
Generic Quality-Aware Refactoring and
Co-Refactoring in Heterogeneous

Model Environments

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

vorgelegt an der

Technischen Universität Dresden

Fakultät Informatik

eingereicht von

Dipl.-Inf. Jan Reimann
geboren am 16.03.1982 in Potsdam

Gutachter:
Prof. Dr. rer. nat. habil. Uwe Aßmann

(Technische Universität Dresden)

Prof. Dr. rer. nat. Ralf Reussner

(Karlsruhe Institute of Technology)

Fachreferent:
Jun.-Prof. Dr.-Ing. Thomas Schlegel

(Technische Universität Dresden)

Tag der Einreichung: 7. Mai 2015

Tag der Verteidigung: 9. Juli 2015

© Copyright 2015 Jan Reimann.

All rights reserved.

Confirmation

I con�rm that I independently prepared this thesis with the title Generic Quality-Aware Refactoring

and Co-Refactoring in Heterogeneous Model Environments and that I used only the references and

auxiliary means indicated in the thesis.

Dresden, 7th May 2015

Dipl.-Inf. Jan Reimann

iii

Abstract

Software has been subject to change, at all times, in order to make parts of it, for instance, more

reusable, better to understand by humans, or to increase e�ciency from a certain point of view.

Restructurings of existing software can be complex. To prevent developers from doing this

manually, they got tools at hand being able to apply such restructurings automatically. These

automatic changes of existing software to improve quality while preserving its behaviour is

called refactoring. Refactoring is well investigated for programming languages and mature tools

exist for executing refactorings in integrated development environments (IDEs).

In recent years, the development paradigm of Model-Driven Software Development (MDSD)

became more and more popular and we experience a shift in the sense that development artefacts

are considered as models which conform to metamodels. This can be understood as abstraction,

which resulted in the trend that a plethora of new so-called model-based Domain-Speci�c Lan-

guages (DSLs) arose. DSLs have become an integral part in the MDSD and it is obvious that

models are subject to change, as well. Thus, refactoring support is required for DSLs in order to

prevent users from doing it manually.

The problem is that the amount of DSLs is huge and refactorings should not be implemented for

new for each of them, since they are quite similar from an abstract viewing. Existing approaches

abstract from the target language, which is not �exible enough because some assumptions

about the languages have to be made and arbitrary DSLs are not supported. Furthermore, the

relation between a strategy which �nds model de�ciencies that should be improved, a resolving

refactoring, and the improved quality is only implicit. Focussing on a particular quality and

only detecting those de�ciencies deteriorating this quality is di�cult, and elements of detected

de�cient structures cannot be referred to in the resolving refactoring. In addition, heterogeneous

models in an IDE might be connected physically or logically, thus, they are dependent. Finding

such connections is di�cult and can hardly be achieved manually. Applying a restructuring

in a model implied by a refactoring in a dependent model must also be a refactoring, in order

to preserve the meaning. Thus, this kind of dependent refactorings require an appropriate

abstraction mechanism, since they must be speci�ed for dependent models of di�erent DSLs.

The �rst contribution, Role-Based Generic Model Refactoring, uses role models to abstract from

refactorings instead of the target languages. Thus, participating structures in a refactoring can be

speci�ed generically by means of role models. As a consequence, arbitrary model-based DSLs are

supported, since this approach does not make any assumptions regarding the target languages.

Our second contribution, Role-Based Quality Smells, is a conceptual framework and correlates

de�ciencies, their deteriorated qualities, and resolving refactorings. Roles are used to abstract

from the causing structures of a de�ciency, which then are subject to resolving refactorings.

The third contribution, Role-Based Co-Refactoring, employs the graph-logic isomorphism to

detect dependencies between models. Dependent refactorings, which we call co-refactorings, are

speci�ed on the basis of roles for being independent from particular target DSLs.

v

All introduced concepts are implemented in our tool Refactory. An evaluation in di�erent

scenarios complements the thesis. It shows that role models emerged as very powerful regarding

the reuse of generic refactorings in arbitrary languages. Role models are suited as an interface

for certain structures which are to be refactored, scanned for de�ciencies, or co-refactored. All

of the presented approaches bene�t from it.

vi

Acknowledgment

Starting this thesis and bringing it to an end has been a long way. A lot of people accompanied

me in the one way or another. I want to express my deep gratitude to the following people.

Without them, I could have never reached the goal.

First of all, I want to thank my supervisor Uwe Aßmann. After an oral exam when I was

an undergraduate, he asked me to come to his group. This was the beginning of the whole

process, the beginning of many interesting and demanding discussions. He pushed me into many

directions and his feedback and encouragement was so valuable.

Second of all, I want to thank my parents for their great support. Especially my mother did an

invaluable job for reading my thesis. Furthermore, she was the �rst person who gave me the

chance to use a computer when I was eight years old. She showed me the game Sokoban and I

was so impressed. Since then, I had no doubt that “I will do something with computers”. Thank

you so much.

I had a great time at the chair of software technology. I got to know many excellent researchers

and friends. At �rst, I want to thank the DevBoost guys Mirko Seifert, Christian Wende, Florian

Heidenreich, and Jendrik Johannes. I appreciate your professionalism but also your relaxed

nature. The time at conferences we had, or programming in my kitchen, was always a pleasure

and I pretty much enjoyed the beers with you. Mirko, that we have won the best paper award

at the MoDELS 2010 was so huge, I would have never had expected such a big thing before. In

addition, it was my �rst paper. Thank you for being part of this experience. It’s so great to be at

your team now.

I want to thank other guys from the software technology chair: Christoph Seidl, for his

nice support, discussions and the good time at the last two trips to Wien and Karlsruhe; Birgit

Demuth, for her great backup at the chair and the eTe project; Katrin Heber, for all the help in

the administrative stu�. Furthermore, I want to thank the following persons for their fruitful

discussions and valuable feedback: Julia Schroeter, Claas Wilke, Birgit Grammel, Sven Karol,

Konrad Voigt, Thomas Kühn, Sebastian Götz, and Christian Piechnick.

In the last year of my PhD trip, I got to know the group of Ralf Reussner, my external reviewer.

We had a great workshop there. I want to thank Ralf and Benjamin Klatt for their openness and

their comments on my work, and not to forget Erik Burger, for giving me support in some LATEX

fonts and TikZ issues.

I want to thank Helge Pfei�er and Andrzej Wąsowski, it was a great experience to write the

Lässig-paper with you. Furthermore, my gratitude goes to Frank Furrer, it was very pleasant to

work with you in the seminars which resulted in my last publication, since we had so interesting

topics and good students. Stefan Pietschmann and Vincent Tietz were my supervisors in the

minor thesis, and they brought me closer to research and scienti�c writing for the �rst time.

Gratitude to Jens Dietrich, for our discussions about graph querying and your support regarding

vii

GUERY, and Tricia Balfe from Nomos Software, who gave us access to their OCL constraints and

her support.

Special thanks go to Cloudy. You supported me enormously during my PhD journey. I

appreciate a lot what you have done! Furthermore, I want to thank Schulle for reading parts of

my thesis and for just being around when I needed it. Jochen and Jakob, it is great to have you

as brothers, you sometimes made me not to forget the crazy things in life.

I also want to thank my students who have contributed a lot to my thesis: Erik Tittel, Michael

Muck, Christian Vonsien, Fabian Hänsel, Martin Brylski, Anja Kirste, Kristin Blawatt, and the

students of my last Komplexpraktikum regarding the Quality Smells.

The �rst BASIC programme I got to know was from my uncle Bruno. Thank you for this,

although I cannot remember what it was about, but at that time I did not understand it anyway.

Finally, thanks go out to my �at mates, Dave and Jonathan, and to my former computer science

teacher from school, Bernd Burmeister, who taught me programming with Pascal and aroused

this passion.

Gratitude to all of you and to those I forgot to name explicitly.

viii

Publications

This thesis is partially based on the following peer-reviewed publications:

• J. Reimann, M. Seifert and U. Aßmann, “Role-based Generic Model Refactoring”, in Model

Driven Engineering Languages and Systems - 13th International Conference, MoDELS 2010,

Oslo, Norway, October 3-8, 2010, Proceedings, Part II, D. C. Petriu, N. Rouquette and Ø.

Haugen, Eds., ser. Lecture Notes in Computer Science, vol. 6395, Springer, 2010, pp. 78–92.

doi: 10.1007/978-3-642-16129-2_7.

• J. Reimann, M. Seifert and U. Aßmann, “On the reuse and recommendation of model

refactoring speci�cations”, English, Software & Systems Modeling, vol. 12, no. 3, pp. 579–

596, 2013, issn: 1619-1366. doi: 10.1007/s10270-012-0243-2.

• J. Reimann and U. Aßmann, “Quality-Aware Refactoring for Early Detection and Resolution

of Energy De�ciencies”, in Proceedings of the 2013 IEEE/ACM 6th International Conference

on Utility and Cloud Computing, ser. UCC ’13, Washington, DC, USA: IEEE Computer

Society, 2013, pp. 321–326, isbn: 978-0-7695-5152-4. doi: 10.1109/UCC.2013.70.

• J. Reimann, M. Brylski and U. Aßmann, “A Tool-Supported Quality Smell Catalogue For

Android Developers”, in Proceedings of the conference Modellierung 2014 in the Workshop

Modellbasierte und modellgetriebene Softwaremodernisierung – MMSM 2014, 2014.

• J. Reimann, C. Wilke, B. Demuth, M. Muck and U. Aßmann, “Tool supported OCL re-

factoring catalogue”, in Proceedings of the 12th Workshop on OCL and Textual Model-

ling, ser. OCL ’12, Innsbruck, Austria: ACM, 2012, pp. 7–12, isbn: 978-1-4503-1799-3. doi:

10.1145/2428516.2428518.

The following peer-reviewed publications cover work that is closely related to the content of

the thesis, but not contained herein:

• R.-H. Pfei�er, J. Reimann and A. Wąsowski, “Language-Independent Traceability with

Lässig”, in, ser. Lecture Notes in Computer Science, J. Cabot and J. Rubin, Eds., vol. 8569,

Springer International Publishing, 2014, pp. 148–163, isbn: 978-3-319-09194-5. doi: 10.
1007/978-3-319-09195-2_10.

• U. Aßmann, A. Bartho, C. Bürger, S. Cech, B. Demuth, F. Heidenreich, J. Johannes, S. Karol,

J. Polowinski, J. Reimann, J. Schroeter, M. Seifert, M. Thiele, C. Wende and C. Wilke,

“DropsBox: the Dresden Open Software Toolbox”, English, Software & Systems Modeling,

vol. 13, no. 1, pp. 133–169, 2014, issn: 1619-1366. doi: 10.1007/s10270-012-0284-6.

ix

http://dx.doi.org/10.1007/978-3-642-16129-2_7
http://dx.doi.org/10.1007/s10270-012-0243-2
http://dx.doi.org/10.1109/UCC.2013.70
http://dx.doi.org/10.1145/2428516.2428518
http://dx.doi.org/10.1007/978-3-319-09195-2_10
http://dx.doi.org/10.1007/978-3-319-09195-2_10
http://dx.doi.org/10.1007/s10270-012-0284-6

• F. Heidenreich, J. Johannes, J. Reimann, M. Seifert, C. Wende, C. Werner, C. Wilke and U.

Aßmann, “Model-driven Modernisation of Java Programs with JaMoPP”, in Joint Proceed-

ings of the First International Workshop on Model-Driven Software Migration (MDSM 2011)

and the Fifth International Workshop on System Quality and Maintainability (SQM 2011),

A. Fuhr, W. Hasselbring, V. Riediger, M. Bruntink and K. Kontogiannis, Eds., Oldenburg,

Germany: CEUR Workshop Proceedings, Mar. 2011, pp. 8–11.

• C. Wilke, S. Götz, J. Reimann and U. Aßmann, “Vision Paper: Towards Model-Based Energy

Testing”, inModel Driven Engineering Languages and Systems - 14th International Conference,

MoDELS 2011, Wellington, New Zealand, J. Whittle, T. Clark and T. Kühne, Eds., ser. Lecture

Notes in Computer Science, vol. 6981, Springer Berlin Heidelberg, 2011, pp. 480–489, isbn:

978-3-642-24484-1. doi: 10.1007/978-3-642-24485-8_35.

• S. Götz, M. Leuthäuser, J. Reimann, J. Schroeter, C. Wende, C. Wilke and U. Aßmann, “A

Role-Based Language for Collaborative Robot Applications”, in Leveraging Applications

of Formal Methods, Veri�cation, and Validation, ser. Communications in Computer and

Information Science, R. Hähnle, J. Knoop, T. Margaria, D. Schreiner and B. Ste�en, Eds.,

Springer Berlin Heidelberg, 2012, pp. 1–15, isbn: 978-3-642-34780-1.

• S. Pietschmann, V. Tietz, J. Reimann, C. Liebing, M. Pohle and K. Meißner, “A Metamodel

for Context-Aware Component-Based Mashup Applications”, in Proceedings of the 12th

International Conference on Information Integration and Web-based Applications & Services

(iiWAS 2010), ACM, Nov. 2010, isbn: 978-1-4503-0421-4.

• S. Götz, M. Leuthäuser, C. Piechnick, J. Reimann, S. Richly, J. Schroeter, C. Wilke and

U. Aßmann, “Entwicklung Cyber-Physikalischer Systeme am Beispiel des NAO-Roboters”,

in Chemnitzer Linux-Tage 2012 – Tagungsband –, Team der Chemnitzer Linux-Tage, Uni-

versitätsverlag Chemnitz, Mar. 2012, pp. 45–52.

The following publication covers work that is slightly related to the content of the thesis, but

not contained herein:

• F. Furrer and J. Reimann (Eds.), “Impact and Challenges of Software in 2025”, Technische

Universität Dresden, Software Technology Group, Tech. Rep., 2014. [Online]. Available:

http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-152785.

x

http://dx.doi.org/10.1007/978-3-642-24485-8_35
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-152785

Contents

List of Figures xv

List of Tables xvii

List of Listings xix

1. Introduction 1
1.1. Language-Tool Generation Without Consideration Of Time And Space 4

1.2. Challenges . 9

1.3. Generic Quality-Aware Refactoring and Co-Refactoring in Heterogeneous Model

Environments . 10

2. Foundations 15
2.1. Refactoring . 15

2.2. Model-Driven Software Development . 16

2.2.1. Levels of Abstraction and Metamodelling 17

2.2.2. Model Transformations . 18

2.3. Role-Based Modelling . 19

3. RelatedWork 23
3.1. Model Refactoring . 25

3.1.1. Requirements . 25

3.1.2. Literature Review . 26

3.1.3. Evaluation . 30

3.2. Determination of Quality-Related De�ciencies 32

3.2.1. Requirements . 33

3.2.2. Literature Review . 34

3.2.3. Evaluation . 37

3.3. Co-Refactoring . 38

3.3.1. Requirements . 38

3.3.2. Literature Review . 40

3.3.3. Evaluation . 46

3.4. Conclusion . 48

4. Role-Based Generic Model Refactoring 51
4.1. Motivation . 51

xi

Contents

4.2. Specifying Generic Refactorings with Role Models 53

4.2.1. Specifying Structural Constraints using Role Models 55

4.2.2. Mapping Roles to Language Concepts Using Role Mappings 57

4.2.3. Specifying Language-Independent Transformations using Refactoring

Speci�cations . 60

4.2.4. Composition of Refactorings . 67

4.3. Preserving Semantics . 70

4.4. Conclusion . 71

5. Suggesting Role Mappings as Concrete Refactorings 73
5.1. Motivation . 73

5.2. Automatic Derivation of Suggestions for Role Mappings with Graph Querying . 74

5.3. Reduction of the Number of Valid Matches . 76

5.4. Comparison to Model Matching . 77

5.5. Conclusion . 78

6. Role-Based Quality Smells as Refactoring Indicator 79
6.1. Motivation . 79

6.2. Correlating Model De�ciencies, Qualities and Refactorings 80

6.2.1. Quality Smell Repository . 81

6.2.2. Quality Smell Calculation Repository . 85

6.3. Discussion . 87

6.4. Conclusion . 88

7. A Quality Smell Catalogue for Android Applications 89
7.1. Quality Smell Catalogue Schema . 89

7.2. Acquiring Quality Smells . 90

7.3. Structure-Based Quality Smells—A Detailed Example 92

7.3.1. The Pattern Language . 92

7.3.2. Quality Smell: Interruption from Background 93

7.4. Quality Smells for Android Applications . 96

7.4.1. Quality Smell: Data Transmission Without Compression 96

7.4.2. Quality Smell: Dropped Data . 98

7.4.3. Quality Smell: Durable WakeLock . 98

7.4.4. Quality Smell: Internal Use of Getters/Setters 99

7.4.5. Quality Smell: No Low Memory Resolver 101

7.4.6. Quality Smell: Rigid AlarmManager . 101

7.4.7. Quality Smell: Unclosed Closeable . 102

7.4.8. Quality Smell: Untouchable . 103

7.5. Discussion . 104

8. Role-Based Co-Refactoring in Multi-Language Development Environments 105
8.1. Motivation . 105

8.2. Example . 107

xii

Contents

8.3. Dependency Knowledge Base . 108

8.3.1. Categories of Model Dependencies . 108

8.3.2. When to Determine Model Dependencies 110

8.3.3. How to Determine Model Dependencies 111

8.4. Co-Refactoring Knowledge Base . 113

8.4.1. Specifying Coupled Refactorings with Co-Refactoring Speci�cations . . 114

8.4.2. Specifying Bindings for Co-Refactorings 116

8.4.3. Determination of Co-Refactoring Speci�cations 118

8.5. Discussion . 118

8.6. Conclusion . 119

9. Refactory: An Eclipse Tool For Quality-Aware Refactoring and Co-Refactoring 121
9.1. Refactoring Framework . 122

9.1.1. Role Model . 122

9.1.2. Refactoring Speci�cation . 124

9.1.3. Role Model Mapping . 126

9.1.4. Refactoring Composition . 128

9.1.5. Custom Refactoring Extensions . 129

9.1.6. Pre- and Post-conditions . 129

9.1.7. Integration Into the Eclipse Refactoring Framework 130

9.2. Quality Smell Framework . 134

9.3. Co-Refactoring Framework . 137

9.3.1. Concrete Syntax of a CoRefSpec . 138

9.3.2. Expression Evaluation by Using an Expression Language 138

9.3.3. UI and Integration . 140

9.4. Conclusion . 141

10. Evaluation 143
10.1. Case Study: Reuse of Generic Refactorings in many DSLs 143

10.1.1. Threats to validity . 143

10.1.2. Results . 144

10.1.3. Experience Report . 146

10.2. Case Study: Suggestion of Valid Role Mappings 147

10.2.1. Implementation . 147

10.2.2. Evaluation and Discussion . 151

10.3. Proof of Concept: Co-Refactoring OWL and Ecore Models 155

10.3.1. Coupled OWL-Ecore Refactorings . 156

10.3.2. Realisation . 157

10.3.3. Discussion . 160

11. Summary, Conclusion and Outlook 161
11.1. Summary . 161

11.2. Conclusion . 163

11.3. Outlook . 166

xiii

Contents

Appendix 169
A. List of Role Models . 169

B. Comparison to Role Feature Model . 171

C. Complete List of Role Mappings . 173

D. List of all IncPL Patterns for Detecting Quality Smells 176

E. Post-Processor of the Extract CompositeState refactoring for UML State Machines 183

F. Speci�cation of the Conference Language . 185

List of Abbreviations 187

Bibliography 191

xiv

List of Figures

1.1. Examples of cave art. 2

1.2. The Tower of Babel by Pieter Bruegel the Elder, 1563. 2

1.3. Examples of abstraction in scienti�c or engineering DSLs. 3

1.4. Abstraction Gap . 3

1.5. Example of Extract Method refactoring in Java 5

1.6. Example of Extract Track refactoring in the Conference DSL. 6

1.7. Overview of model life cycle in MDSD. 7

2.1. MOF architecture. 17

2.2. Role model for Composite pattern [GHJV94] according to [RG98]. 20

3.1. Classi�cation scheme for the related work. 24

4.1. Example of Extract Track refactoring in the Conference DSL. 52

4.2. Metamodels, relations and stakeholders. 54

4.3. Di�erent representations of generic Extract X with Reference Class refactoring. . 56

4.4. Role metamodel. 56

4.5. Role Mapping metamodel. 58

4.6. Role mappings to di�erent DSLs for the generic Extract X with Reference Class

refactoring. 59

4.7. Refactoring Speci�cation metamodel. 62

4.8. RefSpec metamodel: Variable Declaration. 63

4.9. RefSpec metamodel: Index Assignment. 64

4.10. RefSpec metamodel: Create and Move Elements. 64

4.11. RefSpec metamodel: Changing Elements. 65

4.12. RefSpec metamodel: Remove Elements. 66

4.13. Adjusted Extract Method refactoring example in Java. 68

4.14. Composite Role Mapping metamodel. 69

5.1. Example for conversion of role model to GUERY query. 75

6.1. Refactoring architecture extended by Quality Smell infrastructure. 81

6.2. Metamodel of the quality smell repository. 82

6.3. Metamodel of the quality smell repository DetectionStrategy part. 84

6.4. Detection strategy of the Feature Envy quality smell. 85

6.5. Metamodel for di�erent kinds of calculations. 86

xv

List of Figures

7.1. Strategy of information extraction. 91

7.2. Excerpt of quality smell calculation metamodel. 92

8.1. Extract of the successive progression of model co-refactoring. 106

8.2. Schematic work�ow of Co-Refactoring. 107

8.3. Example of an ontology-driven requirements and software engineering process. 107

8.4. Categories of model dependencies. 109

8.5. Refactoring architecture extended by Co-Refactoring infrastructure. 114

8.6. Co-Refactoring Knowledge Base Metamodel. 115

9.1. Overall Architecture of Refactory. 122

9.2. Textual editor and tree-like outline for Role Models applied in Refactory. 124

9.3. Textual editor and tree-like outline for RefSpec models applied in Refactory. . . 126

9.4. Textual editor and tree-like outline for role mapping models applied in Refactory. 127

9.5. Textual editor and tree-like outline for refactoring composition models applied

in Refactory. 128

9.6. PL/0 example programme before refactoring should be applied. 130

9.7. OCL constraints and representation of the violation in the refactoring dialogue. 131

9.8. Selection of talks to be refactored. 132

9.9. Refactoring wizard for providing the name of the new Track. 133

9.10. Preview of the Extract Track refactoring in a conference model. 133

9.11. Preference page for the de�nitin of generic quality smells. 134

9.12. Qualities view of Refactory. 136

9.13. Quality Smells view of Refactory. 137

9.14. Resolving refactoring invokable by a quick-�x in Refactory. 138

9.15. Implicit Dependencies view in Refactory. 140

A.1. Role Models Part 1. 169

A.2. Role Models Part 2. 169

A.3. Role Models Part 3. 170

A.4. Role Models Part 4. 170

A.5. Role Models Part 5. 170

xvi

List of Tables

1.1. Example DSLs and their semantic contexts. 4

3.1. Categories of the classi�cation scheme. 24

3.2. Comparison of related work regarding generic model refactoring. 31

3.3. Comparison of related work regarding quality evaluation. 38

3.4. Comparison of related work regarding co-refactoring. 47

10.1. Refactorings applied to metamodels. 145

10.2. DSL Complexity. 148

10.3. Automatically determined role mappings with maximum path length of 1. . . . 150

10.4. DSL complexity reduced due to omitting sub-metaclasses. 151

10.5. Number of possible matches and average needed manual mappings. 152

11.1. Evaluation of the generic model refactoring approach regarding the ful�lment of

the requirements. 164

11.2. Evaluation of the quality smells approach regarding the ful�lment of the require-

ments. 165

11.3. Evaluation of the co-refactoring approach regarding the ful�lment of the re-

quirements. 166

C.1. Complete list of refactorings. 173

xvii

List of Listings

4.1. Refactoring speci�cation for Extract X with Reference Class. 61

4.2. Move Method role mapping. 69

4.3. Composite refactoring Extract and Move Method. 70

5.1. Conversion of collaboration to edge with intermediate vertex. 76

5.2. Conversion of a role model to a graph query with a manual pre-mapping. 76

7.1. Interrupting service. 93

7.2. Interruption from background pattern. 94

7.3. Notifying service. 95

7.4. File transmission without compression before refactoring. 96

7.5. File transmission with compression after refactoring 97

7.6. Acquiring a WakeLock without releasing it. 99

7.7. Acquiring a WakeLock with time-out. 99

7.8. IncPL pattern for detecting access of internal getters. 100

7.9. Use of an exact AlarmManager which results in higher energy consumption. . . 102

7.10. Use of an inexact AlarmManager reducing energy consumption 102

7.11. A Closeable object is not closed. 103

7.12. Closeable object is closed. 103

7.13. A button which is not touchable. 104

7.14. A layout with appropriate size. 104

8.1. Prolog fact pattern to capture explicit dependencies. 111

8.2. Prolog rules to determine inverse dependencies. 112

8.3. Prolog rule to determine mapping dependencies. 112

8.4. Example Co-RefSpec for renaming an Ecore model dependent on an OWL model. 117

9.1. Textual syntax for role models. 122

9.2. Textual syntax for refactoring speci�cations. 124

9.3. Textual syntax for role mappings. 127

9.4. Textual syntax for refactoring compositions. 128

9.5. Invocation of IncQuery engine to query structure-based quality smells. 135

9.6. Creation of a result with respect to the matches determined by IncQuery. 136

9.7. Textual syntax for co-refactoring speci�cations. 139

10.1. Derived role mapping Extract StateMachine in Interface. 153

10.2. Rename Ontology (Rename X)⇒ Rename EElement (Rename X). 158

xix

List of Listings

10.3. Rename Element (Rename X)⇒ Rename EElement (Rename X). 158

10.4. Extract Superclass (Extract Loosely X)⇒ Extract Super Class (Extract X). 158

10.5. Pull Up Property (Re-reference X)⇒ Pull Up Feature (Move X). 158

10.6. Introduce Inverse Property (Introduce Inverse Reference In Container)⇒ Introduce

Inverse Reference (Introduce Inverse Reference). 159

10.7. Duplicate Class (Duplicate With Reference)⇒ Duplicate Class (Duplicate With

Reference). 159

10.8. Convert Data Property To Object Property (Replace Feature)⇒ Replace Data Value

with Object (Replace Feature In Container). 159

D.1. Data Transmission Without Compression. 176

D.2. Dropped Data. 178

D.3. Durable WakeLock. 178

D.4. Internal Use of Getters/Setters. 179

D.5. No Low Memory Resolver. 180

D.6. Rigid AlarmManager. 180

D.7. Unclosed Closeable. 180

D.8. Untouchable. 181

E.9. UML-speci�c post-processor for determining incoming and outgoing transitions

of the extracted composite state. 183

xx

1
Introduction

Language has been the means of humans to express themselves, at all times. Let it be the spoken

or written word, drawings or body language — what all kinds of communication have in common

is that there must be a mutual understanding of the meaning of the language’s concepts, if the

communicator wants to ensure that a message is interpreted equally. That is the reason why

syntax and semantics are essential in most languages. In contrast, painting, as the choice of

communication, is not meant to be precise and concise. Thus, painters enjoy the freedom of art

and create space for interpretation for the recipients of their messages. Di�erent people might

probably re�ect divergently about art.

Consider another example: raising children. When parents want to pass on their values, they

have several alternatives (not being mutual exclusive). They can, for example, tell their children

what to do and what not to do. Or they may hope that children learn things by rewarding

or punishment. Another educationally more valuable methodology can be to lead children to

literature and provide stories of characters expressing the parents’ desired values. This kind

of indirect teaching of children with literature is promising when strong child characters are

used, as shown for example in [Mah81]. But again, these examples illustrate that people may

communicate di�erently about the same things.

When we look back further in history and glance at the Old Testament, we can eventually

say that this has not always been like this. Consider, for example, The Tower of Babel
1

(see

Fig. 1.2) which is a biblical story telling that mankind tried to equal God by building a huge

tower in Babel with its top in the sky. At this time, the story says, only one common language

was spoken all over the world. But, the attempt to build the tower was interpreted by God as

hubris and arrogance. So he decided to punish mankind and initiated the confusion of tongues
2

by eliminating the common language and creating a plethora of di�erent ones. As a result, the

1
cf. Book of Genesis Chapter 11 (http://www.vatican.va/archive/bible/genesis/documents/bible_
genesis_en.html#Chapter%2011 visited 10th February 2015)

2http://en.wikipedia.org/wiki/Confusion_of_tongues (visited 10th February 2015)

1

http://www.vatican.va/archive/bible/genesis/documents/bible_genesis_en.html#Chapter%2011
http://www.vatican.va/archive/bible/genesis/documents/bible_genesis_en.html#Chapter%2011
http://en.wikipedia.org/wiki/Confusion_of_tongues

1. Introduction

Figure 1.1.: Examples of cave art.
3

humans were confronted with insuperable communication di�culties and, hence, could not

continue building the tower. Furthermore, God scattered them all over the world.

Figure 1.2.: The Tower of Babel by Pieter Bruegel the

Elder, 1563.
4

By contrast to the idea of punishment

through God, the story of the Tower of

Babel and the confusion of tongues can

be interpreted di�erently. It can be seen

not as a curse but a blessing, since the di-

versity of languages corresponds with the

variety of di�erent cultural groups, which

left their indelible mark of human yearn-

ing to travel, get to know other coun-

tries, to communicate and to cooperate.

Without such a great diversity mankind

as a whole would be rather monotone.

This diversity arrived in life a long time

ago. Nowadays, as a tool of communic-

ation, language has many shapes. For

instance, humans managed to form di�erent kinds of communication for same domains. The

most general kind is the spoken or written word, while quite often more dedicated languages are

better to communicate about matters or problems, so that humans choose a suitable language

for communicating about problems and solving them.

A popular example is the language of cave painting. Some of the masterpieces are supposed

to be older than 40,000 years [Amo12]. The point is that the examples from Fig. 1.1 show that

abstraction is a powerful tool for humans to express themselves. Animals or hunting scenes were

painted without details, environmental surroundings were neglected. The information where

something happened was less important to the painter in contrast to what happened. To this

end, facts of reality were omitted, while others were emphasized.

Such techniques of abstraction and specialisation are used in almost every area of our daily

lives and became apparent in languages used to solve problems in many scienti�c or engineering

disciplines. Languages, being dedicated to a particular problem space, are called Domain-Speci�c

Languages (DSLs). Some prominent examples can be seen in �gures 1.3 (a)–(c).

Similar progress has happened in the discipline of computer science. In the beginning, instruc-

3http://en.wikipedia.org/wiki/Cave_painting (visited 10th February 2015)

4http://en.wikipedia.org/wiki/Tower_of_Babel (visited 10th February 2015)

2

http://en.wikipedia.org/wiki/Cave_painting
http://en.wikipedia.org/wiki/Tower_of_Babel

(a) Cartography
5

A

20Ω

10Ω

5Ω

B

(b) Electronics

H

CH3

CH3
O CH3

OH

H

CH3

(c) Chemistry

Figure 1.3.: Examples of abstraction in scienti�c or engineering DSLs.

Problem
Domain

Solution
Domain

DSL

High-level programming language

Low-level programming language

Interpretation/
Translation

Interpretation/
Translation

Pr
og
ra
m
m
in
g
pa
ra
di
gm

ev
ol
ut
io
n
ov
er
tim

e

Ab
st
ra
ct
io
n
in
cr
ea
se

Figure 1.4.: Abstraction Gap based on [KT08, p. 16].

tion sets of programming languages corresponded heavily to those of the machine which the

programme was intended to run on. Therefore, programmers had to bridge a big gap between the

domain of the initial problem and the domain of the problem-solving programme (the solution).

Between these domains, namely problem domain and solution domain, the so-called abstraction

gap [KT08; IM10] was very big, because the used concepts of a solution idea and the particular

solution implementation (machine instructions) are very di�erent. Figure 1.4 illustrates this

contemplation in the lower part. At that time, realising an implementation was very complex

until high-level programming languages (such as C++ or Java) came out onto the market. These

languages raised the level of abstraction and increased developer’s productivity by 450 % [KT08].

This progress got another impetus, when it was recognized that taking advantage of the concept

of DSLs can raise the abstraction level even more. Thus, DSLs arrived in computer science and

information technology (IT), enabling developers to implement solutions closer to the problem

domain. Most often, these languages are delivered with some kind of compiler or interpreter to

map abstract instructions to less abstract ones in an already known and executable formalism.

Such a mapping speci�es the translational or interpretative semantics of a DSL and de�nes

how to resolve DSL instances to an instance of the underlying layer in Figure 1.4: compilation

to another language, or direct execution respectively [EvSV+13]. Examples for popular DSLs

are, e.g., the Uni�ed Modeling Language [OMG11a] (UML), the Business Process Model and

Notation [OMG13b] (BPMN) or Cascading Style Sheets [W3C11] (CSS). Table 1.1 shows the

5http://en.wikipedia.org/wiki/File:Orienteringskort_bygholm_2005_detail.jpg (visited 10th Feb-

ruary 2015)

3

http://en.wikipedia.org/wiki/File:Orienteringskort_bygholm_2005_detail.jpg

1. Introduction

Table 1.1.: Example DSLs and their semantic contexts.

DSL Application Context Realisation

UML development environment code generation (compilation)

BPMN running application translation into execution language and executed in

work�ow engine (transformation and interpretation)

CSS web browser layout engine (interpretation)

context in which these languages are applied and how they are realised. The table gives an idea

about DSLs being deployed in a variety of di�erent contexts, domains, or platforms.

In practice, there are heaps of DSLs supporting daily developer’s and engineer’s work, and

their number is still growing. One reason for the quantitative increase is a development paradigm,

which became more and more popular in the last decade. This paradigm is called Model-Driven

Software Development [SVB+06] (MDSD) and takes advantage of formal artefacts to create in-

stances of abstract concepts. The following short example illustrates the MDSD paradigm.

Consider, e.g., a detached house on the one hand and a tool shed on the other hand. Both are

buildings but have distinct purposes. The former is for living and the latter is for storing garden-

ing tools. From an abstract point of view both exemplars have several things in common. Both

are buildings, have a door and a roof. Unless a building has no roof or door it is not considered to

be a building. Single parts of the houses are conceptualised (e.g. roof or door) and a rule is given

under which circumstances a set of single parts is meant to be a building. These concepts and the

rule are the formal base of both buildings. They enable us to re�ect about houses and to evaluate,

if something belongs to the domain buildings or not. This formalisation is called a metamodel,

because it speci�es properties of all its instances: the models. Since metamodels have a higher

level of abstraction than their models, they can be used, e.g., to generate other artefacts from

the models, because the generation rules can be speci�ed on top of the metamodel’s concepts.

Coming back to the small example, such a generation rule could automatically produce a list

of all consumed materials for a building, instead of having to write the list manually. A deeper

insight into MDSD is given in Section 2.2. At this point, it is important to know that a metamodel

is considered to be the abstract formal grounding of a DSL, not focussing the concrete, but on

the abstract syntax of the DSL’s instances, the models.

There are other technical spaces suitable for developing DSLs (such as, e.g., grammars), but in

this work only model-based DSLs are considered, since they allow for abstraction of languages

to their constructional concepts. Their instances conform to these concepts. In the following,

the strengths of such DSLs are illustrated and how the abstract concepts can be exploited to

generate tools. Apart from that, the problems which are to be solved in this thesis are analysed

and emphasized.

1.1. Language-Tool GenerationWithout Consideration Of Time And Space

As mentioned before, the increase of abstraction in programming languages fostered developers’

productivity [KT08]. At the same time, software complexity rose and still rises [Leh96; Kle09].

Software design evolved as an essential tool to cope with that complexity before developing

the software itself. Therefore, the design is the base for understanding a software system

4

1.1. Language-Tool Generation Without Consideration Of Time And Space

1 void printOwing() {
2 printBanner();
3

4 //print details
5 System.out.println ("name: " +

_name);
6 System.out.println ("amount " +

getOutstanding());
7 }

(a) before

1 void printOwing() {
2 printBanner();
3 printDetails();
4 }
5

6 void printDetails() {
7 System.out.println ("name: " +

_name);
8 System.out.println ("amount " +

getOutstanding());
9 }

(b) after

Figure 1.5.: Example of Extract Method refactoring in Java, based on [FBB+99].

and for the early identi�cation of problems instead of living with them afterwards [P�98].

Furthermore, Lehman, Davis and Berso� realised early that software changes: “If we do not

learn to manage change, we will become its victims, not its bene�ciaries” [DB91]. Opdyke

and Johnson investigated on this and introduced the term refactoring in [OJ90], which signi�es

the restructuring of code while preserving its semantics to improve the design of a software.

Later, Opdyke published a �rst catalogue of refactorings in his dissertation [Opd92] forming the

foundation of refactoring tools in nowadays integrated development environments (IDEs). These

IDEs came into the market to support developers in managing the complexity of developed

software so that qualities, such as reusability, readability, or comprehensibility, are improved.

Let us consider the example in Fig. 1.5. In (a) a method can be seen printing a banner and

some details afterwards. The comment in Line 4 suggests a di�erent purpose of the following

statements compared to the banner printing in the �rst statement. Thus, the last two statements

can be extracted into a new method in (b) (equally named as the comment suggests) which is then

invoked at the original position in the old method. As can be understood easily, the semantics of

the method printOwing() didn’t change, but from a design view printDetails() now can be

reused, and concerns are separated better. Opdyke called this refactoring Convert a Code Segment

to a Function [Opd92, p. 34], but today it is better known as Extract Method [FBB+99].

In the beginning, refactorings had to be applied manually after every regression, which was

error-prone and required huge e�ort. Later, the IDEs were equipped with mature refactoring

tools enabling developers to execute them (semi-)automatically. Today, all modern IDEs support

refactoring in one or the other modality [XS06]. For high-level programming languages code

refactoring is well investigated and can be applied easily.

In recent years Language Workbenches (LWs) [Fow05] emerged enabling the development of

mature tools for using DSLs. Representatives of LWs are MetaCase [KT08], the Eclipse Modeling

Framework [SBPM08] (EMF), EMFText [HJK+09], Xtext [EV06], Spoofax [KV10], MPS [Cam14],

GME [LMB+01] and many others. Some of them follow a generative approach, while others apply

interpretation of a DSL’s speci�cation. What they all have in common is that they somehow

produce a tool environment dedicated to the developed DSL. To distinguish between a LW

5

1. Introduction

1 CONFERENCE
2 "International FooBar Camp"
3 ("Peter Meyers")
4

5 TRACK "Interesting Stuff" :
6 AT 09:00 : TALK "The future of Foo"

PRESENTED BY "Peter Meyers"
7 AT 10:00 : TALK "Foo vs. F00" PRESENTED

BY "Andrew Bloomfield"
8 AT 11:00 : TALK "Onyl Bar-S is true"

PRESENTED BY "Homer Simpson"
9

10 REGISTERED SPEAKERS :
11 "Peter Meyers" FROM Germany,
12 "Andrew Bloomfield" FROM USA,
13 "Homer Simpson" FROM USA

(a) before

1 CONFERENCE
2 "International FooBar Camp"
3 ("Peter Meyers")
4

5 TRACK "Interesting Stuff" :
6 AT 09:00 : TALK "The future of Foo"

PRESENTED BY "Peter Meyers"
7

8 TRACK "Less Interesting Stuff" :
9 AT 10:00 : TALK "Foo vs. F00" PRESENTED

BY "Andrew Bloomfield"
10 AT 11:00 : TALK "Onyl Bar-S is true"

PRESENTED BY "Homer Simpson"
11

12 REGISTERED SPEAKERS :
13 "Peter Meyers" FROM Germany,
14 "Andrew Bloomfield" FROM USA,
15 "Homer Simpson" FROM USA

(b) after

Figure 1.6.: Example of Extract Track refactoring in the Conference DSL.

and a resulting tool environment for a developed DSL, we de�ne a new term for the produced

result. A Domain-Speci�c Language Environment (DSLE) is a tool, which is derived by a LW to

interact (work/edit/debug/or many other actions) with a particular DSL. According to [EvSV+13]

a resulting DSLE usually consists of an editor, syntax highlighting, a parser, language-speci�c

refactoring, and semantic services as reference resolution or error marking. It is not relevant,

if the resulting DSLE is integrated into the LW used for developing it, or if a separate tool is

generated. All these features are not new since they were adopted from programming language

IDEs [Fow05]. Many of them can be derived from a DSL’s abstract or concrete syntax. But one

of the biggest problems in nowadays LWs is still the lack of adequate refactoring support in

the produced DSLE [KV10; Mer10; EvSV+13; VWT+14]. As a result, developers cannot apply

refactorings in DSLEs, as they are used to it from modern IDEs.

Consider, e.g., our model-based DSL for planning conferences.
6

We used EMFText to generate

a DSLE for this DSL. This is a little language and can be used to de�ne di�erent tracks, talks

and speakers for conferences. For the talks only declared speakers can be referred. Having the

Extract Method refactoring from Fig. 1.5 in mind, Fig. 1.6 illustrates a very similar Extract Track

refactoring for the conference DSL. The last two talks in (a) (Lines 7 and 8) are less interesting

and are therefore moved to a newly created track. The result can be seen in (b). This example

shows that known code refactorings from programming languages should be made available for

DSLEs.

The main problem regarding the lack of appropriate refactoring support can be subdivided

into the following three issues.

6http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo_Conference (visited 11th Febru-

ary 2015)

6

http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo_Conference

1.1. Language-Tool Generation Without Consideration Of Time And Space

Figure 1.7.: Overview of model life cycle in MDSD.

Creation/
Initialisation

Evolution/
Maintenance

Quality
Evaluation

Creation/
Initialisation

Evolution/
Maintenance

Quality
Evaluation

Co-Evolution

Model 1 Model 2

Only structural information is available in metamodel DSLs only provide structural information

in their metamodels, especially knowledge about how concepts relate to each other. This

information is only of static nature and is regarded as the abstract syntax. Consequently, it is

not possible to establish a relation to a concept of quality representing information about which

quality a model actually has. Without such a fact it is not possible to interrelate qualities with

refactorings, which results in the fact that one cannot specify an indicator expressing when and

what structure to refactor. As a consequence, refactorings would be executed randomly without a

formal grounding. Furthermore, refactorings cannot be derived automatically for DSLs, because

they do not only depend on the structure, but on the speci�cs of the particular language as well.

Consider, e.g., Extract Method in Fig. 1.5 again. From an abstract point of view, some children

(the statements) of a parent (original method) are moved to a new parent (new method). But one

would never declare that every parent-child relation in the syntax tree should be restructured in

the sense that the child gets a new parent. It does not even make sense in every case. Thus, from

a pure structural viewpoint refactorings cannot be generated automatically. For that reason,

refactorings cannot be derived from the abstract syntax (the DSL’s metamodel). DSLEs are not

able to provide DSL-speci�c mature refactoring tools and they omit the aspect of evolution over

time completely. As a consequence, the e�ort to specify refactorings for a particular DSL is huge.

In the worst case, the restructurings a refactoring comprises must be applied manually. This

means that the consistency of the model to be refactored may break, because this manual process

is error-prone.

Figure 1.7 summarizes this subproblem on the left hand side for Model 1. This DSL instance is

created before it undergoes a process of evolution. Modi�cations are applied, e.g., by a user or

by a model transformation. Afterwards, the quality should be evaluated for being able to give

evidence which refactoring could be applied upon which structure for improving the overall

quality of the model. The process of evolution and quality evaluation is a cycle which might

stop when a model is not modi�ed anymore and its quality requirements are satis�ed.

