2_SSYZE downto 0);

 Table_Vector : out std_logic_vector(TAB_LONG_REF-1 downto 0);

 Comp_Sample_Valid : out std_logic;

 Coding_Variant_Out : out std_logic_vector(1 downto 0);

 LE_Num_Bits : out unsigned(4 downto 0);

 DS_Num_Bits : out unsigned(4 downto 0);

 LC_Num_Bits : out unsigned(4 downto 0);

 LE_Comp_Val : out std_logic_vector(22 downto 0);

 DS_Comp_Val : out std_logic_vector(22 downto 0);

 LC_Comp_Val : out std_logic_vector(19 downto 0);

 -- Memories Management

 RD : in std_logic_vector(SYMBOL_SIZE downto 0); -- Pixel/value + sign to compress as read

from the block RAM

 RADDR : out std_logic_vector(LOG2_BSIZE downto 0); -- Address to read of the block RAM (2 x

block size)

 REN : out std_logic -- read enable for the RAM / LOW ACTIVE ???

);

end entity pec_opt;

-- architecture

architecture rtl of pec_opt is

 constant TBSZ : positive := TAB_LONG_REF;

 ---[signals]---

 type fsm_state is (S_IDLE, S_TABLE_CODING, S_WAIT_1, S_WAIT_2, S_OUTPUT_COMP_VAL);

 signal state_n, state_r : fsm_state;

 signal sign_n : std_logic;

 signal sign_r : std_logic;

 signal seg_1_n : unsigned(LOG2_SSYZE-1 downto 0);

 signal seg_1_r : unsigned(LOG2_SSYZE-1 downto 0);

 signal seg_2_n : unsigned(LOG2_SSYZE-1 downto 0);

 signal seg_2_r : unsigned(LOG2_SSYZE-1 downto 0);

 signal seg_3_n : unsigned(LOG2_SSYZE-1 downto 0);

 signal seg_3_r : unsigned(LOG2_SSYZE-1 downto 0);

 signal seg_4_n : unsigned(LOG2_SSYZE downto 0);

 signal seg_4_r : unsigned(LOG2_SSYZE downto 0);

 signal table_num_bits_n : unsigned(LOG2_SSYZE downto 0);

 signal table_num_bits_r : unsigned(LOG2_SSYZE downto 0);

 signal table_vector_n : unsigned(TBSZ-1 downto 0);

 signal table_vector_r : unsigned(TBSZ-1 downto 0);

 signal le_num_bits_n : unsigned(4 downto 0);

 signal le_num_bits_r : unsigned(4 downto 0);

 signal ds_num_bits_n : unsigned(4 downto 0);

 signal ds_num_bits_r : unsigned(4 downto 0);

 signal lc_num_bits_n : unsigned(4 downto 0);

 signal lc_num_bits_r : unsigned(4 downto 0);

 signal le_compressed_val_n : unsigned(22 downto 0);

 signal le_compressed_val_r : unsigned(22 downto 0);

 signal ds_compressed_val_n : unsigned(22 downto 0);

 signal ds_compressed_val_r : unsigned(22 downto 0);

 signal lc_compressed_val_n : unsigned(19 downto 0);

 signal lc_compressed_val_r : unsigned(19 downto 0);

 signal segment_n : unsigned(1 downto 0);

 signal segment_r : unsigned(1 downto 0);

 signal segment_value_n : unsigned(SYMBOL_SIZE-1 downto 0);

 signal segment_value_r : unsigned(SYMBOL_SIZE-1 downto 0);

 signal table_valid_out_n : std_logic;

 signal comp_sample_valid_n : std_logic;

 signal coding_variant_r : std_logic_vector(1 downto 0);

 signal word_count_n : unsigned(LOG2_BSIZE downto 0);

 signal word_count_r : unsigned(LOG2_BSIZE downto 0);

begin

Integration of FAPEC as data compressor stage in a SpaceFibre link 53

 -- Alias

 sign_n <= RD(SYMBOL_SIZE); -- Highest bit codes the sign

 -- Segment 4 can be up to 16 bits. Coded with 4 bits, this is represented by

 -- "0000"

 seg_4_n <= "10000" when (Segment_4_Num_Bits = 0) else ('0' & Segment_4_Num_Bits);

 seg_3_n <= Segment_3_Num_Bits;

 seg_2_n <= Segment_2_Num_Bits;

 seg_1_n <= Segment_1_Num_Bits;

