3,524 research outputs found

    Holography as a highly efficient RG flow II: An explicit construction

    Get PDF
    We complete the reformulation of the holographic correspondence as a \emph{highly efficient RG flow} that can also determine the UV data in the field theory in the strong coupling and large NN limit. We introduce a special way to define operators at any given scale in terms of appropriate coarse-grained collective variables, without requiring the use of the elementary fields. The Wilsonian construction is generalised by promoting the cut-off to a functional of these collective variables. We impose three criteria to determine the coarse-graining. The first criterion is that the effective Ward identities for local conservation of energy, momentum, etc. should preserve their standard forms, but in new scale-dependent background metric and sources which are functionals of the effective single trace operators. The second criterion is that the scale-evolution equations of the operators in the actual background metric should be state-independent, implying that the collective variables should not explicitly appear in them. The final criterion is that the endpoint of the scale-evolution of the RG flow can be transformed to a fixed point corresponding to familiar non-relativistic equations with a finite number of parameters, such as incompressible non-relativistic Navier-Stokes, under a certain universal rescaling of the scale and of the time coordinate. Using previous work, we explicitly show that in the hydrodynamic limit each such highly efficient RG flow reproduces a unique classical gravity theory with precise UV data that satisfy our IR criterion. We obtain the explicit coarse-graining which reproduces Einstein's equations. In a simple example, we are also able to compute the beta function. Finally, we show how our construction can be interpolated with the traditional Wilsonian RG flow at a suitable scale, and can be used to develop new non-perturbative frameworks for QCD-like theories.Comment: 1+59 pages; Introduction slightly expanded, Section V on beta function in highly efficient RG flow added, version accepted in PR

    The Physical Role of Gravitational and Gauge Degrees of Freedom in General Relativity - II: Dirac versus Bergmann observables and the Objectivity of Space-Time

    Get PDF
    (abridged)The achievements of the present work include: a) A clarification of the multiple definition given by Bergmann of the concept of {\it (Bergmann) observable. This clarification leads to the proposal of a {\it main conjecture} asserting the existence of i) special Dirac's observables which are also Bergmann's observables, ii) gauge variables that are coordinate independent (namely they behave like the tetradic scalar fields of the Newman-Penrose formalism). b) The analysis of the so-called {\it Hole} phenomenology in strict connection with the Hamiltonian treatment of the initial value problem in metric gravity for the class of Christoudoulou -Klainermann space-times, in which the temporal evolution is ruled by the {\it weak} ADM energy. It is crucial the re-interpretation of {\it active} diffeomorphisms as {\it passive and metric-dependent} dynamical symmetries of Einstein's equations, a re-interpretation which enables to disclose their (nearly unknown) connection to gauge transformations on-shell; this is expounded in the first paper (gr-qc/0403081). The use of the Bergmann-Komar {\it intrinsic pseudo-coordinates} allows to construct a {\it physical atlas} of 4-coordinate systems for the 4-dimensional {\it mathematical} manifold, in terms of the highly non-local degrees of freedom of the gravitational field (its four independent {\it Dirac observables}), and to realize the {\it physical individuation} of the points of space-time as {\it point-events} as a gauge-fixing problem, also associating a non-commutative structure to each 4-coordinate system.Comment: 41 pages, Revtex

    Gravity and the Quantum

    Full text link
    The goal of this article is to present a broad perspective on quantum gravity for \emph{non-experts}. After a historical introduction, key physical problems of quantum gravity are illustrated. While there are a number of interesting and insightful approaches to address these issues, over the past two decades sustained progress has primarily occurred in two programs: string theory and loop quantum gravity. The first program is described in Horowitz's contribution while my article will focus on the second. The emphasis is on underlying ideas, conceptual issues and overall status of the program rather than mathematical details and associated technical subtleties.Comment: A general review of quantum gravity addresed non-experts. To appear in the special issue `Space-time Hundred Years Later' of NJP; J.Pullin and R. Price (editors). Typos and an attribution corrected; a clarification added in section 2.

    Loop Quantum Cosmology: A Status Report

    Get PDF
    The goal of this article is to provide an overview of the current state of the art in loop quantum cosmology for three sets of audiences: young researchers interested in entering this area; the quantum gravity community in general; and, cosmologists who wish to apply loop quantum cosmology to probe modifications in the standard paradigm of the early universe. An effort has been made to streamline the material so that, as described at the end of section I, each of these communities can read only the sections they are most interested in, without a loss of continuity.Comment: 138 pages, 15 figures. Invited Topical Review, To appear in Classical and Quantum Gravity. Typos corrected, clarifications and references adde

    Heat and Fluctuations from Order to Chaos

    Full text link
    The Heat theorem reveals the second law of equilibrium Thermodynamics (i.e.existence of Entropy) as a manifestation of a general property of Hamiltonian Mechanics and of the Ergodic Hypothesis, valid for 1 as well as 102310^{23} degrees of freedom systems, {\it i.e.} for simple as well as very complex systems, and reflecting the Hamiltonian nature of the microscopic motion. In Nonequilibrium Thermodynamics theorems of comparable generality do not seem to be available. Yet it is possible to find general, model independent, properties valid even for simple chaotic systems ({\it i.e.} the hyperbolic ones), which acquire special interest for large systems: the Chaotic Hypothesis leads to the Fluctuation Theorem which provides general properties of certain very large fluctuations and reflects the time-reversal symmetry. Implications on Fluids and Quantum systems are briefly hinted. The physical meaning of the Chaotic Hypothesis, of SRB distributions and of the Fluctuation Theorem is discussed in the context of their interpretation and relevance in terms of Coarse Grained Partitions of phase space. This review is written taking some care that each section and appendix is readable either independently of the rest or with only few cross references.Comment: 1) added comment at the end of Sec. 1 to explain the meaning of the title (referee request) 2) added comment at the end of Sec. 17 (i.e. appendix A4) to refer to papers related to the ones already quoted (referee request
    corecore