7

1. Introduction

DSL is regarded as isolated The second subproblem is the fact that, when DSLs are engineered,

potential relations to other DSLs are not taken into account, thus, the DSL is considered as

isolated. In general, it is not even possible to estimate which other DSLs are candidates for

interaction at the design or instance level. The trivial case is when a DSL is referenced by another

at the design level. Obviously, models of such referring DSLs might relate to models of the

referred DSL. In contrast, it is also possible that a reference of a DSL at design level is very vague

or weak. This means that a referred DSL cannot be speci�ed precisely and the connection to

models is established at the instance level. Those connections then can point to instances of

arbitrary DSLs and cannot be foreseen. In such a case, interdependencies between those models

arise. This means they relate to each other and are dependent on each other. As a consequence,

a dependent model is in�uenced by modi�cations of the other model. Figure 1.7 illustrates this

relationship for Model 1 and Model 2 exemplarily. If Model 2 evolves in terms of a refactoring its

quality must be evaluated again. Since Model 1 depends on the evolved model it must co-evolve.

This co-evolution is highly dependent on the concrete modi�cations in Model 2 and the current

state of Model 1. A popular example for the described scenario is the process of aging between

requirements model, design model and code. Most often, changes in one of these artefacts are not

propagated to the others and thus they age. This is a problem when di�erent DSLs are considered

isolated, because an evolution of one model can violate the consistency of a dependent model in

its surrounding space.

By means of substantiating the aforementioned scenario of multiple DSLs being integrated

in one IDE Pfei�er and Wąsowski introduced a more speci�c term in [Pfe13; PW15]: Multi-

Language Development Environment (MLDE). Regarding Pfei�er a MLDE is an IDE providing

cross-language support (CLS) mechanisms. Since MLDEs “[. . .] integrate editors and other

language speci�c tools across language boundaries with each other” [Pfe13], multiple DSLEs in

combination with additional CLS mechanisms form a particular MLDE. Consequently, IDEs are

commonly accepted for programming. For the sake of not breaking usual habits of developers in

programming, MLDEs should be used for modelling. For this reason the term Multi-Language

Development Environment (MLDE) corresponds to our idea of environments for modelling and

it is therefore used throughout this thesis.

Another consequence of DSL isolation is that refactorings cannot be reused across di�erent

DSLs. Have a look at the Extract Method refactoring in Fig. 1.5 on page 5 again. This is an

example for the programming language Java. The same semantics-preserving restructuring is

available for other programming languages as well. The di�erence between these refactorings is

not the speci�cs of the refactoring itself but the language which it is applied to. Thus, from an

abstract point of view, the same steps are executed in di�erent languages. The same holds for

DSLs. If refactorings cannot be reused they must be speci�ed and implemented anew for every

di�erent DSL.

Appropriate refactorings are dependent on DSL designer’s preferences Apart from the two sub-

problems above, the decision which refactorings to specify for a DSL highly depends on the

preferences of the DSL designer. On the one hand, the DSL designer must determine which

structures are suitable for refactoring at the design level. Therefore, the abstract syntax must be

examined and feasible relations between concepts have to be found for establishing potential

candidates for refactorings. As an example, let us regard the Java programming language as a

8

1.2. Challenges

model-based DSL. The Java Model Parser and Printer [HJSW10] (JaMoPP)
7

enables us to consider

Java source code as models. A more detailed explanation about why this is possible will be

provided in Sect. 2.2. Here it is su�cient to know that Java code can be considered as models.

Within the metamodel of JaMoPP, there is a parent-child relation between the concepts Method
and Statement. This structure, e.g., is suitable for the Extract Method refactoring in Fig. 1.5,

because statements are extracted from an original method to a new one. Another parent-child

relation can be found between Enumeration and EnumConstant expressing the fact that an

enumeration can contain several constants. In this case, it does not make sense to provide an

Extract Enumeration refactoring because referencing another enumeration as a constant in the

original enumeration is not possible due to the Java speci�cation. Such structures have to be

determined by the DSL designer and the challenge is to �nd the suitable ones.

On the other hand, the technical background of the intended DSL users should be taken into

consideration by the DSL designer. Depending on the target group refactorings of di�erent

maturity could be provided. The Java language, e.g., is most probably used by engineers whereas

the conference DSL for describing conferences does not need a technical background, thus,

its users might not have a programming background and could be overtaxed with mature

refactorings at their hands.

As a consequence, this subproblem again leads to the fact that DSL-speci�c refactorings cannot

be derived automatically, since the decision which refactorings to provide is highly subjective.

1.2. Challenges

The aforementioned problems �nd expression in the following goals and challenges which will

be covered in this work.

Generic Specification of Refactorings As already mentioned, there is a plethora of DSLs which

is still growing. In general, DSLs should not be regarded as isolated, thus it is not e�cient to

specify and implement a refactoring for di�erent DSLs anew, although the same modi�cations are

applied except that the target language is di�erent. As argued in the previous section, the same

refactorings must be reusable in di�erent DSLs from an abstract point of view. Consequently, the

speci�cation of refactorings should be independent from the target language which it is intended

to be applied to. Thus an approach for the generic speci�cation of refactorings is essential.

DSL-Specific Instantiation of Refactorings When refactorings can be speci�ed generically, an

approach is needed that supports the declaration of what a generic refactoring means for a

particular DSL. This is the consequence of the previous goal and comprises the DSL-speci�c

instantiation of generic refactorings.

ExplicitRelationBetweenRefactoringCandidates, RefactoringsandQualities In [FBB+99], Fowler

et al. de�ned structures suggesting the application of a particular refactoring as bad smells.

The presence of a bad smell is a refactoring candidate, because it deteriorates speci�c qualit-

ies and the execution of a refactoring might improve them [FBB+99; SSL01; MTM07; Als09].

7http://www.jamopp.org/ (visited 10th February 2015)

9

http://www.jamopp.org/

1. Introduction

The problem of Fowler et al. ’s term is that it has not been de�ned precisely. Furthermore,

the connection to qualities and refactorings is only implicit. Hence, it is not possible to give

evidence about what smelling structures in�uence which quality negatively and can be resolved

by which refactoring [MTM07]. That’s why a precise de�nition of a bad smell in the context of

MDSD is needed, explicitly relating refactoring candidates, refactorings and qualities to allow

for automatic detection and resolution.

Specification of Dependent Modifications As argued in Sect. 1.1, a DSL and its models can have

interdependencies to instances of other DSLs in MLDEs. If a model evolves, it might have e�ects

on dependent models. To avoid violation of consistency of the dependent models an approach

for speci�cation of dependent modi�cations is needed. Since the subsequent changes must not

alter the dependent model semantics such modi�cations are considered to be refactorings. In

addition, the subsequent refactorings depend on a preceding refactoring and are therefore called

co-refactoring. Such a speci�cation should enable the mapping of preceding modi�cations in a

model of one DSL to succeeding modi�cations in a dependent model of another DSL.

Detection of Dependent Models Apart from the speci�cation of dependent modi�cations, de-

pendent models themselves must be detectable in MLDEs. This goal contains two essential parts.

First, dependencies between models must be tracked. Second, it must be recognized when a

tracked model evolves, what modi�cations occurred and which other models they have in�uence

on. After this detection process, the dependent modi�cations must be applied to the dependent

models.

In summary, an approach is missing that provides mature refactoring means in MLDEs and

considers time, space and quality. The time aspect takes the fact into account that models might

evolve through refactoring over time. The space aspect takes the circumstance into account

that a model is never alone. Several other dependent DSL instances of the same or di�erent

metamodel may be contained in the model’s surrounding. Thus, the approach must comprise

the co-refactoring of those dependencies as a consequence of an initially refactored model to

preserve the consistency of all models. Furthermore, the approach must take the quality aspect

that way into account that evidence can be given about which model structures in�uence what

quality negatively, and which refactorings can resolve those de�ciencies. As a consequence

refactorings can be suggested to the DSL user.

1.3. Generic Quality-Aware Refactoring and Co-Refactoring in
Heterogeneous Model Environments

To establish a connection between the problems from Section 1.1 and the challenges from

Section 1.2, a simpli�ed MDSD model life cycle from Figure 1.7 is underlain. The simpli�ed

life cycle starts with the phase of Refactoring in which a model evolves. In the general case,

two subsequent phases follow. On the one hand, the phase of Quality Evaluation follows, in

which quality properties of the evolved model are evaluated, and, when indicated, refactoring

candidates are identi�ed and possible refactorings for resolution are suggested. On the other

hand, the Co-Refactoring phase follows, in which dependent models are detected and possible

10

1.3. Generic Quality-Aware Refactoring and Co-Refactoring in Heterogeneous Model Environments

dependent refactorings are determined. If applicable, subsequent co-refactorings are executed

on dependent models and again, the Quality Evaluation is the next step. Now, the quality of the

dependent models is evaluated as a consequence of an applied co-refactoring. In either case,

after the quality was evaluated, the next phase is Refactoring again when the desired quality

requirements are not satis�ed.

To address all three of these phases and to support the entire life cycle of heterogeneous models

in MLDEs, this thesis contributes a comprehensive approach for quality-aware refactoring and

co-refactoring based on role modelling. It is structured as follows.

Foundations (Chapter 2)

Before the parts of the comprehensive approach of this thesis are elaborately presented founda-

tions are accomplished in Chapter 2.

Review of Related Work (Chapter 3)

For being able to give evidence about what other related approaches exist to tackle the overall

problem, a broad review of the state-of-the-art is provided as well. For this purpose, requirements

are established to compare the approach of this thesis with the related work.

Generic Role-Based Model Refactoring (Chapter 4)

To provide means for language-independent [MTM07; TMM08; MMBJ09] speci�cation of refac-

torings, an appropriate abstraction mechanism is essential. On the one hand, abstraction over

all potential languages is one option. The limitation of this alternative is that the DSLs which

refactorings should be provided for are constrained in the sense that all must be similar to the

concepts in the language abstraction. Thus, this approach would be too static, as will be discussed

in Sect. 3.1. For this reason, the approach of abstraction over the desired refactorings is chosen

as another option. In detail, role modelling is applied as abstraction technique, since a role model

represents a dedicated view of objects in an interesting context and the collaborations of the

objects within this context [RWL96; RG98]. In this thesis, a role model de�nes the participants of

a refactoring and their collaborations, independent from the target DSL which it should be made

available in. The di�erent context of the same generic refactoring is considered the particular

refactoring of a speci�c DSL.

Hypothesis 1: Abstraction over refactorings instead of abstraction over lan-

guages is feasible to provide means for specifying refactorings generically.

The prove of this hypothesis is twofold. First, role-based generic model refactoring is conceptu-

alized and implemented. Second, a set of generic refactorings is elaborated which is then applied

in di�erent DSLs.

Suggestion of Refactoring Specifications (Chapter 5)

When refactorings are speci�ed generically, it must be possible to instantiate them for particular

DSLs. The process of making a generic refactoring DSL-speci�c is not trivial, since there might

11

1. Introduction

be many possibilities to do so. Some of them are suitable while others are not. To provide support

for this task, Chapter 5 presents an approach making use of graph querying in order to provide

suggestions of DSL-speci�c refactoring speci�cation.

Correlating Bad Smells, Qualities and Refactorings (Chapter 6)

As already illustrated in the previous section, the term bad smell [FBB+99] is vague and imprecise.

Furthermore, the explicit connection of structures violating particular quality requirements is

omitted completely. This relation is considered only informally, just the same as the relation to

resolving refactorings. As a consequence of the mentioned shortcomings, the term bad smell

lacks precise understanding. We argue that a correlation between bad smells from Fowler et al.,

qualities and resolving refactorings exists, which must be made explicit to automate tool support

in suggesting particular refactorings.

Hypothesis 2: To provide a precise understanding of bad smells [FBB+99] and

their explicit relationship to qualities and resolving refactorings the new termQuality

Smell and a conceptualization is required. It must incorporate known approaches

for quality determination, such as metrics and anti-patterns.

To prove this hypothesis the new term Quality Smell is de�ned and a conceptual framework

is speci�ed. This framework serves for sharpening the understanding of what it means when

model structures do not meet particular quality requirements and how this circumstance can

be eliminated. Furthermore, the conceptualization is implemented and it is shown that the

suggestion of potential refactorings to resolve particular quality smells now is possible.

Quality Smell Catalogue (Chapter 7)

As we have seen in history [BC87; GHJV94; Sai03] pattern catalogues and pattern languages

support designers of object-oriented software “[. . .] to ask (and answer) the right questions at the

right time” [BC87]. This means that they provide means to declare reusable patterns for recurring

problems in object-oriented design. If such a problem occurs and is detected, the appropriate

pattern can be applied to solve the problem. A more rigorous approach is presented in [TM15]

arguing that Pattern First Thinking improves software quality, in terms of more �exible software,

and team communication. The authors of [BC87; GHJV94; Sai03] presented their catalogues for

design problems in object-oriented software, but the same holds for quality-related problems in

MDSD models.

Hypothesis 3: A quality smell catalogue can be mined to improve the under-

standing of the term quality smell and its connection to qualities and refactorings.

Such a catalogue enhances documentation and contributes reusable patterns for

quality improvement.

To prove this hypothesis a quality smell catalogue is compiled for the domain of mobile devices’

applications. Exemplarily the Android
8

operating system as target platform is used because of

its open-source character.

8http://www.android.com/ (visited 10th February 2015)

12

http://www.android.com/

1.3. Generic Quality-Aware Refactoring and Co-Refactoring in Heterogeneous Model Environments

Co-Refactoring Dependent Models (Chapter 8)

Usually models do not occur isolated, but have dependencies on other models or other models

are dependent on them. To ensure consistency of dependent models, they must be synchronized

with the initially refactored model in terms of behaviour preservation. Thus, they must be

co-refactored. This task comprises, �rst, the speci�cation of modi�cations dependent on the

preceding refactoring changes, second, the detection of dependent models, and, third, the

application of the speci�ed dependent modi�cations on the dependent models. The �rst subtask

demands for distinction between two di�erent situations. On the one hand, the DSL of the

initially refactored model is known, and on the other hand, the DSL is not known. In the latter

case, the dependent modi�cations are speci�ed with respect to the generic speci�cation of the

initial refactoring, while concrete concepts of the known language can be used in the former

case.

Hypothesis 4: Consistency of models, being dependent on an initially refactored

model, can be maintained through the speci�cation and execution of modi�cations

dependent on the preceding changes of the refactored model. Such co-refactorings

must be applied on those models being recognized as dependencies of an initially

refactored model.

To prove this hypothesis a concept and implementation for the detection of dependent models

and the speci�cation and execution of dependent modi�cations are developed. Afterwards it is

applied to a case study in the domain of co-refactoring Web Ontology Language [W3C12] (OWL)

models dependent on changes in metamodels which the OWL models are derived from.

Refactory: An Implementation (Chapter 9)

For validation of the concepts developed in this thesis we provide an implementation. It is

realised in our tool called Refactory.
9

Evaluation (Chapter 10), Conclusion and Outlook (Chapter 11)

The evaluation of the aforementioned contributions is presented in Chapter 10. Finally, this

thesis is closed with a conclusion and discussion of future work in Chapter 11.

9http://www.modelrefactoring.org/ (visited 10th February 2015)

13

http://www.modelrefactoring.org/

2
Foundations

To ensure that the reader has the same understanding of concepts and terms used throughout

this thesis, this chapter provides the foundations to form a common base. First of all, the concept

refactoring is explained in general. Since we consider only model-based DSLs, the MDSD and its

abstraction layers are presented afterwards. The concept of roles is an essential constituent in the

whole thesis. Therefore the origin and the foundations we base our work on is illustrated then.

2.1. Refactoring

In 1990 Opdyke and Johnson de�ned the term refactoring for the �rst time in [OJ90]. Shortly

thereafter, Opdyke published his dissertation “Refactoring Object-Oriented Frameworks” and

the term refactoring has been established. He gives the following explanation:

“Refactorings are reorganization plans that support change at an intermediate

level. [. . .] Refactorings do not change the behaviour of a program; that is, if the

program is called twice (before and after a refactoring) with the same set of inputs,

the resulting set of output values will be the same.” [Opd92]

The main motivation of Opdyke’s work was to increase reuse in object-oriented frameworks

because of the rising complexity. The problem is that a refactoring can be applied after a part of

a software is already reused and, thus, it can have extensive impact to existing clients. Therefore

tool support must be provided in order to manage the complexity and error-proneness. As a

prerequisite for the behaviour preservation Opdyke identi�ed the satisfaction of pre-conditions

as essential part of a refactoring.

In his work, he studied object-oriented frameworks and proposed a catalogue of 29 refactorings,

as, e.g., Convert a Code Segment to a Function [Opd92, p. 34], which moves a segment of code

to a new function and calls it at the previous position. As already mentioned in Sect. 1.1, this

refactoring is better known as Extract Method nowadays [FBB+99].

15

2. Foundations

Some years later, the standard work which is cited most often with respect to practical

refactoring has been published by Fowler et al. in [FBB+99]. The authors identi�ed the importance

of testing before and after the application of refactorings in order to prove the behaviour

preservation on an informal base. Furthermore, they related the refactorings to bad smells

indicating potential candidates to be restructured. An essential result of their work is the

catalogue of refactorings presented therein. It is based on the work of Opdyke, but underlies a

schema similar to the one presented in [GHJV94] (“Gang of Four”) regarding design patterns in

object-oriented software.

With the advent of the MDSD, it was recognized that known code refactorings should be made

available for the emerging amount of DSLs [TDDN00; MTM07]. As a consequence the idea of

model refactoring was born and Van Der Straeten, Jonckers and Mens, e.g., de�ned it as “[. . .] a

transformation used to improve the structure of a model while preserving its behaviour” [VJM07].

This is the tenor of most other informal de�nitions of the term model refactoring. Common

sense is that the meaning is very similar to the one of code refactoring, except that instead of

code existing models are restructured in order to improve design quality while the behaviour is

preserved.

In this thesis, a new technique for generic model refactoring is presented. To di�erentiate

clearly between a generic refactoring, its instantiation and the execution the following termino-

logy is used throughout the thesis: refactoring denotes a concrete restructuring in a model of a

particular language, generic refactoring indicates a reusable abstraction of similar refactorings

applicable in models of one or more languages, and refactoring execution means the application

of a refactoring on a particular model.

2.2. Model-Driven So�ware Development

In order to understand the need for models, Kleppe argued that the rise of complexity in software

development can be managed with the use of frameworks and reusable patterns [Kle09]. But this

is only a short-term solution which can only be mastered by a rise of abstraction to understand

what software does in the core. Due to this background software development has been subject to

change by means of separating concerns (separation of concerns (SoC)) in abstract representations

of particular aspects of a software. Those abstractions are considered to be a model. Rothenberg

de�ned a model as follows:

“A model represents reality for the given purpose; the model is an abstraction of

reality in the sense that it cannot represent all aspects of reality. This allows us to

deal with the world in a simpli�ed manner, avoiding the complexity, danger and

irreversibility of reality” [Rot89].

This de�nition re�ects the fact that a model focusses on speci�c concerns of reality and omits

certain properties. In software development, this technique of abstraction has been taken over in

the paradigm of Model-Driven Software Development (MDSD) [GS03; SVB+06]. In MDSD, models

are used to abstract from typical technical aspects of the system under development. Those

aspects are, e.g., the target platform the software is intended to be run on, or the programming

language used for implementation. Furthermore, di�erent models are used to describe solutions

of di�erent problems of the overall system. The UML is a prominent example for it, since it

16

2.2. Model-Driven Software Development

PersonAge void eat() UML Class DiagramM1
Model

ClassAttribute Method UML Metamodel
M2
Metamodel
(Language)

Concept
Ecore
Metalanguage

M3
Meta-Metamodel
(Metalanguage)

johnjohn.age john.eat()
M0
So�ware Objects

Ab
s t
ra
ct
io
n

Instantiation

Figure 2.1.: MOF architecture.

provides various types of diagrams to specify distinct parts of a software [OMG11a]. Examples

are class diagrams to de�ne concepts of the system domain or state machine diagrams to specify

a protocol a software component must satisfy.

To make use of de�ned models regarding the concrete realisation of a system, they are then

translated into representations being meaningful for underlying executors. This conforms to

the explanation of the abstraction gap in Fig. 1.4. The translation into other representations is

explained in more detail in Sect. 2.2.2. But at �rst the question is answered how di�erent kinds

of models can be distinguished. In this sense this re�ects the need for a formalisation in order to

let models be processed by aforementioned translators. Thus a formal description of models is

needed which provides further information about the structure of models. This is explained in

the following section.

2.2.1. Levels of Abstraction and Metamodelling

As already mentioned in Chap. 1, we only consider model-based DSLs in this thesis. Consequently,

it must be clari�ed what this means exactly and how to distinguish di�erent DSLs in this regard.

To let models be processed by a machine, the structure of a model must be known. The reason

is that the set of models is potentially in�nite and thus a �nite speci�cation of the commonalities

of models is needed. Therefore a formalism is required to model the structural constraints of

models. The process of providing the de�nition of model structures by means of a model is

called metamodelling. Thus a metamodel describes properties of models. It can be observed that

we already have di�erent abstraction layers: one for a metamodel and another for the models

described by the metamodel.

The Object Management Group (OMG) provided a formal base for metamodelling in order

to support the creation of concrete metamodels. This formalism is de�ned as Meta Object

Facility [OMG13c] (MOF) and provides an architecture where constituents of one layer describe

constituents in an underlying layer. This architecture is illustrated in Fig. 2.1.

It consists of four metalayers to express the di�erent levels of abstraction. On top, we have

the M3 layer which represents the metalanguage layer to describe languages (or metamodels)

17

2. Foundations

in the underlying M2 layer. Thus, the metalanguage (or the meta-metamodel) provides means

to specify the structural properties and concepts of languages. These structural properties are

considered to be the abstract syntax of a DSL restricting the set of valid models regarding the

DSL’s required concepts. The DSL itself resides at the M2 layer of the architecture. Since the

structure of valid models now is de�ned the DSL can be used for instantiating those structures.

Instantiations of a metamodel are the models residing at the M1 metalayer. They represent

the real world or software objects at the M0 layer. As can be observed there is a conformance

relationship between all metalayers: M0 objects conform to their abstract representations on the

M1 layer (the models), which in turn conform to the structural speci�cation of their metamodels

at the M2 layer (the DSLs), which itself conform to the meta-metalanguage resided at M3.

According to Fig. 2.1, an example would be (depicted at the right part) the Ecore metalanguage

provided by the Eclipse Modeling Framework [SBPM08] (EMF). I It represents the quasi-standard

for modelling metamodels of DSLs. Ecore is used to de�ne the metamodel of the UML at M2

which in turn is used to de�ne models, as, e.g., class diagrams, at M1.

Ecore itself implements the Essential MOF (EMOF) standard and therefore ensures that models

can be considered as typed, attributed graphs [Roz97]. A model is composed by its containing

elements which constructs a tree structure. But in contrast to trees, models can have references

to other model elements and thus form a graph. This property reveals the advantage that no

additional resolution mechanism is needed to navigate from one model element to another model

element along a reference.

To close the gap to model-based DSLs, one can say that a DSL is de�ned by its abstract and

concrete syntax. The abstract syntax corresponds to the metamodel—the valid structure of the

DSL models. The concrete syntax de�nes rules about which technique is used to create concrete

instances of a DSL. This is the aspect of representing models. Common techniques are, e.g.,

graphical syntaxes (as used by the UML) or textual syntaxes. For one and the same abstract

syntax various concrete syntaxes can be de�ned. Thus it is possible to provide textual and

graphical editors for the same DSL, as it is for example possible with EMFText or the Graphical

Modeling Framework [Gro09] (GMF) respectively.

To consider programmes of a certain programming language as models, a metamodel and

a concrete textual syntax, which re�ects the language’s syntax speci�cation, are required. In

this sense, programmes do not span an abstract syntax tree anymore but an abstract syntax

graph. As stated above, resolution semantics are now explicit by means of references. Providing

a model-based DSL for an existing programming language is no trivial task, but it is possible as

demonstrated by the Java Model Parser and Printer [HJSW10] (JaMoPP). Therefore, especially

Java programmes can be handled as models.

2.2.2. Model Transformations

Since we now have a speci�cation of the structure of models by means of their metamodels,

several tasks can be performed depending on these structures. In usual MDSD scenarios, models

are translated into other artefacts in order to carry out additional tasks such as, for instance,

re�ning a model in a representation being more expressive. As an artefact, we consider any

kind of data that conforms to a certain schema. Thus, artefacts can be represented as models. A

prominent example for such a re�nement process is the Model-Driven Architecture [OMG03]

(MDA) in which models of higher abstraction are transformed into more speci�c models, in order

18

2.3. Role-Based Modelling

to add platform-speci�c information stepwisely.

Thus, a model transformation translates a source model into a target model by executing

the speci�cation of the transformation. Such a speci�cation can be de�ned by means of the

metamodels of source and target. This means that the concepts (metaclasses) de�ned in a

metamodel are the basis of the transformation speci�cation. Thus a transformation maps elements

from the input to elements in the output model. The particular languages of the input and output

models are not restricted. Therefore, di�erent kinds of transformations exists. On the one hand,

the metamodels can be distinct. In that case the model transformation is called exogenous [MV06].

On the other hand, the metamodels of source and target can be the same. In this case we speak

about endogenous model transformations [MV06]. Endogenous model transformations can be

distinguished further by means of the amount of involved models. If the source and target models

are the same such a transformation is considered as an in-place transformation. Executing a

refactoring is an example for that. In contrast, an out-place transformation incorporates several

models regardless of the fact if it is an endogenous or exogenous transformation.

While transforming one model into another model, correspondences between the transformed

elements are established. These correspondences provide valuable information about which

model element is the cause of the realisation of another model element. Such correspondences

are called traces or trace links in order to explicitly describe the trace from the source to the

target element. We make use of this concept in Sect. 8.3.

2.3. Role-Based Modelling

Software systems are subject to change, they evolve over time and the complexity rises [Leh96;

Kle09]. To manage complexity, one can take advantage of a strategy humans apply in reality.

Consider, e.g., a woman having a husband and some children. She plays table tennis in a club

and is also a researcher at a university. In case one of her children gets sick she cares solicitously

and takes the child to the medic. In another situation her table tennis team has a competition

and she prepares for it mentally and physically in order to access her potential power. Then a

research paper was accepted and she arranges everything for the business trip. All these tasks

have to be carried out by her. In summary, one can doubt how the woman manages to organise

everything. But what humans do is to separate di�erent contexts of life. The �rst example shows

the woman as a mother, in the second she is a sportswoman and in the third she is a researcher. In

this sense she plays roles in di�erent contexts of her life. Focussing one context while omitting

others allows for a dedicated solution only concerning this context.

This strategy of role playing has been transferred to software development, as well, since

it allows for the dedicated concentration on di�erent contexts of a software. As seen in the

little example, roles provide means to capture context-dependent behaviour of subjects and

collaborations between them [Bac73]. In our example, the subjects are humans; and in software

development subjects are objects.

A plenty of role modelling approaches exist of which each has its justi�cation [KLG+14].

In [Ste00], Steimann provided a list of role features being essential in utilising roles for software

development. This was a �rst step in formalising roles, which was took up and extended

in [KLG+14]. The role concept we rely on in this thesis was �rst published in [RWL96] and

later extended in [RG98]. Therein, Riehle and Gross provide an informal metamodel of roles and

19

2. Foundations

ChildParent

Component

Composite Leaf

Node

RootRootClient

NodeClient

Role Use
Role Implication

Role Prohibition

Figure 2.2.: Role model for Composite pattern [GHJV94] according to [RG98].

argue that role models describe patterns of collaborations between objects that constrain the

intrinsic objects [RG98]. This approach is presented shortly in the following.

Riehle and Gross de�ne the view of an object to another one as a role type. If an object conforms

to a role type speci�cation, it plays the role speci�ed by the role type. In the following and

throughout this thesis, we use the terms role and role type interchangeably since it is su�cient

for this work to know that a role represents certain properties in a particular context. When an

object plays that role the fact that it conforms to the role type is given implicitly. We argue that

this view concerning roles and role types is sensible.

In addition to roles, Riehle and Gross allow for the speci�cation of collaborations between

roles. With the concepts of roles and collaborations it is now possible to specify role models

representing the interaction of objects playing those roles in a particular context. The following

collaborations are distinguished.

Role Use is directed from a role A to B and denotes that an object playing A must be associated

to an object playing B.

Role Implication is directed from a role A to B and signi�es that the object playing role A must

also be able to play role B.

Role Prohibition is a non-directional collaboration between roles A and B and expresses that an

object playing A must not play role B at the same time.

Riehle and Gross argue that a role model can be mapped to class diagrams of frameworks.

A role model then is considered as structural constraints over the class diagram which can be

checked statically.

Have a look at Fig. 2.2, showing a small class hierarchy in the background. It re�ects the

Composite pattern of the Gang of Four [GHJV94] (GoF). In the foreground, one can see the role

model according to [RG98] representing this GoF design pattern. Thus, a class Parent plays

the role Composite and knows (Role Use) its Children playing the Leaf role. The other way

around, the Child knows (Role Use) its Parent. Furthermore, we have the role Root, which is

not contained in the GoF pattern and is located in another role model (denoted by a di�erent

colour). An object playing the Root role must also play the Composite role (Role Implication).

The roles RootClient and NodeClient provide access to either the root node of the composite

or an arbitrary node.

20

2.3. Role-Based Modelling

This approach of capturing certain aspects of software systems in role models is quite prom-

ising, since it allows for distinguishing the di�erent contexts a system can interact with. Further-

more, a role model can be speci�ed independently from the particular model it should be mapped

to. Thus, role modelling is a sophisticated abstraction mechanism to focus on the interaction

between certain participants within a context by using roles and collaborations in between.

21

3
RelatedWork

In this chapter, related work including the state-of-the-art is discussed. As a preliminary consid-

eration, we have to admit that, to the best of the author’s knowledge, no comprehensive approach

exists covering all three main aspects we emphasized in Section 1.1: model refactoring, quality

evaluation, co-refactoring. These aspects refer to Hypotheses 1, 2 and 4. As stated earlier, quality

evaluation means to detect structural de�ciencies related to particular qualities. Therefore, we use

the following four main categories to analyse and classify the related work and other approaches:

Model Refactoring, Quality, Structural De�ciencies, Co-Refactoring. There might be approaches

overlapping some of these categories, thus, the total number of possible categories is the sum

of all combinations without repetition received by selecting one, two, three or four of these

classes respectively:

∑
4

k=1

(
4

k

)
= 15. From a set-theoretic point of view we get the same result by

calculation of the cardinality of the power set of these four categories. If X is the set containing

the four main categories then we get the following cardinality: |P (X) | −1 = 2
|X |−1 = 2

4−1 = 15

where 1 is subtracted since the empty set is not relevant for our consideration of related work.

Thus, the classi�cation scheme in Fig. 3.1 contains 15 categories being described in Table 3.1.

These categories are not meant to be considered in the algebraic sense, but they are illustrated

within a Venn diagram in order to recognize better how the categories relate to each other.

Obviously, category R-CoR-SD-Q in the middle of this scheme is the most interesting one. It

covers all the aspects analysed previously. As will be seen, none of the presented other approaches

and publications fall into this category. The objective of this work is to cover this category

in the end. As a consequence of the absence of other comprehensive approaches, the related

work is divided into three parts, mapped to the core chapters of this thesis: Model Refactoring

(Chapter 4), Quality Evaluation (Chapter 6) and Co-Refactoring (Chapter 8). The related work

discussed then is brought into context of the classi�cation scheme and is evaluated according

to the following three-valued scale: + is used if a requirement is met completely, ◦ is used if a

requirement is met only partially or is not realised satisfactory, and - is used if a requirement is

not realised at all.

23

3. Related Work

Structural
DeficienciesQuality

Co-
Refactoring Refactoring

RCoR

Q SD

R-SD

R-Q

R-CoR

CoR-SD

CoR-Q
Q-SD

R-SD-Q

R-CoR-QR-CoR-SD

CoR-SD-Q

R-CoR-SD-Q

Figure 3.1.: Classi�cation scheme for the related work.

Table 3.1.: Categories of the classi�cation scheme.

Characterisation Category Identi�er Description

1 element

R Refactoring

CoR Co-Refactoring

Q Quality

SD Structural De�ciencies

2 elements

R-SD Refactoring and Structural De�ciencies

R-Q Refactoring and Quality

R-CoR Refactoring and Co-Refactoring

CoR-SD Co-Refactoring and Structural De�ciencies

CoR-Q Co-Refactoring and Quality

Q-SD Quality and Structural De�ciencies

3 elements

R-SD-Q Refactoring, Structural De�ciencies and Quality

R-CoR-Q Refactoring, Co-Refactoring and Quality

R-CoR-SD Refactoring, Co-Refactoring and Structural De�-

ciencies

CoR-SD-Q Co-Refactoring, Structural De�ciencies and Quality

4 elements

R-CoR-SD-Q Refactoring, Co-Refactoring, Structural De�ciencies

and Quality

24

3.1. Model Refactoring

3.1. Model Refactoring

As already discussed and manifested in Hypothesis 1, a suitable abstraction mechanism in the

form of abstraction over the refactorings instead of abstraction over the target DSLs is needed

for realising a generic model refactoring approach. In the literature, only few generic approaches

can be found. All of them have their limitations, thus we take it for granted to review non-

generic approaches, as well, in order to get deeper insights and learn something from them.

For distinguishing the related work, we classify the existing approaches according to the MOF

metalayer the refactorings are speci�ed in. This is helpful since all approaches belonging to the

same metalayer su�er from the same disadvantages or limitations and similar observations can

be made.

In the following subsections, we �rst specify criteria enabling comparison of the di�erent

refactoring approaches. Afterwards, the related work is reviewed in detail before they are

evaluated.

3.1.1. Requirements

To be able to compare the various existing approaches, comparison criteria are needed. Initial

requirements regarding a refactoring tool have already been proposed in [Opd92] and [FBB+99].

Later they were extended and adapted to the MDSD context, e.g., in [MV06] and [MTM07], and

tailored to the area of generic model refactoring in [Rei10]. The following requirements are

based on the mentioned publications. Some are conceptual requirements while others can be

realised in the implementation.

1. Genericity: An appropriate abstraction is needed that allows for metamodel-independent

speci�cation of a particular refactoring. Such an abstraction must be target of the generic

transformation speci�cation which then must be applicable in a DSL-speci�c context.

This requirement ensures that refactorings can be reused across di�erent DSLs, without

specifying them anew.

2. Flexibility: In addition to the �rst requirement, the abstraction must be �exible enough not

to impose restrictions with regard to the concepts of an intended target language. Thus, a

generic refactoring approach must be able to support any structures of a target language.

3. Speci�city: When a refactoring is speci�ed in a generic manner, it must still be applicable

in a language-speci�c precise context. Thus, we demand means to be provided enabling the

DSL-speci�c execution of refactorings on the one hand, and language-speci�c adjustment

on the other hand.

4. Behaviour Preservation: According to the de�nition of the term refactoring an approach

should preserve the semantics of the refactored model.

5. Pre- and Post-conditions: For being able to describe the state of a model to qualify for a

particular refactoring, it must be possible to specify pre-conditions. The circumstances

under which a refactoring is valid under must be speci�able in terms of post-conditions.

25

3. Related Work

6. Atomicity: A model refactoring must be executable as a whole unit. Otherwise a trans-

formed model might be in an invalid state. Thus, a refactoring must be applied either

completely or not at all.

7. Reversibility: This requirement has a direct connection to the previous one. An approach

should provide means to roll back a refactoring completely. A refactoring user should

have support to revise and correct a decision in case a particular refactoring was applied

mistakenly.

8. Speci�cation Suggestion: When a refactoring is generic (Requirement 1) and there is

support to apply it in instances of a concrete DSL (Requirement 3), it would be reasonable

to support a DSL designer in the decision which concrete refactorings to provide for her

DSL users. In this sense, means are needed to help the designer in the process of making a

generic refactoring DSL-speci�c.

9. Application Suggestion: Another suggestion is related to the DSL user. She must be

able to get recommendations about which refactoring to apply in a certain context. This

requirement is highly related to Requirement 3 in Sect. 3.2. But since refactoring approaches

are not required to cover quality de�ciency approaches (and vice versa) we separate these

requirements.

10. Interoperability: This requirement is twofold. On the one hand, it means that no restrictions

regarding a DSL’s metamodel should be stated so that a maximum variety can be supported.

On the other hand, this requirement comprises to execute refactorings independently from

the model’s representation (e.g. tree-based, textual, graphical). Thus, the only restriction

should be that supported languages must be MOF-conform.

3.1.2. Literature Review

Depending on the MOF metalayer which refactorings are speci�ed at, di�erent observations can

be made. In the following, related work resided at these layers is analysed.

M3

In [MMBJ09; SMM+12] an approach to specify generic refactorings is presented. Here, the

authors introduce a meta-metamodel called GenericMT, which enables the de�nition of generic

refactorings on the MOF layer M3. This meta-metamodel contains structural commonalities of

object-oriented metamodels resided on M2 (e.g. classes, methods, attributes and parameters).

Generic refactorings are then speci�ed on a GenericMT’s basis. To activate them for a speci�c

metamodel (i.e. a model on M2) a target adaptation is needed. Once such an adaptation exists,

every de�ned generic refactoring can be applied to instances of the adapted metamodel. The

adaptation contains the speci�cation of derived properties declared in the GenericMT which are

not de�ned in the metamodel of interest. By this, an aspect-oriented approach is achieved and

the newly de�ned properties are woven into each target metamodel. However, this approach is

restrictive with respect to the structures of GenericMT, because it contains exclusively object-

oriented elements. DSLs that expose such structure and that have a similar semantics can

be treated, while other DSLs cannot. Refactorings that require other structures cannot be

26

3.1. Model Refactoring

implemented. Furthermore, an adaptation of a target language to the GenericMT is �x and

universal for the whole language. This does not allow to map the same structure twice (e.g. if a

DSL contains two concepts similar to method).

A very similar approach is illustrated in a series of publications realised in the MOOSE

platform.
1

In [TDDN00], Tichelaar et al. introduced a new constituent of MOOSE: the FAMIX

metamodel for a family of languages. In this sense, it is a meta-metamodel comparable to the

M3-layer of MOF. Again this meta-metamodel contains object-oriented concepts like Class or

Method only. To support a desired target language a language extension has to be implemented

for it [DGLD05; CLMM07]. The refactorings are speci�ed based upon MOOSE. Thus, they

are independent from the target language. Nevertheless this approach su�ers from the same

disadvantage as the previous one because once a language extension is provided the mapping

from the language’s concepts to the object-oriented MOOSE concepts is �xed. Thus, this approach

uses abstraction over the target languages and the claimed requirement of �exible structures in

Requirement 2 in Sect. 3.1.1 cannot be assured.

Another approach was published in [ZLG05], where generic refactorings are speci�ed on top

of the custom meta-metamodel within the Generic Modeling Environment [LMB+01] (GME).

The meta-metamodel of the GME is based on the UML and the authors therefore consider generic

refactoring as refactoring UML models since UML is used to specify a DSL’s metamodel in the

GME. Thus, they have a di�erent understanding in the sense that these refactorings can be

applied on the metamodel level. Nevertheless, this means that they cannot be reused across

di�erent DSL instances but are speci�c to the meta-metamodel of the GME. With the speci�cation

on M3 a metamodel-independent solution of model refactorings is achieved, but it is not meant

to be generic across di�erent languages.

In [Läm02] Lämmel proposed an approach which describes a framework for generic refactor-

ings enabling the speci�cation with the functional programming language Haskell.
2

Therein

generic refactorings are implemented with typed higher-order functional programming based

upon an abstraction interface. Similar to [TDDN00; MMBJ09], this interface considers object-

oriented structures only and is intended for speci�cation of generic refactorings for programming

languages. Lämmel’s framework allows for the reuse of the transformation. But this approach is

not model-based (not MOF-conform) and the generic algorithms always need to receive declared

and referenced names of elements of a particular language which leads to a large manual e�ort.

This approach could bene�t from the work in [NTVW15]. There Neron et al. propose a generic

framework for the name analysis in programming languages where the authors introduce scope

graphs enabling the language-independent analysis of declaration and use of named concepts

such as methods or variables. A language-speci�c mapping of the abstract syntax tree (AST) of a

programme to its scope graph must be provided. Thus, this approach is generic but it can only

be applied to realise rename refactorings.

In [RGdL+13; SGdL14] the authors published an approach similar to ours from [RSA13]. They

propose a component model for model transformations and introduce the notion of concept acting

as abstraction over a transformation. Then a binding is needed to map metaclasses from within

the source language to the components in the concept. A resulting concrete transformation is

generated by a higher-order transformation (HOT) which can then be persisted. This approach is

1http://www.moosetechnology.org/ (visited 10th February 2015)

2http://www.haskell.org/ (visited 10th February 2015)

27

http://www.moosetechnology.org/
http://www.haskell.org/

3. Related Work

very similar to the one we present in Chap. 4. It is a general approach for generic transformations,

for refactoring they use the Epsilon Wizard Language [KPPR07] (EWL) as transformation engine

from the Epsilon tool family
3

[KRGP13]. Nevertheless, there is one main shortcoming in the fact

that a structural feature from a concept can only be bound to one structural feature in the target

metamodel. This results in a lack of �exibility, since this mechanism is tightly coupled to the

de�ned structures in the concept. In addition, language-speci�cs cannot be provided and thus

the structures to be transformed and the structures in the concept must be almost identical.

Another interesting approach was published in [Ste11]. Steimann argues that every change to

a model of a DSL without semantics is considered a refactoring. For static semantics speci�cation

he motivates to use well-formedness rules (WFRs) expressing which structures are syntactically

correct but have no meaning in a particular language. Steimann’s approach then transforms the

WFRs to a constraint satisfaction problem (CSP), which does not use constraint checking anymore

but constraint solving. This means that after applying a modi�cation to a model a constraint

solver can evaluate which other modi�cations have to be applied to assure that all constraints,

and the WFRs respectively, are satis�ed again. By this approach, every modi�cation can be

considered a refactoring if related constraints are satis�able. Therefore it is named constraint-

based refactoring (CBR). On the other hand, refactorings are not speci�able explicitly and cannot

be de�ned as a composite atomic operation. But this approach can be considered generic, since

it only takes the concept of well-formedness rule into account. Thus, it is only dependent on the

speci�cation language of the WFRs, namely the Object Constraint Language [OMG14a] (OCL) in

Steimann’s publication. Since the OCL can be used to constrain any model-based DSL [WTW10],

this approach is language-independent.

The last discussed M3 approach is published in [RWZ11]. The authors present the new

refactoring speci�cation language ReL. This language supports the generic speci�cation of

refactorings on a grammar base. The authors de�ne the grammar of ReL itself with the Backus-

Naur Form [BBG+63] (BNF) and use non-terminals within this syntax as slots for extension. The

desired target language must provide its syntax in BNF as well. To establish the connection

between both of the mentioned, non-terminals of the core grammar then must be bound in the

grammar of the target language. Thus, a new grammar and a refactoring tool for the composition

of ReL and the target language is generated. Obviously, this approach is not independent from

the language’s representation and can only be used if a BNF syntax is given. Furthermore, this

approach again only abstracts over the target language. Thus, it is not very �exible once the

non-terminals are bound.

In summary, one can say that the approaches targeting M3 are limited with respect to the

structures refactorings operate on. As a result, they lack �exibility. This observation correlates

with the fact that all approaches, except [SGdL14] and [Ste11], abstract over the target languages

instead of the desired refactorings.