 --

 -- FSM controlling the encoding of a data block

 --

 encod_fsm : process (all) is

 begin

 -- Default is to hold state

 state_n <= state_r;

 table_valid_out_n <= '0';

 comp_sample_valid_n <= '0';

 word_count_n <= word_count_r;

 -- next state is dependent on current state

 case (state_r) is

 when S_IDLE =>

 if (Table_Valid = '1') then

 state_n <= S_TABLE_CODING;

 end if;

 when S_TABLE_CODING =>

 state_n <= S_WAIT_1;

 table_valid_out_n <= '1';

 when S_WAIT_1 =>

 state_n <= S_WAIT_2;

 when S_WAIT_2 =>

 state_n <= S_OUTPUT_COMP_VAL;

 when S_OUTPUT_COMP_VAL =>

 if (Ready = '1') then

 -- Only if module getting this data is Ready to accept it

 comp_sample_valid_n <= '1';

 if (word_count_r = to_unsigned(509, LOG2_BSIZE+1)) then

 -- End of the memory. Reset the counter counter init

 word_count_n <= (others => '0');

 else

 word_count_n <= word_count_r + 1;

 end if;

 if (word_count_r = to_unsigned(509, LOG2_BSIZE+1)) or

 (word_count_r = to_unsigned(254, LOG2_BSIZE+1)) then

 state_n <= S_IDLE;

 else

 state_n <= S_WAIT_1;

 end if;

 end if;

 end case;

 end process encod_fsm;

 --

 -- Initialisation table calculation

 --

 table_const : process (all) is

 begin

 -- Default

 table_vector_n <= (others => '0');

 if (Coding_Variant(1) = '0') then

 -- LE variant

 table_num_bits_n <= to_unsigned(LE_TAB_LONG,

LOG2_SSYZE+1); -- 10 bits

54 Annex

 table_vector_n(TBSZ-1 downto TBSZ-2) <= "01"; -- flag

 table_vector_n(TBSZ-3) <= Segment_1_Num_Bits(0);

 table_vector_n(TBSZ-4) <= Segment_2_Num_Bits(0);

 table_vector_n(TBSZ-5 downto TBSZ-6) <= Segment_3_Num_Bits(1 downto 0);

 table_vector_n(TBSZ-7 downto TBSZ -LOG2_SSYZE -6) <= Segment_4_Num_Bits;

 elsif (Coding_Variant(0) = '0') then

 -- DS variant

 table_num_bits_n <= to_unsigned(DS_TAB_LONG,

LOG2_SSYZE+1); -- 13 bits

 table_vector_n(TBSZ-1 downto TBSZ-2) <= "00"; -- flag

 table_vector_n(TBSZ-3 downto TBSZ-4) <= Segment_1_Num_Bits(1 downto 0);

 table_vector_n(TBSZ-5 downto TBSZ-6) <= Segment_2_Num_Bits(1 downto 0);

 table_vector_n(TBSZ-7 downto TBSZ-9) <= Segment_3_Num_Bits(2 downto 0);

 table_vector_n(TBSZ-10 downto TBSZ -LOG2_SSYZE -9) <= Segment_4_Num_Bits;

 else

 -- LC variant

 table_num_bits_n <=

to_unsigned(LC_TAB_LONG, LOG2_SSYZE+1); -- 13 bits

 table_vector_n(TBSZ-1) <= '1'; -- flag

 table_vector_n(TBSZ-2 downto TBSZ -LOG2_SSYZE -1) <= Segment_1_Num_Bits;

 table_vector_n(TBSZ -LOG2_SSYZE -2 downto TBSZ -2*LOG2_SSYZE -1) <= Segment_2_Num_Bits;

 table_vector_n(TBSZ -2*LOG2_SSYZE -2 downto TBSZ -3*LOG2_SSYZE -1) <= Segment_3_Num_Bits;

 table_vector_n(TBSZ -3*LOG2_SSYZE -2 downto TBSZ -4*LOG2_SSYZE -1) <= Segment_4_Num_Bits;

 end if;

 end process table_const;