M2

Other approaches target the MOF layer where metamodels reside—M2. De�ning refactorings on

top of these metamodels implies that refactorings can work only on one speci�c language. One

of the �rst publications regarding language-speci�c refactoring emerged in [SPLJ01]. Sunyé et

3https://www.eclipse.org/epsilon/ (visited 10th February 2015)

28

https://www.eclipse.org/epsilon/

3.1. Model Refactoring

al. proposed a small set of UML refactorings adapted from existing code refactorings. In this

sense, their approach was generalising existing refactorings manually and instantiating them in

a concrete language.

The publications in [Köh06; TMM08], [BEK+06b; BEK+06a] and [MTM08] follow the approach

of language-speci�c refactoring and introduce their graphical de�nition. Here, DSL designers

can graphically de�ne a pre-condition model, a post-condition model and a model containing

prohibited structures, so-called negative application conditions. All models can share links to

express their relations and those which are not subject to modi�cation during the transformation.

By this technique, a graph is constructed and further analysis can be conducted. The actual

model transformation then is executed in terms of graph rewriting with the transformation

engine Henshin.
4

The comprehensive refactoring-related tooling then was implemented in the

tool EMF Refactor
5

and was published in [AMT10; ABJ+10; Are14].

A conceptually di�erent approach was published in [HMK05]. Hannemann, Murphy and

Kiczales use roles to abstract over the scattered implementations of crosscutting concerns.

These concerns then are to be refactored into separate aspects in terms of aspect-oriented

programming (AOP). In this sense, the behaviour is preserved while the speci�c implementation

is converted into AspectJ
6

aspects. The particular refactoring transformation is speci�ed with

respect to the de�ned roles. To apply such a refactoring, the roles must be mapped to concrete

programme elements in the scattered implementation. The mapping process is supported in

terms of suggesting possible other mapping targets while some roles are already mapped (cf.

Requirement 8 in Sect. 3.1.1).

A logic- and rule-based approach was published by Van Der Straeten and D’Hondt in [VD06].

The authors propose a solution which �rst encodes a language’s metamodel as concepts and

roles in Description Logics [BMNP03]s (DLs), and the targeted models as individuals afterwards.

This approach allows for exploiting the advantages of DLs, to reason about the models, and

to specify refactorings in a rule system. Furthermore, possible inconsistencies of a model of a

certain language are encoded in such a rule system as well. If a rule matches then an according

refactoring is triggered automatically based on the rule system. This approach was implemented

in the tool RACOoN for the UML environment Poseidon.
7

Since the logic-based representation of

a target DSL and its models reside in a di�erent technical space (MOF-based) the main limitation

of this approach is that all artefacts have to be transformed to DLs instantly. After applying a

refactoring, they have to be transformed back again, which we see as a main disadvantage of

this approach. Furthermore, this approach is suitable for automatic refactorings only since the

inconsistency rules trigger refactorings automatically when they match. Usually, the user wants

to retain control, because if she builds up a model, it is not desired to be modi�ed autonomously

by a tool. Application of refactorings is no objective task but many subjective factors (such as,

e.g., personal preferences, experiences, quality focus) play a role.

Beyond the described approaches, all other conventional model transformation languages and

engines can be used to specify refactorings resided at the M2 layer. The only requirement they

have to meet is that they must support endogenous in-place model transformations.

The advantage of specifying refactorings on M2 is that the target structures of the metamodel

4https://www.eclipse.org/henshin/ (visited 10th February 2015)

5https://www.eclipse.org/emf-refactor/ (visited 10th February 2015)

6https://eclipse.org/aspectj/ (visited 10th February 2015)

7http://www.gentleware.com/ (visited 10th February 2015)

29

https://www.eclipse.org/henshin/
https://www.eclipse.org/emf-refactor/
https://eclipse.org/aspectj/
http://www.gentleware.com/

3. Related Work

can be controlled precisely. However, this is also the main disadvantage, since reuse and generic

speci�cation are sacri�ced. Refactorings for speci�c metamodels cannot be reused for other

languages, but must be de�ned again although the core steps are the same.

M1

The M1 approaches are motivated from the fact that conventional model transformations usually

are speci�ed on the basis of abstract syntax [KLR+12]. Thus, the refactoring designer must be

aware of a DSL’s metamodel, although she is more familiar with the concrete syntax (model

representation) of the models to be refactored. As a consequence, some by-example approaches

have arisen. Varró was the �rst researcher who established this term in a general manner, not

dedicated to refactorings [Var06]. To the best of the author’s knowledge only a few approaches

exist regarding the refactoring speci�cation at the M1 layer.

In [BSW+09] and [BLS+09] a refactoring-by-example approach, which was implemented in the

Operation Recorder of the AMOR project,
8

is presented by Brosch et al. It enables the speci�cation

of refactorings on concrete instances of a speci�c metamodel. Modi�cations are recorded and

then abstracted and propagated to the speci�c metamodel. Since this metamodel is situated on

the M2 layer again, this approach does not allow for reuse either.

Sun, White and Gray presented a similar approach in [SWG09]. In contrast to Brosch et al.

modi�cations recorded on a concrete instance model, are not propagated to the metamodel level

but stored as transformation patterns which can be replayed on other instances of the same

metamodel. This approach again is restricted to instances of one metamodel and thus addresses

reuse of transformations in models and not across languages.

Langer, Wimmer and Kappel presented a by-example approach for model transformations in

general [LWK10]. Their contribution is the REMA process in the �rst place. They support the

incremental derivation of transformation rules by denoting input and output model elements,

instead of establishing correspondences of the whole structure which has changed. When the

source and target language is the same and the model transformation language, which the actual

transformation is generated for supports in-place transformation, then this approach can be used

for model refactoring as well.

3.1.3. Evaluation

The evaluation of the related work and other relevant approaches is presented in Table 3.2.

Therein, the entries in the column Approach contain a characteristic name and the most important

publication of the according approach. If no characteristic name is given, the authors are referred

to. The Category-column references the overall category as introduced in Fig. 3.1 and Table 3.1.

The names and �gures in the other column heads identify the according elaborated requirements

in Sect. 3.1.1.

As can be seen in the table, none of the discussed approaches meets every requirement. Notably,

requirements 6–9 are kind of non-conceptual requirements but regard the implementation of

an approach. These requirements were evaluated mainly as not ful�lled since no information

regarding them was published or these features have just not been realised. The CBR approach

of Steimann is the one being evaluated positively exclusively in the conceptual requirements.

8http://www.modelversioning.org/ (visited 10th February 2015)

30

http://www.modelversioning.org/

3.1. Model Refactoring

Table 3.2.: Comparison of related work regarding generic model refactoring.

M
O

F
L

a
y

e
r

A
p

p
r
o

a
c
h

G
e
n

e
r
i
c
i
t
y

(
1
)

F
l
e
x
i
b
i
l
i
t
y

(
2
)

S
p

e
c
i
�

c
i
t
y

(
3
)

B
e
h

a
v
i
o

u
r

P
r
e
s
e
r
v
a
t
i
o

n
(
4
)

P
r
e
-

A
n

d
P

o
s
t
-
c
o

n
d

i
t
i
o

n
s

(
5
)

A
t
o

m
i
c
i
t
y

(
6
)

R
e
v
e
r
s
i
b
i
l
i
t
y

(
7
)

S
p

e
c
i
�

c
a
t
i
o

n
S
u

g
g
e
s
t
i
o

n
(
8
)

A
p

p
l
i
c
a
t
i
o

n
S
u

g
g
e
s
t
i
o

n
(
9
)

I
n

t
e
r
o

p
e
r
a
b
i
l
i
t
y

(
1
0
)

C
a
t
e
g
o

r
y

M3

GenericMT [MMBJ09] + ◦ ◦ ◦ + - - - - + R

MOOSE [TDDN00] + ◦ + ◦ + - - - + ◦ R

GME [ZLG05] - ◦ + ◦ + - - - - ◦ R

Lämmel [Läm02] + ◦ - ◦ + - - - - - R

Epsilon EWL [RGdL+13] + ◦ + ◦ + - + ◦ ◦ + R

CBR [Ste11] + + + + + - - - - + R

ReL [RWZ11] + ◦ - - + - - - - - R

M2

EMF Refactor [Are14] - + + ◦ + - + - + + R

Roles AOP [HMK05] - + + ◦ + - - + - - R

RACOoN [VD06] - + + ◦ + - - - ◦ - R

M1

AMOR [BSW+09] - + + - + + + - - + R

Sun, White and Gray [SWG09] - + + - + - - - - - R

Langer, Wimmer and Kappel

[LWK10]

- + + - + - - + - - R

31

3. Related Work

The smarter this approach is the more de�ciencies regarding user expectations it has. Similar

to the RACOoN approach of Van Der Straeten and D’Hondt, users do not expect to trigger

automatic modi�cations after every model change. Furthermore, the work of Steimann is neither

suitable to assemble a refactoring catalogue as argued in Hypothesis 3, nor can refactorings be

recommended.

Except the GME of Zhang, Lin and Gray, all the other M3 approaches provide means to specify

model refactorings in a generic manner. Nevertheless, all of them lack �exibility in the sense

that no appropriate abstraction mechanism is used. Instead of abstracting over the refactorings,

they abstract over the target languages and most often only object-oriented DSLs are supported.

As a consequence, most of these M3 approaches use some kind of unifying meta-metamodel to

capture commonalities of the potential target languages. Thus, the authors had to decide which

concepts to include and how abstract these should be. The trade-o� implied by this procedure

would be to only use one single generic concept in the unifying meta-metamodel. Obviously

this is not feasible, since di�erent types of model elements cannot be distinguished anymore. In

this sense, the discussed M3 approaches are generic in nature but are too static in their concepts.

This results in a reduction of the potential languages, which refactorings could be provided for.

On the other hand, the M2 and M1 approaches lack genericity, but are powerful in �exibility

and speci�city. That is the nature of their metalayers. Since the M1 approaches capture the

intended refactorings by examples and then propagate them to the M2 layer for reusing them in

di�erent models of the same language, the M1 approaches su�er from the same disadvantages

and pro�t from the same advantages as the M2 approaches.

Many of the presented approaches are evaluated neutrally regarding the requirement of

behaviour preservation. The reason is that the discussed publications presented some pointers

about how to verify that the semantics did not change. An in-depth discussion regarding this

requirement can be found in Sect. 4.3.

Based on the analysis of related works in the �eld, we observed that the speci�cation of

refactorings on a single MOF layer does not yield a satisfactory result. Therefore, a technique

is needed that is able to combine the advantages of layer M3 and M2 speci�cations. Such a

technique must solve the problem that M3 approaches are limited to a speci�c group of languages,

by allowing to use multiple structural patterns rather than a single one (e.g. the object-oriented

concepts). It must also address the limitation of M2 approaches, which are speci�c to one language.

A dedicated solution should allow DSL designers to reuse individual generic refactorings for

multiple di�erent languages.

3.2. Determination of Quality-Related Deficiencies

As argued in Hypothesis 2, the bad smells of Fowler et al. are vague and imprecise. Furthermore,

a relation to qualities is only implicit and we argue that it must be speci�ed explicitly. Exactly

the same holds for the relation to resolving refactorings, since refactorings might improve

particular qualities [FBB+99; SSL01; MTM07; Als09]. Thus, we want to give an overview of

related work regarding their potential for determining quality-related de�ciencies. To the best of

our knowledge, no approaches exist correlating all three constituents explicitly: quality, related

de�ciencies (bad smells), resolving refactorings. Therefore, we analyse related work in a broader

sense and review other approaches regarding their abilities to resolve de�ciencies in models in

32

3.2. Determination of Quality-Related De�ciencies

general.

Again, we specify comparison criteria �rst and then analyse the related work and the state-of-

the-art. Afterwards, the related approaches are compared by means of the criteria, before we

draw a conclusion.

3.2.1. Requirements

In the following, we discuss requirements that must be ful�lled by an approach for determination

of quality-related de�ciencies in models of arbitrary DSLs and their resolution in terms of

applying refactorings. These requirements emerged in a re�ection process over the problems,

goals, and solutions discussed in sections 1.1, 1.2 and 1.3 respectively.

1. Explicit Quality Relation: As already argued, the relation of de�ciencies in models to

qualities is only implicit. Consequently, tools implementing such an approach cannot give

evidence about which particular quality requirements are violated. More precisely, this

implies that the term quality must be conceptualised and related to a concept of model

de�ciencies.

2. Explicit Refactoring Relation: In addition to the previous requirement an explicit relation

of model de�ciencies to refactorings is crucial to support the fact that refactorings can

improve certain qualities by removing particular bad smells. Therefore a concept of model

de�ciency must be conceptually related to refactorings.

3. Quality-dependent Refactoring Suggestion: In order to support the resolution of quality-

related model de�ciencies, an approach must provide means to suggest concrete refactor-

ings being able to resolve certain de�ciencies. For this, the previous two requirements are

not a necessary condition. If no explicit relations to refactorings and/or qualities exist,

refactorings can still be suggested by means of an implicit connection to qualities, as it was

illustrated, for instance, in [FBB+99]. This requirement also corresponds to Requirement 9

in Sect. 3.1.1 regarding the application suggestion of refactorings.

4. Metrics-based Detection: Since the use of metrics is a well established technique to give

evidence about certain qualities in models [Soc93; CK94; SSL01; BD02; AST10; KVGS11;

SK11], an approach should support the metrics-based detection of model de�ciencies.

5. Structure-based Detection: Formalisations of structures, such as anti-patterns or architec-

tural bad smells, are also a common technique to �nd de�ciencies in models [SW03; KE07;

GPEM09; ABT10; KGH10; DMTS12]. Thus, an approach must support the structure-based

detection of de�ciencies in models.

6. Cause Tracing: The three previous requirements must be seen in context. On the one hand,

it is not su�cient that the result of a metrics- and/or structure-based detection approach is

just the information of the presence of de�ciencies. On the other hand, there is no bene�t

in having the information that a particular refactoring is able to resolve certain de�ciencies.

Both the detection and the resolution must be traceable to the concrete model elements

causing the de�ciency. The detection’s output must be the refactoring’s input.

33

3. Related Work

7. Language Independence: An approach should be completely independent from particular

languages. It must be applicable to arbitrary DSLs and no restrictions regarding a DSL’s

metamodel should be stated.

8. Language Speci�cs: Since the concrete occurrence of a model de�ciency is speci�c for a

certain setting, as, e.g., it may be language-, platform- or framework-dependent [RBA14],

an approach must provide means supporting the setting-speci�c de�nition of a model

de�ciency. This requirement does not doubt that in principal such de�ciencies are universal

from an abstract point of view. Only the concrete occurrence is speci�c.

9. Interoperability: Here the same holds as in Requirement 10 for generic model refactoring

in Sect. 3.1.1. This requirement comprises independence from a model’s representation

(e.g. tree-based, textual, graphical) and that it must conform to MOF.

3.2.2. Literature Review

First, we have to point out the fact that in the upcoming presented works several similar but

new terms have been established. When we introduce them, they are highlighted with an italic

font shape to emphasize that they capture a speci�c meaning of the general term de�ciency we

used until now.

In the work from Pathak et al. the authors introduce the new term energy bug saying that it

is an error of the hardware, a mobile application or �rmware causing unexpected high energy

consumption on a mobile phone [PHZ11]. Obviously, energy consumption is an important issue

on mobile devices since even popular applications have bad energy properties and many of

those energy bugs have been introduced through updates [Wil14]. In [PJHM12] the authors

present an approach based on data-�ow analysis to statically �nd the so-called no-sleep bugs in

Android applications. Furthermore, they implemented a tool supporting the detection of these

bugs. Manual resolution hints are given. Thus, Pathak et al. consider one speci�c quality, namely

energy consumption. Since this approach is only implicitly related to a quality, but is able to

detect energy bugs, we classify this work into category SD.

Gottschalk, Jelschen and Winter also focus on Android devices and introduce speci�c energy

code smells in [GJJW12; GJW14]. They use a graph-based approach for de�ning, detecting and

resolving energy de�ciencies. Furthermore, they provide a catalogue of energy refactorings

containing Android- and Java-speci�c energy de�ciencies and refactorings to resolve them.

Behind the scenes their approach is implemented using TGraphs and the graph query tool

GReQL [BERS08]. By using the intermediate representation of a TGraph any target language is

supported given that a translation to a TGraph exists. Since the approach of Gottschalk, Jelschen

and Winter only takes the quality energy consumption implicitly into account but is able to detect

and resolve energy code smells we classify it into category R-SD.

Similar research regarding the quality energy consumption or performance in mobile applica-

tions was elaborated, e.g. [HB10; VAPM13] or [LXC14] respectively. But the illustrated work of

Gottschalk et al. and Pathak et al. is considered to be su�cient to provide insights about the

research in the area of energy consumption in mobile devices and applications.

Neukirchen and Bisanz investigate test smells in test suites using the testing and test control

notation (TTCN-3) [NB07]. They argue that test suites su�er from quality problems such as

usability, maintainability, or reusability. In previous works, the authors found out that metrics

34

3.2. Determination of Quality-Related De�ciencies

are suitable to detect either very local or very global quality problems in Java test code generated

by the TTCN-3 [ZVS+07]. But in [NB07] they argue that a pattern-based approach is more

powerful to tackle de�ciencies distributed over the source code. Thus they make the important

observation that quality issues can be cross-cutting over a whole system [TOHS99]. The authors

provide a catalogue of test smells for TTCN-3 test suites and automate the detection with the

tool TRex.
9

It also supports the resolution of those test smells by refactoring. Furthermore,

Neukirchen and Bisanz argue that the notion of metric and test smell is not disjoint and a test

smell can be considered as a metric by just counting the occurrences of the test smell. In this

sense, the TRex approach is speci�c for the TTCN-3 notation, but it supports both metrics-based

and structure-based detection of de�ciencies. This approach is classi�ed into category R-SD since

it can detect and refactor test smells. Subsequent work supporting that direction is [GvDS13;

GZvDS13].

Other test-speci�c work was published in [vRDDR07; BV08]. They introduce concrete test

smells and detect them with the help of metrics. They implemented their approach in the tool

TestQ
10

which currently supports the programming languages Java and C++. Unfortunately

the approach of Breugelmans and Van Rompaey does not explore beyond the detection and

visualisation of test smells and therefore is classi�ed into category SD.

In [AT12], Arendt and Taentzer introduce a tool based upon the EMF. It serves for detection

and resolution of de�ciencies in models. They rely on a graph-based approach since they perform

graph matching for detection and graph rewriting for resolution with their tool Henshin [ABJ+10].

For resolving smells they implemented the tool EMF Refactor [AMT10]. The theoretic foundation

of their tools has been published by Arendt in [Are14]. The author provides a concept supporting

the explicit relation of model metrics and model smells for resolving model refactorings. Model

metrics must be provided by implementing a Java calculation interface or by specifying them

with an OCL expression. Model smells are provided by means of graph patterns. The refactoring

capabilities are already known from the discussion of their approach in Sect. 3.1.2 at the M2 layer

and can be seen at a glance in Table 3.2. The examples used within Arendt’s thesis illustrate the

approach applied to UML- and Ecore-based models but it is independent from a particular target

DSL. The only requirement a language has to ful�l is that it must be MOF-based. Their tools are

mature and well-integrated into the Eclipse platform. Unfortunately, again they do not expose an

explicit quality concept. Thus developers or modellers cannot focus model de�ciencies related

to particular cross-cutting qualities. Therefore, the approach of EMF Refactor is classi�ed into

category R-SD.

Another EMF-based tool suite being able to support detection and resolution of quality-aware

de�ciencies in models is the Epsilon tool family [KRGP13]. It provides a set of languages for,

among others, validating, transforming, generating or comparing EMF-based models. Thus,

the team provides the Epsilon Validation Language enabling the speci�cation of constraints

for speci�c modelling languages. This language conceptually extends OCL and can be applied

to de�ne structure-based de�ciencies with constraints. When constraints are violated, the

Epsilon Wizard Language [KPPR07] (EWL) provides means for specifying refactorings to resolve

them. The Epsilon tool suite provides languages to cover the detection and resolution of model

de�ciencies, but again lacks an explicit relation to qualities. Thus the comprehensive Epsilon

9http://www.trex.informatik.uni-goettingen.de/ (visited 10th February 2015)

10http://tsmells.googlecode.com (visited 10th February 2015)

35

http://www.trex.informatik.uni-goettingen.de/
http://tsmells.googlecode.com

3. Related Work

family is classi�ed into category R-SD.

Apart from the related work discussed so far, approaches from the area of multi-quality

architecture optimisation exist. First to mention, Koziolek presented an approach for quality-

driven optimisation of component-based architectures in terms of the Palladio component

model [BKR07]
11

in the domain of self-adaptive systems. The author mainly takes the qualities

performance, reliability and cost into account but the approach is independent from particular

qualities. Koziolek proposes a component-based development process with an explicit quality

analysis step. Therein, the software architect annotates relevant quality criteria to an initial ar-

chitecture speci�cation serving as input for the upcoming process step of architecture exploration.

The objective of this step is, �rst, to identify the design space and, second, to optimise the archi-

tecture with respect to the annotated quality criteria based on quality prediction. Optimisation is

automatically conducted by application of several transformation strategies. In this sense, they

can be considered as refactorings, since the meaning of the architecture is preserved, while qual-

ity properties are optimised. Koziolek’s approach is implemented in the tool PerOpteryx.
12

Since

all three constituents in terms of de�ciencies, related qualities and refactorings (architectural

optimisations) are covered by this work we classify it into the category R-SD-Q. Nevertheless, it

has a di�erent scope than this thesis since its objective is an automation process. In addition, it

is speci�c for the Palladio component model and not intended to be language independent.

Staying in the area of software architecture, Trubiani published an approach regarding perform-

ance anti-patterns in [Tru11]. She provides the EMF-based Performance Antipattern Modeling

Language (PAML) supporting the speci�cation of architectural performance anti-patterns in a

model-based manner. Furthermore, a catalogue of several established performance anti-patterns

encoded in PAML is presented. A PAML instance always refers to a resolving refactoring, which

improves a certain performance issue. The provided patterns are exemplarily applied to instances

of the Palladio component model and UML+MARTE [OMG11b]. But, since it is based on MOF,

arbitrary other MOF-based architecture speci�cation languages are supported. Trubiani’s ap-

proach is dedicated to the quality performance and the anti-patterns are explicitly related to

resolving refactorings. Thus we classify this work into the category R-SD.

Another interesting approach for removing design anti-patterns in programmes was published

by Dietrich et al. in [DMTS12; SDM13]. Here a dependency graph of a programme is constructed,

containing vertices for artefacts like classes, packages or libraries, and edges for relations to

other artefacts, such as, e.g., a use-relation. The whole subsequent analysis is based on this

dependency graph. Thus, this approach is limited to those object-oriented languages for which

a translation into a dependency graph is provided. Exemplarily Dietrich et al. used Java as

target language. Then their graph querying tool GUERY
13

is used to query the graph for a

set of anti-patterns, such as, e.g., circular package dependencies. The objective is to suggest a

so-called high impact refactoring to resolve as many anti-patterns as possible. This is achieved by

ranking the found dependencies by means of the amount of the di�erent anti-patterns a single

dependency is contained in. Thus, a dependency contained in more anti-pattern instances gets a

higher score. The dependency with the highest score is the one having the highest impact, if it is

removed because more anti-pattern instances will disappear then. They give suggestions about

11https://sdqweb.ipd.kit.edu/wiki/Palladio_Component_Model (visited 10th February 2015)

12https://sdqweb.ipd.kit.edu/wiki/PerOpteryx (visited 10th February 2015)

13https://code.google.com/p/gueryframework/ (visited 10th February 2015)

36

https://sdqweb.ipd.kit.edu/wiki/Palladio_Component_Model
https://sdqweb.ipd.kit.edu/wiki/PerOpteryx
https://code.google.com/p/gueryframework/

3.2. Determination of Quality-Related De�ciencies

resolving refactorings, but do not apply them explicitly. Furthermore, this approach is classi�ed

into category SD, since the relation to qualities is only implicit.

Beyond the approaches intended to detect and resolve de�ciencies, there is further related

work in a broader sense supporting only the detection of de�ciencies. On the one hand, there are

publications illustrating structure-based graph querying approaches [BERS08; BHH+12; USH+15].

In isolation, they cannot be used to satisfy the whole tool chain needed for quality-aware detection

and resolution of model de�ciencies. But they can be used in combination with other tools as e.g.

Gottschalk et al. did with GReQL [GJJW12] and as we did with IncQuery
14

[BHH+12] in [RA13;

RBA14]. On the other hand, there are metrics-based approaches for de�ciency detection [Mar01;

SSL01; BD02; CLMM07; AST10; MGDL10; KVGS11; SK11; DPXT12]. Similar to the structure-

based approaches they can support the whole tool chain only in combination with other tools.

But in isolation, these approaches and tools result in no new insights or bene�ts and, thus, are

not included in the comparison (cf. Table 3.3).

3.2.3. Evaluation

The evaluation of the related work and other relevant approaches is presented in Table 3.3.

Therein, the entries in the column Approach contain the name of the respective approach or

implemented tool realising it and the most important publication of the according approach.

The column Category refers to the overall category as introduced in Fig. 3.1 and Table 3.1. The

names and �gures in the other column heads identify the according elaborated requirement from

Sect. 3.2.1.

With respect to the objectives of this thesis, none of the discussed approaches ful�ls every of

our requirements. The reason is that only few of these approaches were proposed for providing

a solution for the quality-related detection and resolution of model de�ciencies as we intend.

On the one hand, we illustrated approaches targeting only speci�c qualities in a certain context

or setup. In [PJHM12] and [GJW14] mature means are provided for detecting and/or resolving

energy-related de�ciencies in Java-based applications for mobile devices. Their approaches are

mature and promising regarding the reduction of the energy consumption. Furthermore the PAML

approach presented in [Tru11] contributes a language for the speci�cation and refactoring-based

resolution of performance anti-patterns. Then we have related work regarding the detection of

de�ciencies in test code [NB07; BV08]. It revealed the insight that quality concerns [TOHS99] can

be cross-cutting, which is not trivial to maintain. As a representative of graph-based approaches

supporting the detection of de�ciencies we chose the work of Dietrich et al. Besides the fact

that those approaches must be combined with other mechanisms to support a quality-aware

engineering tool chain, nevertheless the work presented in [DMTS12] is able to recommend

resolving refactorings for anti-patterns in dependency graphs.

The only discussed approach having an explicit relation to qualities is the one contributed

by Koziolek in [Koz11]. Here the most important drawback is that it is dependent on the

Palladio component model. Furthermore it has a di�erent scope and aims at optimising software

architectures in general.

The most promising approach was contributed in EMF Refactor by Arendt in [Are14]. It was

evaluated completely as positive, except the fact that it lacks an explicit relation to a quality

14https://www.eclipse.org/incquery/ (visited 10th February 2015)

37

https://www.eclipse.org/incquery/

3. Related Work

Table 3.3.: Comparison of related work regarding quality evaluation.

A
p

p
r
o

a
c
h

Q
u

a
l
i
t
y

R
e
l
a
t
i
o

n
(
1
)

R
e
f
a
c
t
o

r
i
n

g
R

e
l
a
t
i
o

n
(
2
)

R
e
f
a
c
t
o

r
i
n

g
S
u

g
g
e
s
t
i
o

n
(
3
)

M
e
t
r
i
c
s
-
b
a
s
e
d

(
4
)

S
t
r
u

c
t
u

r
e
-
b
a
s
e
d

(
5
)

C
a
u

s
e

T
r
a
c
i
n

g
(
6
)

L
a
n

g
u

a
g
e

I
n

d
e
p

e
n

d
e
n

c
e

(
7
)

L
a
n

g
u

a
g
e

S
p

e
c
i
�

c
s

(
8
)

I
n

t
e
r
o

p
e
r
a
b
i
l
i
t
y

(
9
)

C
a
t
e
g
o

r
y

Energy Bugs [PJHM12] ◦ ◦ ◦ - + + - + - SD

Energy Refactoring [GJW14] ◦ + + - + + - + ◦ R-SD

TRex [NB07] ◦ + + + + + - + - R-SD

TestQ [BV08] ◦ - - + - + ◦ + - R-SD

EMF Refactor [Are14] ◦ + + + + + + + + R-SD

Epsilon Validation [KRGP13] ◦ + ◦ - + + + + + R-SD

PerOpteryx [Koz11] + ◦ ◦ + + + - + ◦ R-SD-Q

PAML [Tru11] ◦ + + - + + + ◦ + R-SD

GUERY [DMTS12] ◦ ◦ + - + + ◦ + ◦ SD

concept. This approach and the implemented tool are very mature and suitable for quality-aware

engineering. The only limitation is that developers or modellers cannot focus on dedicated

qualities explicitly.

Thus, to the best of our knowledge there are approaches enabling detection and resolution of

de�ciencies in models but none of them correlates qualities, model de�ciencies and resolving

refactorings explicitly. We argue that this relation is essential for a quality-aware development

and engineering life cycle. It allows developers for focussing speci�c qualities in isolation.

3.3. Co-Refactoring

As stated in Hypothesis 4 in Sect. 1.3, the process of co-refactoring is essential to preserve

consistency of models being dependent on a initially refactored model. As a consequence of the

applied refactoring, dependent modi�cations in the subsequent models must be propagated in

terms of a co-refactoring.

Having this in mind, we will derive the implied comparison criteria in terms of requirements

for a co-refactoring approach in the following section before related work is analysed. Afterwards

the comparison concludes this section.

3.3.1. Requirements

In the following, we discuss the requirements co-refactoring approaches for models of arbitrary

DSLs must ful�l. These requirements emerged in a re�ection process over the problems, goals

38

3.3. Co-Refactoring

and solutions discussed in sections 1.1, 1.2 and 1.3 respectively.

As a preliminary consideration, we want to recapitulate the use case of co-refactoring shortly.

A co-refactoring must be applied as a reaction to a preceding model refactoring. This must be

the case for models being dependent on the initially refactored model. Thus, not only the models

depend on each other but also the preceding and succeeding refactorings. In this regard, it might

be the case that some values needed in a co-refactoring must be derived from values already

given from the initial refactoring. As a consequence, the following requirements must be ful�lled

by approaches for co-refactoring.

1. Dependent Models Detection: As a �rst step in the co-refactoring process, i.e. before

a particular concrete co-refactoring is to be applied, all models that depend on the ini-

tially refactored model must be determined. For every detected dependent model a co-

refactoring process has to be initiated. Di�erent kinds of model dependencies are discussed

in Sect. 8.3.1.

2. Dependent Elements Detection: In addition to the previous requirement suppose that a pair

of an initially refactored model (source) and a dependent model (target) is given. Based on

the concrete model elements which participated in the refactoring of source corresponding

model elements in target have to be determined. Consider, e.g., the renaming of a UML

class. This step then must reveal the corresponding Java class. After the initial renaming

the UML and Java classes have di�erent names.

3. Incoming Refactoring Declaration: To specify a dependent modi�cation in terms of a

co-refactoring an approach must be able to refer to an incoming refactoring the succeeding

co-refactoring depends on. In this sense, an incoming refactoring must be declarable.

4. Condition Speci�cation: To specify a dependent modi�cation in terms of a co-refactoring,

a condition must be speci�able expressing the circumstance which a co-refactoring is valid

to be applied upon.

5. Outgoing Co-Refactoring Declaration: In order to specify a dependent modi�cation in

terms of a co-refactoring an approach must be able to refer to an outgoing co-refactoring

being the reaction to an incoming refactoring. In this sense, an outgoing co-refactoring

must be declarable.

6. Dependent Binding Speci�cation: A co-refactoring approach must be capable of specifying

the needed values in a concrete outgoing co-refactoring dependent on the values of the

incoming refactoring. In this sense, the outgoing values must be bound with respect to the

incoming values. Consider again the small UML-Java class renaming example mentioned

above. The user should not be prompted for the name of the Java class in advance, since

usually it is the same as the source UML class name. Therefore a dependent value binding

must be speci�able.

7. Language Independence: Regarding the independence of the supported languages the

same holds as for the generic refactoring (cf. Sect. 3.1.1) and for the model de�ciencies

(cf. Sect. 3.2.1). The approach of co-refactoring should be applicable for heterogeneous

models.

39

3. Related Work

8. Language Speci�cs: Nevertheless, it must be possible to take into account concrete language

properties for the de�nition of dependent modi�cations. A co-refactoring designer must

be enabled to re�ect over her DSL’s speci�cs which then can be subject in the concrete

co-refactoring speci�cation.

9. Interoperability: For interoperability, exactly the same holds as in Requirement 10 for

generic model refactoring (cf. Sect. 3.1.1) and in Requirement 9 for quality-related model

de�ciencies (cf. Sect. 3.2.1). This requirement comprises independence from a model’s

representation (e.g. tree-based, textual, graphical) and it must conform to MOF.

Requirements 3, 4 and 5 can be considered as some kind of event-condition-action (ECA)

rules for co-refactoring. The incoming refactoring is the occurring event and the outgoing

co-refactoring is the resulting action if the condition is satis�ed.

3.3.2. Literature Review

The term co-refactoring is only rarely used in literature since there are only few appropriate

co-refactoring approaches targeting the same problems as are to be solved in this thesis. These

approaches are highlighted in the upcoming sections. But there is a wide �eld in the area of co-

evolution in MDSD in general, which serves as related work as well. A plenty of approaches have

been published in literature and there are two threads of research all of them can be classi�ed

into. On the one hand, co-evolution at di�erent MOF layers is distinguished. Precisely, this

means that a metamodel evolves and its instances (models) have to co-evolve to re-establish their

consistency. On the other hand, co-evolution is considered at the same MOF abstraction layer.

This is also the case in our approach. In the following, we divide related work by means of these

two distinctions.

Di�erent Abstraction Layer

One of the most signi�cant works was published by Wachsmuth in [Wac07]. The author based this

work on object-oriented refactoring and grammar adaptation and investigated two main aspects.

First, Wachsmuth describes the process of evolving a MOF-based metamodel in terms of separate

adaptation transformations. Thus, the usually manually conducted modi�cations are made

explicit in terms of precisely de�ned transformations. Second, for every metamodel adaptation

transformation a corresponding co-transformation for the instances is provided being executed

instantly. Consequently, a pair of a metamodel transformation and a model co-transformation is

a coupled transformation [Läm04] and the models conform to their metamodels at any time. A

co-transformation pattern is parameterised with its triggering metamodel transformation. Some

of Wachsmuth’s co-transformations are considered to be a co-refactoring since the corresponding

initiating transformation is a refactoring, as, e.g., the renaming of a property. Therefore, this

approach is classi�ed into the category R-CoR. Nevertheless the presented approach is mainly of

theoretic nature and nothing is said about the practical detection of dependent models, namely

the metamodel instances. The problem is the inversion of the instance-of relationship in case a

metamodel evolves. Metamodels do not know their instances and, thus, detection of dependent

models is important.

40

3.3. Co-Refactoring

In [HBJ08] Herrmannsdörfer, Benz and Juergens also present a classi�cation of coupled

changes on metamodels and models into the three groups: model-speci�c, model-independent (but

metamodel-dependent) and metamodel-independent modi�cations. Model-speci�c modi�cations

require information which varies from model to model. Model-independent modi�cations utilise

knowledge of the application domain of the modi�ed metamodel. Metamodel-independent

changes can be reused for various analogous evolution scenarios. Therefore, the authors propose

to generalise them into reusable operations. Based on that preliminary work Herrmannsdörfer,

Benz and Juergens published their operation-based approach in [HBJ09] and implemented it

in the tool COPE, which is now under the patronage of the Eclipse community in form of the

Edapt tool.
15

The authors propose a language that allows for decomposition of a modi�ca-

tion into manageable, modular coupled changes. Furthermore, the language provides means

for metamodel-independent changes but is at the same time expressive enough to describe

metamodel-speci�c changes. Further work was published in [HVW11] and Herrmannsdörfer,

Vermolen and Wachsmuth present an extensive list of reusable coupled modi�cation oper-

ators, which evolve a metamodel and are able to automatically migrate existing models in

response. The authors argue that their coupled operators do not result in breaking non-resolvable

changes [GKP07], since a coupled operator always provides a migration to resolve a breaking

change. In this sense, only non-breaking and resolvable breaking changes can occur. The collec-

tion of coupled evolution operators can be extended by new ones. In [HK10], their approach

of coupled transformation of metamodel instances is expanded to the preservation of formally

speci�ed semantics, in the sense that modi�cations are refactorings. Therefore, this approach is

classi�ed onto the category R-CoR. A semantics speci�cation is then automatically adapted to

the new metamodel version. The drawback of this approach is that it “only” supports adaptation.

That means, clients of the evolved metamodels only see the “old” semantics and the gap gets

bigger with every evolution.

Criticism concerning the previously discussed approach regards the facts that a new co-

evolution language has to be learnt (such as Edapt) and a model transformation language

for model migration must be used. Meyers et al. tackle this drawback by an operator-based

approach using in-place transformations generated automatically by a HOT parameterised with

a metamodel modi�cation step [MWCS11]. The di�erence between two metamodel versions

is regarded as a sequence of di�erence operations, each of which mapping to a corresponding

migration operation. Thus, this is an approach of coupled operators as well. Models are then

migrated after every di�erence operation which ensures conformance to the evolved metamodel

at any time. In case no migration operation can be generated, the user is to be involved into the

process and can specify manual adaptation steps. This can occur when a di�erence operation

changes semantics and a semantics-preserving migration operation (refactoring) cannot be

derived automatically. Because of this consideration, this approach is classi�ed onto the category

R-CoR.

In [RKP+14] Rose et al. argue that conventional model transformation and programming

languages do not suit well to re�ect the model migration scenario properly in the sense that they

require users to specify identity transformations or to refer to underlying technical details of

the modelling technology. Examples of additional manual e�ort are, �rst, that during migration

all elements are copied to a new model although some of them are likely not to conform to the

15https://www.eclipse.org/edapt (visited 10th February 2015)

41

https://www.eclipse.org/edapt

3. Related Work

evolved metamodel anymore and, thus, have to be deleted afterwards. And, second, existing

languages take the physical representation of models (as, e.g., representation as XML Metadata

Interchange [OMG14b] (XMI)) and/or technical details of the modelling framework into account.

To overcome these drawbacks, the authors propose a new model transformation language

principle better suited for model migration: conservative copy (CC). CC consumes the original

model as input and produces a migrated model as output in the sense that it only copies those

elements conforming to both the source and the evolved target metamodel. In order to be

independent from the underlying model technology Rose et al. abstract over some technology-

speci�c aspects as, e.g., value conversion which has to be done before copying in order to conform

to the migrated metamodel instead of the original one. A model connectivity layer must be

provided for a particular modelling technology. CC was implemented in the context of the

Epsilon language family within the tool Epsilon Flock.
16

Since this approach takes into account

only conventional model migration in general, we classify Epsilon Flock into category CoR.

Furthermore, Burger and Gruschko present an approach to create a change metamodel for MOF-

based metamodels in [BG10]. Even though they do not address the problem of co-adapting models

after metamodel changes, they present an elaborate classi�cation of the impact of metamodel

changes on instantiating models and propose an analysis process. With the change metamodel

created from two di�erent metamodel versions it is possible to estimate the compatibility of

metamodel changes with existing model instances. Thus their approach is state-based as well.

Furthermore, it supports sequences of metamodel changes. Their comprehensive approach was

then published by Burger in [Bur14]. The context of Burger’s approach is the view-based MDSD

which is based on the orthographic software modeling approach of Atkinson, Stoll and Bostan

published in [ASB10]. They assume a single underlying model (SUM) of the system and all other

convenient models are views on the SUM. Views are created on-demand and therefore their

metamodels need to be generated instantly for which Burger’s approach is used. Thus, the view

metamodels might quite often be subject to evolution. It is implemented in the Eclipse-based

tool Vitruvius.
17

Same Abstraction Layer

First, we want to discuss a real co-refactoring approach based on the constraint-based refactoring

approach of Steimann already discussed in Sect. 3.1.2 with respect to generic model refactor-

ing [Ste11; Ste15]. This approach is extended by von Pilgrim et al. to cover the co-refactoring

between models and generated code [vPUTS13]. In this work, cross-language constraints are

generated by the original model-to-code (M2C) transformation. The previous CBR approach maps

the refactoring problem to a constraint-solving problem and WFRs are converted into rules upon

which a constraint-solver determines which additional modi�cations have to be applied after an

evolution step in the model. For reusing this approach for co-refactoring, von Pilgrim et al. argue

that correspondences from model to code elements are needed. These correspondences are then

represented as cross-language constraints in their CBR-based refactoring speci�cation language

Refacola.
18

An example would be the constraint that a generated Java class is equally named

as the original UML class. Once such cross-language constraints are speci�ed, the approach

16https://www.eclipse.org/epsilon/doc/flock/ (visited 10th February 2015)

17https://sdqweb.ipd.kit.edu/wiki/Vitruvius (visited 10th February 2015)

18http://www.fernuni-hagen.de/ps/prjs/refacola/ (visited 10th February 2015)

42

https://www.eclipse.org/epsilon/doc/flock/
https://sdqweb.ipd.kit.edu/wiki/Vitruvius
http://www.fernuni-hagen.de/ps/prjs/refacola/

3.3. Co-Refactoring

works in the same sense as their single-artefact CBR approach of [Ste11; Ste15]. The constraint

solver then determines which constraints are violated and applies the derived co-refactoring

steps needed to transit the dependent model into a consistent state. Therefore, we classify this

sophisticated approach into category R-CoR. Nevertheless, this approach stands or falls on the

exploitation of created trace links, from which, on the one hand, the cross-language constraints

are generated, and, on the other hand, dependent models and dependent model elements are

detected. If no trace links are created during code generation it demands huge e�ort to specify

the cross-language constraints manually. Furthermore, neither dependent models nor dependent

elements can be detected easily.

Another view-based approach is presented by Wimmer, Moreno and Vallecillo in [WMV12].

They argue that heterogeneous systems contain di�erent views upon the same information, such

as, for instance, the di�erent diagram types in the UML. As a consequence, correspondences

between elements in di�erent views exist. The challenge is to preserve consistency in all views as

a result of an evolution in one view. The authors criticise that other view-based approaches take

evolution into account only at a coarse-grained level, resulting only in a consideration of atomic

operators such as adding or removing elements. Thus, the real intent of an evolution gets lost

and �ne-grained consistency preservation is needed. In their approach, the authors use the logic-

based rewriting tool Maude
19

for the speci�cation of the system, since it has an e�cient rewriting

and analysis engine. In this regard, every view is encoded as an object-oriented Maude module.

In order to detect changes Wimmer, Moreno and Vallecillo use a 2-phase comparison approach

to, �rst, recognize �ne-grained changes based on the element’s identi�ers, and, second, to derive

coarse-grained changes from them. The derivation of coarse-grained changes is accomplished by

means of graph transformation patterns. These patterns are not executed but matched. Maude

then is able to �nd instances of these patterns based on the detected �ne-grained changes.

Subsequently coupled transformations, dependent on the determined coarse-grained pattern

instances, propagate the changes to dependent views. The coupled transformations again are

encoded in Maude. Similar to the previously discussed approach in [vPUTS13], Wimmer, Moreno

and Vallecillo encode all models in terms of a language an engine can compute solutions upon.