 --

 -- Segment calculation

 --

 segment_calc : process (all) is

 variable abs_value : unsigned(SYMBOL_SIZE-1 downto 0);

 begin

 -- Default (segment 0)

 abs_value := unsigned(RD(SYMBOL_SIZE-1 downto 0));

 segment_n <= "00";

 segment_value_n <= abs_value;

 if (abs_value > Ceiling_3_Val) then

 segment_value_n <= abs_value - Ceiling_3_Val - 1;

 segment_n <= "11";

 elsif (abs_value > Ceiling_2_Val) then

 segment_value_n <= abs_value - Ceiling_2_Val - 1;

 segment_n <= "10";

 elsif (abs_value > Ceiling_1_Val) then

 segment_value_n <= abs_value - Ceiling_1_Val - 1;

 segment_n <= "01";

 end if;

 end process segment_calc;

 --

 -- Assign the output bit sequence depending on the selected variant and the

 -- coding table

 --

 bit_assign : process (all) is

 variable s_1 : integer;

 variable s_2 : integer;

 variable s_3 : integer;

 variable s_4 : integer;

 variable v_num_bits : integer;

 variable abs_value : unsigned(SYMBOL_SIZE-1 downto 0);

 begin

 -- Default

 le_compressed_val_n <= (others => '0');

 ds_compressed_val_n <= (others => '0');

 lc_compressed_val_n <= (others => '0');

 le_num_bits_n <= (others => '0');

 ds_num_bits_n <= (others => '0');

 lc_num_bits_n <= (others => '0');

Integration of FAPEC as data compressor stage in a SpaceFibre link 55

 v_num_bits := 0;

 --

 abs_value := segment_value_r;

 s_1 := to_integer(seg_1_r);

 s_2 := to_integer(seg_2_r);

 s_3 := to_integer(seg_3_r);

 s_4 := to_integer(seg_4_r);

 case (coding_variant_r) is

 --

 when LE_VAR =>

 if (segment_r = 0) then

 le_compressed_val_n(0) <= sign_r;

 le_compressed_val_n(s_1 downto 1) <= abs_value(s_1 -1 downto 0);

 v_num_bits := s_1 + 1;

 end if;

 if (segment_r = 1) then

 le_compressed_val_n(0) <= '1';

 le_compressed_val_n(s_1 downto 1) <= (others => '0');

 le_compressed_val_n(s_1 + 1) <= sign_r;

 le_compressed_val_n(s_1 +1 +s_2 downto s_1 +2) <= abs_value(s_2 -1 downto 0);

 v_num_bits := 1 + s_1 + 1 + s_2;

 end if;

 if (segment_r > 1) then

 -- For both 3rd and 4th segments

 le_compressed_val_n(0) <= '1';

 le_compressed_val_n(s_1 downto 1) <= (others => '0');

 le_compressed_val_n(s_1 + 1) <= sign_r;

 le_compressed_val_n(s_1 +1 +s_2 downto s_1 +2) <= (others => '1');

 -- '0' for 3rd segment

 -- '1' for 4th segment

 le_compressed_val_n(s_1 +2 +s_2) <= segment_r(0);

 if (segment_r = 2) then

 -- This is required because s_3 can be greater than s_4

 -- E.g. s_3 = 2 and s_4 = 1

 -- This adds a little bit more complexity

 le_compressed_val_n(s_1 +2 +s_2 +s_3 downto s_1 +3 +s_2) <= abs_value(s_3 -1

downto 0);

 else

 le_compressed_val_n(s_1 +2 +s_2 +s_4 downto s_1 +3 +s_2) <= abs_value(s_4 -1

downto 0);

 end if;

 end if;

 if (segment_r = 2) then

 v_num_bits := 1 + s_1 + 1 + s_2 + 1 + s_3;

 elsif (segment_r = 3) then

 v_num_bits := 1 + s_1 + 1 + s_2 + 1 + s_4;

 end if;

 le_num_bits_n <= to_unsigned(v_num_bits, 5);

 --

 when DS_VAR =>

 if (segment_r = 0) then

 ds_compressed_val_n(0) <= sign_r;

 ds_compressed_val_n(s_1 downto 1) <= abs_value(s_1 -1 downto 0);

 v_num_bits := 1 + s_1;

 end if;

 if (segment_r = 1) then

 ds_compressed_val_n(0) <= sign_r;

 ds_compressed_val_n(s_1 downto 1) <= (others => '1');

 ds_compressed_val_n(s_1 + s_2 downto s_1 +1) <= abs_value(s_2 -1 downto 0);

 v_num_bits := 1 + s_1 + s_2;

 end if;

 if (segment_r > 1) then

 -- For both 3rd and 4th segments

 ds_compressed_val_n(0) <= '1';

 ds_compressed_val_n(s_1 downto 1) <= (others => '0');

 ds_compressed_val_n(s_1 + 1) <= sign_r;