The di�erence is that this approach captures the intent of the �ne-grained modi�cation quite

well as coarse-grained modi�cations. In this sense, it might also be possible to encode refactoring

patterns, which then can be detected as coarse-grained changes. Thus, this approach is very

similar to the one presented in Chap. 8, but there is a large overhead in terms of the 2-phase

comparison approach. Furthermore, the user does not have support right from the beginning

regarding the fact that a refactoring is to be applied explicitly, in contrast to the analysis of

executed atomic changes. In addition, correspondences between models and dependent elements

must be speci�ed explicitly. This is really an interesting approach.

A very similar approach to the previously discussed one is presented in [EPRV08] by Eramo

et al. The main di�erence is that a state-based approach is applied to capture the changes.

Furthermore, this approach does not expose coarse-grained modi�cations, which can be used to

detect refactorings. As the underlying logic-based formalism Answer Set Programming is used.

Since this approach does not reveal more insights, we do not take it into account for comparison.

Another view-based approach is presented by Getir, Rindt and Kehrer in [GRK14]. They

provide an analysis framework which exploits the evolution history and derives dependent

19http://maude.cs.uiuc.edu/ (visited 10th February 2015)

43

http://maude.cs.uiuc.edu/

3. Related Work

co-evolution steps from it. These serve as a recommendation for ongoing transformations in

order to keep dependent views consistent. In this approach dependencies between concrete

model elements are established in terms of trace links. The authors apply a coupling analysis

to determine intended co-evolution steps as a result of an initial evolution from the evolution

history. As a result of this analysis coupled changes are derived. This approach is implemented

in the EMF-based tool SiLift.
20

Since they also consider refactorings, we classify their work into

the category R-CoR.

In [GW09], Giese and Wagner propose an incremental approach regarding the use of triple

graph grammars (TGGs) to resolve model inconsistencies in a bidirectional manner instead of

re-generating a whole dependent model. They also use a correspondence model for re�ecting the

connection between an initially evolved model and a dependent model which has to co-evolve.

This correspondence model is established at the metamodel level and maps elements from the

source to elements from the target metamodel. Bindings from source values to target values are

encoded as constraints in the TGG. The actual transformation rules in terms of graph rewriting

are derived from the TGG rules. The incremental nature of this approach is achieved by the

fact that the actual graph rewriting is not initiated on the root correspondence node rather

than on the correspondence node related to the node which was initially modi�ed. In this

sense, this approach does not traverse the whole correspondence graph. To achieve consistency

preservation of the structures in a dependent model previously performed forward propagation

steps and their dependencies are revoked. This approach is implemented in the Fujaba tool

suite
21

supporting the TGG formalism for model transformation. Using this TGG approach for

a co-refactoring scenario is quite similar to the recently discussed work of Wimmer, Moreno

and Vallecillo [WMV12]. Source patterns in TGG rules can be considered as a coarse-grained

change and the target patterns correspond to the coupled transformation of Wimmer, Moreno

and Vallecillo respectively. Thus, this approach su�ers from the same disadvantages as discussed

for [WMV12] and consequently the evaluation in Table 3.4 is similar. We classify this approach

into category CoR.

Based on the approach of incremental synchronisation from Giese and Wagner a subsequent

approach was published in [HEO+15] by Hermann et al. It uses the formal foundations from

[Dis11] and based upon a TGG a synchronisation framework for a speci�c context is generated.

Again, the synchronisation transformations, being dependent on the initially occurred evolution,

are generated from the TGG rules. Thus, we get no new insights regarding co-refactoring for

our concrete setting and requirements. Therefore this approach is not part of our evaluation in

Table 3.4. In addition, other TGG approaches exist we do not want to consider further in detail.

For instance, Gausemeier et al. presented a domain-speci�c TGG scenario in [GSG+09]. They

apply software engineering methodologies in the domain of mechatronic systems, more precisely

in the area of autonomic vehicles called RailCabs. In this scenario, they are confronted with a

system of coherent partial models, which have to be synchronised. Again, these models can be

considered as views of the overall system. They do not su�er from correspondence detection

problems since they have a well-de�ned context. Thus, correspondences can be declared statically

in a TGG.

A substantial amount of work was done in the area of name analysis and consistency in

20http://pi.informatik.uni-siegen.de/Projekte/SiLift/ (visited 10th February 2015)

21http://www.fujaba.de/ (visited 10th February 2015)

44

http://pi.informatik.uni-siegen.de/Projekte/SiLift/
http://www.fujaba.de/

3.3. Co-Refactoring

MLDEs [Pfe13]. Pfei�er proposes solutions for IDEs in which several di�erent DSLs participate

and models can refer to others without restriction. In this sense, a plethora of relations is

established just by referring to the same names. Users of such an MLDE expect all references to

change accordingly when the source of a named element is modi�ed, otherwise many dependent

models become inconsistent. Pfei�er and Wąsowski discuss the design space of MLDEs and

associated properties they must satisfy [PW15]. To maintain consistency between the names of

those semantic references, they provide tool support for visualising dependencies and renaming

them [PW11]. Since tracing between artefacts is an essential need in MLDEs, we jointly proposed

a language-independent traceability approach in [PRW14]. The main setting of MLDEs is the

same as for the co-refactoring scenario. But the di�erence to the approach of Pfei�er is that this

thesis goes beyond name analysis and renaming and considers all kinds of refactorings, especially

we do not state that dependent refactorings must be of the same kind (as, e.g., a renaming results

in a renaming).

As a next approach the work of Seifert in [Sei11] will be discussed. The author contributes a

comprehensive approach from within the area of Round-Trip Engineering (RTE). He presents

a conceptual framework for the design of RTE systems and argues that software development

processes typically expose some redundancy which must be mastered to preserve consistency of

artefacts in case of evolution. In this sense unmanaged redundancy [MBF11] must be avoided. In

the RTE scenario consistency can be ensured either by reducing redundancy or by synchronising

the shared information. Similar to the work presented in [BMMM08], Seifert creates model

partitions of skeletons and clothings for those parts that need to be synchronised and those

which do not respectively. One instantiation of the conceptual framework is realised in the

concrete approach of Backpropagation-based RTE utilising change translation, traceability and

�tness functions to synchronise models that are related by non-injective transformations. This

concrete approach is used for synchronisation of the shared information. On the other hand,

the author presents a role-based approach for tool integration to reduce redundancy. Tools are

integrated by means of role bindings between role models. Our joint work in [RSA13] served

as a proof-of-concept for the latter approach and is presented in detail in Chap. 4. In general,

similar to the work discussed previously [Pfe13], RTE has another scope but co-refactoring. In

RTE a connection between models usually can be considered as a copy-of relation. When the

relation between two artefacts allows for it, then the synchronising modi�cations can be derived

from the initiating modi�cation. In contrast, co-refactoring does not state that a deduction

relation between dependent modi�cations can be established. Since refactoring is also considered

in [Sei11], we classify this approach into category R-CoR.

Another RTE-related approach exploiting model correspondences by means of model trans-

formations encoded in the Atlas Transformation Language [JK06] (ATL) is presented by Xiong

et al. in [XLH+07]. The authors argue that all relevant information regarding synchronisation

of models can be derived from a model transformation relating two models to each other. This

information must be su�cient enough to propagate changes not only from source to target model

(forward), but also from target to source model (backward). In their approach, Xiong et al. exploit

the ATL Virtual Machine (VM) by means of extending it to analyse the byte code, which every

ATL transformation is compiled to prior execution. Such byte code is a sequence of instructions

modifying the stack of the ATL VM. The authors extended the VM in the sense that putting-back

functions are added to the compiled byte code for making synchronisation information explicit

during transformation execution. The gathered information then can be used to propagate

45

3. Related Work

synchronisation forward and backward. The authors proposed an interesting approach based

on the exploitation of a common underlying representation of ATL transformations in form of

byte-code being executed in the ATL VM. Similar to this, we published a language-independent

traceability approach in [PRW14] that is applicable to all languages compiling to the Java VM.

The synchronisation approach of Xiong et al. is implemented in the tool SyncATL
22

and we

classify it into the category CoR.

As a last work, we discuss the approach of Di Ruscio, Lämmel and Pierantonio published

in [DLP11]. The authors consider the pretty concrete context of de�ning a graphical modelling

editor with the GMF. They propose a solution for the widely known problem of the violation

of GMF editor models as a consequence of an evolved EMF Ecore model (metamodel in the

following), which de�nes the concepts being available in the GMF editor models. There are three

kinds of GMF models involved in the generation of a graphical editor: graphical de�nition, tooling

de�nition and mapping model. The latter maps concepts from the metamodel to the graphical

de�nitions and interrelates all models. Thus, the problem is that the GMF models might break if

the metamodel evolves. From our own experiences, we can state that in practice this is a very

ungrateful, complex and error-prone task if to be resolved manually. To tackle this problem,

Di Ruscio, Lämmel and Pierantonio describe a catalogue of changes and required co-changes

in order not to invalidate the involved models. Regarding the catalogue, the authors base their

work on previously discussed publications in [Wac07; CDEP08; HBJ09]. If a metamodel evolves,

the di�erence between both versions are determined yielding a di�erence model. This model

serves as the input for speci�c adapters for every involved GMF model. These adapters are

considered to be model transformations producing consistent versions of the particular GMF

models dependent on the occurred atomic changes and the corresponding co-changes regarding

their catalogue. This speci�c approach is implemented in the tool GMFEvolution.
23

We classify it

into category CoR.

3.3.3. Evaluation

The evaluation of the related work and other relevant approaches is presented in Table 3.4.

Therein, the evaluated approaches are grouped by means of their Abstraction Layer, whether

synchronisation is applied at the same or between di�erent layers. The entries in the column

Approach denote a characteristic name and the most important publication of the respective

approach. If no name is allocated, the authors are referred to. The column Category references

the overall category as introduced in Fig. 3.1 and Table 3.1. The names and �gures in the other

column heads identify the related requirements from Sect. 3.3.1.

Table 3.4 shows that none of the discussed related approaches satis�es all of our requirements

regarding co-refactoring. The main reason is that most of these approaches where proposed

according to a di�erent scope and objective. Co-evolution between an evolving metamodel and

its instances (di�erent abstraction layer) and model migration between dependent models (same

abstraction layer) are frequent. What can be observed is that almost all presented approaches

do not take the detection of dependencies between models and their elements into account.

Most of them take these dependencies as granted in terms of trace links. However, we consider

this a crucial drawback. One important characteristic of almost every approach is that initial

22http://sei.pku.edu.cn/~xiongyf04/modelSynchronization.html (visited 10th February 2015)

23http://www.emfmigrate.org/gmf-evolution/ (visited 10th February 2015)

46

http://sei.pku.edu.cn/~xiongyf04/modelSynchronization.html
http://www.emfmigrate.org/gmf-evolution/

3.3. Co-Refactoring

Table 3.4.: Comparison of related work regarding co-refactoring.

A
b
s
t
r
a
c
t
i
o

n
L

a
y

e
r

A
p

p
r
o

a
c
h

D
e
p

e
n

d
e
n

t
M

o
d

e
l
s

(
1
)

D
e
p

e
n

d
e
n

t
E

l
e
m

e
n

t
s

(
2
)

I
n

c
o

m
i
n

g
R

e
f
a
c
t
o

r
i
n

g
(
3
)

C
o

n
d

i
t
i
o

n
S
p

e
c
i
�

c
a
t
i
o

n
(
4
)

O
u

t
g
o

i
n

g
C

o
-
R

e
f
a
c
t
o

r
i
n

g
(
5
)

D
e
p

e
n

d
e
n

t
B

i
n

d
i
n

g
(
6
)

L
a
n

g
u

a
g
e

I
n

d
e
p

e
n

d
e
n

c
e

(
7
)

L
a
n

g
u

a
g
e

S
p

e
c
i
�

c
s

(
8
)

I
n

t
e
r
o

p
e
r
a
b
i
l
i
t
y

(
9
)

C
a
t
e
g
o

r
y

D
i
�

e
r
e
n

t

Wachsmuth [Wac07] - - + + + + + - + R-CoR

COPE [HVW11] - - + ◦ + ◦ + + + R-CoR

In-Place HOT [MWCS11] - - + ◦ + ◦ + ◦ + R-CoR

Epsilon Flock [RKP+14] - - ◦ + ◦ + + + + CoR

Vitruvius [Bur14] + + ◦ ◦ ◦ ◦ + + + R-CoR

S
a
m

e

Refacola [vPUTS13] ◦ ◦ + + + + + + ◦ R-CoR

Coarse-Grained [WMV12] ◦ ◦ + + + - ◦ + ◦ R-CoR

SiLift [GRK14] ◦ ◦ + - + ◦ + + + R-CoR

Fujaba TGG [GW09] - - + + + ◦ ◦ + ◦ CoR

MLDE [Pfe13] + + + + + ◦ + ◦ + R-CoR

RTE [Sei11] ◦ ◦ ◦ ◦ ◦ + + + + R-CoR

SyncATL [XLH+07] ◦ ◦ ◦ ◦ ◦ + + + - CoR

GMFEvolution [DLP11] + + + - + ◦ - + ◦ CoR

47

3. Related Work

evolution is not distinguished from resulting co-evolution. This is essential in such a scenario

and is provided by our approach.

In detail, we can admit that the approaches applying synchronisation at di�erent abstraction

layers all are independent from particular involved languages — as expected. These approaches

are generic in the sense that no assumptions regarding suitable DSLs are proposed. TheVitruvius

approach of Burger [Bur14] and the MLDE approach of Pfei�er [Pfe13] have to be emphasized

with respect to their capabilities of capturing model and element dependencies. The former

handles this important aspect by the use of a single underlying model (SUM). The SUM can be

considered a megamodel as it was proposed by Bézivin, Jouault and Valduriez in [BJV04]. The

advantage of such an approach is that all models belonging to a system are known and so are

the dependencies between them. All information is made explicit. Consequently, the problem

of dependency detection just does not exist in this approach since models (in the conventional

sense being separated artefacts) are views on top of the SUM. The latter establishes relations

between models in a MLDE by means of name analysis. Furthermore, this approach is very

mature with respect to our requirements in general since it has almost the same main objective

as we have. But we go a step further and consider refactorings in general and not only renaming.

The GMFEvolution approach of Di Ruscio, Lämmel and Pierantonio [DLP11] also evaluates pos-

itively regarding the dependency detection. The reason is that this problem just does not exist in

this speci�c setting because it is very special and the involved models are unambiguously known

beforehand. Furthermore, the Refacola approach of von Pilgrim et al. and Steimann [vPUTS13]

is pretty strong again. The strength of applying refactorings and co-refactorings by checking and

solving constraints in terms of WFRs of the static semantics still is sophisticated. But as already

discussed in Sect. 3.3.2, it heavily depends on the creation of the cross-language constraints as

a result of determined trace links. Then, we got to know another constituent of the Epsilon

language family, Epsilon Flock [RKP+14]. Their model migration language seems very promising

to better re�ect evolution aspects instead of a generic model transformation language.

Summarising, to the best of our knowledge there are really interesting approaches regarding

co-evolution in MDSD. But none of them can be used as is because either they have limitations

regarding dependency detection or they are not generic enough to be suitable for co-refactoring

between heterogeneous models.

3.4. Conclusion

To summarise the related work of this chapter, every discussed approach justi�es their existence

in the context of their particular domains, settings or use-cases. As we made clear beforehand,

no comprehensive approach regarding the generic quality-aware model refactoring and co-

refactoring to resolve de�ciencies in models exists. Thus we had to partition our overall objective

into the three presented parts: model refactoring, determination of quality-related de�ciencies,

and co-refactoring.

As we have seen, there is one tool family present in each of our three scenarios: the Epsilon

language family. First, Epsilon EWL (R) contributes to the refactoring part, second, the Epsilon

Validation (R-SD) contributes to the detection of model de�ciencies, and, third, Epsilon Flock

(CoR) substantially contributes to the synchronisation part of our big picture. Even though the

Epsilon language family has some disadvantages, it must be honoured that they cover a broad

48

3.4. Conclusion

spectrum of model-driven engineering. Thus, we can cumulate their separate classi�cations to

R-CoR-SD for the whole Epsilon framework, which now is the second tool in this category aside

PerOpteryx of Koziolek.

On the other hand, we have an approach covering two aspects: Refacola. Their CBR-based

approach for refactoring and co-refactoring is really novel and has great potential. Furthermore,

EMF Refactor [Are14] and the MLDE approach [Pfe13] were evaluated quite good regarding our

requirements. Both assume very similar prerequisites. They contribute mature means to our

envisaged main objective to support refactoring and Co-Refactoring is it is known from IDEs.

In conclusion we can say that we got deeper insights into the di�erent parts of the related

work. This analysis justi�es the intention of this thesis and in the following chapters we will

contribute our approach of generic quality-aware model refactoring and co-refactoring to resolve

de�ciencies in models.

49

4
Role-Based Generic Model Refactoring

This chapter is based on our publications “Role-based Generic Model Refactoring” [RSA10] and

“On the reuse and recommendation of model refactoring speci�cations” [RSA13]. It presents our

role-based approach of generic model refactoring and compositions of refactorings.

4.1. Motivation

Refactorings can be used to improve the structure of software artefacts while preserving the

semantics of the encapsulated information. Various types of refactorings have been proposed

and implemented for programming languages (e.g. Java or C#). With the advent of MDSD, a

wealth of modelling languages rises and the need for restructuring models in MLDEs similar to

programmes has emerged. Since parts of these modelling languages are often very similar, we

argue to reuse the core transformation steps of refactorings across languages as discussed in

Sect. 1.2. Based on that, reusing the abstract transformation steps and the abstract participating

elements becomes easy.

As an example, consider the Extract Method from Fig. 1.5 on page 5 for Java again. From

an abstract point of view, the core refactoring steps comprise the sequence of selecting some

statements, creating a new method, naming the new method, moving the selection to the new

method, and adding a call to the new method at the origin of the moved selected statements. Now,

consider our toy DSL for planning conferences as well. The following example has already been

illustrated in Fig. 1.6 on page 6, but for the sake of better understanding we depict it here again.

The abstract and textual concrete Syntax of the Conference DSL can be seen in Appendix F. This

little language can be used to de�ne di�erent tracks, talks and speakers for a conference. For

the talks only declared speakers can be referred to. Figure 4.1(a) depicts an example conference.

Assuming the last two talks in Lines 7 and 8 are less interesting we could create a new track

and move them into it. The result can be seen in Fig. 4.1(b). Except of the last Extract Method

step (adding a method call) from above, very similar modi�cations have to be performed in the

conference example: select some talks, create a new track, name the new track, and move the

51

4. Role-Based Generic Model Refactoring

1 CONFERENCE
2 "International FooBar Camp"
3 ("Peter Meyers")
4

5 TRACK "Interesting Stuff" :
6 AT 09:00 : TALK "The future of Foo"

PRESENTED BY "Peter Meyers"
7 AT 10:00 : TALK "Foo vs. F00" PRESENTED

BY "Andrew Bloomfield"
8 AT 11:00 : TALK "Onyl Bar-S is true"

PRESENTED BY "Homer Simpson"
9

10 REGISTERED SPEAKERS :
11 "Peter Meyers" FROM Germany,
12 "Andrew Bloomfield" FROM USA,
13 "Homer Simpson" FROM USA

(a) before

1 CONFERENCE
2 "International FooBar Camp"
3 ("Peter Meyers")
4

5 TRACK "Interesting Stuff" :
6 AT 09:00 : TALK "The future of Foo"

PRESENTED BY "Peter Meyers"
7

8 TRACK "Less Interesting Stuff" :
9 AT 10:00 : TALK "Foo vs. F00" PRESENTED

BY "Andrew Bloomfield"
10 AT 11:00 : TALK "Onyl Bar-S is true"

PRESENTED BY "Homer Simpson"
11

12 REGISTERED SPEAKERS :
13 "Peter Meyers" FROM Germany,
14 "Andrew Bloomfield" FROM USA,
15 "Homer Simpson" FROM USA

(b) after

Figure 4.1.: Example of Extract Track refactoring in the Conference DSL.

selected talks to the new track. These modi�cations can be considered as the refactoring Extract

Track for the Conference DSL.

As can be observed in the example, both illustrated refactorings are applied to instances of

completely di�erent languages. On the one hand, we have the object-oriented programming

language Java. On the other hand, we have a DSL for de�ning conferences not being object-

oriented at all. Obviously, the executed steps in both refactorings are quite similar from an

abstract point of view, and therefore a generic refactoring speci�cation is required. As shown in

Sect. 3.1, previous work in this �eld indicates that refactorings can be speci�ed generically to

foster their reuse. However, existing approaches can handle certain types of modelling languages

only and solely reuse refactorings once per language. Especially the large variety of modelling

languages demands for generic and reusable methods and tools. The e�ort to develop and

maintain the growing number of DSLs can only be reduced by reusing tools across di�erent

languages. This does of course also apply to refactorings. If one wants to quickly establish

refactoring support for new DSLs, a technology to reuse existing refactorings is needed [MTM07].

A closer look at the reuse of refactorings raises the question about what can be reused across

multiple languages and what cannot. Related work in this area has shown that there is potential

for reuse, but it is limited in one way or the other (cf. Sect. 3.1). In addition, this research

indicated that some aspects cannot be captured in the reusable part of the refactoring. For

example, a generic refactoring cannot make assumptions about the semantics of a language.

Thus, reusing refactorings requires a combination of adapting existing generic parts to the

modelling language of interest and the additional speci�cation of language-speci�c information.

This chapter presents a new technique for this combination and uses the following terminology:

refactoring denotes a concrete restructuring in a particular language, generic refactoring indicates

a reusable abstraction of similar refactorings of one or more languages, and refactoring execution

means the application of a refactoring on a particular model.

52

4.2. Specifying Generic Refactorings with Role Models

In this chapter, a novel approach to specify generic refactorings is presented in the upcoming

section. In order to prove Hypothesis 1, we argue that the formalism of role models (cf. Sect. 2.3)

is a suitable abstraction over refactorings. As discussed in Sect. 3.1.2, the generic M3 approaches

are too static regarding a common uni�ed meta-metamodel for all target languages. Such a

meta-metamodel represents concepts of target languages in an isolated manner and does not

re�ect the fact how humans think about objects. A more appropriate approach is to model

structures between objects that indicate how these objects interact in speci�c contexts. While a

metaclass only speci�es properties of elements by static means, when considering an element in

a concrete refactoring scenario, we notice that the interaction of elements can be substantially

di�erent in other contexts. This fact cannot be re�ected with the static M3 approaches. It is

obvious that the same element participating in one refactoring can play a completely di�erent

role in another one. As a consequence, every model refactoring de�nes another context for the

involved elements. As a result of this preliminary consideration, we are convinced that role

models are suitable means to address this problem, since they support declaration of roles which

have to be played in a certain context. Assigned to generic refactoring, contexts are di�erent

refactorings and roles are the participating elements. We discuss how this resolves the limitations

of previous works, as well as how speci�c refactorings can be de�ned as extensions to generic

ones. This contributes to ful�l Requirements 1 and 3 from Sect. 3.1.1.

4.2. Specifying Generic Refactorings with Role Models

Previously, we have argued that there is a strong need to reuse generic refactorings, in particular

in the context of DSLs. To enable such reuse, the parts of refactorings that can be generalised

must be separated from the ones that are speci�c to a particular language. Consider, for example,

the basic refactoring Rename Element for any concrete language. The steps needed to perform

this refactoring are the same, no matter what kind of element needs to be renamed. After

changing the value of a string-typed attribute, all occurrences which refer to this value must

be kept consistent in the most general case. Since we have models, there is no need to update

the references because in contrast to trees they contain references and do not establish implicit

relations by using the same names. But, models can refer to other models, and, therefore, dangling

references must be updated right after a refactoring is executed.

The concrete string-typed attribute may vary for di�erent languages, but the general procedure

is the same. Depending on constraints that apply to particular languages (e.g., whether unique

names are required) some renamings may be valid, while others need to be rejected.

From the simple example, we can gain some initial insights. First, the structural part of a

refactoring (i.e., the elements that are transformed) is a good candidate for reuse. Second, the

semantics of a language can render concrete refactorings invalid. The example also shows that

semantics—both static and dynamic—are language-speci�c and therefore cannot be part of a

generic refactoring. We have also seen that the execution of a refactoring can be a composition of a

generic transformation and speci�c steps that di�er from language to language. We postpone the

language speci�cs for a moment (see Sect. 9.1.5) and look at the structural and transformational

aspects of refactorings �rst.

To reuse the structural part of generic refactorings, a model of this structure is needed. More

precisely, the structure of models that can be handled by a generic refactoring must be speci�ed.

53

4. Role-Based Generic Model Refactoring

DSL
User

DSL
Designer

Role
Mapping

DSL Meta
Model

Refactoring
Designer

Role
Model

Transformation
Specification

Refactoring
Framework

Role Mapping
Metamodel

Role
Metamodel

Transformation
Metamodel

DSL Model
Refactored
Model

Refactoring
Interpreter
Refactoring
Interpreter

conforms

refers

data flow

Figure 4.2.: Metamodels, relations and stakeholders.

For the Rename Element example, this structure basically consists of an attribute in the particular

metamodel. Any model element that has such an attribute (i.e., it is an instance of the metaclass

that de�nes the attribute) can be renamed. Other refactorings (e.g., Extract Method as described

in [FBB+99] for Java), have more complex structural constraints, such as requiring that the

elements to extract (i.e., statements) need to be contained in a container object (i.e., a method)

and must be moved to a new container object (i.e., a new method). Imagine, e.g., a refactoring

Extract CompositeState for UML state machines in comparison to Extract Method for Java: some

states (i.e., elements to extract) have to be selected which are intended to be moved into a new

composite state (i.e., a new container). As one can see, the abstract transformation steps in this

example are the same if we only consider the structural abstraction as described above. To model

such structural properties—one may also consider these as structural requirements—we have

chosen to use role models as they were proposed in [RG98; RWL96], but in a slightly adjusted

manner.

Roles encapsulate the behaviour of a model element with regard to a context. Roles appear in

pairs or sets, so-called collaborations. In the context of this work, roles can be considered as the

types of elements that are subject to a refactoring. The role collaborations model the references

between the elements required to execute a refactoring. More details about this can be found in

Sect. 4.2.1.

To map the abstract structural de�nition of the input required by a generic refactoring to

concrete languages, a relation between the structural de�nition (i.e., the role model) and the

metamodel of the language must be established. This mapping de�nes which elements of the

metamodel are valid substitutions for elements in the role model. We call this relation a role

mapping. We discuss such mappings in Sect. 4.2.2. We distinguish between the static mapping of

roles (beforehand) and the dynamic binding of roles (while executing a concrete refactoring).

To reuse the transformational part of generic refactorings a third model is needed—a trans-

formation speci�cation. This model de�nes the concrete steps needed to perform the generic

refactoring. In the example of renaming an element, this model must contain instructions to

change the value of an attribute. Of course, the transformation needs to change the value of the

attribute speci�ed by the role model (i.e., it refers to the role model). In Sect. 4.2.3, details about

the transformation operators and the interpretation thereof will be found.

The models mentioned so far are depicted in upper right part of Fig. 4.2. Concrete models

are related to their metamodel by instance-of links. Two kinds of models (i.e., role models and

54

4.2. Specifying Generic Refactorings with Role Models

transformation speci�cations) are provided by the refactoring designer. She creates generic refac-

torings, which consist of pairs of such models. DSL designers can then establish correspondences

between the generic refactorings to their languages by creating role mappings. This enables DSL

users to apply refactorings to concrete models.

4.2.1. Specifying Structural Constraints using Role Models

To explain role models in more detail, we want to consider Extract Method for Java (cf. Fig. 1.5

on page 5) and Extract Track for our Conference DSL (cf. Fig. 4.1 on page 52) again. As already

shown in Sect. 4.1, we are convinced that this kind of refactorings (i.e., moving a set of elements

to a new container and referring to the new container at the original position) is useful for other

languages, too, and we want to derive a generic refactoring—Extract X with Reference Class.

To capture the structural properties of our generic refactoring we use a role model. For the

generic refactoring Extract X with Reference Class (cf. Fig. 4.3), we consider elements that are

extracted, their container, a new container the elements are moved to, and a moved reference

referring to the new container. Elements participating in a generic refactoring form groups,

where all elements within one group are handled equally. In other words, elements play a certain

role with respect to a generic refactoring.

The elements that are extracted (e.g., structural features) play the Extract role (cf. Fig. 4.3).

The object that contains the extractees plays the OriginalContainer role. The object to which

the extractees are moved, plays the NewContainer role. And the element that will reference

the new container afterwards plays the role MovedReference. In other words, roles abstract

from the concrete metaclasses that are allowed as participants for a generic refactoring. Instead

of referring to concrete metaclasses, the structure that can be transformed is speci�ed by roles.

Later on, when a refactoring is enabled for a concrete language, role mappings map roles to

concrete metaclasses.

Between the roles that form the nodes in our structural description certain relations hold (the

collaborations). For example, the OriginalContainer must hold a containment reference to the

Extract elements. Also, a reference between the original container and the MovedReference
is needed to connect the new container to the moved reference. We use collaborations to model

such structural dependencies between roles.

The complete role model for the generic refactoring Extract X with Reference Class is depicted

in Fig. 4.3 (a) in a graphical notation. Fig. 4.3 (b) shows a textual notation of the same role

model. One can identify the roles mentioned above (shown as rounded boxes) as well as their

collaborations, which are depicted by links between the boxes. Besides the roles mentioned

above, there is a role ContainerContainer which models the fact that the new and the original

container must be contained in a third element. For the Extract Method refactoring, this role is

played by the class Class, which is speci�ed in the role mapping (see Sect. 4.2.2).

The example gives a �rst impression how role models specify the structural constraints that

must be met by a language’s metamodel to qualify for the generic Extract X with Reference Class

refactoring. All other concepts that can be used in role models are de�ned by the role metamodel

shown in Fig. 4.4.

The concepts Role and Collaboration are contained in a RoleModel. Roles may be annot-

ated by several RoleModifiers. An optional role is not needed to be mapped to a speci�c

metaclass (e.g., if a DSL’s metamodel does not contain such a metaclass in the desired context).

55

4. Role-Based Generic Model Refactoring

ContainerContainer

Extract

MovedReference

OriginalContainer
NewContainer

newName

targetsource

extracts moved

referrer

containerRef

(a) Graphical representation.

RoleModel ExtractXwithReferenceClass {
ROLE OriginalContainer;
input ROLE Extract;
ROLE NewContainer (newName);
ROLE ContainerContainer;
optional ROLE MovedReference;

OriginalContainer [1..1]
<>- Extract extracts [0..*];

OriginalContainer [1..1]
<>- MovedReference referrer [

1..1];
NewContainer [1..1]

<>- Extract moved [0..*];
ContainerContainer [1..1]

<>- NewContainer target [1..1];
ContainerContainer [1..1]

<>- OriginalContainer source [
1..1];

MovedReference [1..1]
-- NewContainer containerRef [

1..1];
}

(b) Textual representation.

Figure 4.3.: Di�erent representations of generic Extract X with Reference Class refactoring.

RoleModel
NamedElement

name : String

Collaboration Role

modifier : RoleModifier

RoleAttribute

«RoleModifier»

optional
input

RoleProhibition

RoleImplication

MultiplicityCollaboration

sourceName : String
targetName : String

Multiplicity

lowerBound : Int
upperBound : Int

RoleComposition

RoleAssociation

collaborations
roles

attributeRole

attributes

sourceMultiplicity

targetMultiplicity

incoming target

outgoing source

Figure 4.4.: Role metamodel.

56

4.2. Specifying Generic Refactorings with Role Models

Roles which must serve as input of a generic refactoring are marked with the input modi�er. In

the example Extract X with Reference Class the Extract must be provided as such. Furthermore,

a Role can contain RoleAttributes to express that it can own observable properties (e.g., a

name) which may change during the role’s life cycle.

Collaborations connect two Roles, a source and a target Role. They are further distin-

guished into di�erent types. A RoleImplication constraint can be used to express that one role

must also play another role. A RoleProhibition constraint states that two roles are mutually

exclusive—an element playing one role must not play the other role. The other types are charac-

terised by Multiplicitys, expressing that one role can collaborate with a speci�c number of

elements playing the related role. To distinguish between containment and non-containment

references, we use RoleCompositions and RoleAssociations respectively.

Besides the role model of Extract X with Reference Class depicted in Fig. 4.3 further role models

have been developed. The whole list can be seen in the Appendix A. A comparison of our role

metamodel to the role feature model of [KLG+14] can be seen in Appendix B.

The next step in the development of a generic refactoring is writing a transformation spe-

ci�cation. Such speci�cations do only refer to the role model of the generic refactoring, not to

a concrete metamodel. However, �rst we have a look at role mappings, which DSL designers

can use to relate role models with concrete languages. This is needed to understand the actual

execution of generic refactorings, as this can only be performed in the context of a mapping.

4.2.2. Mapping Roles to Language Concepts Using Role Mappings

To control the structures intended for refactoring execution, the role model needs to be mapped

to the target metamodel. According to [RWL96], applying a role to an entity in a certain domain

is called binding. In the common sense, this term means that the role is bound dynamically at

runtime. Since we propose a solution where role models are applied statically at design time,

we consider this binding a mapping in the following. On the other hand, our approach also

comprises a dynamic aspect, namely the refactoring execution at runtime. In that context, the

statically mapped roles then are bound to dynamically determined model elements which we

then consider a role binding in the common sense. But this is explained in the next section (cf.

Sect. 4.2.3). Here we discuss the static mapping of roles to target metamodels.

Such a mapping between role model and target metamodel is de�ned by the DSL designer,

which can be seen in the middle level of Fig. 4.2. Based on this mapping, refactorings can only

be applied to those structures conforming to the metaclasses the roles were mapped to.

The whole metamodel to which role mappings conform is depicted in Fig. 4.5. Here, each

RoleMappingModel refers to an EPackage1
containing the targetMetamodel. The referenced

metamodel is the language which the role mapping is de�ned for. Thus a concrete refactoring

represented by such a mapping can be applied for instances of the target metamodel. Furthermore,

a RoleMappingModel can refer to importedMetamodels. These are metamodels which might

be referenced in the target metamodel, and it might be the case that those metaclasses become

target of a role mapping. Thus, the related metamodels must be known here and can be referenced.

To de�ne concrete mappings, a RoleMappingModel owns several RoleMappings inheriting

from Refactoring, thus it has a name indicating the identi�er of the concrete refactoring,

1
We use EMF Ecore as MOF-conform modelling technology.

57

4. Role-Based Generic Model Refactoring

RoleMappingModel

RoleMapping

Refactoring

name : String

ConcreteMapping

ReferenceMetaClassPair

AttributeMapping CollaborationMappingRoleAttribute

RoleModel

Role

MultiplicityCollaboration

EPackage

EClass

EReference

EAttribute

roleMappings

concreteMappings

attributeMappings collaborationMappings pathSegments

mappedRoleModel

roleAttribute

role

collaboration

targetMetamodel

importedMetamodels

metaclass

metaclass

reference

metaAttribute

Figure 4.5.: Role Mapping metamodel. Di�erent colours denote distinct metamodels. Since those

metaclasses are only referenced here they appear slightly transparent to make clear

they are de�ned in other metamodels.

such as Extract Method for Java or Extract Track for our Conference DSL. A RoleMapping
references the role model of the generic refactoring. By this relation, we ensure that only roles

de�ned in the mappedRoleModel can be mapped. The name of a RoleMapping expresses the

name of a concrete refactoring. By means of corresponding a metaclass and a role, a Role-
Mapping owns several concreteMappings. Each ConcreteMapping speci�es which role of

the mapped role model is played by which metaclass from the target metamodel. Since roles

can possess RoleAttributes, a ConcreteMapping can have AttributeMappings relating

particular RoleAttributes to EAttributes owned by an EClass.

If roles collaborate with other roles, a ConcreteMapping must specify CollaborationMap-
pings being used for each role collaboration to de�ne which metaclass relations it corresponds

to. For this purpose, we want to introduce some �exibility here. If we only allow for mapping

a collaboration to an EReference from a target metamodel’s metaclass, then the target

metaclass must contain exactly the same structure as de�ned in the role model. This means that

small di�erences in a target metamodel’s design may result in the fact that a new role model is

needed. Therefore, we want to loosen this restriction by introducing the possibility to map a

collaboration not only to an EReference but a path of EReferences. For this reason, a Col-
laborationMapping can de�ne pathSegments each typed by a ReferenceMetaClassPair.

Every pair points to a concrete EReference (from the target metamodel), which must lead to the

speci�ed EClass. By de�ning multiple ReferenceMetaClassPairs, it is possible to constitute

a path from one EClass to another. This enables the control of the structures in a more �exible

way. With this mapping the possibilities of annotating a metamodel with a role model are

completed—all structural features can be mapped.

58

4.2. Specifying Generic Refactorings with Role Models

1 ROLEMODELMAPPING FOR
2 <http://www.emftext.org/java>
3

4 "Extract Method"
5 maps <ExtractXwithReferenceClass> {
6

7 Extract := java.statements.Statement;
8

9 OriginalContainer := java.members.
ClassMethod{

10 extracts := statements;
11 referrer := statements :

ExpressionStatement ->
expression : MethodCall;

12 };
13 NewContainer := java.members.

ClassMethod (newName -> name){
14 moved := statements;
15 };
16 ContainerContainer := java.classifiers.

Class{
17 source := members;
18 target := members;
19 };
20 MovedReference := java.references.

MethodCall{
21 containerRef := target;
22 };
23 }

(a) Extract Method.

1 ROLEMODELMAPPING FOR
2 <http://www.emftext.org/language/

conference>
3

4 "Extract Track"
5 maps <ExtractXwithReferenceClass> {
6

7 Extract := Slot;
8

9 OriginalContainer := Track{
10 extracts := slots;
11 };
12 NewContainer := Track (newName ->

name){
13 moved := slots;
14 };
15 ContainerContainer := Conference{
16 source := elements:Track;
17 target := elements:Track;
18 };
19 }

(b) Extract Track.

1 ROLEMODELMAPPING FOR <http://www.eclipse.org/uml2/3.0.0/UML>
2

3 "Extract CompositeState" maps <ExtractXwithReferenceClass> {
4

5 Extract := State;
6

7 OriginalContainer := Region {
8 extracts := subvertex:State;
9 };

10 NewContainer := State (newName -> name) {
11 moved := region -> subvertex:State;
12 };
13 ContainerContainer := Region {
14 target := subvertex:State;
15 };
16 }

(c) Extract CompositeState.

Figure 4.6.: Role mappings to di�erent DSLs for the generic Extract X with Reference Class refac-

toring.

59

4. Role-Based Generic Model Refactoring

The following example illustrates the explained theory. We come back to the refactorings

Extract Method for Java (cf. Fig. 1.5 on page 5) and Extract Track for our Conference DSL (cf.

Fig. 4.1 on page 52). The role mappings for these examples can be seen in Fig. 4.6. On the left hand

side in (a), the mapping for Extract Method is depicted, whereas the mapping for Extract Track can

be seen in (b). Both are instantiated from the generic Extract X with Reference Class refactoring.

The mapping is written in our DSL for role mappings, which is presented in more detail in Sect. 9.

This example illustrates the fact that a role collaboration can be mapped to a path of references in

the target metamodel. Have a look at Line 11 in (a). One can see that the collaboration referrer
is mapped to the following path originating from the metaclass java.members.ClassMethod,

starting from the reference called statements reaching an abstract Statement class. Thus, a

concrete subclass has to be chosen: ExpressionStatement. From this metaclass, the mapping

continues with the reference called expression ending at the concrete metaclass MethodCall
(being a subclass of the abstract Expression metaclass). In turn, MethodCall is the one playing

the role MovedReference.

A third example is depicted in Fig. 4.6 (c) and can be used in UML state machines. This role

mapping represents the refactoring Extract CompositeState and moves some selected states into

a newly created composite state. It is intended to be applied in case a subset of a state machine

should be made reusable.

These three examples show that our approach does not make any assumptions about the kind

of target languages. We de�ned role mappings for both Java as a General Purpose Language

(GPL), graphical modelling languages (UML), and DSLs (Conference language). Deeper insights

about the quantity of speci�ed role mappings and reuse of generic refactorings are presented in

Sect. 10.1. The complete list of all de�ned role mappings can be found in Appendix C.

Our methodology of role mapping is not as rigid as the other M3 approaches in Sect. 3.1.2.

One and the same role model can be mapped several times onto di�erent structures in the same

metamodel, which raises the �exibility signi�cantly. In contrast to the work of Hannemann,

Murphy and Kiczales in [HMK05] (also discussed in the M2 approaches of Sect. 3.1.2), who

proposed an approach for role-based refactoring of cross-cutting aspects in Java, our approach

resides an MOF layer M3 instead of M2.

Summarising, what a DSL designer only has to do to enable a concrete refactoring for her DSL

users is to provide such a role mapping. The bene�t is the reduced manual e�ort. Until now, we

have an abstraction over the structure of the participating elements of a refactoring in terms of

role models, and a role mapping for instantiating a role model resulting in a concrete one. In

the next section, we will present our solution for specifying the particular steps of a generic

refactoring.

4.2.3. Specifying Language-Independent Transformations using Refactoring
Specifications

Returning to the viewpoint of the refactoring designer, the next step to consider is the particular

speci�cation of the actual generic refactoring’s transformation. To abstract the transformation

from concrete languages, it must refer to the corresponding role model only. Since we introduced

the structural abstraction in terms of a role model a dedicated transformation language is required

to take this into account. This fact is also attended by [RKP+14] since Rose et al. argue that

an evolution-speci�c model transformation language can provide speci�c evolution operators

60

4.2. Specifying Generic Refactorings with Role Models

1 REFACTORING FOR <ExtractXwithReferenceClass>
2

3 STEPS {
4 object containerContainerObject := ContainerContainer from uptree(INPUT);
5 object origContainerObject := OriginalContainer from path(INPUT);
6 index extractsIndex := first(INPUT);
7

8 create new nc:NewContainer in containerContainerObject.target;
9 assign nc.newName;

10 move origContainerObject.extracts to nc;
11 create new mr:MovedReference in origContainerObject.referer at extractsIndex;
12 set use of nc in mr.containerRef;
13 }

Listing 4.1: Refactoring speci�cation for Extract X with Reference Class.

making technical details transparent. This fact is supported by our evaluation (cf. Table 3.4 on

page 47) of the model migration language Epsilon Flock [RKP+14].

For this concern, we propose a metamodel—the Refactoring Speci�cation (RefSpec)—and a

textual syntax for specifying generic refactoring steps based on roles. The RefSpec metamodel is

extensible in terms of subclassing, for which many potential extension candidates as abstract

metaclasses are available. This section presents only the conceptual aspect of the speci�cation

language, whereas the concrete textual syntax speci�cation is presented in Chap. 9. Nevertheless

we start with a concrete example RefSpec which serves for understanding the RefSpec concepts

better.

Example

Listing 4.1 shows the refactoring speci�cation for the role model of the generic Extract X with

Reference Class refactoring (cf. Fig. 4.3). This speci�cation is given in textual notation of our

RefSpec DSL. Please consult the corresponding role model in Fig. 4.3 on page 56 to understand

the used roles and collaborations in this example.

Six basic steps are su�cient to execute the generic Extract X with Reference Class refactoring.

First, two object de�nitions (Lines 4 and 5) bind concrete model elements from the input (i.e., the

selected elements) to symbolic names. Furthermore, the actual position of the selected elements

from the input is needed and bound to a symbolic name (Line 6). Subsequently, �ve of the core

commands can be found. The create operator constructs a new element playing the �rst given

role as a child of the element playing the second given role (Line 8). In the next step, assign is

used to pass a value to the attribute which was bound to the given role attribute (Line 9). The

move command then relocates the elements playing the role of the collaboration with the �rst

given role and the second given role becomes the new parent (Line 10). Afterwards, again the

create operator is used for instantiating an element playing the role MovedReference (Line 11).

It is created at the same position as the originally selected input elements where located. Finally,

the set command arranges that the object playing the �rst given role is referenced in the bound

collaboration of the object playing the second given role (Line 12).

This RefSpec is the transformation speci�cation for the generic Extract X with Reference Class

61

4. Role-Based Generic Model Refactoring

RefactoringSpecification

RoleModel ContainmentCommand ReferenceCommand AttributeCommand DeleteCommand

Instruction

VariableDeclarationCommand

IndexAssignmentCommand

usedRoleModel

instructions

Figure 4.7.: Refactoring Speci�cation metamodel.

refactoring. In the following, we explain the conceptual background of the RefSpec language.

Concept

As already mentioned, we designed a transformation language dedicated to specify generic

refactorings based on the roles de�ned in the corresponding role model. The metamodel of

this language is quite large and, for the sake of clarity, we divide it into several parts. Some

metaclasses occur slightly transparent again. This means that their conceptual origin is located

in another part of the whole metamodel.
2

Metaclasses having a di�erent colour are originally

speci�ed in another metamodel and can also be navigated.

In Fig. 4.7, the basic structure of a RefactoringSpecification is illustrated. A RoleModel
is referenced establishing the context of a generic refactoring. Only those structures de�ned in the

referred role model can be used. A RefactoringSpecification contains instructions to be

performed. This metaclass is abstract and has several subclasses. In the lower part of the �gure,

you can see the abstract metaclasses denoting commands to operate on structural concerns of a

model: ContainmentCommand, ReferenceCommand and AttributeCommand. Since deletions

can be applied to almost every structure, the DeleteCommand is located at this layer of the

whole metamodel. Furthermore, commands for element binding and indexing are required.

Therefore, VariableDeclarationCommands and IndexAssignmentCommands are used. These

constituents of the core metamodel re�ect the di�erent parts being explained in the following.

Obviously, the particular transformation must be applied on the real model elements and not on

the de�ned roles. Therefore, these elements are bound to the roles at runtime. This fact is re�ected

by the de�nition of variables for role bindings (Fig. 4.8). A VariableDeclarationCommand
creates exactly one

3 Variable uniquely identi�ed by its name. The concrete assignment of a

variable is realised by one of the two metaclasses inheriting from ObjectAssignmentCommand.

First, a variable can be assigned to the elements being bound to the target of a Multiplicity-
Collaboration by using a CollaborationReference. Second, a variable can be assigned to

a RoleReference being able to determine elements playing the given Role in dependence on

already known model elements based on a ObjectReference. On the one hand, this can be the

input elements re�ected by the INPUT constant from ConstantsReference. On the other hand,

this can be elements already assigned to another variable via a VariableReference. The set of

2
These metaclasses can be considered as references and can be navigated to in the digital version of this thesis.

3
For the sake of clarity, cardinalities are not given in the �gures but denoted in the explanation.

62

4.2. Specifying Generic Refactorings with Role Models

VariableDeclarationCommand Variable

name : String

VariableAssignment ObjectAssignmentCommand

RoleReference CollaborationReference

MultiplicityCollaborationRole

FromClause ObjectReference

FromOperator

PATH

UPTREE

FILTER

VariableReferenceConstantsReference

constant : Constants

«Constants»

INPUT

variable

containerCommand

assignment

declaration

collaboration
role

from

reference

operator

variable

Figure 4.8.: RefSpec metamodel: Variable Declaration.

already assigned elements is the starting point for determining the desired elements playing the

given role of a RoleReference. We provide the following three FromOperators to achieve

this. They can be understood as convenience operators �ltering the given elements by applying

graph traversal through the model.

1. PATH: In contrast to a CollaborationReference, this operator can be used to determine

elements without referring to the actual outgoing collaborations of the roles they play. It

navigates from the role, played by the given model elements, along its outgoing collabora-

tions and collects all elements playing the role referenced in the RoleReference.

2. UPTREE: Determines the path from each of the given elements up the tree to the root

model element in which all are contained. Then the intersection of these paths is produced

resulting in the path all the others have in common. This operator then returns the �rst

element of the intersected path (starting from the leaf) playing the given role of the

RoleReference.

3. FILTER: This operator returns those model elements from the given set playing the given

role.

To support the possibility to specify a certain position, e.g. when moving elements, we provide

an IndexAssignmentCommand. Similar to the VariableDeclarationCommand, this command

creates an IndexVariable uniquely identi�ed by its name. With the use of ConcreteIndex, a

63

4. Role-Based Generic Model Refactoring

IndexAssignmentCommand

ObjectReferenceAssignment

ConcreteIndex

index : int

FIRST

LAST

AFTER
ObjectReferenceIndexVariable

name : String

referencevariable

indexCommand

Figure 4.9.: RefSpec metamodel: Index Assignment.

ContainmentCommand IndexVariable

CREATE MOVE Modifier DISTINCT

TargetContext SourceContext

Role

VariableReference CollaborationReference

MultiplicityCollaborationVariableDeclarationCommand

Variable

index

moveModifier

sourcetarget

target-
Context

sourceRole

collaboration
variable

containerCommand

variable

Figure 4.10.: RefSpec metamodel: Create and Move Elements.

refactoring designer is enabled to use an integer value to provide an explicit index. In contrast,

the three metaclasses FIRST, LAST and AFTER refer to an already assigned set of elements (cf.

ObjectReference) and return the concrete number of the �rst element in this set, the last

element in this set, or the increment of the last element respectively.

Creating and moving model elements are essential operations in model transformation in

general and in refactoring especially. Therefore, the part of our RefactoringSpecification
metamodel depicted in Fig. 4.10 can be used. The abstract ContainmentCommand metaclass

can refer to an IndexVariable to specify a certain index which the certain elements can be

created at are moved to. To CREATE an element, the Role the element must be a player of

has to be given. In addition, a TargetContext is needed to specify the parent of the element

to be created. Here we have two possibilities. First, an already declared Variable can be

referenced. Second, a CollaborationReference can be chosen to refer to a collaboration
of a certain role. The metaclasses of the element playing the sourceRole must be compatible

64

4.2. Specifying Generic Refactorings with Role Models

ReferenceCommand

SourceContext

TargetContext

SET UNSET

source

target

source

target

(a) Change References

AttributeCommand

ASSIGN

RoleAttribute

source-
Attribute

target-
Attribute

(b) Change Attributes

Figure 4.11.: RefSpec metamodel: Changing Elements.

with the metaclass playing the role of the target of the given MultiplicityCollaboration.

Furthermore CREATE is a VariableDeclarationCommand by itself. Thus a new Variable is

created when this command is used. To move model elements around the MOVE command can be

used. Here the SourceContext must be provided representing the particular elements intended

to be moved. Furthermore, the mandatory TargetContext serves as the target of the move.

Both VariableReference and CollaborationReference inherit from TargetContext and

SourceContext. Since these metaclasses have already been explained, it is clear how the

according model elements are resolved. Beyond that, the modifier DISTINCT can optionally be

given for a MOVE command. If that is the case, the moved elements are compared and duplicates

are not added to the new target. As an example for this, you can consider a Pull Up Attributes

refactoring for the UML. In a class diagram several classes are contained all having a name
attribute. These attributes are unique in their respective classes but when they should be pulled

up into their common superclass they need not be unique anymore. In such a case, DISTINCT
would be used to only result in one attribute being pulled up.

To change model elements, we distinguish between changing references and changing attrib-

utes. These two parts of the whole RefSpec metamodel can be seen in Fig. 4.11. In (a) one can

see that we provide ReferenceCommand for SETting and UNSETting references. Both of them

use SourceContext as source and TargetContext as target for their modi�cation. In (b), the

part of the metamodel for changing attributes is depicted. ASSIGN can optionally refer to a

sourceAttribute and refers to a mandatory targetAttribute. If a source attribute is given,

then its value is copied to the target attribute. Otherwise, a value is requested from the user who

applies the refactoring. The types of source and target must be compatible.

The last part of our whole metamodel covers the removal of model elements, which is depicted

in Fig. 4.12. To remove elements, the REMOVE command must be used. The removal can be

speci�ed by instances of one of these metaclasses: ObjectReference or RoleRemoval. The

former has already been explained. With the latter, a Role can be designated which removes the

elements playing this role from their container. Furthermore, a RemoveModifier can be given.

On the one hand, EMPTY signi�es to only remove the given elements, if they do not have any

children. On the other hand, UNUSED can be used in case the elements are only to be removed in

case they are not referenced by other elements.

65

4. Role-Based Generic Model Refactoring

DeleteCommand

REMOVE ObjectRemoval

RoleRemovalObjectReference

Role

RemoveModifier

EMPTY UNUSED

removal

role
modifier

Figure 4.12.: RefSpec metamodel: Remove Elements.

This closes the presentation of our concept for the refactoring speci�cation. The upcoming

section explains how refactorings are executed.

Execution by Interpretation

Until this point we have learned three essential aspects of our generic model refactoring approach.

First, a refactoring designer de�nes the structural requirements of the participating elements of

a refactoring by means of role models (cf. Sect. 4.2.1). Second, a refactoring designer speci�es the

semantics of a generic refactoring by means of a role-based refactoring speci�cation (presented

in this section). Third, a DSL designer instantiates a generic refactoring to enable it as a concrete

one for a particular target metamodel by means of a role mapping (cf.Sect. 4.2.2).

What is left, is the actual execution of a generic refactoring in the context of a certain model

conforming to a metamodel which a role mapping was speci�ed for. In this thesis, we decided

to use an interpretation-based approach in contrast to compilation (code generation). The

main advantage justifying this decision is the shorter feedback loop. A DSL designer knows

her language’s metamodel best and can adjust a role mapping easily. Thus, changes are taken

into account directly by an interpreter when the refactoring is applied for new. Neither code

generation nor deployment of the generated refactoring to the MLDE is needed. The refactoring

can be executed instantly.

The input for the interpretation comprises four artefacts: role model, refactoring speci�cation,

role mapping and the set of selected model elements, which the refactoring should be applied

to. During interpretation, the referenced roles and collaborations are resolved using the role

mapping. In this sense, when the roles are resolved to concrete model elements at runtime,

they are bound dynamically. Thus, as already explained, roles in our approach run through

two phases: 1) they are mapped statically to the target metamodel at design time, 2) they

are bound dynamically to concrete model elements while interpretation. The particular role

binding then can serve as input for other MLDE tools, to preview the result of a refactoring, or

to contribute to the refactoring history, or just to roll it back. We will give more insights about

our implementation in Chap. 9.

66

4.2. Specifying Generic Refactorings with Role Models

As discussed by Opdyke in [Opd92],pre- and post-conditions must be met before and after

refactoring execution. Otherwise, the refactoring execution must be rolled back. In our approach

this fact has not been re�ected so far. Pre- and post-conditions are highly domain-speci�c and

cannot be speci�ed generically [Are14]. Furthermore di�erent possibilities to de�ne pre- and

post-conditions are conceivable and therefore we postpone our solution regarding this to the

implementation in Sect. 9.1.6. It is important to note at this point that we provide a solution

enabling the evaluation of pre- and post-conditions by means of OCL constraints related to

particular role mappings.

In summary, one can say that the interpretation of generic transformation speci�cations in the

context of role mappings, eventually bridges the gap between generic refactorings and their actual

execution. It allows for de�ning execution steps solely based on roles and collaborations between

them (i.e., independent of a concrete language metamodel), but still enables the execution of

refactorings for concrete models.

Classification into the Model Transformation Feature Tree

We want to classify our concept for specifying refactoring transformations into the feature

tree of model transformations published by Czarnecki and Helsen in [CH06]. Our approach

covers the following most important features amongst others: it uses generic parameterisation for

making transformation rules reusable, it uses two intermediate structures not being part of the

transformed models (role model and role mapping model), it is a structure-driven model-to-model

approach, and it has an in-place source-target relationship. In addition to the classi�cation, our

work is the �rst role-based approach, which results in a new feature for the classi�cation.

Since the transformation is speci�ed on top of a role model and not on the target metamodel

itself, the feature domain language should have an xor-subgroup containing the following features:

�xed and adaptable. The former conforms to the explanation from Czarnecki and Helsen where

the domain language (being target of a transformation) is speci�ed at design time. Whereas

the latter means that the domain language, which the transformation operates on, is di�erent

from the domain of the transformed model and, thus, is adapted. In our case the transformation

operates on a role model and is adapted at runtime to the metamodel of the refactored model.

In this sense, the target domain is not determined until just before a generic refactoring is

instantiated and executed.

4.2.4. Composition of Refactorings

As a next important aspect in model refactoring we want to provide an approach for the compos-

ition of refactorings. Composing refactorings to more complex ones has already been discussed

for a long time [Rob99; VD06; MTM07; MRG09; Are14]. There is no doubt about composing

refactorings, since applying several refactorings one after another yields the same disadvantages

as executing the core steps of a single refactoring by hand: One has to provide information,

required in a subsequent refactoring, although they might be available already from a preceding

refactoring.

Let us consider the following example. Fowler et al. presented a discussion about the model

de�ciency Feature Envy in [FBB+99]. Feature Envy expresses the situation when a method

interacts with the features of another class more frequently than with the features of its own

67

4. Role-Based Generic Model Refactoring

1 void printOwing() {
2 printBanner();
3

4 //print details
5 DetailsPrinter.print("name: " +

_name);
6 DetailsPrinter.print("amount "

+ getOutstanding());
7 }

(a) before

1 void printOwing() {
2 printBanner();
3 printDetails();
4 }
5

6 void printDetails() {
7 DetailsPrinter.print("name: " +

_name);
8 DetailsPrinter.print("amount "

+ getOutstanding());
9 }

(b) after

Figure 4.13.: Adjusted Extract Method refactoring example in Java.

class. Such interactions might be access to public �elds or just the invocation of methods. In

this sense, the method is envious of the other class it is not contained in. Fowler et al. propose

to apply the Move Method on the envious method. Obviously, this is a pretty straightforward

restructuring. Here, we extend this example in the sense that the statements within a method

could be analysed more �ne-grained in order to detect only groups of statements being envious.

For a better understanding, we slightly adjusted the code snippet from Fig. 1.5 on page 5 in

Fig. 4.13.

The printing is now carried out by the class DetailsPrinter. Assuming that printBanner()

is not an envious method, the statements in Lines 5 and 6 are, because they interact with the

DetailsPrinter class more often than with their own class. This means that we should not move

the whole printOwing() method, but prefer to extract the envious statements to a new method

and move the new (envious) method afterwards. Thus, this can be considered as a composite

refactoring of Extract Method and Move Method.

The aforementioned problem of the manual provision of present information appears in this

example in the following sense. First, the two statements being extracted have to be selected

and a name for the new envious method must be chosen. For the second refactoring (Move

Method) again the method intended to be moved has to be selected by the user although we

already know the method from the preceding refactoring. As a consequence, composing both

refactorings to Extract and Move Method would result in less human interaction just to provide

already existing information, and further enable the reuse of the composite refactoring as a new

dedicated refactoring operator.

Our formalism of RoleMapping helps us to provide a new approach of composite refactorings.

Currently, a concrete refactoring is speci�ed by a role mapping, which maps roles to metaclasses.

At runtime these roles are bound to concrete model elements. This holds for every concrete

refactoring intended to be composed. Thus, an approach for composing concrete refactorings

requires means to specify which bound model elements of a preceding refactoring should be used

to bind roles in a succeeding refactoring. Our concept of roles meets this requirement perfectly.

Therefore, we provide another metamodel for composing refactorings in terms of role mappings.

It is depicted in Fig. 4.14.

68

4.2. Specifying Generic Refactorings with Role Models

CompositeRoleMapping

Refactoring

name : String

EPackage

RoleMapping BoundRoleMapping

SourceTargetBindingRole

targetMetamodel

first

sequence

roleMapping

nextMapping

bindingssource

target

Figure 4.14.: Composite Role Mapping metamodel.

1 ROLEMODELMAPPING FOR <http://www.emftext.org/java>
2

3 "Move Method" maps <MoveX> {
4 SourceContainer := java.classifiers.Class{
5 sourceContainment := members;
6 };
7 TargetContainer := java.classifiers.Class{
8 targetContainment := members;
9 };

10 Movee := java.members.ClassMethod;
11 }

Listing 4.2: Move Method role mapping.

For composing existing refactorings, the metaclass CompositeRoleMapping is used. Simil-

arly as RoleMapping, it inherits from Refactoring and thus has a name, such as Extract and

Move Method for Java. A CompositeRoleMapping references the targetMetamodel which the

composite refactoring can be applied in. The target metamodels of the composed refactorings

must match this targetMetamodel in order to assure that the composed refactoring is applicable

in the same language as the separate ones. Furthermore, a first role mapping is referenced

expressing the �rst refactoring in the sequence. Each subsequent refactoring is referred by an

instance of BoundRoleMapping, which not only references the according roleMapping, but

also establishes a binding by means of the SourceTargetBinding metaclass. Instances of this

metaclass map a source role from the preceding refactoring to a target role in the succeeding

refactoring. This approach bene�ts from the already available role mappings, since at this point

it can be statically checked if the metaclasses, to which the mapped roles are already related,

are compatible or not. Thus, only valid composite refactorings can be created by this approach.

To complete the metamodel, every BoundRoleMapping instance can have a nextMapping, for

which new bindings must be speci�ed.

To return to our example, have a look at Fig. 4.6 (a) on page 59 again, with the Java Extract

69

4. Role-Based Generic Model Refactoring

1 COMPOSITE REFACTORING "Extract and Move Method"
2 FOR <http://www.emftext.org/java>
3

4 <Extract Method> -> <Move Method> {
5 <ExtractXwithReferenceClass>.NewContainer = <MoveX>.Movee;
6 }

Listing 4.3: Composite refactoring Extract and Move Method.

Method role mapping. The Listing 4.2 illustrates the Move Method role mapping. The role

mapping of Move X can be found in Fig. A.2 (a). What can be seen in this example is that

the NewContainer from Extract Method must be passed to Movee in Move Method. From a

compatibility point of view this is a valid mapping, since both roles are mapped to the Java

metaclass ClassMethod. The according refactoring composition is depicted in Listing 4.3 in

textual notation, which is presented in more detail in Chap. 9.

As can be seen in Line 5 of Listing 4.3, the according roles are mapped to compose the two

refactorings. The composite refactoring now can move the envious method to the envied class

DetailsPrinter. When such a composite refactoring is to be executed, the interpreter uses the

speci�ed binding and passes it to the subsequent refactoring. In this way, no additional user

interaction is required.

4.3. Preserving Semantics

Refactorings are required to preserve the behaviour of the programme, or in our case the model,

that is subject to a refactoring execution. The behaviour of any programme (or model) is de�ned

by its static and dynamic semantics. This immediately implies that preserving behaviour requires

a formal speci�cation of this semantics. Without formalisation, no guarantees can be given by

a refactoring tool. It also implies that the meaning of a model is highly language-speci�c and

cannot be reused [Läm02]. From our point of view, a framework for generic refactorings can

solely provide extension points to check the preservation of semantics. DSL designers can use

these points to attach custom components that add additional semantic constraints to enforce

the correctness of a refactoring.

The need for formal semantics poses a problem for GPLs. For complex languages (such as

Java), there is either no complete formal de�nition of its semantics, or if there is one, it is rarely

used by the respective refactoring tools. However, in the context of modelling languages, there

is some chance to provide refactorings that are provably correct with respect to the preservation

of the model’s semantics, at least from a theoretical point of view. Modelling languages often

exhibit a reduced level of complexity, so that they o�er the chance to have complete de�nitions

of their formal semantics. In particular, for DSLs that have a very narrow scope, the reduced

semantic complexity may allow for proving the correctness of refactorings. From a practical

perspective, proving the preservation of semantics will still be di�cult. Proofs require a clean

speci�cation of the semantics. Currently, popular LWs use a GPL to specify static semantics (e.g.

to implement name resolution) and transformations to source code of a GPL to de�ne dynamic

(or translational) semantics. Both approaches do not allow to reason about the implied semantics.

70

4.4. Conclusion

Until today, no de�nite answer regarding proving preservation of dynamic semantics in DSL

instances has been given, resulting from the fact that no common sense in terms of formal

semantics speci�cation exists [Var02; DJK+06; RV07; BGM+11; RASG14].

Another more radical point of view is taken by Steimann in [Ste11; Ste15]. He argues that for

a language without speci�ed semantics every modi�cation in these DSL’s models is considered a

refactoring since no behaviour speci�cation can be violated. As already known, well-formedness

rules (WFRs) of a modelling language are equivalent to its static semantics [NPA91; Hax14;

RASG14; Ste15]. Therefore, Steimann makes use of this correspondence as already explained in

Sect. 3.1.2. WFRs are the formal base of his generic refactoring approach. WFRs are translated

into constraint satisfaction problems (CSPs), which do not only check if the constraints are

violated but also recommend modi�cations to satisfy the CSP again. Consequently, Steimann

sensitizes DSL designers for the speci�cation of WFRs in their languages, which most often is

avoided or only done informally. But most often, simple invariant checking is su�cient to prove

behaviour preservation [Tri07; Ste11; GL12]. We hold the same opinion that the speci�cation of

the static semantics in terms of WFRs covers a wide range of behaviour preservation in DSLs. As

already mentioned, we support the speci�cation of pre- and post-conditions. If a DSL designer

uses OCL as her constraint speci�cation language for WFRs, then these rules can be provided as

pre- and post-conditions for all DSL’s refactorings. Since our solution the checking of pre- and

post-conditions on the one hand, and a trial run of a particular refactoring on the other hand,

we can at least prove preservation of the static semantics of particular DSL instances. As such,

before applying a refactoring to a model, it can be determined in our implemented tool which

WFRs would be violated. But it requires DSL designers to specify these rules carefully. More

technical details are presented in Sect. 9.1.6.

In summary, one can say that there is some chance to avoid the limitations observed for GPL

refactoring engines, if DSL designers are willing to specify semantics formally. Assuming they

do, proofs must be established to show that a refactoring’s pre-conditions su�ce to guarantee

the preservation of semantics. These proofs must be constructed by DSL designers for each DSL,

similar to the proofs that were needed for refactorings for programming languages in the past.

Notably, the speci�cation of static semantics in terms of WFRs is supported by our approach and

our implemented tool. Proving the dynamic semantics of a language still is di�cult and subject

to further research, as already mentioned above.

4.4. Conclusion

In this chapter a novel approach to overcome the shortcomings of existing related work (cf.

Sect. 3.1) has been presented. Based on role models, structural requirements for refactorings can

be generically formalised (Requirement 1 on page 25). Using a role mapping, such role models

can be mapped to speci�c based modelling languages particular concrete refactorings should

be provided for. From a conceptual point of view the only “restriction” a target DSL must meet

is to be MOF-based (Requirement 10 on page 26). This mapping de�nes which elements of a

language play which role in the context of a generic refactoring (Requirement 3 on page 25).

Based on the mapping, generic transformation speci�cations are executed to restructure models

and the mapped roles are bound. Thus, generic refactorings can be reused for di�erent languages

only by providing a mapping (Requirement 3). Furthermore, the same generic refactoring can be

71

4. Role-Based Generic Model Refactoring

repeatedly applied to one language (Requirement 2).

We have discussed the extent which generic refactorings can be reused to as well as the

preservation of semantics (Requirement 4). Even though the latter is highly language-speci�c,

a generic refactoring framework can still provide extension points to be parameterised by a

language’s semantics. Our approach supports this by means of checking the static semantics with

WFRs (Requirement 5). Further technical insights and evaluation results are shown in Sect. 10.1.

Hereby this chapter is �nished. The concept of our generic model refactoring approach has

been highlighted from several viewpoints. In the following chapter we will present an approach

for determining possible role mappings as suggestions for a DSL designer.

72

5
Suggesting Role Mappings as Concrete

Refactorings

This chapter is an extension to the suggestion technique published in [RSA13]. In this paper,

we implemented the suggestion engine manually and had to restrict it, e.g., in terms of not

considering sub-metaclasses of an abstract super-metaclass. The graph querying approach

presented here avoids such restrictions.

5.1. Motivation

To instantiate a generic model refactoring, we introduced the role mapping mechanism in

Sect. 4.2.2. Such a role mapping maps a role model to the metamodel of the target language.

To do so, one must specify which metaclasses play which roles in the context of the generic

refactoring. As depicted in Fig. 4.2, role mappings are created by DSL designers. Based on

knowledge of the target metamodel, DSL designers should be able to specify a role mapping,

taking into account the characteristics of the metamodel and ideas about feasible refactorings.

However, the de�nition of role mappings can still require substantial e�ort. First, metamodels

can be very complex (e.g., UML or Java). Thus, it can be di�cult to identify the desired metaclasses

intended to be mapped to the roles. The DSL designer must abstract from the complex structure

of the metamodel and �nd a correct subset which can be mapped to the role model. Second, DSL

designers may not be familiar with the process of role mapping and it might not be obvious

which metaclasses need to be mapped to which roles. Third, language designers might not be

aware of all potential role mappings and, thus, forget to specify mappings even if they were

useful for DSL users. Fourth, incomplete mappings can sometimes imply how to map remaining

yet unmapped parts of the role model. For example, mapping two metaclasses to respective roles

might uniquely determine how all other parts of the role model need to be mapped. In such

cases, DSL designers could use support to automatically complete the role mapping.

73

5. Suggesting Role Mappings as Concrete Refactorings

As a consequence of these observations, support in the process of mapping role models to

parts of the target metamodel is needed. DSL designers should get recommendations about

which concrete structures in the metamodel a role model can be mapped to.

In the following, we present our approach for the automatic derivation of valid role mappings

based on graph querying, in order to ful�l Requirement 8 in Sect. 3.1.1.

5.2. Automatic Derivation of Suggestions for Role Mappings with Graph
Querying

As indicated above, a DSL designer can have a vision about the refactorings for her DSL. Beyond

that, there can be many more possible refactorings with respect to the structures in the target

metamodel which role models can be mapped to. It is therefore desired to derive all feasible

refactorings (i.e. role mappings) automatically. Then, DSL designers can select the role mappings

that are suitable for their languages. That means, all available role models must be mapped to all

possible structures in the target metamodel.

To get a valid role mapping, the respective roles and their collaborations must be mapped

consistently to an applicable structure in the target metamodel. Since we use role models only to

capture the structure that is required for a generic refactoring, but do not incorporate language-

speci�c semantics, role models must be matched structurally to parts of the target metamodel.

However, simply computing combinations of all pairs of roles and metaclasses quickly results in

an extremely high number of role mappings due to the combinatorial explosion.

Role models are relatively small, because they only de�ne the participating elements in the

context of a generic refactoring. Thus, the quantity of valid matches of a role model can be

very high depending on the metamodel’s complexity. In addition, each role collaboration can be

mapped to a path of references between metaclasses, which further on increases the number of

potential role mappings. This can be seen later in the evaluation in Chap. 10.2.

With respect to this preliminary discussion we argue that a derivation approach based on

graph querying is quite suitable since a MOF-conforming metamodel can be considered as a graph.

It contains vertices (metaclasses) and edges (references) in between. The task of determining all

valid role mappings is quite similar to pattern matching the role model in a given structure (the

given metamodel). In the following, we illustrate this by an example.

Example 5.2.1:
Throughout this chapter, we use the graph querying engine GUERY

1
[DMTS12] (cf. Sect. 3.2.2)

for the structural detection of de�ciencies in models. To achieve this, we only have to convert

a certain role model to a graph query accepted by GUERY. For this purpose, have a look at

Fig. 5.1, where the conversion of a role model to a GUERY motif is illustrated. In (a) we see

our generic Extract X with Reference Class refactoring again, whereas in (b) the corresponding

GUERY motif is depicted. In Line 2, symbolic names for the vertex selection of the query are

speci�ed which re�ect the roles of the role model. In the same manner, symbolic names for

the edge selections can be speci�ed in a query. The collaboration extracts between the roles

OriginalContainer and Extract is depicted in Line 3. In the same line, one can see how the

edges are quali�ed syntactically: After the name, the source and target vertex names are given,

1https://code.google.com/p/gueryframework/ (visited 10th February 2015)

74

https://code.google.com/p/gueryframework/

5.2. Automatic Derivation of Suggestions for Role Mappings with Graph Querying

ContainerContainer

Extract

MovedReference

OriginalContainer
NewContainer

newName

targetsource

extracts moved

referrer

containerRef

(a) Role model of generic Extract X with Reference Class refactoring.

1 motif ExtractXwithReferenceClass
2 select OriginalContainer, Extract,

NewContainer, ContainerContainer,
MovedReference

3 connected by extracts(OriginalContainer>
Extract)[1,1] find all

4 where "extracts.isContainment()"
5 connected by referer(OriginalContainer>

MovedReference)[1,1] find all
6 where "referer.isContainment()"
7 connected by moved(NewContainer>Extract)

[1,1] find all
8 where "moved.isContainment()"
9 connected by target(ContainerContainer>

NewContainer)[1,1] find all
10 where "target.isContainment()"
11 connected by source(ContainerContainer>

OriginalContainer)[1,1] find all
12 where "source.isContainment()"
13 connected by containerRef(MovedReference

>NewContainer)[1,1] find all
14 where "!containerRef.isContainment()"

(b) Corresponding GUERY graph query.

Figure 5.1.: Example for conversion of role model to GUERY query.

as well as the allowed length of an edge. In this example, the edge in Line 3 must be of length 1.

To re�ect the di�erent kinds of collaborations of a role model, where clauses can be given in the

motif. In Line 4, one can see that the method isContainment() is invoked upon the given edge

extracts. GUERY provides a light-weight adapter mechanism to support any kind of graph

structure. The method isContainment() is provided by our adapter and returns true in case the

reference of the queried metamodel is a containment reference. The role association between the

roles MovedReference and NewContainer can be seen in Line 14. This small example should

be self-explanatory. In the following, we will discuss some design decisions for the conversion

of role models to GUERY motifs.

What we have seen until now is that the conversion of a role model to graph query can be

achieved by referencing their names. The only special case we have to be aware of is when a role

collaboration is to be mapped to a path in the target metamodel having a length greater than 1.

For this case, consider the aggregation of Extract to OriginalContainer (extracts) as a

subset of the role model in Fig. 5.1 (a). As explained in Sect. 4.2.2, our role mapping approach

supports the mapping of collaborations to a path between metaclasses. Therefore, the type of a

collaboration (e.g., RoleComposition) holds only for the �rst segment of the path it is matched

to. The subsequent path segments do not need to respect the type of the mapped collaboration.

To re�ect this circumstance in a graph query, we introduce an intermediate vertex, for which

the collaboration type is respected on the �rst edge segment. For the subsequent path segments

another edge is generated, for which the type is not restricted.

Example 5.2.2:
Listing 5.1 shows how a multi-step path is re�ected in a generated GUERY motif.

75

5. Suggesting Role Mappings as Concrete Refactorings

1 motif ExtractXwithReferenceClass
2 select OriginalContainer, _OriginalContainer_Extract_, Extract
3 connected by extracts(OriginalContainer>_OriginalContainer_Extract_)[1,1] find

all
4 where "extracts.isContainment()"
5 connected by _extracts_(_OriginalContainer_Extract_>Extract)[0,3] find all

Listing 5.1: Conversion of collaboration to edge with intermediate vertex.

The vertex _OriginalContainer_Extract_ in Line 2 is used to respect the collaboration type

of extracts (RoleComposition) in Line 4. As a consequence, the remaining path segments

are re�ected by the edge _extracts_ in Line 5 not being restricted. The maximum length of

the path in this example is 4 and, at minimum, 1. This results from the speci�cation of the edge

lengths in Lines 3 and 5. The former must be exactly 1 while the latter is in the range 0 to 3.

This explanation of the conversion of role models to graph queries is only of informal nature.

The conversion is pretty much straightforward and can be understood best by an example.

The actual querying of such motifs then is executed by GUERY. By specifying maximum path

lengths, we are able to restrict the resulting set of possible structural matches. Every found

match then corresponds to a valid role mapping. This is a simple, but really e�cient methodology

to query possible candidates for instantiating role mappings. In Sect. 10.2, we will present an

evaluation with concrete numbers for di�erent languages. Nevertheless, the resulting potential

valid role mappings can be of high quantity. In the following, we will shortly discuss how to

reduce such a result set further.

5.3. Reduction of the Number of Valid Matches

As explained in the previous section, the number of mappings of role models to target metamodels

can be very high. The number of possible matches can be signi�cantly reduced, if DSL designers

incrementally map one role to one metaclass manually. This strategy is also applied in [HMK05]

to �nd candidates for aspect extraction in Java programmes. We want to make use of this

methodology in our approach as well.

Such a pre-selection of a valid manual mapping de�nitely makes sense for complex metamodels

such as UML or Java. In case the DSL designer maps particular roles to concrete metaclasses

beforehand, the resulting set of valid matches is reduced. Thus, this is supported in our derivation

approach by restricting the vertices in the graph query according to the manual mappings. For

explanation, have a look at our example mapping Extract Track for the Conference DSL in Fig. 4.6

on page 59. One can see that, e.g., the role OriginalContainer is mapped to the metaclass

Track in the target metamodel. This circumstance is re�ected in our query generation by means

of restricting the type of the according vertex. This is illustrated in the following example.

Example 5.3.1:
Listing 5.2 shows that the vertex OriginalContainer can only be matched to the metaclass

Track.

1 motif ExtractXwithReferenceClass
2 select OriginalContainer, Extract, NewContainer, ContainerContainer,

MovedReference

76

5.4. Comparison to Model Matching

3 where "OriginalContainer.getEClass().getName() == ’Track’"

Listing 5.2: Conversion of a role model to a graph query with a manual pre-mapping.

In line 3 it can be seen that the expression OriginalContainer.getEClass().getName()==’

Track’ does exactly this. It is checked that the actual name of the queried metaclass corresponding

to the role (and the vertex in the query) OriginalContainer equals Track.

By such a manual pre-mapping the resulting set of potential valid role mappings is drastically

reduced. As already mentioned, this can be an incremental mapping process by means of stepwise

addition of a manual role-metaclass mapping after each iteration, if the resulting set still is too

large. With every mapping that is applied manually, less valid role mappings, which can come

next according to the manual mappings made until this point of time, are suggested.

In addition to our discussed approach, we see further potential for reducing the resulting set.

On the one hand, cross-language analysis can be used to make more suitable suggestions in the

context of a role model. In that case, those mappings of a particular role model must be analysed,

which have already been speci�ed by DSL designers. With this technique, e.g., the names of

the mapped metaclasses can be used to �nd commonalities. A simple example would be the

generic Rename X refactoring. This generic refactoring only consists of one role with a role

attribute representing the new name. In most cases, this role is mapped to a metaclass called

NamedElement or Nameable. Such commonalities must be found and the matched elements of

the target metamodel, which correspond to the determined commonalities, can be suggested.

On the other hand, analysis of manual restructurings in instances of the target metamodel

can be used to suggest suitable role mappings. With this approach, the interaction of DSL users

with the concrete models must be observed. Applied changes must be recorded and then be

analysed. For example, if a lot of restructurings are made for instances of a certain metaclass,

this metaclass could be used as a base for the suggestions. A naive possibility for reducing the

number of matches would be to use the investigated metaclass as �lter and suggest only those

matches containing that metaclass. A more intelligent approach would be to analyse the context

of the restructurings and the metaclass in detail to �nd out which are the surrounding elements

and which are their metaclasses. This would result in a reduced set of suggested mappings, since

whole refactorings can be recognized and then be derived.

With this discussion, we are closing our approach of suggesting valid role mappings to a DSL

designer. Our solution contributes to the Requirement 8 on page 8 regarding the speci�cation

suggestion of instances of generic refactorings in the sense of role mappings. Since this approach

is based on graph querying, we want to bring it into context with similar work in the �eld in the

following section.

5.4. Comparison to Model Matching

Mapping role models to metamodels is an essential task to obtain recommendations for generic

refactorings if one employs our role-based refactoring approach. Thus, it is related to a certain

extent to the more general task of model matching.

In [KDPP09], an overview of current approaches to compute di�erences between models can be

found. A particularly interesting approach can be found in [LGJ07], where models conforming to

arbitrary metamodels are matched. Our recommendation approach realises a structural matching

77

5. Suggesting Role Mappings as Concrete Refactorings

as presented in [LGJ07]. But, we do not employ signature matching, because the names of

roles and collaborations are not relevant to obtain valid mappings to a target metamodel. If one

compares the names of roles and collaborations with the elements of the target model, usually

similarities cannot be found.

Also, in contrast to [LGJ07], we do consider only exact matches, because this is required to

obtain correct role mappings. One can consider our recommendation approach as a special case

of model matching where only structural properties are relevant and exact matches are always

required.

The ontology community has faced a similar matching problem, because ontologies are often

developed independently, much like our role models and the target metamodels, but describe

common concepts. Thus, there is a variety of approaches to match and align ontologies [ES07].

Again, all strategies that focus on the structural properties of ontologies could be reused to obtain

recommendations for refactorings. Again, all algorithms that involve matching of names are not

suitable for our problem.

Most probably, existing structural matching algorithms—both for models and ontologies—

could be reused to realise our recommendation approach for valid role mappings. However, even

though we employed a specialised strategy to gather suggestions, we were already forced to

restrict the set of recommendations. The combinatorial explosion of the number of role mappings

leaves no other choice. We expect other approaches to face the same problem.

Our evaluation in Sect. 10.2 will reveal concrete numbers for di�erent languages. Stating this,

we close the discussion of our approach regarding the speci�cation, instantiation, execution and

suggestion of (generic) model refactorings.

5.5. Conclusion

To provide further assistance to language designers in the context of reusing generic refactorings,

we have investigated how to gather suggestions for potential valid role mappings (Requirement 8

on page 26). An approach for reducing the result set of suggestion determination is also discussed

in this chapter. Concrete evaluation results regarding the suggestion are discussed in Sect. 10.2.

In the following chapter, we emphasize the quality aspect and will correlate qualities, de�cien-

cies in models and resolving refactorings.

78

6
Role-BasedQuality Smells as Refactoring Indicator

The foundations of this chapter are based on our publication “Quality-Aware Refactoring for

Early Detection and Resolution of Energy De�ciencies” [RA13]. The initial work for this chapter

was carried out by our student Christian Vonsien in his minor thesis (Großer Beleg) [Von13].

6.1. Motivation

As Fowler et al. explained in [FBB+99], bad smells are considered as structures being candidates

to apply speci�c refactorings on.
1

Such a refactoring improves the existing artefact with regard

to quality requirements [Koz11] while preserving the behaviour. Such qualities might be, e.g., re-

quirements for response time (in a client-server system), energy e�ciency (in mobile applications),

or just reusability (of components or models). Thus, the presence of a model de�ciency deterior-

ates speci�c qualities and the execution of a related refactoring might improve them [FBB+99;

SSL01; MTM07; Als09]. This means that model de�ciencies directly in�uence qualities of the

developer’s artefacts. As already explained in Sect. 1.1, a connection between de�ciencies in

models, qualities and resolving refactorings exists. The main problem is that former research (cf.

Sect. 3.2.2) recognized this relationship but this connection has not been used explicitly until

now, which results in the following limitations. Without such a connection, it is not possible to

give evidence about which quality requirements are not ful�lled by detected de�ciencies. Also, it

cannot be speci�ed which de�ciencies are resolved by particular refactorings. Thus, developers

are not supported in focussing on speci�c qualities. They cannot detect and resolve de�ciencies

in combination. Hence, it is required to support developers in being informed about which

quality requirements are not satis�ed by speci�c models and in getting recommendations about

how to resolve such violations.

This demand is absolutely necessary because ful�lling quality requirements is usually not

realised in one single model fragment (such as, e.g., a Java method). Qualities are cross-cutting

1
Note that we do not prefer the term bad smell because of its impreciseness, we used model de�ciencies in previous

chapters up to now.

79

6. Role-Based Quality Smells as Refactoring Indicator

concerns and implementations, related to quality requirements, may occur in several di�erent

places in the whole system [NB07; TOHS99]. This cross-cutting prevents that developers have

support in focussing on speci�c qualities in isolation and in detecting de�ciencies regarding

only the focussed qualities. As a consequence, the quality-dependent detection and resolution

of model de�ciencies without an explicit relationship is very di�cult and complex [MTM07].

We argue that the existing term bad smell is too imprecise and that a new concept is needed

re�ecting the correlation between model de�ciencies, qualities and resolving refactorings. We

will therefore introduce the new term Quality Smell in the following section. Furthermore, we

propose a generic architecture enabling developers to explicitly de�ne relations between quality

smells, qualities and refactorings. This architecture is extensible and enables the detection of

quality smells and their resolution by refactorings. Both the conceptualisation of quality smells

and the provided architecture are our main contributions in this chapter. We argue that the

understanding about how model de�ciencies, qualities and resolving refactorings correlate can

bene�t from the concept of quality smells.

6.2. Correlating Model Deficiencies, Qualities and Refactorings

Before we start the conception, we want to provide an example which we will extend step by

step in this section. The example has been taken up from Sect. 4.2.4 regarding the Feature Envy

model de�ciency proposed in [FBB+99]. Feature Envy regards the qualities high cohesion and

low coupling to achieve higher productivity and less design e�ort for the developer [OGB+11].

Following our example in Sect. 4.2.4, envious statements of such a method can be extracted into

a new method which in turn is moved to the envied class. In the following, we will present

our approach enabling the speci�cation of such a model de�ciency, relating it to the mentioned

qualities and de�ning the composite refactoring Extract and Move Method for resolving it.

Continuing our previous argumentation, we explicitly correlate model de�ciencies, qualities

and refactorings, which results in the following de�nition of quality smells.

De�nition of Quality Smell: A Quality Smell is a certain structure in a model,

negatively in�uencing speci�c quality requirements, which can be resolved by

certain model refactorings.

More precisely, the notion of quality smell has two aspects. First, it can be considered from

a conceptual point of view. This can be understood as the de�nition above and refers to the

general speci�cation of a quality smell. The speci�cation de�nes how the detection of a quality

smell is achieved by means of a detection procedure. This is realised at the metalayer where the

according DSL’s metamodel is located (M2). Here it is de�ned which qualities such a quality

smell in�uences negatively and which potential refactorings can resolve it. Second, a quality

smell occurs when the detection procedure is applied and matches. Then, a quality smell exists

physically in a model at the model’s metalayer (M1). Here, the occurrence of a particular quality

smell is related to the concrete model structures which cause the appearance of the quality smell.

Both of these aspects are re�ected in the upcoming concept.

For being able to provide support for detecting and resolving quality smells, the following three

components are essential constituents in the overall architecture. First, a central quality smell

repository is needed in which potential quality smells are registered (M2). The speci�cations of

80

6.2. Correlating Model De�ciencies, Qualities and Refactorings

DSL
User

DSL
Designer

Role
Mapping

DSL Meta
Model

Refactoring
Designer

Role
Model

Refactoring
Specification

Refactoring
Framework

Role Mapping
Metamodel

Role
Metamodel

RefSpec
Metamodel

DSL Model
Refactoring
Interpreter
Refactoring
Interpreter

Refactored DSL Model
without Quality Smell

Quality
Smell

Detection
Strategy

Quality Smell
Framework

Quality Smell
Metamodel

Detection
Strategy
Metamodel

Quality Smell
Detection

Quality Smell
Detection

instance of refers todata flow

Figure 6.1.: Refactoring architecture extended by Quality Smell infrastructure. The blue-framed

parts denote the quality smell additions.

these registered quality smells must be evaluated against particular models to examine whether

a quality smell is present in a model or not (M1). Second, for evaluating the quality smell

speci�cations against particular models, a �exible mechanism must be provided for making

di�erent kinds of detections available in the context of a model. Therefore, we propose a quality

smell detection repository. Third, for resolving quality smells, the above architecture must be

able to interact with an existing model refactoring architecture. For a better understanding, we

adopt the architecture shown in Fig. 4.2 (cf. page 54) and extend it by the new constituents. The

adjusted architecture is depicted in Fig. 6.1.