 -- '0' for 3rd segment

56 Annex

 -- '1' for 4th segment

 ds_compressed_val_n(s_1 + 2) <= segment_r(0);

 if (segment_r = 2) then

 -- This is required because s_3 can be greater than s_4

 -- E.g. s_3 = 2 and s_4 = 1

 -- This adds a little bit more complexity

 ds_compressed_val_n(s_1 + 2 + s_3 downto s_1 + 3) <= abs_value(s_3 -1 downto 0);

 else

 ds_compressed_val_n(s_1 + 2 + s_4 downto s_1 + 3) <= abs_value(s_4 -1 downto 0);

 end if;

 end if;

 if (segment_r = 2) then

 v_num_bits := 1 + s_1 + 2 + s_3;

 elsif (segment_r = 3) then

 v_num_bits := 1 + s_1 + 2 + s_4;

 end if;

 ds_num_bits_n <= to_unsigned(v_num_bits, 5);

 when LC_VAR =>

 if (segment_r = 0) then

 lc_compressed_val_n(0) <= '0';

 lc_compressed_val_n(s_1 downto 1) <= abs_value(s_1 -1 downto 0);

 lc_compressed_val_n(s_1 + 1) <= sign_r;

 if (abs_value = 0) then

 v_num_bits := 1 + s_1;

 else

 v_num_bits := 2 + s_1;

 end if;

 end if;

 if (segment_r = 1) then

 lc_compressed_val_n(1 downto 0) <= "01";

 lc_compressed_val_n(s_2 + 1 downto 2) <= abs_value(s_2 -1 downto 0);

 lc_compressed_val_n(s_2 + 2) <= sign_r;

 v_num_bits := 3 + s_2;

 end if;

 if (segment_r = 2) then

 lc_compressed_val_n(2 downto 0) <= "011";

 lc_compressed_val_n(s_3 + 2 downto 3) <= abs_value(s_3 -1 downto 0);

 lc_compressed_val_n(s_3 + 3) <= sign_r;

 v_num_bits := 4 + s_3;

 end if;

 if (segment_r = 3) then

 lc_compressed_val_n(2 downto 0) <= "111";

 lc_compressed_val_n(s_4 + 2 downto 3) <= abs_value(s_4 -1 downto 0);

 lc_compressed_val_n(s_4 + 3) <= sign_r;

 v_num_bits := 4 + s_4;

 end if;

 lc_num_bits_n <= to_unsigned(v_num_bits, 5);

 when others =>

 null;

 end case;

 end process bit_assign;

 --

 --

 control_path : process (all) is

 begin

 if (rising_edge(Clk)) then

 if (Reset = '1') then

 state_r <= S_IDLE;

 Table_Valid_Out <= '0';

 Comp_Sample_Valid <= '0';

 word_count_r <= (others => '0');

Integration of FAPEC as data compressor stage in a SpaceFibre link 57

 else

 state_r <= state_n;

 Table_Valid_Out <= table_valid_out_n;

 Comp_Sample_Valid <= comp_sample_valid_n;

 word_count_r <= word_count_n;

 end if;

 end if;

 end process control_path;

 --

 data_proc : process (Clk) is

 begin

 if (rising_edge(Clk)) then

 sign_r <= sign_n;

 coding_variant_r <= Coding_Variant;

 Coding_Variant_Out <= coding_variant_r;

 seg_1_r <= seg_1_n;

 seg_2_r <= seg_2_n;

 seg_3_r <= seg_3_n;

 seg_4_r <= seg_4_n;

 segment_r <= segment_n;

 segment_value_r <= segment_value_n;

 table_num_bits_r <= table_num_bits_n;

 table_vector_r <= table_vector_n;

 le_num_bits_r <= le_num_bits_n;

 ds_num_bits_r <= ds_num_bits_n;

 lc_num_bits_r <= lc_num_bits_n;

 le_compressed_val_r <= le_compressed_val_n;

 ds_compressed_val_r <= ds_compressed_val_n;

 lc_compressed_val_r <= lc_compressed_val_n;

 end if;

 end process data_proc;

 -- Map Outputs

 -- Signal assignments for the memories

 REN <= LOW; -- low level active. We are always reading the memory, but only take the value

when we are interested...