Since we have already presented our approach and architecture regarding model refactoring

in Sect. 4.2, only the other two repositories are introduced in the following.

6.2.1. Quality Smell Repository

The metamodel of the quality smell repository is depicted in Fig. 6.2. As can be seen in the

centre of the right hand side of the �gure, the repository is represented by the metaclass

QualitySmellModel. We assume a single instance of this metaclass and call it Quality Smell

Model (QSM). For enabling the support to focus on particular qualities, the QSM contains several

qualities. Each Quality has a name and can be considered as the abstraction of the quality

concepts from literature [MRW77; BBKL78; Gra92; ISO01]. Thus, a quality plays a role in the

system or is speci�ed as a quality requirement. In addition, a quality can be marked as active
expressing the fact that only those quality smells are detected being related to this quality.

Such qualities might be derived, e.g., from quality contracts in multi-quality aware sys-

tems [GWRA12]. Those contracts specify required and provided qualities for software compon-

ents and their variants. In this sense, such contracts formally describe dependencies between

artefacts with respect to qualities. As a consequence, these contracts can be used to gather the

required and provided qualities and to populate the set of qualities in our quality smell repository.

Furthermore, the QSM contains several generic QualitySmells. The reason for distinguishing

this concept from ConcreteQualitySmell is that the latter is very speci�c in terms of the

platform, e.g., where the model can be run, or which libraries are used. But a generalisation is

essential for being able to group concrete quality smells under their common abstract meaning.

81

6. Role-Based Quality Smells as Refactoring Indicator

QualitySmellModel

QualitySmell

name : String
ConcreteQualitySmell

monotonicity : Monotonicity
threshold : float

description : String
name : String

smellMessage : String
Quality

name : String
active : boolDetectionStrategy «Monotonicity»

INCREASING
DECREASING

detection-
strategy

concreteSmell
EPackage

metamodel

RoleModel

RoleMapping

rolesOfInterest

typeRestriction

RefactoringBinding

CompositeBindingRoleBinding

SourceTargetBinding

CompositeRoleMapping

BoundRoleMapping

refactorings

refactoring

binding

refactoring

binding

smells

qualities

concreteSmells

concreteSmells

qualities

genericSmell

Figure 6.2.: Metamodel of the quality smell repository.

In this sense, it expresses the fact that it must be de�ned which meaning a particular generic

quality smell has in a certain context. A project or the workspace of an MLDE, e.g., can be such

a context. This generalisation enables tools to let developers just focus on those quality smells

being grouped under a certain generic quality smell while the others are not considered. In our

example, such a generic quality smell would be named Low Cohesion.

Of course, the QSM contains several instances of the metaclass ConcreteQualitySmell.

A concrete quality smell has a name, a description and a smellMessage. These properties

are self-explanatory and can be used for presentation in the user interface (UI). Furthermore,

a concrete quality smell has the properties monotonicity and threshold. They are used to

determine if a detected candidate is considered as a concrete occurrence of a quality smell in the

particular context. If the monotonicity is set to INCREASING then the quality is satis�ed better

the higher a calculated value is. This means that the candidate is considered a quality smell

occurrence if the calculated value is less than or equals the given threshold. Thus, an instance of

the metaclass ConcreteQualitySmell is the speci�cation of how its quality smell occurrences

can be determined. In turn, if the monotonicity is DECREASING the quality gets worse the

higher the calculated value is. The calculation of values will be presented in this section in a

short while. For our example Feature Envy, one would set the monotonicity to DECREASING and

the threshold to −1.0 expressing the di�erence between the count of the inner entities and

the outer entities. This means that if at least one more outer entity is counted, we consider the

candidate as a quality smell occurrence in the example.

Furthermore, a concrete quality smell refers to its abstract genericSmell and, thus, forms

a more �ne-grained distinction. A concrete quality smell is speci�c for a concrete modelling

82

6.2. Correlating Model De�ciencies, Qualities and Refactorings

language and therefore refers to the language’s metamodel. In our example, this is the Java

language. Java is not a modelling language per se, but JaMoPP and its metamodel are able to

provide models for Java programmes. We argue that particular model elements of a detected

quality smell occurrence can be of further interest in a subsequent analysis of the result or a

resolving refactoring, for instance. Consequently, we use our formalism of role models to enable

the speci�cation of such rolesOfInterest for a particular quality smell occurrence. Those

de�ned roles can be considered as symbolic names for the detected elements. Such a referenced

RoleModel can be speci�ed anew, speci�c for this concrete quality smell, or just be reused by

an already de�ned generic refactoring. For our example, such a role model would contain the

roles EnviousStatements, EnviedClass and ExtractedMethod.

In addition, in our approach we provide the possibility to restrict the elements of interest

further by specifying a RoleMapping as typeRestriction. It is not mandatory to provide

rolesOfInterest or a typeRestriction at all, but if they are de�ned, resolving refactorings

can bene�t from it. A type restriction, like the one in our example, would map the roles

EnviousStatements to the metaclass Statement, EnviedClass to Class and Extracted-
Method to Method.

For being able to specify which potential refactorings can be applied to resolve a quality

smell occurrence, one has to provide a RefactoringBinding for each. Here we have two

alternatives. First, a RoleBinding can be given which refers to an existing refactoring
by means of a RoleMapping, expressing that this refactoring is able to resolve the concrete

quality smell. Now we come back to the rolesOfInterest. In case such a role model (con-

taining the rolesOfInterest) was provided, a RoleBinding allows for the speci�cation of a

SourceTargetBinding we already know from Sect. 4.2.4. Thus, we can de�ne the meaning

of the rolesOfInterest played by elements in the detected quality smell occurrence in the

context of the given resolving refactoring. Roles from the rolesOfInterest are mapped to

roles from the referenced role model of the given RoleMapping. In case a typeRestriction is

provided, static type checking of such a mapping can be realised. The second alternative allows

for the speci�cation of a resolving composite refactoring by provision of a CompositeBinding.

Similar to the RoleBinding, a CompositeRoleMapping is referenced relating the refactoring

as a resolution to this concrete quality smell. Therefore, a BoundRoleMapping (cf. Sect. 4.2.4)

can be provided for specifying the meaning of the rolesOfInterest with respect to the played

roles of the given composite refactoring. Again, the metaclass BoundRoleMapping enables the

mapping of roles between concrete refactorings. In our example, we would provide an instance

of CompositeBinding and relate it to the composite refactoring Extract and Move Method. In

order to de�ne the meaning of the rolesOfInterest, we would realise the following mapping:

1. EnviousStatements to Extract of Extract X with Reference Class (cf. role model in

Fig. 4.3 on page 56)

2. ExtractedMethod to NewContainer of Extract X with Reference Class

3. EnviedClass to TargetContainer of Move X (cf. Fig. A.2 (a) on page 169)

According to the role mappings we have already seen for Extract Method in Fig. 4.6 (a) on

page 59 and for Move Method in Listing 4.2 on page 69, it can be observed that the metaclasses

83

6. Role-Based Quality Smells as Refactoring Indicator

DetectionStrategy

CalculationStrategy

monotonicity : Monotonicity
threshold : float

Filter

success(model, roleModel) : bool
filter() : Result

SingleFilterMultiFilter

NOTAND OR

subStrategysubStrategies

ResultFilter

ResultFilterCalculation

calculation

Calculationcalculation

Figure 6.3.: Metamodel of the quality smell repository DetectionStrategy part.

playing the particular roles are compatible. By providing the typeRestriction of our example,

this can also be checked statically.

As can be seen in Fig. 6.2, one metaclass is not yet discussed. To specify how quality smell

occurrences are determined, a detection strategy must be de�ned. In [Mar04; LM06], it was

examined that detection mechanisms, only taking one single aspect into account, are often too

�ne-grained and do not re�ect particular de�ciencies from a higher level of abstraction. Thus,

detection strategies can be used for composing and �ltering �ne-grained detection mechan-

isms. Therefore we provide the metaclass DetectionStrategy. This part of the metamodel

is presented in Fig. 6.3. In the simplest case, a concrete detection strategy can be a single

CalculationStrategy, again having a monotonicity and a threshold. These properties

must be provided for a CalculationStrategy again in order to reuse it as an isolated building

block for other detection strategies. Therefore, an instance of this metaclass always references a

Calculation which resides in the quality smell calculation repository because both parts might

evolve independently. The calculation is presented in the following Sect. 6.2.2.

In the more complex case, Filters can be composed by means of propositional logics. There-

fore, the operators NOT, to negate the contained subStrategy, and OR and AND, to form the

disjunction or conjunction of the subStrategies, can be used. Thus, a detection strategy can

form a tree of �lters corresponding to a formula in propositional logics. Only if the root element

of the tree evaluates to true, the concrete quality smell is considered as being physically present

in a model. Hence, a quality smell candidate becomes a quality smell occurrence. A Filter
provides the method success(model, roleModel):bool which succeeds if all child strategies

succeed. Thus, the invocation of a Filter is only applied if the sub-�lters succeed. If it is

successful, the filter():Result method returns the �nal result. This result can also be used as

input in a parent �lter.

Then, the CalculationStrategy is considered as a reusable block for other detection

strategies. Thus, it is not speci�c. In contrast, a ResultFilter is speci�c for the concrete

quality smell and can be understood as an interpreter for an incoming preceding result. It

84

6.2. Correlating Model De�ciencies, Qualities and Refactorings

find inner entities in
method

mon: INCREASING
thresh: 1.0

find connected outer
entities per target class
in method

mon: INCREASING
thresh: 1.0

AND

Feature Envy

interprets preceding
results by comparing
entity counts and con-
structs final result

Figure 6.4.: Detection strategy of the Feature Envy quality smell.

represents the meaning of the previous result and references a ResultFilterCalculation
which resides in the quality smell calculation repository. This repository is explained in the next

section.

Let us clarify the way how the metamodel works with our example. As already indicated

in the beginning of this section, the detection of Feature Envy comprises three separate steps:

1) the determination of all inner entities in a method, 2) the determination of all outer entities

per envied class in a method, and 3) the interpretation of the previous steps. As can be observed,

the �rst two steps are independent from the Feature Envy quality smell and can be considered

as two di�erent metrics. In contrary, the third step is speci�c for this quality smell, counts the

inner and outer entities, and examines if the former are greater than the latter. If this is not the

case a concrete quality smell takes e�ect and a candidate turns into a quality smell occurrence.

For a better understanding have a look at Fig. 6.4. The input for the AND �lter are the reusable

calculation strategies for the determination of inner and outer entities. Both succeed if at least

1.0 entity is found. In that case, AND succeeds as well and passes the result to the ResultFilter
being speci�c for Feature Envy. Here the entities are counted and the �nal result is created. In the

example a simple subtraction of the particular entity counts was chosen, but other approaches

are de�nitely possible, such as computing the ratio of both counts. The selection depends on the

preferences of the concrete quality smell. This also makes clear that a ratio-based approach for

the Feature Envy detection strategy can also reuse the aforementioned calculation strategies for

determining the inner and outer entities. Only the ResultFilter is speci�c.

In the following section, we present deeper insights about how a particular Calculation is

speci�ed and which kinds we support.

6.2.2. Quality Smell Calculation Repository

As argued before, we separate the quality smell repository from the quality smell calcula-

tion and introduce an own repository for it, which is represented by the CalculationModel
in Fig. 6.5. This model contains all calculations which are referenced in the QSM by a

CalculationStrategy. The metaclass Calculation is abstract and has a name for identi-

�cation purposes, since it can be reused for di�erent detection strategies. The most import-

ant concept of a Calculation is the operation calculate. It has two incoming paramet-

ers: 1) the model which the calculation is executed on, and 2) the role model in which the

85

6. Role-Based Quality Smells as Refactoring Indicator

CalculationModel

Calculation

name : String

calculate(model, roleModel) : Result

ResultFilterCalculation

name : String

calculate(model, threshold, monotonicity,
previousResult, roleModel) : CalculationResult

Metric

Structure

Result CompositeResult

CalculationResult CausingElementsGroup

resultingValue : float

RoleElementBinding

Role EObject

boundRole boundElements

subResults

calculations

resultCalculations

causingGroups bindings

Figure 6.5.: Metamodel for di�erent kinds of calculations.

rolesOfInterest are speci�ed. The return type of this operation is Result, which can either

be a CalculationResult or a CompositeResult being used for composing preceding results

and to pass it on to the next Filter.

Each time an instance of CalculationResult is created, the concrete model elements caus-

ing the quality smell occurrence can and should be referenced to make the cause traceable.

This is realised by means of CausingElementsGroups. Any such group has a resulting-
Value expressing the determined characteristic of the detected model elements which cause

a quality smell occurrence. This value then can be compared to the threshold speci�ed in the

CalculationStrategy depending in the given Monotonicity. A CausingElementsGroup
can be considered as a set of model elements belonging together in the context of the quality

smell occurrence. In order to trace the occurrence of a quality smell back to concrete model

elements causing the quality smell (cf. Requirement 6 on page 33) such groups must provide

RoleElementBindings. Such a binding establishes the connection to the rolesOfInterest
de�ned in a ConcreteQualitySmell. Thus, the roles are bound to concrete model elements

which then can serve for further analysis and especially as input for resolving refactorings.

Coming back to our example, this would mean that the role EnviousStatements is played

by the last two statements of the method in Fig. 4.13 (a) on page 68. The role ExtractedMethod
is played by the printDetails() method in Fig. 4.13 (b). And the role EnviedClass is played

by the DetailsPrinter class to which the method is moved.

Furthermore, a CalculationModel contains ResultFilterCalculations. These calcula-

tions are referenced by instances of the ResultFiltermetaclass. Again a namemust be provided

for identi�cation. Since a ResultFilter is used to interpret results, the function calculate

(..) contains some more parameters needed to calculate a result speci�c to a particular quality

86

6.3. Discussion

smell. Thus, apart from the model and roleModel, the threshold and monotonicity given

in the CalculationStrategy are passed. In addition, the previousResult in terms of a

CompositeResult is passed in order to have all previously calculated information available and

to interpret it appropriately.

Until now, we have only seen how a detection strategy can be developed but not how a con-

crete calculation can be realised. Therefore, we provide two concrete Calculation subclasses:

Metric and Structure. These subclasses represent the two common approaches for detecting

model de�ciencies in general, as we have already discussed in Sect. 3.2.2. First, metrics are a

common and well established technique for giving evidence about the quality of a software

artefact [Soc93; CK94; Mar01; SSL01; BD02; AST10; KVGS11; SK11]. Due to this background, our

approach supports this kind of quality calculation with the metaclass Metric. This means, the

calculate operation in this subclass must encode the calculation of the metric appropriately.

Implementing a metric in Java is also realised in [Are14]. Second, formalisations of structures,

such as anti-patterns or architectural de�ciencies, are also used to �nd quality smells in software

artefacts [SW03; KE07; GPEM09; ABT10; KGH10; DMTS12]. As a consequence, the metaclass

Structure provides means for supporting structure-based quality smells. This means that the

determination of a structure-based quality smell must be encoded in the calculate method of

the Calculation metaclass. A concrete instantiation of the conceptual framework presented in

this chapter is provided in Chap. 7. There we will show especially how structure-based quality

smells can be speci�ed easily.

6.3. Discussion

Since quality smells do not concern any formal properties of the developed artefacts, we consider

quality smell detection and resolution as a �exible and agile process. Developers may reject

recommended refactorings for speci�c detected quality smell occurrences or not. Functionality

will not break, but in case the refactoring is executed the speci�c quality requirements may

be satis�ed better. But it is important to realise that our presented approach is a conceptual

framework and a �rst solution in order to correlate model de�ciencies, qualities and resolving

refactorings in the concept of quality smell. An example instantiation is presented in Sect. 7.3.

The most critical limitation of our approach is, caused by the explicit relation to qualities,

that dependencies between qualities may exist [CNYM00; Koz11]. This means that di�erent

qualities can in�uence each other which may result in interferences or even con�icts. Consider,

e.g., the qualities reusability, modularity and readability, and a software implemented in Java.

Reusability can be improved with an Extract Method refactoring splitting a method into several

and referencing the new one at the old location of the extracted code. By separating conceptually

di�erent code from one method to another both the divided code can be reused better and the

modularity increases. Other opportunities would be to perform Pull-Up Method, Extract Class or

Extract Superclass on the newly extracted method which results in a di�erent class containing the

moved method [FBB+99]. These refactorings again might increase reusability, but the readability

su�ers, because since the code originally located together now is spread over two di�erent classes.

This small example illustrates that qualities may be interrelated. In the worst case, resolving

quality smells improves a quality but may deteriorate others.

A similar scenario is that resolving quality smells might introduce new other quality smells.

87

6. Role-Based Quality Smells as Refactoring Indicator

In our approach, quality dependencies are re�ected only by the speci�cation of an appropriate

DetectionStrategy. Propositional logics can be used for combining calculations strategically.

Thus, currently the DSL designer is responsible for the speci�cation of dependencies. The DSL

user can examine the impact of a resolving refactoring, since we allow for a refactoring preview.

Thus, the e�ect of a refactoring can be investigated and it is possible to check, if a new quality

smell occurrence is introduced. As a consequence, an appropriate abstraction for the speci�cation

of quality dependencies and the e�ects of refactorings is postponed to future work (cf. Sect. 11.3).

Another restriction is that we abstract from the whole aspect of measuring certain qualities and

outsource this task. It is not veri�ed whether a particular refactoring really resolves the related

quality smell occurrence with respect to better measured values. The reason is that the relation

between qualities, quality smells and refactorings is established manually. Our approach assumes

that developers veri�ed the correct relation previously before establishing it. Such a veri�cation

can only be done for a concrete quality smell and a concrete model refactoring since the generic

smells and qualities do not have any formal foundation. Thus, developers must investigate if

a speci�c relation between a quality smell and a refactoring really increases particular quality

satisfactions before the relation is to be established. For the quality energy e�ciency the work

published in [Wil14] is very promising. Therein, an approach is presented being able to pro�le

and test the energy consumption of mobile applications. The generic framework of Wilke can be

used to measure energy consumption before and after resolving an energy-related quality smell.

The developer then can be informed about how much energy is saved.

6.4. Conclusion

In this chapter, we motivated that an explicit relation between model de�ciencies, qualities and

resolving refactorings exists and is needed to detect de�ciencies violating potential cross-cutting

quality requirements. Therefore we introduced the new term quality smell and presented a

conceptual framework for specifying quality smells and their concrete quality smell calcula-

tions. A quality smell establishes an explicit relation between model de�ciencies, qualities and

refactorings from a conceptual point of view (cf. Requirement 1 and Requirement 2 on page 33).

A concrete occurrence of a quality smell can trace it back to the causing model elements (cf.

Requirement 6) and suggests refactorings potentially resolving the quality smell occurrence

(cf. Requirement 3). Such a suggestion is achieved by de�ning roles of interest for a concrete

quality smell which then are mapped to the roles used in a resolving refactoring. In case all

input roles of a resolving refactoring are mapped the detection and resolution of quality smells

can be automated completely. In case several potential resolving refactorings exist a ranking

mechanism could be used to determine which refactoring to apply �rst. As a consequence,

our role-based approach of specifying quality smells allows for static analysis and automation.

Resolving quality smell occurrences with refactorings now is easier than without an explicit

relation between them. Furthermore, we support metrics-based and structure-based calculations

of quality smells and provide an architecture being easily extensible (cf. Requirement 4 and

Requirement 5). Complex combinations of concrete quality smell calculations can be speci�ed

by means of detection strategies and propositional logics. A discussion about limitations and

future work closes this chapter.

88

7
A Quality Smell Catalogue for Android Applications

This chapter is based on a joint work with our student Martin Brylski [Bry14]. A small part

has been published in our paper “A Tool-Supported Quality Smell Catalogue For Android De-

velopers” [RBA14].

To show validity of Hypothesis 3, a quality smell catalogue is mined and compiled in this

chapter. Therefore, at �rst a reasonable catalogue schema is explained in which the quality

smells are characterised. Afterwards, we explain the process of acquiring information, which

quality smells can be mined and extracted from. Then the conceptual framework from Chapter 6

is instantiated for structural-based quality smells and the catalogue is presented.

7.1. Quality Smell Catalogue Schema

The constituents of a catalogue must be comparable in order to identify particular relations

between them. Furthermore, each catalogue has a speci�c intent about which it should inform

the reader. In our case, the intent is to present quality smells according to the conceptualisation in

Chap. 6. Thus, di�erent catalogues focus various properties of its constituents. As a consequence,

a common schema is needed. In the following, we will explain the schema of our quality smell

catalogue. It is based on other catalogue schemas [GHJV94; BMMM98; FBB+99; Cun13].

Name: A unique and explaining name re�ecting the core idea of a quality smell.

Context: A characterisation of a quality smell regarding its application.

A�ected Qualities: A list of qualities being in�uenced negatively by a quality smell.

Roles of Interest: A list of role names that are of interest in a particular quality smell.

Description: A meaningful explanation of the problem to solve and a descriptive example. It is

explained to which elements the roles of interest are bound.

89

7. A Quality Smell Catalogue for Android Applications

Pattern: A description of the calculation strategy (cf. Sect. 6.2.1) detecting quality smell occur-

rences. Since this catalogue only contains structural quality smells the calculation strategy

is considered to be a graph pattern. For structure-based quality smells, the roles of interest

usually appear in the pattern as named concepts.

Refactorings: A list or refactorings resolving a quality smell. This represents the solution. How

the roles of interests are used in a resolving refactoring is explained here.

References: A list of secondary sources about a particular quality smell.

Related Quality Smells: A list of related quality smells.

This schema serves as a basis for the catalogue. Before it is presented, the next section shows

which strategy we applied to mine a quality smell catalogue.

7.2. Acquiring Quality Smells

Mining a catalogue in general and a quality smell especially is not a trivial task. Therefore, a

structured procedure is necessary. In an early stage, the target domain of the catalogue was �xed

to application development of mobile Android devices. The reason is that certain properties of

mobile applications heavily in�uence the quality energy e�ciency [Wil14], which we �nd a very

interesting domain. But it can be seen, some other qualities emerged also being important in

that domain. Furthermore, the open-source character of Android encouraged us to get deeper

insights and contributions from the community.

We assume that Android developers know best about good practices in mobile application

development. Furthermore, they have implicit knowledge about problems regarding satisfaction

of particular quality aspects and how they can be solved. As a consequence, the challenge is how

to identify and extract existing implicit knowledge from a huge community.

Therefore, we decided to restrict the search to a set of reasonable sources for mobile Android

developers. Due to their relevance and popularity, we chose the following internet platforms as

an information base for our mining process:

Stackoverflow 1
One of the most popular developer communities, since it uses a reputation

system for questions and answers. It belongs to the StackExchange network.

Programmers StackExchange 2
It also belongs to the StackExchange network and concerns with

programming in general.

Android Enthusiasts 3
Is part of the StackExchange network and is about the complete Android

ecosystem.

Android Issues 4
The o�cial bug tracker of the Android system.

1http://stackoverflow.com/ (visited 4th March 2015)

2http://programmers.stackexchange.com/ (visited 4th March 2015)

3http://android.stackexchange.com/ (visited 4th March 2015)

4https://code.google.com/p/android/issues/ (visited 4th March 2015)

90

http://stackoverflow.com/
http://programmers.stackexchange.com/
http://android.stackexchange.com/
https://code.google.com/p/android/issues/

7.2. Acquiring Quality Smells

Gathering Filtering Analysis

Crawling &
Querying

SQL querying
including filtering

DB Filter DB

DB

Manual
Evaluation

Quality Smell
Catalogue

Information
Provider
(Platform)

Figure 7.1.: Strategy of information extraction.

Android Developers Newsgroup 5
Is the o�cial discussion forum for Android developers.

Android Developers Blog 6
The o�cial blog from Google employees regarding Android develop-

ment.

Android Design Patterns 7
Another popular blog covering mainly programming issues in An-

droid.

Android Developer Documentation 8
The o�cial documentation from Google regarding Android

development.

Google I/O Talks 9
Collection of di�erent topics from the Google I/O conferences.

To master the huge amount of available data, we applied the strategy in Fig. 7.1 to be able to

mine a catalogue of quality smells. The process is divided into three parts: gathering, �ltering

and analysis. In the gathering phase, o�cial interfaces for querying the respective provider

were used to download the available data into a local database.
10

This was done for the sake

of independence from the provider. Some providers do not o�er a query interface. For those,

we implemented a crawler collecting the data. In the phase of �ltering, a preliminary selection

of potential relevant information was realised. This was done by querying the local database

by means of relevant keywords. The focus of these keywords comprised aspects such as, e.g.,

energy e�ciency, memory, performance. Furthermore, those keywords were connected with terms

like slow, bad, leak, overhead. The result of the �ltering was persisted to the database again.

The constituents of the StackExchange network can be queried by means of a provided SQL

interface.
11

Thus, the gathering and the �ltering could be applied them in one single step. The

analysis was a completely manual phase. This could not be applied automatically anymore, since

the gathered information had to be interpreted to extract knowledge from it. In this phase, the

available information was read and additional references were navigated to. On that base, the

5http://groups.google.com/d/forum/android-developers (visited 4th March 2015)

6http://android-developers.blogspot.de/ (visited 4th March 2015)

7http://www.androiddesignpatterns.com/ (visited 4th March 2015)

8http://developer.android.com/ (visited 4th March 2015)

9https://developers.google.com/events/io/ (visited 4th March 2015)

10
We restricted the period of time from 2010 until July 2013.

11http://data.stackexchange.com/ (visited 4th March 2015)

91

http://groups.google.com/d/forum/android-developers
http://android-developers.blogspot.de/
http://www.androiddesignpatterns.com/
http://developer.android.com/
https://developers.google.com/events/io/
http://data.stackexchange.com/

7. A Quality Smell Catalogue for Android Applications

Calculation Structure
IncPL
Pattern

Pattern
(from IncPL)

pattern

Figure 7.2.: Excerpt of quality smell calculation metamodel only showing the part for structure-

based calculation with IncPL patterns. The metaclass Pattern is located in the

metamodel of IncPL and referenced in our metamodel.

decision was made if a quality smell can be extracted from the information or not. This was the

most expensive phase.

As a result, a list of Android-speci�c quality smells could be mined [RBA14]. Many of them

are only descriptive and abstract for the time being. But we clearly de�ned 9 quality smells. This

means that they are characterised according to our catalogue schema and they are speci�ed

precisely. The following sections present the realised quality smells.

7.3. Structure-Based Quality Smells—A Detailed Example

As already mentioned in Sect. 6.3, our quality smell approach represents a conceptual framework.

In this section, we therefore want to provide a concrete instantiation for structure-based quality

smells. To compile a pattern catalogue, a pattern language to describe the constituents of the

catalogue is required [BC87; GHJV94; Sai03].

7.3.1. The Pattern Language

For being able to decide which pattern language to use, we have to anticipate that the whole

quality smell framework is instantiated in the Eclipse IDE using the Eclipse Modeling Frame-

work [SBPM08] (EMF), which provides sophisticated means for metamodelling. Further technical

details are explained in Sect. 9.2. Thus, since we rely on the EMF, we will use the EMF-based query

language IncQuery
12

[BHH+12] as the pattern language for structural quality smells. Since this

pattern language has no dedicated name, we refer to it as IncQuery Pattern Language (IncPL) in

the following. But again, we emphasize that IncPL is only an example pattern language to be able

to specify the patterns precisely. Other languages, such as GReQL [BE08], Reclipse [vDMT10] or

GUERY [DMTS12], could have been used, too.

IncPL reuses the concept of graph patterns for being able to specify complex queries on top

of model structures.
13

IncPL graph patterns are reusable and therefore can be composed to

more complex ones. Furthermore, IncPL can be used to specify derived features in EMF-based

metamodels [SHV13]. One favourable property of IncPL we will exploit in the following is

the fact that it exposes a metamodel. This is the main reason why we use IncPL because the

metamodel is EMF-based and we also rely on it. Therefore, we extend the metamodel of quality

smell calculations from Fig. 6.5 an page 86 with the metaclass for IncPL patterns. This extension

is depicted in Fig. 7.2.

12https://www.eclipse.org/incquery/ (visited 10th February 2015)

13https://wiki.eclipse.org/EMFIncQuery/UserDocumentation/QueryLanguage#Language_concepts
(visited 3rd March 2015)

92

https://www.eclipse.org/incquery/
https://wiki.eclipse.org/EMFIncQuery/UserDocumentation/QueryLanguage#Language_concepts

7.3. Structure-Based Quality Smells—A Detailed Example

With this small but powerful addition, it is now possible to determine structure-based quality

smells by means of IncPL patterns. With the help of JaMoPP (cf. Sect. 2.2.1), even Java programmes

can be queried. In the following section, a concrete quality smell for Android applications is

explained and speci�ed. Deeper insights concerning the concrete IncPL syntax are revealed also.

Afterwards the remaining catalogue of Android-related quality smells is presented in Sect. 7.4.

7.3.2. Quality Smell: Interruption from Background

In this section, our identi�ed quality smell Interruption from Background is presented in de-

tail [RBA14]. In addition to the schema explained in Sect. 7.1, the property Pattern is specialised

to IncPL Pattern in order to re�ect that IncPL patterns are used to specify structure-based

quality smells.

Name: Interruption from Background

Context: UI

A�ected Qualities: User Expectation, User Experience, User Conformance

Roles of Interest: InterruptingStatement

Description: According to the Android developer guide
14

users should not be interrupted when

working with a mobile device, since interruption does not conform to the user’s expecta-

tions. The assumption behind this demand is that when users start an application, they do

it on purpose and do not want to be interrupted. In the worst case, user-supplied data could

get lost. This can happen in case an Activity15
is started explicitly or a Toast16

is cre-

ated from within background workers like BroadcastReceiver and Service. Listing 7.1

provides an example.

1 public class InterruptingService extends Service {
2 public IBinder onBind(Intent intent) {return new Binder();}
3 public void onCreate() {
4 super.onCreate();
5 Toast.makeText(this, "Hello World!",1000).show();
6 }
7 }

Listing 7.1: Interrupting service.

It shows an interrupting background service creating a Toast (Line 5) which pops up a

dialogue and disturbs the user. This is to be avoided.

IncPL Pattern: The Listing 7.2 presents the IncPL graph pattern which detects the Interruption

from Background quality smell.

14http://developer.android.com/guide/practices/seamlessness.html#interrupt (visited

3rd March 2015)

15
A window in which UI elements are placed.

16
A pop-up window in Android.

93

http://developer.android.com/guide/practices/seamlessness.html#interrupt

7. A Quality Smell Catalogue for Android Applications

1 pattern interruptionFromBackground(InterruptingStatement:
ExpressionStatement){

2 // look if it’s Service or BroadcastReceiver
3 Class.^extends(actualClass, superClassRef);
4 NamespaceClassifierReference.classifierReferences(superClassRef,

classifierReference);
5 ClassifierReference.target(classifierReference, superClass);
6 find isServiceOrBroadcastReciever(superClass);
7

8 // determine if interrupting methods are invoked
9 find startsActivityOrToast(InterruptingStatement);

10

11 // look of the interrupting code is executed in a method of the actual
class

12 Class.members(actualClass, method);
13 find parentContainsSomething+(method, InterruptingStatement);
14 }
15

16 private pattern startsActivityOrToast(interruptingExpression) {
17 // does the interrupting expression refer the Toast class?
18 ExpressionStatement.expression(interruptingExpression, toastInstance);
19 IdentifierReference.target.name(toastInstance, "Toast");
20 // is the makeText method invoked?
21 IdentifierReference.next(toastInstance, callsMakeText);
22 MethodCall.target.name(callsMakeText, "makeText");
23 // is the Toast finally shown?
24 MethodCall.next(callsMakeText, showToastExpression);
25 MethodCall.target.name(showToastExpression, "show");
26 } or {
27 ExpressionStatement.expression(interruptingExpression,

startActivitiyMethod);
28 MethodCall.target.name(startActivitiyMethod, "startActivity");
29 }
30

31 private pattern isServiceOrBroadcastReciever(class) {
32 find isClassOf(class, "Service");
33 } or {
34 find isClassOf(class, "BroadcastReciever");
35 }
36

37 private pattern isClassOf(class, className) {
38 Class.name(class, className);
39 }
40

41 private pattern parentContainsSomething(parent, child){
42 LocalVariableStatement.variable(parent, child);
43 } or {
44 StatementListContainer.statements(parent, child);
45 }

Listing 7.2: Interruption from background pattern.

94

7.3. Structure-Based Quality Smells—A Detailed Example

IncPL patterns are speci�ed by means of the metaclasses of the metamodel the queried

model conforms to; in this case it is the Java metamodel provided by JaMoPP. Furthermore,

patterns are speci�ed in dot notation starting from metaclasses along their references to

other metaclasses. This can be seen in Line 3. Such a query statement always has two

parameters. The �rst one represents the source of the query and the second represents

the target. In Line 3, actualClass corresponds to the Class instance at the beginning of

the line whereas superClassRef corresponds to the target which is reached by navig-

ation from the actualClass by means of the extends reference of the metamodel. As

can be seen in Line 4, the parameter superClassRef is reused as the source parameter

corresponding to an instance of NamespaceClassifierReference. Furthermore, IncPL

supports pattern statements as can be seen in Line 6. Such statements allow for the reuse

of other patterns which again can accept suitable parameters. This technique of passing

parameters from one statement to another (regardless of being a query or pattern state-

ment) ensures that the desired types correspond to the expectations. This was a small

introduction to the syntax of IncPL. In the following the concrete pattern is explained in

more detail.

Since we are interested in the statement which causes this quality smell, the only parameter

(corresponding to the role of interest InterruptingStatement) of the pattern is of type

ExpressionStatement. This parameter is bound as a role of interest. The detection

is split into three parts. First, in Lines 3–6, it is checked if the actual class extends or

BroadcastReceiver and Service. Second, it is determined in Line 9, if interrupting

methods are invoked. Third, in Lines 12–13, the speci�cation ensures that the pattern only

matches if the interrupting code is executed in a method contained in the actual class.

For all of these three parts, particular sub-patterns are invoked via pattern statements.

According to the example in Listing 7.1, only the �rst part of the sub-pattern startsActiv-

ityOrToast is explained in more detail. In this sub-pattern, �rst it is checked if the any

invoked method refers to the Toast class. Therefore, in Line 18, we get the expression
of the passed interruptingExpression and ensure in Line 18 that it is an instance of

IdentifierReference which is named Toast. In Lines 21 and 22, it is checked that the

toastInstance calls the method makeText. Finally, this sub-pattern checks in Lines 24

and 25 if the show method is really invoked on the callsMakeText result.

This part of the whole pattern matches the quality smell shown in Listing 7.1. The

remaining part of this pattern is conceptually similar and is omitted here.

Refactorings: Introduce Noti�cation
To inform the user that attention is needed the InterruptingStatement should be

replaced by a Notification. The Listing 7.3 shows the result of this refactoring.

1 public class InterruptingService extends Service {
2 public IBinder onBind(Intent intent) {return new Binder();}
3 public void onCreate() {
4 super.onCreate();
5 Notification notification = new Notification.Builder(this).

setContentText("Hello World!").build();
6 NotificationManager manager = (NotificationManager) getSystemService(

Context.NOTIFICATION_SERVICE);

95

7. A Quality Smell Catalogue for Android Applications

7 manager.notify(123, notification);
8 }
9 }

Listing 7.3: Notifying service.

With this resolution users can continue working without interruption since the message

is only displayed in the noti�cation area of the device. We consider this modi�cation a

refactoring since the information to be displayed remains the same.

References:
http://developer.android.com/guide/practices/seamlessness.html#interrupt (visited

3rd March 2015)

http://developer.android.com/guide/topics/ui/notifiers/toasts.html (visited

3rd March 2015)

http://developer.android.com/guide/topics/ui/notifiers/notifications.html (visited

3rd March 2015)

Related Quality Smells: Dropped Data (Sect. 7.4.2)

7.4. Quality Smells for Android Applications

In this section the remaining quality smell catalogue for Android applications is presented. It is

an excerpt of the mined quality smells presented in [Bry14]. In contrast to [Bry14], only those

quality smells are presented here for which IncPL patterns could be speci�ed. The according

IncPL patterns are omitted here and can be seen in Appendix D. The name property of the

catalogue schema is omitted, since it corresponds to the section headings.

7.4.1. Quality Smell: Data Transmission Without Compression

Context: Implementation, Network

A�ected Qualities: Energy E�ciency

Roles of Interest: FileBodyConstructor

Description: In [HB10], Höpfner and Bunse discussed that transmitting a �le over a network

infrastructure without compressing it consumes more energy than with compression.

More precisely, energy e�ciency is improved in case the data is compressed at least by

10 %, transmitted and decompressed at the other network node. The example in Listing 7.4

shows �le transmission implemented with the Apache HTTP Client Library.
17

1 public static void main(String[] args) throws Exception {
2 HttpClient httpclient = new DefaultHttpClient();
3 HttpPost httppost = new HttpPost("http://some.url:8080/servlets-examples

/servlet/RequestInfoExample");
4 FileBody bin = new FileBody(new File(args[0]));
5 StringBody comment = new StringBody("A binary file");

17
The example was taken and adapted from http://archive.apache.org/dist/httpcomponents/
httpclient/binary/httpcomponents-client-4.2.4-bin.zip (visited 3rd March 2015).

96

http://developer.android.com/guide/practices/seamlessness.html#interrupt
http://developer.android.com/guide/topics/ui/notifiers/toasts.html
http://developer.android.com/guide/topics/ui/notifiers/notifications.html
http://archive.apache.org/dist/httpcomponents/httpclient/binary/httpcomponents-client-4.2.4-bin.zip
http://archive.apache.org/dist/httpcomponents/httpclient/binary/httpcomponents-client-4.2.4-bin.zip

7.4. Quality Smells for Android Applications

6 MultipartEntity reqEntity = new MultipartEntity();
7 reqEntity.addPart("bin", bin);
8 reqEntity.addPart("comment", comment);
9 httppost.setEntity(reqEntity);

10 System.out.println("executing request " + httppost.getRequestLine());
11 HttpResponse response = httpclient.execute(httppost);
12 HttpEntity resEntity = response.getEntity();
13 EntityUtils.consume(resEntity);
14 }

Listing 7.4: File transmission without compression before refactoring.

In line 4 one can see that the passed File object in this constructor (role FileBodyCon-
structor) is transmitted without compression.

IncPL Pattern: Listing D.1 in Appendix D

Refactorings: Add Data Compression to Apache HTTP Client based �le transmission

This refactoring adds a compression method. Then it passes the File parameter of the

constructor (role FileBodyConstructor) in Line 4 of Listing 7.4 to this method. Thus,

the �le is transmitted with compression. In Listing 7.5 the result of this refactoring is

depicted. Line 3 contains the invocation of the compression method gzipFile(File

uncompressedFile) which is added by this refactoring.

1 public static void main(String[] args) throws Exception {
2 // ...
3 FileBody bin = new FileBody(gzipFile(new File(args[0])));
4 // ...
5 }
6 private static File gzipFile(File uncompressedFile){
7 File gzFile = File.createTempFile(file.getName(), "gz");
8 FileInputStream fis = new FileInputStream(file);
9 GZIPOutputStream out = new GZIPOutputStream(new FileOutputStream(gzFile)

);
10 byte[] buffer = new byte[4096];
11 int bytesRead;
12 while ((bytesRead = fis.read(buffer)) != -1){
13 out.write(buffer,0, bytesRead);
14 }
15 fis.close();
16 out.close();
17 return gzFile;
18 }

Listing 7.5: File transmission with compression after refactoring

References: [HB10]

Related Quality Smells: Durable WakeLock (Sect. 7.4.3), Rigid AlarmManager (Sect. 7.4.6)

97

7. A Quality Smell Catalogue for Android Applications

7.4.2. Quality Smell: Dropped Data

Context: UI

A�ected Qualities: User Experience, User Conformity

Roles of Interest: DataDroppingClass

Description: The user can input or edit data in an Android Activity or Fragment. Imagine

another Activity pops up (e.g., an incoming phone call) and interrupts the user. After

returning to the former Activity the input is lost, but the user expects the data to be

persisted. This happens if the class bound to the role of interest DataDroppingClass
(Activity or Fragment) does not implement the methods onSaveInstanceState(Bundle

) and onRestoreInstanceState(Bundle).

IncPL Pattern: Listing D.2 in Appendix D

Refactorings: Save and Restore Instance State
The developer has to ensure that the state of the Activity or Fragment (role Data-
DroppingClass) is stored, when the user entered data. This is done in the onSave-

InstanceState(Bundle) method. It can be restored by overriding onRestoreInstance-

State(Bundle). Therefore, this refactoring adds a skeleton for each of these methods if not

present. For default widgets, this is already done by the framework. Thus, one should not

miss to call super.onSaveInstanceState(Bundle) and super.onRestoreInstanceState

(Bundle) respectively in the corresponding methods.

References:
http://stackoverflow.com/questions/151777/saving-activity-state-in-android (visited

3rd March 2015)

http://developer.android.com/guide/practices/seamlessness.html#drop (visited

3rd March 2015)

http://developer.android.com/reference/android/app/Activity.html (visited

3rd March 2015)

Related Quality Smells: Durable WakeLock (Sect. 7.4.3), Interruption From Background (Sect. 7.3.2)

7.4.3. Quality Smell: Durable WakeLock

Context: UI, Implementation

A�ected Qualities: Energy E�ciency

Roles of Interest: TimeoutLessAcquire

Description: A WakeLock is acquired in order to indicate that the application requires the

device to stay activated. This is needed, e.g., when CPU, Sensors or GPS should be in-

teracted with explicitly. After using the resources, the application should release the

WakeLock. If this is not done the battery power will drain. This comprises several aspects.

First, it must be ensured that the release() method is invoked on the WakeLock ob-

ject. Second, the method aquire(long timeout) should be used to acquire the WakeLock

98

http://stackoverflow.com/questions/151777/saving-activity-state-in-android
http://developer.android.com/guide/practices/seamlessness.html#drop
http://developer.android.com/reference/android/app/Activity.html

7.4. Quality Smells for Android Applications

instead of invoking aquire() (the call to this method is bound to the role of interest

TimeoutLessAcquire). This ensures that the lock is released under all circumstances,

since a time-out is speci�ed. An example is shown in Listing 7.6. In Line 6, the WakeLock
is acquired without time-out and without releasing it afterwards.

1 protected void onCreate(Bundle savedInstanceState) {
2 super.onCreate(savedInstanceState);
3 PowerManager pm = (PowerManager) getSystemService(Context.POWER_SERVICE)

;
4 WakeLock wl = pm.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK
5 | PowerManager.ON_AFTER_RELEASE, "TAG");
6 wl.acquire();
7 }

Listing 7.6: Acquiring a WakeLock without releasing it.

IncPL Pattern: Listing D.3 in Appendix D

Refactorings: Aquire WakeLock with time-out

To ensure that the WakeLock will be released in all circumstances, the method PowerMan-

ager.WakeLock.aquire(long timeout) replaces the acquisition without time-out (Time-
outLessAcquire). Furthermore, the release() method is added to the end of the method

which ensures that the WakeLock is released in case the work �nishes before the time-out.