 RADDR <= std_logic_vector(word_count_r); -- the addressed is always the value of the register

 Table_Num_Bits <= table_num_bits_r;

 Table_Vector <= reverse_bits(std_logic_vector(table_vector_r));

 LE_Num_Bits <= le_num_bits_r;

 DS_Num_Bits <= ds_num_bits_r;

 LC_Num_Bits <= lc_num_bits_r;

 LE_Comp_Val <= std_logic_vector(le_compressed_val_r);

 DS_Comp_Val <= std_logic_vector(ds_compressed_val_r);

 LC_Comp_Val <= std_logic_vector(lc_compressed_val_r);

end architecture rtl;

58 Annex

5.2 Word Packer VHDL Code

--==--

--

-- Design Units :

--

-- Entity : word_packer(rtl)

--

-- File : word_packer.vhd

--

-- Function:

--

-- - Takes the parallel-like compressed stream generated by the new PEC

-- coder and sets it into chunks of 32 bits. They can then be directly

-- interfaced to a VC buffer

--

-- Limitations :

--

-- Dependencies :

--

-- Author = Alberto Gonzalez

--

-- Last update: 2016-09-08

-- IEEE library includes

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use work.constants_definition_package.all; -- the constants are defined here

-- entity declaration.

--

entity word_packer is

 port (

 Clk : in std_logic;

 Reset : in std_logic;

 -- From PEC compressor

 Ready : out std_logic;

 Table_Valid_Out : in std_logic;

 Table_Num_Bits : in unsigned(LOG2_SSYZE downto 0);

 Table_Vector : in std_logic_vector(TAB_LONG_REF-1 downto 0);

 Comp_Sample_Valid : in std_logic;

 Coding_Variant_Out : in std_logic_vector(1 downto 0);

 LE_Num_Bits : in unsigned(4 downto 0);

 DS_Num_Bits : in unsigned(4 downto 0);

 LC_Num_Bits : in unsigned(4 downto 0);

 LE_Comp_Val : in std_logic_vector(22 downto 0);

 DS_Comp_Val : in std_logic_vector(22 downto 0);

 LC_Comp_Val : in std_logic_vector(19 downto 0);

 -- To VC buffer

 VCB_Half_Full : in std_logic;

 Out_Valid : out std_logic;

 Out_Data : out std_logic_vector(31 downto 0)

);

end entity word_packer;

-- architecture

architecture rtl of word_packer is

 ---[signals]---

 type fsm_state is (S_1ST_STAGE, S_2ND_STAGE, S_3RD_STAGE);

 signal state_n, state_r : fsm_state;

 signal in_value_n : std_logic_vector(22 downto 0);

 signal in_value_r : std_logic_vector(22 downto 0);

 signal num_bits_n : unsigned(LOG2_SSYZE+1 downto 0);

Integration of FAPEC as data compressor stage in a SpaceFibre link 59

 signal num_bits_r : unsigned(LOG2_SSYZE+1 downto 0);

 signal remaining_bits_n : unsigned(LOG2_SSYZE downto 0);

 signal remaining_bits_r : unsigned(LOG2_SSYZE downto 0);

 signal write_half_word_n : std_logic;

 signal write_half_word_r : std_logic;

 signal half_word_valid_n : std_logic;

 signal half_word_valid_r : std_logic;

 signal half_word_n : std_logic_vector(15 downto 0);

 signal half_word_r : std_logic_vector(15 downto 0);

 -- Point to the location of the next bit to be filled up with incoming data

 -- in 'half_word' signal

 signal ptr_n : unsigned(4 downto 0);

 signal ptr_r : unsigned(4 downto 0);

 signal full_word_n : std_logic_vector(31 downto 0);

 signal full_word_r : std_logic_vector(31 downto 0);

 signal full_word_valid_n : std_logic;

 signal full_word_valid_r : std_logic;

 signal full_word_1st_half_n : std_logic;

 signal full_word_1st_half_r : std_logic;

begin

 write_half_word_n <= Table_Valid_Out or Comp_Sample_Valid;