The result of this refactorings can be seen in Listing 7.7.

1 protected void onCreate(Bundle savedInstanceState) {
2 super.onCreate(savedInstanceState);
3 PowerManager pm = (PowerManager) getSystemService(Context.POWER_SERVICE)

;
4 WakeLock wl = pm.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK
5 | PowerManager.ON_AFTER_RELEASE, "TAG");
6 wl.acquire(60*1000*10); // auto release it in 10 minutes
7 // ... do work...
8 wl.release();
9 }

Listing 7.7: Acquiring a WakeLock with time-out.

References: [Gui12]

http://developer.android.com/reference/android/os/PowerManager.WakeLock.html (vis-

ited 3rd March 2015)

Related Quality Smells: Data Transmission Without Compression (Sect. 7.4.1), Dropped Data

(Sect. 7.4.2), Rigid AlarmManager (Sect. 7.4.6)

7.4.4. Quality Smell: Internal Use of Getters/Setters

Context: Implementation

A�ected Qualities: Performance

99

http://developer.android.com/reference/android/os/PowerManager.WakeLock.html

7. A Quality Smell Catalogue for Android Applications

Roles of Interest: CallOfGetter

Description: The internal �elds are accessed from the owning class via its getters and setters.

But the Android Performance Tips
18

say:

“Without a JIT, direct �eld access is about 3x faster than invoking a trivial getter.

With the JIT (where direct �eld access is as cheap as accessing a local), direct

�eld access is about 7x faster than invoking a trivial getter.”

To increase performance, the use of internal getters (role of interest CallOfGetter) and

setters should be avoided.

IncPL Pattern: For one part of this quality smell we show the according IncPL pattern here. List-

ing 7.8 depicts the detection of accessing an internal getter. The returned CallOfGetter
conforming to metaclass MethodCall then is passed to the refactoring (Line 1).

1 pattern internalGetter(CallOfGetter:MethodCall) {
2 find isGetter(getter);
3 MethodCall.target(CallOfGetter,getter);
4 }
5

6 private pattern isGetter(actualMethod:ClassMethod) {
7 // return value of method is a field
8 ClassMethod.statements(actualMethod,statemets);
9 Return.returnValue(statemets,ref);

10 IdentifierReference.target(ref,variable);
11 Variable.name(variable,varName);
12 Class.members.name(actualClass,varName);
13

14 // method is contained in the same class as the field
15 Class.members(actualClass,actualMethod);
16 }

Listing 7.8: IncPL pattern for detecting access of internal getters.

Refactorings: Introduce Direct Field Access
Replaces the access to internal getters (role of interest CallOfGetter) and setters by a

direct access.

References:
http://stackoverflow.com/questions/6716442/android-performance-avoid-internal-
getters-setters (visited 3rd March 2015)

http://developer.android.com/training/articles/perf-tips.html#GettersSetters (vis-

ited 3rd March 2015)

Related Quality Smells: Unclosed Closeable (Sect. 7.4.7)

18http://developer.android.com/training/articles/perf-tips.html#GettersSetters (visited

3rd March 2015)

100

http://stackoverflow.com/questions/6716442/android-performance-avoid-internal-getters-setters
http://stackoverflow.com/questions/6716442/android-performance-avoid-internal-getters-setters
http://developer.android.com/training/articles/perf-tips.html#GettersSetters
http://developer.android.com/training/articles/perf-tips.html#GettersSetters

7.4. Quality Smells for Android Applications

7.4.5. Quality Smell: No LowMemory Resolver

Context: Implementation

A�ected Qualities: Memory E�ciency, Stability, User Experience

Roles of Interest: ClassWithoutMemoryResolver

Description: Mobile systems usually have little main memory and no physical space to store

data in order to free some memory. Android provides a mechanism to support the system

in managing memory. The method Activity.onLowMemory() is called when the system

is running low on memory. This method should be implemented to clean caches or

unnecessary resources. Subclasses of Activity not implementing it are bound to the role

of interest ClassWithoutMemoryResolver.

IncPL Pattern: Listing D.5 in Appendix D

Refactorings: Override onLowMemory()

This refactoring adds a skeleton of the the method onLowMemory() to a subclass of Ac-
tivity which is bound to the role of interest ClassWithoutMemoryResolver in order

to override it when it is not present. The actual implementation of this method must be

provided by the developer.

References: [Gui12]

http://developer.android.com/reference/android/app/Activity.html (visited

4th March 2015)

Related Quality Smells: Unclosed Closeable (Sect. 7.4.7)

7.4.6. Quality Smell: Rigid AlarmManager

Context: Implementation

A�ected Qualities: Energy E�ciency, Performance

Roles of Interest: RigidCaller

Description: In Android, with the use of AlarmManager it is possible to schedule an application

to be run at a certain time in future. When this time is reached the system automatically

starts the application if not yet running. Such an alarm is scheduled by the method

setRepeating(int, long, long, PendingIntent) on an AlarmManager object. Every

application which is triggered by an AlarmManager wakes up the mobile device and thus

the overall energy consumption and CPU might be higher, then if bundled together. In order

to let the system bundle scheduled alarms the method setRepeating(int, long, long,

PendingIntent) (method call is bound to role of interest RigidCaller) should be replaced

by a call to setInexactRepeating(int, long, long, PendingIntent) Listing 7.9 shows

an example.

101

http://developer.android.com/reference/android/app/Activity.html

7. A Quality Smell Catalogue for Android Applications

1 public class RigidAlarmManagerTest extends Activity {
2 protected void onCreate(Bundle savedInstanceState) {
3 super.onCreate(savedInstanceState);
4 AlarmManager am = (AlarmManager) getSystemService(Context.

ALARM_SERVICE);
5 Intent intent = new Intent(this,

InterruptingFromBackgroundServiceTest.class);
6 PendingIntent pendingIntent = PendingIntent.getService(this,0, intent

,0);
7 long interval = DateUtils.MINUTE_IN_MILLIS * 30;
8 long firstWake = System.currentTimeMillis() + interval;
9 am.setRepeating(AlarmManager.RTC_WAKEUP, firstWake, interval,

pendingIntent);
10 }
11 }

Listing 7.9: Use of an exact AlarmManager which results in higher energy consumption.

IncPL Pattern: Listing D.6 in Appendix D

Refactorings: Introduce Use of Inexact Alarmmanager

This refactoring replaces the invocation of setRepeating(int, long, long, Pending-

Intent) (role of interest RigidCaller) by a call to setInexactRepeating(int, long,

long, PendingIntent) in order to ensure that the system bundles several alarms together.

In Listing 7.10, the example from Listing 7.9 is shown after the refactoring.

1 protected void onCreate(Bundle savedInstanceState) {
2 // initialise...
3 am.setInexactRepeating(AlarmManager.RTC_WAKEUP, firstWake, interval,

pendingIntent);
4 }

Listing 7.10: Use of an inexact AlarmManager reducing energy consumption

References:
http://developer.android.com/reference/android/app/AlarmManager.html (visited

4th March 2015)

Related Quality Smells: Data Transmission Without Compression (Sect. 7.4.1), Durable Wake-
Lock (Sect. 7.4.3)

7.4.7. Quality Smell: Unclosed Closeable

Context: Implementation

A�ected Qualities: Memory E�ciency

Roles of Interest: UnclosedHolder, UnclosedParameter

Description: An object implementing the Closeable interface is not closed which results in

higher memory consumption. The role of interest UnclosedHolder is bound to a method

102

http://developer.android.com/reference/android/app/AlarmManager.html

7.4. Quality Smells for Android Applications

having a parameter of type Closeable. If the close() method is not invoked on this

parameter it is bound to the role of interest UnclosedParameter. Listing 7.11 shows an

example.

1 public static void close(Closeable closed, Closeable unclosed) {
2 if (closed != null) {
3 try {
4 closed.close();
5 } catch (Exception e) {
6 System.out.println("Unable to close %s");
7 }
8 }
9 }

Listing 7.11: A Closeable object is not closed.

IncPL Pattern: Listing D.7 in Appendix D

Refactorings: Close Closable
This refactoring adds a call to the close() method of the unclosed object (UnclosedPa-
rameter) as can be seen in Listing 7.12. This call is added to the method which is bound

to the role of interest UnclosedHolder.

1 public static void close(Closeable closed, Closeable unclosed) {
2 // do something
3 unclosed.close();
4 }

Listing 7.12: Closeable object is closed.

References: [Gui12]

http://developer.android.com/reference/java/io/Closeable.html (visited 4th March 2015)

Related Quality Smells: Internal Use of Getters/Setters (Sect. 7.4.4), No Low Memory Resolver

(Sect. 7.4.5)

7.4.8. Quality Smell: Untouchable

Context: User Experience, Accessibility, User Expectation

A�ected Qualities: UI

Roles of Interest: SmallerConstructorCall

Description: Visual elements in a mobile application, such as buttons, should be at least 48dp
19

of size in order to ensure accessibility. If they are smaller, it is hard to touch them. In case

a layout of a visual element is speci�ed programmatically, this can be checked statically. In

this case smaller values are passed to the constructor of LayoutParams which then is bound

to the role of interest SmallerConstructorCall. An example is depicted in Listing 7.13.

19
Density-independent Pixels

103

http://developer.android.com/reference/java/io/Closeable.html

7. A Quality Smell Catalogue for Android Applications

1 protected void onCreate(Bundle savedInstanceState) {
2 super.onCreate(savedInstanceState);
3 Button myButton = new Button(this);
4 RelativeLayout myLayout = new RelativeLayout(this);
5 RelativeLayout.LayoutParams params = new RelativeLayout.LayoutParams(20,

60);
6 myLayout.setLayoutParams(params);
7 myLayout.addView(myButton);
8 setContentView(myLayout);
9 }

Listing 7.13: A button which is not touchable.

IncPL Pattern: Listing D.8 in Appendix D

Refactorings: Increase Touchable Size
This refactoring asks the user for a new value of the according parameter of the layout and

passes it to the constructor (role of interest SmallerConstructorCall). An exemplary

result can be seen in Listing 7.14.

1 protected void onCreate(Bundle savedInstanceState) {
2 // initialise
3 RelativeLayout.LayoutParams params = new RelativeLayout.LayoutParams(60,

60);
4 // do other things
5 }

Listing 7.14: A layout with appropriate size.

References:
http://android-developers.blogspot.de/2012/04/accessibility-are-you-serving-all-
your.html (visited 4th March 2015)

http://developer.android.com/design/style/metrics-grids.html#48dp-rhythm (visited

4th March 2015)

Related Quality Smells: Interruption From Background (Sect. 7.3.2)

7.5. Discussion

In this chapter, a quality smell catalogue has been presented. Therefore, an underlying schema

was declared and our process of acquiring quality smells from a broad information base was

illustrated. Afterwards, the conceptual framework from Sect. 6.3 was instantiated for structural-

based quality smells in the domain of mobile Android applications in order to ful�l Requirement 3.

When a catalogue regarding a speci�c domain is provided, the question of completeness arises.

We state that our catalogue is by no means complete, but in Sect. 7.2 a strategy is presented

how further quality smells can be mined. This strategy is generic and thus can be applied to

other domains, as well. The focus of our presented catalogue is on the potential of detection

and resolution of quality smells in practice. This means that the catalogue contains only quality

smells having a precisely de�ned pattern for detection and an implemented resolving refactoring.

The catalogue can be considered as a basis for ongoing work.

104

http://android-developers.blogspot.de/2012/04/accessibility-are-you-serving-all-your.html
http://android-developers.blogspot.de/2012/04/accessibility-are-you-serving-all-your.html
http://developer.android.com/design/style/metrics-grids.html#48dp-rhythm

8
Role-Based Co-Refactoring in

Multi-Language Development Environments

In this chapter, we provide a new co-refactoring approach incorporating into our overall frame-

work. It bene�ts from the concept of role models. Part of the approach presented here is covered

by our joint work published in “Language-Independent Traceability with Lässig” [PRW14].

8.1. Motivation

Multi-Language Development Environments (MLDEs) are environments with a large number

of heterogeneous artefacts [Pfe13]. However, all artefacts can be perceived as models provided

that a suitable metamodel exists — in our case conforming to MOF. This encompasses analysis

artefacts, which may be re�ned in a MDA process; code artefacts, which are the outcome of

such a process; or other assets such as con�guration or documentation �les. A comprehensive

example is provided in Sect. 8.2. The essence of MLDEs is that the set of metamodels to which

the models conform is not �xed. Thus, the participating models can be instances of arbitrary

DSLs or metamodels.

Within MLDEs, a large number of models with interdependencies exists. When one model

is refactored, it is very likely that related models are in�uenced by this change and have to be

updated in order to maintain consistency. Thus, refactorings may a�ect dependent models so

that the changes have to be propagated as well.

We consider the combination of the initial refactoring with the consistency-preserving modi-

�cation of dependent models as co-refactoring. Such subsequent co-refactorings may have to be

performed over multiple stages and branches, which is illustrated in Fig. 8.1. In case a refactoring

is initiated in one model, it might a�ect dependent models on the next stage. To preserve consist-

ency, co-refactorings have to be applied in these models which, in turn, might in�uence adjacent

models again and again. The process of propagating the initial changes to dependent models

105

8. Role-Based Co-Refactoring in Multi-Language Development Environments

initially refactored model

co-refactored model

co-refactoring impulse

Figure 8.1.: Extract of the successive progression of model co-refactoring. Di�erent colours and

patterns in the circles representing the model elements indicate di�erent metamodels.

over multiple stages can be very complex. In this sense, a network of dependency relations

should be built providing assistance during the co-refactoring process.

In the following, we will regard the propagation of co-refactorings along the network of

dependencies as refactoring stream. The choice of using the term stream has been motivated

from the �ow of water starting from a particular source. Initially, the path of the stream is

unde�ned, might get split into branches which �ow into the direction of the lowest resistance.

The refactoring stream behaves similarly. The initially refactored model is the source of the

stream. In the beginning, the path to go is unde�ned. A co-refactoring impulse is caused for each

subsequent dependent model in the network of dependency relations. Thus, the impulse is split

up, in order to reach the dependent models. Therefore, we decided to use the term refactoring

stream for the �ow of the co-refactoring impulse across the network of dependent models.

As a consequence, each stage of the refactoring stream underlies the schematic work�ow

in Fig. 8.2. While determining dependent models, a knowledge base providing dependency

information must be accessed, since most often dependencies between models are implicit and

they do not know each other. In the following, we will call this knowledge base Dependency

Knowledge Base (DK-Base). Furthermore, another information provider regarding the application

of co-refactorings is needed. This Co-Refactoring Knowledge Base (CoRK-Base) is required to

determine which subsequent co-refactoring should be executed as a consequence of a preceding

refactoring. As a result of this observation, these constituents of the schematic co-refactoring

work�ow approaches will be discussed in the next two sections.

As discussed in Sect. 3.3.2, no universal approaches exist on how to derive co-refactoring steps

in adjacent models in consequence to the initial refactoring of another model. As a consequence,

106

8.2. Example

Model
refactored

Determine
dependent
models

Co-Refactor
dependent
models

Dependency
Knowledge

Base

Co-Refactoring
Knowledge

Base

Figure 8.2.: Schematic work�ow of Co-Refactoring.

Requirements
Document

Ontology
TBox

ABox

Domain
ModelDomain
Model

Domain
Model
UML

Domain
Model

0
1
0
0
0
0
0
0

1
0
0
1
0
0
1
0

0
1
0
1
1
0
1
1

1
0
1
0
0
1
0
0

1
0
1
0
1
0
0
0

1
0
1
1
1
0
0
0

1
1
0
1
0
1
1
0

0
1
1
1
0
0
0
1

Code

Figure 8.3.: Example of an ontology-driven requirements and software engineering process.

Solid lines indicate the direction of the data �ow. Dashed lines indicate interaction

controlled by the ontology.

we see a strong risk that users of MLDEs have to be involved too heavily in the co-refactoring

process, which can be both tedious and error-prone. Therefore, we present a co-refactoring

approach for models in MLDEs in this chapter. Prior to the presentation of our approach, we

will come up with a comprehensive example in the next section.

8.2. Example

As already indicated in Sect. 1.1, dependent models appear right from the beginning of software

development in form of requirements documents. Furthermore, approaches exist to guide through

the requirements speci�cation process based on ontologies [STZ+11]. Herein, ontologies are used

to enrich the whole process with additional information being used for consistency checking

with respect to the ful�lment of requirements along the development process. Besides that,

ontologies can also be used to derive other artefacts such as domain models [HS06]. In this

scenario, the ontology is taken into account as some kind of intermediate artefact for generating

others, although ontologies have a higher degree of expressiveness. Additional information

in the ontology then is used for further reasoning [STZ+11]. Such an exemplary scenario is

illustrated in Fig. 8.3. As can be seen, we have heterogeneous dependent models and changes in

one model can cause changes in a dependent model. Thus, we decided to take an example from

the domain of ontology-driven requirements and software engineering.

107

8. Role-Based Co-Refactoring in Multi-Language Development Environments

According to [STZ+11], not only the requirements speci�cation phase is backed up by an

ontology but the whole development process. Thus, the ontology in Fig. 8.3 is present right from

the beginning. It de�nes consistency constraints according to the requirements speci�cation, for

instance, for verifying that every requirement is realised by a certain software component or

that requirements do not contradict each other. As a consequence, the requirements document

is the �rst artefact created in such a development process. Controlled by the ontology, domain

information can be extracted from the requirements [HS06; KKK+06]. As a result, the gathered

domain information can be made explicit in new artefacts. Such artefacts might be, e.g., generated

UML models. As a next step, code artefacts then can be generated from domain models. Since

the ontology plays a central role in this process, it ful�ls the function of a controller. It interacts

with all the other artefacts and gets populated iteratively.

New information which can be reasoned with the ontology can be, for instance, that a test case

proves correctness of a certain software component, or that a state chart assures the protocol

of a particular requirement [STZ+11]. Hence, the ontology is a controlling speci�cation from

which subsequent artefacts are generated. If a refactoring is applied in the ontology [BS06],

subsequent co-refactorings have to be propagated to the dependent artefacts. This example

serves as basis for explanation in the following. In the next section, we �rst clarify that di�erent

kinds of dependencies between models in MLDEs exist and categorise them.

8.3. Dependency Knowledge Base

In the process of co-refactoring, an initial refactoring of a model prompts for subsequent modi-

�cations of dependent models in the refactoring stream. As a prerequisite for this procedure, all

relevant model dependencies need to be determined. In the following, we provide a classi�cation

of di�erent types of dependencies encountered in MLDEs and emphasize a correspondence to

our example from the previous section.

8.3.1. Categories of Model Dependencies

In general, dependencies between models can be explicit or implicit. We consider an explicit

dependency if there is a reference from one model to another model according to the metamodel

of the former. Thus, a physical connection between these models exists. An implicit dependency

exists if two models are related to each other logically and have no explicit relation. The following

presented categories are classi�ed either into explicit or implicit dependencies. We distinguish

four di�erent kinds of dependencies between models as depicted in Fig. 8.4. These categories

have emerged by analysis of typical connections between models from which we can bene�t in

the co-refactoring scenario.

Direct dependency of a model A to another model B is established if there is an explicit reference

from model A to model B.

In our example, direct dependencies occur manifoldly. On the one hand, direct dependen-

cies exist between models of the same language. A UML sequence diagram model, e.g., can

reference classes or methods from a UML class diagram model. A Java class can reference

other Java classes by means of a superclass relation. On the other hand, direct dependencies

108

8.3. Dependency Knowledge Base

A B

direct
dependency

A B

inverse
dependency

A B

M

mapping
dependency

A B

MM
A

MM
B

T

transformation
dependency

physical connection
logical connection

instance of

explicit implicit

Figure 8.4.: Categories of model dependencies. In explicit dependencies, physical and logical

connections are aligned.

also exist between models of di�erent languages. A direct dependency occurs between the

ontology and source code by means of a hasSource relation according to [Sie14].

Inverse dependency from model A to model B exists if a model A is referenced by another model

B but is itself unaware of the connection. An inverse dependency can be perceived as the

opposite of a direct dependency.

Thus, an inverse dependency exists, e.g., from a superclass to its subclass in Java, or from

a test case to the ontology according to the opposite of the hasSource relation [Sie14].

Mapping dependency exists between two models A and B if an external mapping model relates

elements of model A to those of model B. More than two models may participate in a

mapping dependency.

In the example, the ontology serves as a mapping model. It maps, e.g., requirements

to source code according to the hasTestCase relation. Furthermore, the ontology maps

requirements to UML use cases by means of the isDescribedBy relation [Sie14].

Transformation dependency between two models A and B is established if speci�c concepts of

model B can be obtained by applying particular rules of a transformation T to concepts

of model A. The transformation T is speci�ed with respect to the metamodels MM A and

MM B which the models A and B respectively conform to.

Again, our example contains several of transformation dependencies. Since domain models

can be generated from the ontology [HS06], a transformation dependency exists between

both. Such dependencies also exist for UML models and generated code.

Direct dependencies are explicit, as physical and logical connections are aligned and the

relation to other models can be established by solely inspecting the original model. On the

other hand, the categories of inverse, transformation and mapping dependencies are implicit, as

their physical and logical connections are not aligned. Thus, the logical connection cannot be

109

8. Role-Based Co-Refactoring in Multi-Language Development Environments

determined directly from the inspected models. Instead, the entirety of models in the system has

to be analysed in order to establish these dependencies.

In contrast to the characterisation of MLDEs presented in [PW15], our categories have a more

technical background. The reason for this decision is that these categories are directly re�ected

in the upcoming presentation of the detection procedure. Nevertheless, the categories presented

above can be classi�ed into the relation types of [PW15], although the authors consider relations

between strings only. Direct dependencies can be considered as �xed relations, since Pfei�er

and Wąsowski de�ne them as an established link between equal strings. A �xed relation is

undirected. Hence, an inverse dependency also corresponds to a link between two elements

and is covered by the �xed relation type as well. A mapping dependency from a mapping

model M to the models A and B can be considered as two �xed relations between M-A and

M-B respectively. The logical connection between A and B is not covered in [PW15]. Our

transformation dependency corresponds to a String-transformation relation. Since we consider

not only strings, our dependency category has a broader scope. Furthermore, all of our categories

are Domain-Speci�c Relations according to [PW15], since all of them are typed. Each element

participating in a dependency has a certain type in terms of a metaclass.

Before dependent models can be co-refactored, those dependent models must be detected.

For this reason, we discuss the right point in time of determination in the following before the

according detection procedure is illustrated.

8.3.2. When to Determine Model Dependencies

As explained previously, direct dependencies are explicit between di�erent models and can be

located by getting the information from the relation speci�ed in the models. In contrast, implicit

dependencies must be determined with dedicated mechanisms. We now discuss when model

dependencies have to be determined, because this decision heavily in�uences performance and

memory usage.

The �rst possibility is to analyse each model for explicit and implicit dependencies at the time

it enters the MLDE. The term entering subsumes the creation of a new model until it is persisted

and the action of moving an existing model into the MLDE. Then the acquired information can

be stored in the DK-Base. The advantage is that all dependencies are readily available, when

dependent models must be determined for a refactored model and can be retrieved directly from

the DK-Base. However, there are some limitations: The approach requires large amounts of

physical storage for the DK-Base and it stores another representation of the models and their

dependencies. Furthermore, the additional representation needs to be maintained when the

model dependencies change.

The second possibility is to calculate model dependencies on demand when an initial refac-

toring of a model was applied. The advantage of this approach is that no persistent storage is

required and that no additional representation of the model dependencies must be maintained.

However, traversing all models (having a graph-like structure) on demand is very expensive in

terms of processing time.

As a consequence, we exploit some properties of both previously described approaches to

take advantage of them. According to the schematic work�ow in Fig. 8.2, our DK-Base is

populated only with explicit dependencies. These dependencies are persisted for each model in

the moment, when it enters the MLDE. Using this approach, explicit knowledge about the system

110

8.3. Dependency Knowledge Base

1 explicit(sourceElement, reference, targetElement).
2

3 elementtoresourcemapping(modelElement, model).

Listing 8.1: Prolog fact pattern to capture explicit dependencies.

is built incrementally and implicit dependencies are calculated on demand, when a model is

refactored and dependent models are to be determined. Unlike in the �rst approach, the e�ort for

maintaining the additional representation is acceptable because only the explicit dependencies are

stored in the DK-Base. DK-Base can be updated easily when direct dependencies change, because

for each model only one corresponding rule must be updated. In contrast to the second approach,

at no point in time, the whole MLDE must be traversed to determine implicit dependencies,

because they can be calculated using stored knowledge.

8.3.3. How to Determine Model Dependencies

The results of the previous discussion about when to determine model dependencies have

implications on our approach. First, it is obvious that there is a need for storing the explicit

dependencies. Second, a formalism which enables to specify rules for the categories is required,

which can be interpreted at the time a refactoring occurs initially. The set of rules must be

extensible at the time the MLDE is running. Therefore, the rules should be declaratively speci�ed.

We chose an approach based on logical programming to determine inverse and mapping

dependencies, since it is declarative and easily extensible. Furthermore, there exists an isomorph-

ism between graphs and logics [Cou90; Ren04]. Thus, both formalisms can be mapped to each

other bijectively. Due to this background, representing models as logical facts has already been

applied successfully [PS92; HCW07; Şav10]. Therefore, we have chosen Prolog to be able to

specify and present the following rules precisely.

When a model enters the MLDE, all its explicit references are added as facts to the DK-

Base. For every explicit dependency, facts according to the patterns in Listing 8.1 are added.

The sourceElement in one model references the targetElement in another model (Line 1).

Furthermore both for source and target elements a fact is created to indicate in which models

they reside (Line 3). Every time a model enters the MLDE, such facts are generated and added to

the DK-Base.

For representing the category of inverse dependencies, we add the rules in Listing 8.2 to the DK-

Base. The intrinsic rule which represents the meaning of the inverse dependency category can

be seen in Line 1. This rule reveals an inverse logical connection between a SourceElement and

a TargetElement if an explicit reference from the TargetElement to the SourceElement exists.

The rule in Line 4 classi�es an inverse dependency as being implicit. Thus, a SourceElement

and a TargetElement are implicitly dependent via a Reference if there is an inverse dependency

between them. The rule in Line 7 provides means to ask for all implicit references from elements

in a SourceModel to a speci�c TargetElement. The rule in Line 11 asks for all SourceElements

having an implicit dependency to elements in a particular TargetModel. The latter two rules

provide di�erent possibilities for querying the DK-Base.

The rules for determining mapping dependencies are depicted in Listing 8.3. The intrinsic rule

which represents the meaning of the mapping dependency category can be seen in Line 1. The

111

8. Role-Based Co-Refactoring in Multi-Language Development Environments

1 inverseDependency(SourceElement,Reference,TargetElement) :-
2 explicit(TargetElement,Reference,SourceElement).
3

4 implicit(SourceElement,Reference,TargetElement) :-
5 inverseDependency(SourceElement,Reference,TargetElement).
6

7 implicit(SourceModel,Reference,TargetElement) :-
8 elementtoresourcemapping(SourceElement,SourceModel),
9 inverseDependency(SourceElement,Reference,TargetElement).

10

11 implicit(SourceElement,Reference,TargetModel) :-
12 elementtoresourcemapping(TargetElement,TargetModel),
13 inverseDependency(SourceElement,Reference,TargetElement).

Listing 8.2: Prolog rules to determine inverse dependencies.

1 mappingDependency(SourceElement,TargetElement) :-
2 elementtoresourcemapping(SourceElement,SourceModel),
3 elementtoresourcemapping(TargetElement,TargetModel),
4 not(SourceModel = TargetModel),
5 explicit(MappingElementLeft,_,SourceElement),
6 explicit(MappingElementRight,_,TargetElement),
7 elementtoresourcemapping(MappingElementLeft,MappingModel),
8 elementtoresourcemapping(MappingElementRight,MappingModel),
9 not(MappingModel = SourceModel),

10 not(MappingModel = TargetModel).
11

12 implicit(SourceElement,_,TargetElement) :-
13 mappingDependency(SourceElement,TargetElement).
14

15 implicit(SourceModel,_,TargetElement) :-
16 elementtoresourcemapping(SourceElement,SourceModel),
17 mappingDependency(SourceElement,TargetElement).
18

19 implicit(SourceElement,_,TargetModel) :-
20 elementtoresourcemapping(TargetElement,TargetModel),
21 mappingDependency(SourceElement,TargetElement).

Listing 8.3: Prolog rule to determine mapping dependencies.

112

8.4. Co-Refactoring Knowledge Base

goals in Lines 2–4 assure that SourceElement and a TargetElement are contained in distinct mod-

els. Then, Lines 5 and 6 ask for some elements MappingElementLeft and MappingElementRight

having an explicit dependency to SourceElement and TargetElement. Lines 7 and 8 ensure that

both the left and the right mapping elements are contained in the same MappingModel. Finally, it

is checked if all three models are distinct in Lines 9 and 10. Similar to the inverse dependency

category, the rules in Lines 12–19 classify a mapping dependency as being implicit and provide

means for querying models and their dependent elements, or elements and their depending

models, respectively.

Until now, the DK-Base is populated with explicit model dependencies and Prolog rules provide

means for querying the knowledge base for implicit ones. This approach covers the categories of

direct, inverse and mapping dependencies. The category of transformation dependencies cannot

be realised as intuitively as the others. The basic information required for the �rst three categories

can be provided statically by reading the explicit references between models and populating

them as facts to the DK-Base. The problem in determining transformation dependencies is that

the connections between source and target models are only established at transformation time,

thus dynamically. This cannot be precomputed in a static manner. On the one hand, it is possible

to analyse a concrete model transformation speci�cation. At least, the mapping from the source

to the target languages can be investigated. On the other hand, knowing the mapping does not

yield any information about the concrete model elements being transformed. Furthermore, this

task is highly dependent on the particular model transformation language.

More precisely, the determination of transformation dependencies directly corresponds to the

problem of acquiring trace links. Traceability is a wide �eld of research which cannot be covered

in this thesis. As a small contribution, we jointly published a language-independent traceability

approach for transformations being compiled to byte code of the Java VM in [PRW14]. This

means, that such transformations can be traced automatically. We consider the established trace

links as transformation dependencies according to our classi�cation. Since a trace link is the

explicit manifestation of an implicit information they are added as explicit facts to our DK-Base.

This approach allows to determine at least a small part of transformation dependencies.

8.4. Co-Refactoring Knowledge Base

Before our co-refactoring approach is presented, the architecture shown in Fig. 4.2 (cf. page 54)

is extended by new constituents related to co-refactoring. The adjusted architecture is depicted

in Fig. 8.5. The previously discussed detection of dependent models (cf. Fig. 8.2) is not depicted

in the �gure. The Dependent DSL Model can be considered as one result of the model detection.

According to Fig. 8.1, the adjusted architecture now consists of several upright layers, one for

every participating DSL and one for its users, respectively. The new stakeholder Co-Refactoring

Engineer has been added, which can be considered as an orthogonal role, since it must commu-

nicate with several DSL Designers in order to get to know the language speci�cs and internals.

The Co-Refactoring Engineer must have an overview of the whole MLDE and its contained DSLs

to assure that adequate co-refactorings can be de�ned. Therefore, the relevant Co-Refactoring

Knowledge (CoRK) is kept in the Co-Refactoring Knowledge Base (CoRK-Base) which refers to

various of the DSL-speci�c upright layers.

113

8. Role-Based Co-Refactoring in Multi-Language Development Environments

DSL
User

DSL
Designer

Role
Mapping

DSL Meta
Model

Refactoring
Designer

Role
Model

Refactoring
Specification

Refactoring
Framework

Role Mapping
Metamodel

Role
Metamodel

RefSpec
Metamodel

Dependent
DSL Model

Co-Refactored
DSL Model

Refactoring
Interpreter
Refactoring
Interpreter

Co-Refactoring
Knowledge

Co-Refactoring
Engineer

CoRK-Base

Co-Refactoring
Framework

CoRK-Base
Metamodel

Co-Refactor.
Engine

Co-Refactor.
Engine

instance of refers todata flow

Figure 8.5.: Refactoring architecture extended by Co-Refactoring infrastructure. The blue-framed

parts denote the co-refactoring additions.

8.4.1. Specifying Coupled Refactorings with Co-Refactoring Specifications

As explained before, the refactoring stream must interact with the CoRK-Base to determine

which co-refactoring can be applied dependent on an initial refactoring. As a consequence,

a co-refactoring can be considered as a sequence of coupled refactorings (cf. Sect. 3.3.2). In

principle, the pair of a refactoring (incoming) and a co-refactoring (outgoing) is a composition of

two refactorings. This means that an incoming and outgoing refactoring are referenced and a

binding between both must be speci�ed. This binding is of special signi�cance, since potential

involved target DSLs are not known beforehand and thus a generic approach is required which

still provides means to enable language-speci�c bindings [ELF08]. The distinction to the approach

of composing refactorings (cf. Sect. 4.2.4) is twofold. First, the intention for co-refactoring is

di�erent in the sense that a refactoring should be applied in a dependent model in order to

maintain consistency. No new composite refactoring should be made available to users. A

co-refactoring is executed transparently for the user. Second, di�erent target languages are

involved for a couple of a refactoring and a co-refactoring in general. In this sense, such a pair

can be considered as a special variant of cross-language consistency rules as they are used by

von Pilgrim et al. in [vPUTS13] or by Pfei�er in [Pfe13]. Furthermore, we argue that a �xed set

of such rules is not appropriate, but the approach must provide means to extend the rule set.

As a consequence of this preliminary consideration, we already introduced the term CoRK-Base

which represents an extensible repository for the aforementioned coupled refactorings. In the

following we present the CoRK-Base metamodel in Fig. 8.6 and explain how coupled refactorings

are speci�ed.

In the metamodel, the CoRK-Base is represented by the metaclass CoRefactoringKnowl-
edgeBase. It can be extended by Co-Refactoring Speci�cations (Co-RefSpecs) (metaclass Co-
RefactoringSpecification). A Co-RefSpec is always de�ned for the language of the model

to be co-refactored. Thus, it references a particular metamodel. Furthermore it can contain

several MetamodelImports which de�ne shortcuts (a symbolic name or an abbreviation) for

other imported metamodels. Refactorings for imported metamodels then can be referred to when

114

8.4. Co-Refactoring Knowledge Base

CoRefactoringSpecification

CoRefactoringKnowledgeBaseMetamodelImport

shortcut : String

EPackage

ConditionEvent Action

RoleModelEventRefactoringEvent

RoleModel

PlainCondition

conditionExpression : String

RefactoringAction

bindingExpression : String

Refactoring

imports

metamodel

metamodel

event condition action

import

roleModel refactoring

refactoring

specifications

Figure 8.6.: CoRK-Base Metamodel.

the intrinsic dependent co-refactoring is speci�ed. This is explained in Sect. 8.4.2.

Since we refer to the successive propagations of refactorings as refactoring stream, every

model intended to be co-refactored can be considered as a barrier in the stream. At every barrier

it must be decided if and, in the positive case, how the refactoring stream can continue. Therefore,

the arrival of the stream at a barrier is considered as an incoming Event for the model and is

re�ected as such in the Co-RefSpec. To take the decision at the barrier if the refactoring stream

can continue a Co-RefSpec can contain a Condition. The question how the refactoring stream

continues is answered by an outgoing Action. Thus, a Co-RefSpec can be considered as an ECA

rule [DGG95]. An incoming Event always corresponds to a refactoring on the refactoring stream

which initiates the co-refactoring impulse for a dependent model. There are two alternatives to

specify the Co-RefSpec: 1) the co-refactoring engineer knows the language of the potentially

incoming refactoring, and 2) she does not know the language and, thus, the concrete refactoring

to react on is unknown, too. For the �rst alternative, the co-refactoring engineer can de�ne

a RefactoringEvent, which means that this Co-RefSpec is intended to react on a concrete

incoming refactoring. Thus, an imported metamodel is referenced and one Refactoring
being de�ned for this imported language. Such a refactoring can be a RoleMapping (normal

refactoring) or a CompositeRoleMapping (composite refactoring). For this alternative more

speci�c actions regarding the language of the incoming refactored model can be de�ned.

The second alternative covers the case when the language is not known. Then the co-

refactoring engineer can at least make assumptions about the kind of an incoming refactoring in

terms of the mapped RoleModel of the refactoring. Therefore, a RoleModelEvent is used. This

case is more generic than the �rst one, but the formalism of role models allows for asserting

some structural facts of an incoming refactoring. In our approach, the more speci�c Event
(RefactoringEvent) is preferred against the more generic one (RoleModelEvent). This means

that if in the CoRK-Base a speci�c RefactoringEvent and a generic RoleModelEvent, which

115

8. Role-Based Co-Refactoring in Multi-Language Development Environments

references the same role model as is mapped in the speci�c RefactoringEvent, are declared,

then the speci�c event is used. This can be compared with overriding methods in subclasses in

object-oriented programming languages.

Especially for a RoleModelEvent, a Condition should be de�ned to specify the structure

of an incoming refactoring more precisely. The sub-metaclass PlainCondition therefore

contains the attribute conditionExpression. Provided that the Condition is satis�ed, the

RefactoringAction speci�es what coupled Refactoring (the outgoing co-refactoring) must

be applied and, thus, how the refactoring stream continues. Again, this co-refactoring can be a

RoleMapping (normal refactoring) or a CompositeRoleMapping (composite refactoring). As

already explained previously, the binding in the co-refactoring scenario is of special signi�cance.

This will be discussed in the following section.

8.4.2. Specifying Bindings for Co-Refactorings

As already explained, the objective of applying a co-refactoring is to maintain consistency in

dependent models without altering the overall behaviour. As a consequence, it might not be

su�cient to only de�ne the meaning of elements bound to roles in an incoming refactoring,

but to bind roles in the outgoing refactoring, as well, as it was done for composite refactorings

(cf. Sect. 4.2.4). Furthermore, additional domain-speci�c modi�cations might be required to

assure that a dependent model still is consistent after the co-refactoring. Therefore, coupled

refactorings on a refactoring stream are also considered as cross-language consistency rules. As a

consequence, we argue that the speci�cation approach for a required binding between incoming

refactoring and outgoing co-refactoring must support not only means for mapping roles, but

also for specifying further modi�cations. Therefore, we decided to realise the speci�cation of

bindings by means of an expression language such as the Expression Language for Java [Chu13].

An expression language is a programming language usually built upon another GPL. It abstracts

over language concepts and simpli�es the syntax. But the main advantage which is the reason for

the decision to rely on an expression language for the binding, is that it can be easily embedded

into various contexts. The Expression Language for Java, e.g., is used for embedding expressions

into web applications which then are interpreted on demand. This way, the amount of scripting

in Java Server Pages could be reduced drastically [LBD05]. Most often, such an expression

language provides extension points for speci�c interpretation of own domain-speci�c constructs,

and a comfortable Application Programming Interface (API).

Thus, using an extensible expression language for the speci�cation of bindings allows for the

integration of our role concepts into the interpretation of the language. Therefore, its semantics

is extended by our role concept and all other language concepts can be used to enhance the

co-refactoring of the dependent model. Due to the extensible nature of expression languages,

the execution semantics can be controlled. In our approach, this allows for the rejection of

modi�cations regarding other models than the one intended to be co-refactored. Only the

dependent model can be subject to modi�cation in order to continue the natural order of the

refactoring stream. This approach of using an expression language is also used for the mentioned

conditionExpression. If the expression language evaluates the conditionExpression suc-

cessfully the co-refactoring is applied, otherwise it is not. We chose the Java-based expression

116

8.4. Co-Refactoring Knowledge Base

1 CoRefSpec for <http://www.eclipse.org/emf/2002/Ecore>
2 import owl:<http://org.emftext/owl.ecore>
3 {
4 incoming refactoring owl:<Rename Element>
5 outgoing corefactoring <Rename EElement> $
6 oldName = OUT.Nameable.name;
7 OUT.Nameable.name = IN.Nameable.name;
8 package = OUT.Nameable.eContainer();
9 classifiers = package.getEClassifiers();

10 copy = new EClassImpl();
11 copy.name = oldName + "_COPY";
12 classifiers.add(copy);
13 $
14 }

Listing 8.4: Example Co-RefSpec for renaming an Ecore model dependent on an OWL model.

language MVEL
1

because it has high performance
2

and we already have good experience with it

since GUERY has embedded it as well.
3

For a better understanding, consider the example from Sect. 8.2 again. We now focus the

transformation dependency between the ontology and a generated domain model. An element

contained in the ontology is renamed which should trigger a dependent renaming of a concept

in the domain model. In addition, a new concept should be created in the domain model having

the old name of the renamed concept with a _COPY su�x. This realises a simple history list.

Listing 8.4 shows the according Co-RefSpec. As one can see in the �rst two lines, the Ecore

language is the target language for which the Co-RefSpec is speci�ed. It represents the concrete

DSL for domain models. OWL is declared as an imported language. In Line 4, the incoming

(initiating) refactoring Rename Element for OWL is indicated as the RefactoringEvent. Line 5

shows that Rename EElement is de�ned as outgoing (triggered) RefactoringAction. Due to

the extension facilities of the expression language we added the keywords IN and OUT to be able

to explicitly refer to the incoming and outgoing refactorings. Line 6 shows that the old name is

stored whereas the incoming name is bound to the outgoing name in Line 7. Lines 8–12 then

determine the package of the renamed concept in the domain model, create a new one, set the

su�xed name and add the copied concept to the list of the package’s classi�ers. This Co-RefSpec

shows both the binding of an outgoing yet unbound role attribute to the same value as the bound

incoming role attribute (Line 7), and the speci�cation of additional modi�cations being speci�c

for this use case (the creation of a su�xed copy).

1http://mvel.codehaus.org/ (visited 26th April 2015)

2http://mvel.codehaus.org/Performance+of+MVEL+2.0 (visited 26th April 2015)

3
Unfortunately, this can only be seen in the source code of GUERY: https://code.
google.com/p/gueryframework/source/browse/src/java/nz/ac/massey/cs/guery/mvel/
CompiledPropertyConstraint.java?name=1.3 (visited 26th April 2015).

117

http://mvel.codehaus.org/
http://mvel.codehaus.org/Performance+of+MVEL+2.0
https://code.google.com/p/gueryframework/source/browse/src/java/nz/ac/massey/cs/guery/mvel/CompiledPropertyConstraint.java?name=1.3
https://code.google.com/p/gueryframework/source/browse/src/java/nz/ac/massey/cs/guery/mvel/CompiledPropertyConstraint.java?name=1.3
https://code.google.com/p/gueryframework/source/browse/src/java/nz/ac/massey/cs/guery/mvel/CompiledPropertyConstraint.java?name=1.3

8. Role-Based Co-Refactoring in Multi-Language Development Environments

8.4.3. Determination of Co-Refactoring Specifications

In the previous sections, our approaches for determining model dependencies and specifying

dependent co-refactorings have been explained. The new stakeholder Co-Refactoring Engineer

(cf. Fig. 8.5) has to populate the CoRK-Base. This process might render rather complex when the

MLDE supports many DSLs. Thus, it would be helpful to give her assistance for this task. The

problem is to de�ne reasonable couples of speci�ed refactorings in order to de�ne Co-RefSpecs.

Currently, we see two possibilities.

First, the co-refactoring engineer can get support on a role mapping basis. Thus, at �rst two

languages must be selected for which co-refactoring support should be made available. One of

them must be selected as the one from which refactorings can be initiated. This methodology

assumes that related languages may have a similar degree of abstraction and, thus, potentially

related refactorings are also similar (like two dependent renamings). Thus, the co-refactoring

engineer could select a role mapping de�ned for the initiating language and all role mappings

which map the same role model as the initiating role mapping can be suggested as potential

candidates for a RefactoringAction.