 --

 -- Places the next chunk of bits to be added to the bit stream in a

 -- register. Also, the length of the sequence is registered too

 --

 input_mux : process (all) is

 begin

 -- Default

 in_value_n <= in_value_r;

 num_bits_n <= num_bits_r;

 if (Table_Valid_Out = '1') then

 -- Conding Table to go out

 in_value_n(TAB_LONG_REF-1 downto 0) <= Table_Vector;

 num_bits_n <= '0' & Table_Num_Bits;

 elsif (Comp_Sample_Valid = '1') then

 if (Coding_Variant_Out = LE_VAR) then

 in_value_n <= LE_Comp_Val;

 num_bits_n <= '0' & LE_Num_Bits;

 elsif (Coding_Variant_Out = DS_VAR) then

 in_value_n <= DS_Comp_Val;

 num_bits_n <= '0' & DS_Num_Bits;

 else

 -- LC_VAR

 in_value_n(19 downto 0) <= LC_Comp_Val;

 num_bits_n <= '0' & LC_Num_Bits;

 end if;

 end if;

 end process input_mux;

 --

 --

 halfword_writing : process (all) is

 begin

 -- Default

 half_word_valid_n <= '0';

 state_n <= state_r;

 ptr_n <= ptr_r;

 remaining_bits_n <= remaining_bits_r;

 half_word_n <= half_word_r;

 case (state_r) is

 when S_1ST_STAGE =>

 if (write_half_word_r = '1' and VCB_Half_Full = '0') then

60 Annex

 if (ptr_r + num_bits_r >= 16) then

 half_word_valid_n <= '1';

 end if;

 if (ptr_r + num_bits_r > 16) then

 state_n <= S_2ND_STAGE;

 ptr_n <= 16 - ptr_r; -- Use as pointer

for last bit of current value written

 remaining_bits_n <= num_bits_r(4 downto 0) - (16 -

unsigned(ptr_r));

 half_word_n(15 downto to_integer(ptr_r)) <= in_value_r(to_integer(15 -

ptr_r) downto 0);

 else

 state_n <=

S_1ST_STAGE;

 -- Use this unsigned(integer(), 4) cast formula to wrap-up on 15

 ptr_n <=

'0' & to_unsigned(to_integer(ptr_r + num_bits_r), 4); -- Use as pointer for last bit of

next 'half-word'

 remaining_bits_n <=

(others => '0');

 half_word_n(to_integer(ptr_r + num_bits_r -1) downto to_integer(ptr_r)) <=

in_value_r(to_integer(num_bits_r -1) downto 0);

 end if;

 end if;

 when S_2ND_STAGE =>

 if (remaining_bits_r >= 16) then

 half_word_valid_n <= '1';

 end if;

 if (remaining_bits_r > 16) then

 state_n <= S_3RD_STAGE;

 ptr_n <= ptr_r + 16;

 remaining_bits_n <= remaining_bits_r - 16;

 half_word_n <= in_value_r(to_integer(15 + unsigned('0' & ptr_r)) downto

to_integer(ptr_r));

 else

 state_n <= S_1ST_STAGE;

 ptr_n <= '0' &

remaining_bits_r(3 downto 0);

 remaining_bits_n <= (others => '0');

 half_word_n(to_integer(remaining_bits_r - 1) downto 0) <=

in_value_r(to_integer(remaining_bits_r + ptr_r - 1) downto to_integer(ptr_r));

 end if;

 when S_3RD_STAGE =>

 state_n <= S_1ST_STAGE;

 ptr_n <= '0' & remaining_bits_r(3

downto 0);

 remaining_bits_n <= (others => '0');

 half_word_n(to_integer(remaining_bits_r - 1) downto 0) <=

in_value_r(to_integer(remaining_bits_r + ptr_r - 1) downto to_integer(ptr_r));

 end case;

 end process halfword_writing;

 --

 --

 fullword_writing : process (all) is

 begin

 -- Default

 full_word_1st_half_n <= full_word_1st_half_r;

 full_word_n <= full_word_r;

 full_word_valid_n <= '0';

 if (half_word_valid_r = '1') then

 if (full_word_1st_half_r = '0') then

 -- 1st half of the world

 full_word_1st_half_n <= '1';

 full_word_n(15 downto 0) <= half_word_r;

 else

Integration of FAPEC as data compressor stage in a SpaceFibre link 61

 -- 2nd half of the world

 -- Output the word

 full_word_valid_n <= '1';

 full_word_1st_half_n <= '0';

 full_word_n(31 downto 16) <= half_word_r;

 end if;

 end if;

 end process fullword_writing;

 --

 --

 control_path : process (all) is

 begin

 if (rising_edge(Clk)) then

 if (Reset = '1') then

 state_r <= S_1ST_STAGE;

 ptr_r <= (others => '0');

 num_bits_r <= (others => '0');

 half_word_valid_r <= '0';

 write_half_word_r <= '0';

 full_word_valid_r <= '0';

 full_word_1st_half_r <= '0';

 else

 state_r <= state_n;

 ptr_r <= ptr_n;

 num_bits_r <= num_bits_n;

 half_word_valid_r <= half_word_valid_n;

 write_half_word_r <= write_half_word_n;

 full_word_valid_r <= full_word_valid_n;

 full_word_1st_half_r <= full_word_1st_half_n;

 end if;

 end if;

 end process control_path;

 --

 data_proc : process (Clk) is

 begin

 if (rising_edge(Clk)) then

 in_value_r <= in_value_n;

 remaining_bits_r <= remaining_bits_n;

 half_word_r <= half_word_n;

 full_word_r <= full_word_n;

 end if;

 end process data_proc;

 -- Map Outputs

 Out_Valid <= full_word_valid_r;

 Out_Data <= full_word_r;

 Ready <= '1' when (state_r = S_1ST_STAGE and state_n = S_1ST_STAGE) else '0';

end architecture rtl;

62 Annex

Integration of FAPEC as data compressor stage in a SpaceFibre link 63

6. Bibliography

[1] J. Portell, A. G. Villafranca and E. García-Berro, “Designing optimum solutions for

lossless data compression in space”, in Proceedings of the On-Board Payload Data

Compression Workshop 2008, pages 35-44. ESA, (2008).

[2] J. Portell, A.G. Villafranca and E. García-Berro, “Quick outlier-resilient entropy

coder for space missions”, Journal of Applied Remote Sensing 4 (2010).

[3] Consultative Committee for Space Data Systems, “Lossless Data Compression, Blue

Book”, CCSDS Tech. Rep., 121.0-B-1, CCSDS (1993).

http://ccsds.cosmos.ru/publications/archive/121x0b1c2.pdf

[Last accessed Sept 2016]

[4] J. Portell, A.G. Villafranca and E. García-Berro, “Outlier-resilient entropy coding”,

chapter in “Recent advances in satellite data compression”, pages 87-113. Springer

(2011)

[5] Space-grade Virtex-5QV FPGA

https://www.xilinx.com/products/silicon-devices/fpga/virtex-5qv.html

[Last accessed Sept 2016]

[6] Microsemi RTG4 FPGAs

http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtg4

[Last accessed Sept 2016]

[7] ESA Ongoing ASIC Developments

http://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectron

ics/Ongoing_ASIC_developments

[Last accessed Sept 2016]

[8] J. Portell, E. García-Berro, X. Luri, and A. G. Villafranca, “Tailored data compression

using stream partitioning and prediction: application to Gaia”, Experimental

Astronomy 21, 125–149 (2006).

[9] D. Salomon, “Data Compression. The complete reference”, Springer-Verlag (2004).

[10] A.G. Villafranca, S. Mignot, J. Portell and E. García-Berro, “Hardware

implementation of FAPEC lossless data compressor for space”, NASA/ESA

Conference on Adaptive Hardware and Systems (2010).

[11] S. Parkes, A. Ferrer-Florit, A. González and C. McClements, “SpaceFibre Standard”,

Draft H4

https://indico.esa.int/indico/event/126/session/0/contribution/1

[Last accessed Sept 2016]

[12] A. Ginosar and P. Aviely, "RC64. A rad-hard many-core high performance DSP for

space applications”, DASIA (2014).

[13] Military ProASIC3/EL Low-Power Flash FPGAs

http://www.microsemi.com/index.php?option=com_docman&task=doc_download

&gid=130697

[Last accessed Sept 2016]

[14] TLK2711-SP Space-rated 1.6 to 2.5 GBPS Transceiver

http://www.ti.com/product/TLK2711-SP

[Last accessed Sept 2016]

[15] SpaceFibre on Microsemi RTG4

https://www.star-dundee.com/knowledge-base/spacefibre-microsemi-rtg4

[Last accessed Sept 2016]

http://ccsds.cosmos.ru/publications/archive/121x0b1c2.pdf
https://www.xilinx.com/products/silicon-devices/fpga/virtex-5qv.html
http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtg4
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/Ongoing_ASIC_developments
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/Ongoing_ASIC_developments
https://indico.esa.int/indico/event/126/session/0/contribution/1
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130697
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130697
http://www.ti.com/product/TLK2711-SP
https://www.star-dundee.com/knowledge-base/spacefibre-microsemi-rtg4