Second, a more general scenario of specifying a Co-RefSpec on demand is proposed. Basically,

the presented approach for the speci�cation of Co-RefSpecs does not assume that the mapped

role models of coupled refactorings must be equal. Thus, the aforementioned alternative might

only work out for simpler dependent refactorings such as renamings. For the more general

alternative, a user-driven approach can be applied. When an initiating refactoring occurs on

the refactoring stream, dependent models are detected but for a certain model no Co-RefSpec is

de�ned. In this case, the user could be asked which of the available refactorings of her language

should be selected as the appropriate co-refactoring. Nevertheless this task still remains complex

and is left open for future work.

8.5. Discussion

An aspect not discussed up to now is the occurrence of con�icts or cycles. According to [GKP07],

breaking non-resolvable changes cannot occur within our approach since the de�nition of Co-

RefSpecs can be considered as a strategy for maintaining consistency and, thus, is always an

operation for resolving a breaking change. Hence, the co-refactoring engineer is responsible to

de�ne valid Co-RefSpecs that do not violate the semantics of a refactored or co-refactored model.

Furthermore, as already discussed in Sect. 4.3, we support the preservation of static semantics

on the basis of well-formedness rules. This implies that speci�ed pre- and post-conditions are

checked in the co-refactoring scenario as well and can be reported as such.

The more critical aspect of cycles can de�nitely occur in the sense that an already refactored

model on the refactoring stream becomes subject for a co-refactoring again. This situation can

be detected and reported to the user but there is no universal solution to avoid cycles. Thus, our

approach supports the detection of cycles and then the user must decide how to proceed. The

reason is that the refactoring stream can change dynamically in case models are removed from

the MLDE or modi�cations are applied not being refactorings. Then, dependencies might be

removed from the DK-Base and the refactoring stream changes. Thus, it can only be examined in

a concrete situation which upcoming co-refactorings might be applied according to the current

refactoring stream. This analysis then must take into account the de�ned Co-RefSpecs and the

118

8.6. Conclusion

currently available model dependencies to make assumptions about if a cycle can occur or not.

The main responsibility in our approach relies on the co-refactoring engineer. The process of

de�ning co-refactorings must be performed in direct communication with DSL designers.

8.6. Conclusion

In this chapter, we presented our approach for co-refactoring models. It is divided into two parts

implied by the general work�ow depicted in Fig. 8.2. First, we discussed how dependent models

and elements within them can be detected (Requirement 1 and 2 on page 39). Therefore, we

de�ned four categories of potential model dependencies and provided a logics-based approach to

reveal those dependencies. Explicit dependencies are persisted in a DK-Base and the others are

determined by querying the DK-Base. Second, the intrinsic co-refactoring approach as presented.

It comprises the Co-RefSpec by means of coupled refactorings, which populate the CoRK-Base.

Therefore, an incoming initiating refactoring is referred (Requirement 3), a condition must be

speci�ed (Requirement 4) which validates if an outgoing triggered co-refactoring is allowed to be

applied (Requirement 5). Furthermore, we discussed the binding approach of using an expression

language, which not only enables the binding of elements from an initial refactoring to roles

of the dependent co-refactoring, but also the execution of additional modi�cations in order to

maintain consistency (Requirement 6). The use of an expression language assures that domain-

speci�c modi�cations can be speci�ed in connection with a co-refactoring (Requirement 8). The

whole approach is supported by an example from the domain of ontology-driven requirements

engineering and software development. A discussion about limitations and open issues closes

this chapter.

119

9
Refactory: An Eclipse Tool For Quality-Aware

Refactoring and Co-Refactoring

To demonstrate the feasibility of the conceptual work of this thesis, the concepts have been

implemented in Refactory, the �rst tool for quality-aware refactoring and co-refactoring to

resolve quality smells. Refactory is a set of plugins extending the Eclipse platform.
1

Eclipse is an

open-source IDE for development in many programming languages. It is implemented in the Java

GPL. Eclipse provides a workspace which abstracts from the particular concrete �le system. Thus,

developers can transparently access artefacts in the workspace. The runtime system implements

the Open Service Gateway initiative [OSGi14] (OSGi) speci�cation. Thus, a mature extension

mechanism is one of the advantages of this IDE. Developers can extend existing extension points

with own plugins and can contribute new features at many architectural layers. Furthermore,

own extension points can be de�ned which provide means to extend own plugins, too. Eclipse

has a huge community which contributes many di�erent projects.
2

One of these projects is the Eclipse Modeling Framework [SBPM08] (EMF) which provides rich

functionality for model-based development in Eclipse. According to the MOF modelling stack,

the meta-metamodel Ecore implements the EMOF standard which is used as the common base in

the EMF [SBPM08]. Ecore allows for the de�nition of metamodels from which a domain-speci�c

Java API can be generated. Furthermore, the generic re�ective API of Ecore itself can be used

to manipulate models domain-independently. Thus, EMF can be considered as a Language

Workbench and based on a metamodel, a DSLE can be generated. Such a generated DSLE is a set

of Eclipse plugins which means that Eclipse in conjunction with EMF, Ecore and certain DSLEs

can be considered as a Multi-Language Development Environment (MLDE). Other projects build

upon the EMF and provide modelling tools, e.g. to de�ne graphical (GMF) or textual syntaxes

(EMFText) for DSLs.

These properties have been the motivation to implement our tool based on Eclipse and the EMF.

1http://eclipse.org/ (visited 26th February 2015)

2https://projects.eclipse.org/list-of-projects (visited 26th February 2015)

121

http://eclipse.org/
https://projects.eclipse.org/list-of-projects

9. Refactory: An Eclipse Tool For Quality-Aware Refactoring and Co-Refactoring

Refactoring FrameworkQuality Smell
Framework

Co-Refactoring
Framework

Eclipse Modeling Framework

Eclipse Platform

Refactory Editors Refactory Views

Refactory Perspective
UI

Layer

Core
Layer

MLDE
Platform

Layer

Figure 9.1.: Overall Architecture of Refactory. Grey boxes denote parts we contribute to the

MLDE.

Refactory is publicly available via an Eclipse update site and further information can be found

at the following address: http://www.modelrefactoring.org/. The overall architecture of

Refactory is depicted in Fig. 9.1. The MLDE platform layer comprises the Eclipse Platform

and the EMF. On top of it, the Refactory core layer contains the three frameworks covering

the realisation of our approaches regarding refactoring, quality smells and co-refactoring. The

latter two frameworks make use of the refactoring framework. The upper layer is the UI, which

contributes several editors and views for the de�nition of Refactory-related artefacts. In the

following sections, all three parts of Refactory are presented from an implementation point of

view.

9.1. Refactoring Framework

In this section, we present the concrete realisation of the four constituents of our refactoring

approach, namely role models, refactoring speci�cations, role mappings and refactoring com-

positions. To ful�l Requirement 3 on page 25, a domain-speci�c customisation mechanism is

presented. Furthermore, the support for pre- and post-conditions based on the OCL is explained,

before the integration into the Eclipse-based refactoring architecture is shown.

9.1.1. Role Model

The EMOF metamodel for the speci�cation of role models depicted in Fig. 4.4 on page 56 has

been implemented by means of Ecore. Thus, we translated the presented concepts directly to an

Ecore model (which is the metamodel for the role model DSL). Furthermore, a textual syntax is

de�ned with EMFText enabling a human readable representation of role models. This syntax

de�nition similar to the Extended Backus-Naur Form [ISO96] (EBNF) is depicted in Listing 9.1

and is explained in the following.

1 SYNTAXDEF rolestext

122

http://www.modelrefactoring.org/

9.1. Refactoring Framework

2 FOR <http://www.emftext.org/language/roles>
3 START RoleModel
4

5 TOKENS{
6 DEFINE UPPER $(’A’..’Z’)(’a’..’z’|’A’..’Z’|’0’..’9’|’_’)*$;
7 DEFINE LOWER $(’a’..’z’)(’a’..’z’|’A’..’Z’|’0’..’9’|’_’)*$;
8 DEFINE NUMBER $(’0’)|(’-1’)|(’*’)|((’1’..’9’)(’0’..’9’)*)$;
9 }

10

11 RULES {
12 RoleModel ::= "RoleModel" name[UPPER] "{" roles* collaborations* "}";
13 Role ::= modifier[optional:"optional",input:"input"]* "ROLE" name[UPPER] ("("

attributes ("," attributes)* ")")? ";";
14 RoleAttribute ::= name[LOWER];
15 RoleProhibition ::= source[UPPER] "|-|" target[UPPER] ";";
16 RoleImplication ::= source[UPPER] "->" target[UPPER] ";";
17 RoleAssociation ::= source[UPPER] sourceName[LOWER]? sourceMultiplicity "--"

target[UPPER] targetName[LOWER]? targetMultiplicity ";";
18 RoleComposition ::= source[UPPER] sourceName[LOWER]? sourceMultiplicity "<>-"

target[UPPER] targetName[LOWER]? targetMultiplicity ";";
19 Multiplicity ::= "[" lowerBound[NUMBER] ".." upperBound[NUMBER] "]";
20 }

Listing 9.1: Textual syntax for role models.

Before the de�nition of the syntax rules (Line 11), the metamodel for which the textual syntax

is de�ned, the metaclass used as starting rule and some tokens are de�ned. Then, for each

non-abstract metaclass a textual syntax is de�ned. Keywords are used as syntactic elements

to achieve a human-readable structure of the model elements. Line 12 starts with the rule for

a RoleModel, the container element. It is de�ned by the keyword RoleModel and is followed

by its name. Parenthesised by curly braces the roles and collaborations follow. A Role
(Line 13) de�nition starts with optional modifiers followed by the keyword ROLE and its name.

RoleAttributes are optionally speci�ed by surrounding them with brackets and separating

them with a comma. They are identi�ed by a name (Line 14). A Role de�nition closes with a

semicolon. This is the same for the other rules for which reason this is not mentioned anymore.

The rules for RoleProhibition (Line 15) and RoleImplication (Line 16) are similar. They

reference the source role in the beginning and the target role in the end. In between the

tokens |-| and -> are used to denote a RoleProhibition and RoleImplication constraints,

respectively. In Lines 17 and 18, the rules for RoleAssociation and RoleComposition can be

seen. Again, they di�er only by the tokens – and <>- respectively. What they have in common

is that after the reference of the source role, a sourceName can follow to de�ne a name for

this end of the collaboration. This can be used to enable name-based navigation. Then the

sourceMultiplicity is located in front of the token which speci�es the type of collabora-

tion. Afterwards, the referenced target role is followed by the optional targetName and the

targetMultiplicity. The last rule in Line 19 de�nes that a Multiplicity is surrounded by

square brackets and separated by two dots.

From the grammar, EMFText generates an Eclipse editor with syntax highlighting, code

completion and code navigation. The resulting editor can be seen in Fig. 9.2. Role models can

123

9. Refactory: An Eclipse Tool For Quality-Aware Refactoring and Co-Refactoring

Figure 9.2.: Textual editor and tree-like outline for Role Models applied in Refactory.

now be de�ned in a textual manner and are understood as models by the EMF.

To allow for the �exible addition of new role models, Refactory provides an Eclipse extension

point called rolemodel. It expects only one attribute, namely a reference to a role model resource.

Every provided extension to this extension point is registered in a role model registry maintained

by Refactory. This registry also provides an API so that it can be accessed without Eclipse, e.g.,

for unit testing scenarios. Refactory accesses role models via this registry exclusively.

9.1.2. Refactoring Specification

For the metamodel of the RefSpec concepts depicted in Fig. 4.7 on page 62 and following, an

Ecore model has been speci�ed. Furthermore, a textual syntax has been de�ned with EMFText.

This syntax de�nition is depicted in Listing 9.2 and shortly explained in the following.

1 SYNTAXDEF refspec
2 FOR <http://www.emftext.org/language/refactoring_specification>
3 START RefactoringSpecification
4

5 TOKENS{
6 DEFINE UPPER $(’A’..’Z’)(’a’..’z’|’A’..’Z’|’0’..’9’|’_’)*$;
7 DEFINE LOWER $(’a’..’z’)(’a’..’z’|’A’..’Z’|’0’..’9’|’_’)*$;
8 DEFINE DOT $($ + UPPER + $|$ + LOWER + $)$ + $’.’$ + LOWER;
9 DEFINE INTEGER$(’1’..’9’)(’0’..’9’)*|’0’$;

10 }
11

12 RULES{
13 RefactoringSpecification ::= "REFACTORING" "FOR" usedRoleModel[’<’,’>’] "

STEPS" "{" (instructions ";")* "}";
14

15 VariableAssignment ::= "object" variable ":=" assignment;
16 Variable ::= name[LOWER];
17 VariableReference ::= variable[LOWER];
18 CollaborationReference ::= collaboration[DOT];
19 ConstantsReference ::= constant[INPUT:"INPUT"];
20 RoleReference ::= role[UPPER] "from" from;
21 FromClause ::= operator "(" reference ")";

124

9.1. Refactoring Framework

22 UPTREE ::= "uptree";
23 PATH ::= "path";
24 FILTER ::= "filter";
25

26 FIRST ::= "index" variable ":=" "first" "(" reference ")";
27 LAST ::= "index" variable ":=" "last" "(" reference ")";
28 AFTER ::= "index" variable ":=" "after" "(" reference ")";
29 ConcreteIndex ::= "index" variable ":=" index[INTEGER];
30 IndexVariable ::= name[LOWER];
31

32 CREATE ::= "create" "new" variable ":" sourceRole[UPPER] "in" targetContext (
"at" index[LOWER])?;

33 MOVE ::= "move" source "to" target ("at" index[LOWER])? (moveModifier)?;
34 DISTINCT ::= "distinct";
35

36 SET ::= "set" "use" "of" source "in" target;
37 UNSET ::= "unset" "use" "of" source "in" target;
38 ASSIGN ::= "assign" (sourceAttribute[DOT] "for")? targetAttribute[DOT];
39

40 REMOVE ::= "remove" (modifier)? removal;
41 RoleRemoval ::= role[UPPER];
42 UNUSED ::= "unused";
43 EMPTY ::= "empty";
44 }

Listing 9.2: Textual syntax for refactoring speci�cations.

The starting rule (Line 13) is for the root container of a RefSpec—the RefactoringSpecifi-
cation, indicated by REFACTORING FOR and followed by a reference to the usedRoleModel.

A STEPS starts the instructions part, each of them separated by a semicolon. A Variable-
Assignment (Line 15) is declared with object followed by the name (Line 16) for the variable
and the according assignment. An assignment can be a VariableReference (Line 17), a

CollaborationReference (Line 18), a ConstantsReference (Line 19) or a RoleReference
(Line 20). The �rst two of them are referenced by their respective names. The third is indicated

by the INPUT keyword. The latter starts with the referenced role followed by from and a

FromClause (Line 21). The operator of such a clause is denoted by its lower-case metaclass

name and a variable or a constant can be referenced.

IndexVariables are declared quite similarly only that the keyword index is used in front

of the variable (Lines 26–29). FIRST, LAST and AFTER are denoted by their lower-case name

again. A ConcreteIndex is consequently de�ned by using an integer value.

To create a new model element create new is used, followed by the name of the new variable
(Line 32). The referenced sourceRole denotes the type of the element and the targetContext
is given after the in keyword. Optionally, an index can be denoted after an at. Moving a source
to a target is pre�xed by move (Line 33). Optionally, an at references an index and the only

optional moveModifier is denoted by distinct (Line 34).

Setting and unsetting (Lines 36, 37) references to other roles, respectively, starts with (un)set

use of and is followed by referencing source which should be (un)set in the target. A

targetAttribute of a role is set by using the assign keyword (Line 38). If the value of another

sourceAttribute should be passed then this must be done with a for-clause. While interpreting,

125

9. Refactory: An Eclipse Tool For Quality-Aware Refactoring and Co-Refactoring

Figure 9.3.: Textual editor and tree-like outline for RefSpec models applied in Refactory.

the user will be asked if no sourceAttribute is given in an ASSIGN instruction.

To remove an element this keyword is optionally followed by a modifier which can be unused

(Line 42) or empty (Line 43). Afterwards, the removal indicates the element to be removed.

The resulting editor can be seen in Fig. 9.3. RefSpec models can now be de�ned in a textual

manner and are understood as models by the EMF.

Similarly to the role model registry, we also implemented a RefSpec registry. Therefore, again

an Eclipse extension point is declared at which RefSpec resources can be registered. Every

extension then is added to the RefSpec registry which can also be accessed via an API. Refactory

accesses refactoring speci�cations via this registry exclusively.

9.1.3. Role Model Mapping

For the metamodel of the role mapping concepts depicted in Fig. 4.5 on page 58, an Ecore model

has been speci�ed. Furthermore, a textual syntax has been de�ned with EMFText. This syntax

de�nition is depicted in Listing 9.3 and shortly explained in the following.

The keywords ROLEMODELMAPPING FOR initiates the creation of such a model (Line 11).

It is followed by the desired targetMetamodel and the optional IMPORTS keyword denotes

that importedMetamodels can be referenced. The roleMappings specify their names within

quotation marks (Line 12) followed by maps to reference the mappedRoleModel. Curly braces

enclose the concreteMappings, which map a role on the left hand side to a metaclass on the

right hand side and := in between (Line 13). The attributeMappings can follow parenthesised

and separated by commas. The same holds for collaborationMappings, except that curly

braces and semicolons are used, respectively. A collaboration is followed by := which denotes

that a sequence of pathSegments can be given by connecting them with -> (Line 14). Such a

segment is speci�ed by a ReferenceMetaClassPair giving a reference and optionally a colon

followed by the desired metaclass (Line 15). A roleAttribute is mapped to a metaAttribute
by pointing to it with -> (Line 16).

The resulting editor can be seen in Fig. 9.4. Role mapping models can now be de�ned in a

textual manner and are understood as models by the EMF.

To allow for the �exible addition of new role mappings an Eclipse extension point called

rolemapping is provided. It expects a role mapping resource. Additionally, icons can be registered

which are presented to the user in the UI. Every provided extension to this extension point is re-

gistered in a role mapping registry maintained by Refactory. It is also accessible programmatically

126

9.1. Refactoring Framework

1 SYNTAXDEF rolemapping
2 FOR <http://www.emftext.org/language/rolemapping>
3 START RoleMappingModel
4

5 TOKENS {
6 DEFINE UPPER $(’A’..’Z’)(’a’..’z’|’A’..’Z’|’0’..’9’|’_’)*$;
7 DEFINE LOWER $(’a’..’z’)(’a’..’z’|’A’..’Z’|’0’..’9’|’_’)*$;
8 }
9

10 RULES {
11 RoleMappingModel::= "ROLEMODELMAPPING" "FOR" targetMetamodel[’<’,’>’] ("

IMPORTS" importedMetamodels[’<’,’>’]+)? roleMappings+;
12 RoleMapping ::= name[’"’,’"’] "maps" mappedRoleModel[’<’,’>’] "{"

concreteMappings+ "}" ;
13 ConcreteMapping ::= role[UPPER] ":=" metaclass[UPPER] ("(" attributeMappings

("," attributeMappings)* ")")? ("{" collaborationMappings (
collaborationMappings)* "}")? ";";

14 CollaborationMapping ::= collaboration[LOWER] ":=" pathSegments ("->"
pathSegments)* ";";

15 ReferenceMetaClassPair ::= reference[LOWER] (":" metaclass[UPPER])?;
16 AttributeMapping ::= roleAttribute[LOWER] "->" metaAttribute[LOWER];
17 }

Listing 9.3: Textual syntax for role mappings.

Figure 9.4.: Textual editor and tree-like outline for role mapping models applied in Refactory.

127

9. Refactory: An Eclipse Tool For Quality-Aware Refactoring and Co-Refactoring

1 SYNTAXDEF refcomp
2 FOR <http://www.emftext.org/language/refactoringcomposition>
3 START CompositeRoleMapping
4

5 TOKENS {
6 DEFINE IDENTIFIER $(’A’..’Z’ | ’a’..’z’ | ’_’)(’A’..’Z’ | ’a’..’z’ | ’0’..’9’

| ’_’)*$;
7 }
8

9 RULES {
10 CompositeRoleMapping ::= "COMPOSITE" "REFACTORING" name[’"’,’"’] "FOR"

targetMetamodel[’<’,’>’] first[’<’,’>’] sequence;
11 BoundRoleMapping ::= "->" roleMapping[’<’,’>’] ("{" bindings+ "}")?

nextMapping?;
12 SourceTargetBinding ::= source[IDENTIFIER] "=" target[IDENTIFIER] ";";
13 }

Listing 9.4: Textual syntax for refactoring compositions.

Figure 9.5.: Textual editor and tree-like outline for refactoring composition models applied in

Refactory.

and Refactory accesses role mappings via this registry exclusively.

9.1.4. Refactoring Composition

For the metamodel of the refactoring composition concepts depicted in Fig. 4.14 on page 69, an

Ecore model has been speci�ed. Furthermore, a textual syntax has been de�ned with EMFText.

This syntax de�nition is depicted in Listing 9.3 and shortly explained in the following.

The keywords COMPOSITE REFACTORING denote the root container of such a model. The

name is surrounded by quotation marks followed by FOR to reference the targetMetamodel
(Line 10). Then the first RoleMapping follows and subsequent ones are connected by ->

(Line 11). The bindings are surrounded by curly braces and separated by a semicolon (Line 12).

The source and target roles are mapped with the equals sign.

The resulting editor can be seen in Fig. 9.5. Refactoring composition models can now be

de�ned in a textual manner and are understood as models by the EMF. Again, new refactoring

composition models can be registered via an Eclipse extension point which belongs to the role

mapping registry explained in the previous section. Refactory takes into account only refactoring

compositions added to this registry.

128

9.1. Refactoring Framework

With the presentation of these four refactoring languages the core concepts of the framework

are realised. In the following section, the language-speci�c additive customisation of generic

refactorings is illustrated.

9.1.5. Custom Refactoring Extensions

Not all transformation steps speci�c to a concrete metamodel can be captured in the reusable

part of a generic refactoring. For example, recall the Extract Method Java refactoring in Fig. 1.5

on page 5. The RefSpec and role model for the used generic Extract X with Reference Class

refactoring only captures the core language-independent structures of this refactoring. Thus, in

the concrete case of Extract Method for Java no local variables or method parameters are taken

into account, since these are speci�c for the Java language and cannot be generalised for arbitrary

languages. Besides the restructurings from the according RefSpec, the statements to be moved

must be analysed with respect to the usage of variables. In case local variables declared outside

the selected statements are accessed, additional parameters have to be added to the extracted

method. This cannot be handled by the generic Extract X with Reference Class refactoring as it is.

Therefore, Requirement 3 states to support the speci�cation of language-speci�c adjustments. For

that reason, we introduce Post-Processors which execute additional steps after the core refactoring

execution. They can be registered for speci�c metamodels in combination with a role mapping

via an Eclipse extension point. Post-processors can obtain the runtime bindings from roles to the

particular model elements and can then invoke further transformation steps implemented in

Java. The post-processor for the refactoring Extract CompositeState used in UML state machines,

is presented in Listing E.9 in Appendix E on page 183. It computes the incoming and outgoing

transitions of the extracted composite state. In Sect. 10.1, we present further refactorings which

require custom extensions.

9.1.6. Pre- and Post-conditions

As already mentioned in Sect. 4.2.3, the speci�cation and evaluation of pre- and post-conditions

has not been re�ected in our approach so far. We postponed this aspect to this section and will

explain in the following how to ful�l Requirement 5 from page 25.

To support pre- and post-conditions, two Eclipse extension points have been declared in

Refactory. The �rst one is called conditions and is part of the role mapping extension point and

the corresponding registry. At this extension point, a condition can be added to a registered role

mapping. It has two attributes: preConditions and postConditions, each requiring a �le. The given

�le can contain pre- and post-conditions in arbitrary format or language. This extension point

is independent from the particular evaluation mechanism used to interpret certain conditions.

Therefore, the second extension point is provided which is named constraint interpreter. This

extension point requires an implementation of the IConstraintInterpreter interface provided

by Refactory. Implementors of this interface must return true if they support the interpretation

of a certain constraint. As a consequence, Refactory is independent from concrete constraint

languages or formats but provides an interface to support arbitrary mechanisms.

As already discussed, the continuous satisfaction of WFRs is important and is considered as

the preservation of at least the static semantics of models. Therefore, we provide one concrete

implementation for the constraint interpreter interface and support constraints by means of

129

9. Refactory: An Eclipse Tool For Quality-Aware Refactoring and Co-Refactoring

Figure 9.6.: PL/0 example programme before refactoring should be applied.

the OCL. More precisely, our implementation uses Dresden OCL
3

since it supports arbitrary

metamodels upon which OCL constraints can be de�ned [WTW10]. As a consequence of using

Dresden OCL, Refactory is able to support the detection of static semantics violation by means

of WFRs encoded in OCL.

As an example, consider the academic language PL/0 being a small subset of Pascal [Wir86].

We created a EMF-based DSLE with EMFText for it. A PL/0 programme can have procedures for

which reason we de�ned the Extract Procedure for it (more details are given in Sect. 10.1.2 and

Appendix C). Figure 9.6 shows the editor and a small example programme. Here, one can see

that the selected lines should be moved to a new procedure for which the desired name square is

provided by the user.

The problem is that the programme already contains a procedure with the same name. This is

forbidden and, therefore, we de�ned and registered the constraints in Fig. 9.7 (a). The constraint

uniqueProcedureName ensures that no two procedure with the same name can exist. If the

refactoring still should be applied with the non-unique name, this constraint is violated and the

error dialogue in Fig. 9.7 (b) occurs.

In this small example a �rst impression of the Eclipse Refactoring Framework has been given.

In the following section, the integration therein is presented.

9.1.7. Integration Into the Eclipse Refactoring Framework

So far, only the single parts of the refactoring framework have been presented. As explained

in Sect. 1.1, a main drawback of DSLEs is that they do not o�er adequate refactoring support.

Since Refactory has been implemented as extension for the Eclipse IDE, we claim to seamlessly

integrate into existing refactoring facilities of Eclipse in order to not break the user experience

and expectations when refactoring models.

Therefore, Refactory supports the following features. The �rst important aspect is that the

presented implementation makes use of the Eclipse Language Toolkit (LTK).
4

The LTK provides

3http://www.dresden-ocl.org/ (visited 27th February 2015)

4https://www.eclipse.org/articles/Article-LTK/ltk.html (visited 27th February 2015)

130

http://www.dresden-ocl.org/
https://www.eclipse.org/articles/Article-LTK/ltk.html

9.1. Refactoring Framework

(a) Unique names constraints (b) Constraint violation

Figure 9.7.: OCL constraints and representation of the violation in the refactoring dialogue.

a language-neutral API for the de�nition of new refactorings. Several well-known refactoring

wizards are provided by the LTK including a preview of refactorings. To keep this set of widely

accepted refactoring features, Refactory registers the class ModelRefactoring (being a subclass

of org.eclipse.ltk.core.refactoring.Refactoring) in Eclipse. Within this class, the pre- and

post-conditions are checked and the intrinsic refactoring of the model must be returned as an in-

stance of org.eclipse.ltk.core.refactoring.Change being called ModelRefactoringChange

in Refactory. This is needed to provide means to roll back a refactoring in case something fails

(Requirement 6) or in case a whole refactoring is to be reversed when the user revises her decision

(Requirement 7). For this purpose, the ModelRefactoringChange class encapsulates the execution

of a particular refactoring in a org.eclipse.emf.transaction.RecordingCommand, which cap-

tures all modi�cations made to a model. Such a recording command can be undone. An instance

of this class is added to the org.eclipse.core.commands.operations.IOperationHistory in

order to make the undo operation of a refactoring available to the accustomed Edit menu in the

Eclipse IDE. In addition, our ModelRefactoringChange class returns an instance of org.eclipse.

ltk.core.refactoring.ChangeDescriptor tailored to our generic refactoring approach, namely

a ModelRefactoringDescriptor. By doing this, it is assured that each instance of a generic

refactoring is also added to the Eclipse refactoring history. Thus, the properties of a refactoring

are persisted in the workspace and can be re-applied, or a refactoring script can be created out of

several refactorings. Furthermore, Refactory registers an extension for the org.eclipse.ltk.ui.

refactoring.IChangePreviewViewer, interface which can be implemented to provide a preview

of a refactoring. The implementation of this interface realised in Refactory makes use of the EMF

Compare
5

framework for determining di�erences between models. Therefore, we initiate a dry

run of the intended refactoring and determine all inputs which have to be made. EMF Compare

can then calculate a di�erence model and it is presented to the user in the refactoring wizard.

So far, the integration into the Eclipse-speci�c refactoring work�ow was presented. A last

5https://www.eclipse.org/emf/compare/ (visited 27th February 2015)

131

https://www.eclipse.org/emf/compare/

9. Refactory: An Eclipse Tool For Quality-Aware Refactoring and Co-Refactoring

Figure 9.8.: Selection of talks to be refactored.

open aspect concerns the question, which editors used for modelling are supported by Refactory.

Therefore, we make use of the adapter mechanism used in Eclipse, which allows for easy

declarative registration of additional classes which other objects of interest can be adapted to. For

this purpose, Refactory tries to adapt the editor in which a refactoring should be initiated to the

interface IEditorConnector. This interface is provided by Refactory and is used to get the model

elements from a selection and to select modi�ed elements after an applied refactoring. Currently,

four di�erent editor connectors are supported: 1) textual EMFText editors, 2) textual Xtext
6

editors, 3) graphical editors based on the GMF, and 4) the intrinsic editor of the Java Development

Tools provided by Eclipse. The latter is the editor for Java source �les, thus, refactorings provided

by Refactory can also be applied for Java models in the accustomed Java editor.

Leaving the explanation of the implementation behind, �nally an example should be provided.

Consider the Extract Track refactoring for the conference DSL depicted in Fig. 4.1 on page 52.

To accomplish this refactoring, the according talks have to be selected in the editor and Extract

Track must be invoked from the context menu as can be seen in Fig. 9.8. After invocation, the

refactoring wizard opens and the user is asked for the name of the new track which is intended

to be extracted from the selection. This wizard page can be seen in Fig. 9.9. If the user now

presses the Preview button in the wizard EMF Compare calculates the di�erence and presents it

as can be seen in Fig. 9.10. After pressing the OK button in the preview the refactoring is applied

and we get the same result as in Fig. 4.1 (b).

With this example, the presentation of the �rst part of Refactory is �nished. In the following

section the Quality Smell Framework is illustrated.

6http://xtext.org/ (visited 27th February 2015)

132

http://xtext.org/

9.1. Refactoring Framework

Figure 9.9.: Refactoring wizard for providing the name of the new Track.

Figure 9.10.: Preview of the Extract Track refactoring in a conference model.

133

9. Refactory: An Eclipse Tool For Quality-Aware Refactoring and Co-Refactoring

Figure 9.11.: Preference page for the de�nitin of generic quality smells.

9.2. Quality Smell Framework

In this section, the �rst implementation of a quality smell framework proposed in Chap. 6 is

presented. The metamodels of the quality smell repository (cf. Fig. 6.2 on page 82) and the quality

smell calculation repository (cf. Fig. 6.5 on page 86) are realised as EMF Ecore models again.

Both of them are considered to be a singleton and, thus, Refactory persists the particular single

model in the workspace transparent to the user. This also means that each developer having its

own workspace can de�ne her own speci�c quality smells.

To populate the quality smell repository, three preference pages have been implemented in

Refactory. Thus, developers can use the accustomed preference mechanism of Eclipse to carry

out the speci�cation of qualities, generic and concrete quality smells. Since all of the three

preference pages inherit from an abstract preference page, only the one for the de�nition of

generic quality smells is shown in Fig. 9.11.

To populate the quality smell calculation repository, currently, two Eclipse extension points

are provided: one for metrics-based and one for structure-based calculations. For the former, the

de�ned extension point only requires to refer to a Java class being a subclass of Metric. Thus,

the metric has to be implemented in the according calculate(model, roleModel) method. For

structure-based calculations it has already been shown in Sect. 7.3 that IncQuery is used to query

patterns in EMF-based models. Therefore, the metaclass IncPLPattern in Fig. 7.2 on page 92

references the metaclass Pattern provided by IncQuery. Consequently, the resource such a

pattern is contained in can be registered at the above mentioned extension point which then

will be added to the quality smell calculation repository. This extension point also requires the

provision of a pattern name, a description and a smell message. The former is used to identify

the pattern from the given pattern resource since it can contain various patterns. The other

attributes are used for presentation in the UI in case the pattern matches and the according

quality smell takes e�ect. In the following, we want to illustrate how the invocation of IncQuery

134

9.2. Quality Smell Framework

1 private Result queryPattern(Pattern pattern, ResourceSet resourceSet, RoleModel
rolesOfInterest) throws IncQueryException {

2

3 BaseIndexOptions options = new BaseIndexOptions();
4 EMFScope scope = new EMFScope(resourceSet, options);
5 IncQueryEngine engine = IncQueryEngine.on(scope);
6 SpecificationBuilder builder = new SpecificationBuilder();
7 IQuerySpecification<? extends IncQueryMatcher<? extends IPatternMatch>>

querySpecification = builder.getOrCreateSpecification(pattern);
8 IncQueryMatcher<? extends IPatternMatch> matcher = engine.getMatcher(

querySpecification);
9

10 Result result = null;
11 if (matcher != null) {
12 Collection<? extends IPatternMatch> matches = matcher.getAllMatches();
13 result = createResultFromMatches(matches, rolesOfInterest);
14 }
15 return result;
16 }

Listing 9.5: Invocation of IncQuery engine to query structure-based quality smells.

patterns works in detail.

For an uncomplicated work�ow, a default implementation of IncPLPattern is realised in

order to provide means for relieving DSL designers (cf. Fig. 6.1 on page 81) from implementing

the invocation of such a pattern in Java. Furthermore, such a programmatic invocation would

always be the same according to the generic API provided by IncQuery. Thus, the default

implementation of Refactory avoids redundancy: The metod calculate(model, roleModel)

loads the referenced IncQuery pattern and then invokes the queryPattern method which can

be seen in Listing 9.5. The initialisation is realised in Lines 3–7. Among the other things, the

query scope is set and the engine is created on the scope. In Line 8, the intrinsic matcher is

created with respect to the engine. Then, the matcher is invoked in Line 12 by requesting all

matches. The determined matches then are passed to the method createResultFromMatches

which is depicted in Listing 9.6. This method iterates over each match and creates a new

CausingElementsGroup for it (Lines 3 and 4). Thus, each match is considered to be an instance

of the according structure-based quality smell. The names of the parameters of a given pattern

correspond to the names of the rolesOfInterest. Therefore, in Lines 11–16 the corresponding

roles are determined. The intrinsic RoleElementBinding then is created in Lines 18–22. By

provision of this implementation, DSL designers only have to register an IncQuery pattern in

order to de�ne a quality smell for her language. Unfortunately, Refactory currently does not yet

support the composition of detection strategies according to Fig. 6.3 on page 84. It is only possible

to use a single CalculationStrategy to specify how a quality smell should be detected. This

is postponed to future work.

In addition to the described extension points, Refactory also provides two views in order to

manage the de�ned qualities and quality smells, and to resolve detected quality smells. The

�rst view can be seen in Fig. 9.12. It is divided into three parts, whereas the left part shows all

135

9. Refactory: An Eclipse Tool For Quality-Aware Refactoring and Co-Refactoring

1 private Result createResultFromMatches(Collection<? extends IPatternMatch>
matches, RoleModel rolesOfInterest) {

2 CalculationResult result = CalculationFactory.eINSTANCE.
createCalculationResult();

3 for (IPatternMatch match : matches) {
4 CausingElementsGroup causingElementsGroup = CalculationFactory.eINSTANCE.

createCausingElementsGroup();
5 List<String> parameterNames = match.parameterNames();
6 for (String parameterName : parameterNames) {
7 Object matchedElement = match.get(parameterName);
8 if(matchedElement != null && matchedElement instanceof EObject){
9 EObject boundElement = (EObject) matchedElement;

10 Role boundRole = null;
11 for (Role role : roleModel.getRoles()) {
12 if(role.getName().equals(parameterName)){
13 boundRole = role;
14 break;
15 }
16 }
17 if(boundRole != null){
18 RoleElementBinding roleElementBinding = CalculationFactory.

eINSTANCE.createRoleElementBinding();
19 roleElementBinding.setRole(boundRole);
20 roleElementBinding.setBoundElements(Arrays.asList(new EObject[]{

boundElement}));
21 causingElementsGroup.getBindings().add(roleElementBinding);
22 causingElementsGroup.setResultingValue(1);
23 }
24 }
25 }
26 result.getCausingGroups().add(causingElementsGroup);
27 }
28 return result;
29 }

Listing 9.6: Creation of a result with respect to the matches determined by IncQuery.

Figure 9.12.: Qualities view of Refactory.

136

9.3. Co-Refactoring Framework

Figure 9.13.: Quality Smells view of Refactory.

de�ned qualities which can be explicitly activated or deactivated. The middle part shows all

metamodels for which concrete quality smells have been de�ned in�uencing the selected quality

in the left part. The right part then shows the concrete quality smells for the language selected

in the middle.

The second view is the Quality Smells view depicted in Fig. 9.13. It subclasses the org.eclipse

.ui.views.markers.MarkerSupportView of Eclipse in order to specify that this view presents

markers. The Eclipse concept of markers is used to indicate that certain elements in a model

have speci�c properties. Most often, markers are used to indicate errors or warnings. Therefore,

Refactory exploits the marker concept to denote that a concrete quality smell occurred. Thus, the

single line selected in the view in Fig. 9.13 is the visual representation of a quality smell marker.

Furthermore quick-�xes can be speci�ed to resolve problematic markers in general. In particular,

Refactory also makes use of this concept to connect a particular quality smell marker with the

resolving refactorings de�ned for the quality smell. That a quick-�x is available is denoted

by the small bulb in the Description column in Fig. 9.13. In addition, markers are also visually

indicated in the editor of the particular resource as can be seen in Fig. 9.14. The invocation of a

resolving refactoring can also be achieved via the Quality Smells view by pressing Ctrl + 1 as

accustomed by the ordinary problems view of Eclipse.

The combination of the Qualities view of Refactory for activating certain qualities of interest,

the indication of detected quality smell occurrences as markers, and the provision of resolving

refactorings as quick-�xes has several advantages. The former is completely new, since no known

tool can focus on qualities explicitly, since they do not support a relation to qualities. Thus,

developers can focus various qualities dependent from di�erent contexts, use cases or situations.

The indication of quality smells as markers seamlessly integrates into the accustomed working

method of Eclipse. If problems occur markers are created, thus, no new visual metaphor has been

introduced and the curve of understanding remains low. Consequently, providing refactorings as

quick-�xes fosters the automation to resolve quality smell occurrences. Developers can remove

them easily. Summarising, this part of Refactory is the �rst framework providing support for

detecting and resolving de�ciencies in models with regard to speci�c qualities.

The presentation of the second part of Refactory is �nished. In the following section, the

Co-Refactoring Framework is illustrated.

9.3. Co-Refactoring Framework

In this section the third constituent of Refactory is presented: the Co-Refactoring Framework.

137

9. Refactory: An Eclipse Tool For Quality-Aware Refactoring and Co-Refactoring

Figure 9.14.: Resolving refactoring invokable by a quick-�x in Refactory.

9.3.1. Concrete Syntax of a Co-RefSpec

For the CoRK-Base metamodel depicted in Fig. 8.6 on page 115, an Ecore model has been created

again. As could be already seen in Listing 8.4 on page 117, a textual syntax has been declared

for the Co-RefSpec. We realised this with EMFText and the syntax de�nition is depicted in

Listing 9.7.

As can be seen in Line 10, a CoRefactoringSpecification starts with the keywords Co-

RefSpec for and references the target metamodel. Optional imports are introduced with import.

The particular de�nition of the coupled refactorings is surrounded by curly braces, followed

by incoming to denote the event. Subsequently, a condition can be speci�ed before outgoing

denotes the action. A MetamodelImport is de�ned by a shortcut followed by a colon and

the referenced metamodel (Line 11). A PlainCondition is introduced by the keyword con-

dition and the conditionExpression is surrounded by dollar signs (Line 12). An incoming

RefactoringEvent is commenced with refactoring followed by a reference to the shortcut of

the imported metamodel. A colon connects the particular refactoring surrounded by < and

> (Line 13). The language-independent possibility of specifying an incoming event by means

of a RoleModelEvent starts with rolemodel and is followed by a reference to the particular

roleModel (Line 14). The outgoing RefactoringAction is denoted by corefactoring and fol-

lowed by a reference to the particular refactoring, where only those are o�ered which have

been de�ned for the metamodel referenced in the beginning (Line 15). Again, the refactoring
is enclosed in < and >. The bindingExpression is surrounded by dollar signs.

9.3.2. Expression Evaluation by Using an Expression Language

As already explained in Sect. 8.4.2, both the conditionExpression and the bindingExpres-
sion are processed with the expression language MVEL. The main reasons for choosing MVEL

have been that it is of high performance, has a clean syntax and a huge open-source test class

can be accessed
7
.

7https://fisheye.codehaus.org/browse/mvel/trunk/src/test/java/org/mvel2/tests/core/
CoreConfidenceTests.java?r=trunk (visited 27th February 2015)

138

https://fisheye.codehaus.org/browse/mvel/trunk/src/test/java/org/mvel2/tests/core/CoreConfidenceTests.java?r=trunk
https://fisheye.codehaus.org/browse/mvel/trunk/src/test/java/org/mvel2/tests/core/CoreConfidenceTests.java?r=trunk

9.3. Co-Refactoring Framework

1 SYNTAXDEF corefspec
2 FOR <http://www.modelrefactoring.org/corefspec>
3 START CoRefactoringSpecification
4

5 TOKENS {
6 DEFINE IDENTIFIER $(’A’..’Z’ | ’a’..’z’ | ’-’| ’_’)(’A’..’Z’ | ’a’..’z’ |

’0’..’9’ | ’-’| ’_’)*$;
7 }
8

9 RULES {
10 CoRefactoringSpecification ::= "CoRefSpec" "for" metamodel[’<’,’>’] ("import"

imports)* "{" "incoming" event condition? "outgoing" action "}";
11 MetamodelImport ::= shortcut[IDENTIFIER] ":" metamodel[’<’,’>’];
12 PlainCondition ::= "condition" conditionExpression[’$’,’$’];
13 RefactoringEvent ::= "refactoring" import[IDENTIFIER] ":" refactoring

[’<’,’>’];
14 RoleModelEvent ::= "rolemodel" roleModel[’<’,’>’];
15 RefactoringAction ::= "corefactoring" refactoring[’<’,’>’] bindingExpression[’

$’,’$’];
16 }

Listing 9.7: Textual syntax for co-refactoring speci�cations.

As already seen in Listing 8.4 on page 117, the keywords IN and OUT are used similar to

variables in the binding expression. For being able to realise custom variable resolution, MVEL

o�ers the possibility to evaluate expressions by using an own implementation of the org.

mvel2.integration.VariableResolverFactory interface. Refactory’s implementation is named

GenericBindingResolverFactory and resolves both of the above keywords to the incoming

or outgoing bound elements, respectively. More precisely, for IN the subsequent syntactic

constructs are resolved against the incoming binding. Consider, e.g., the line OUT.Nameable

.name = IN.Nameable.name from Listing 8.4. Both the left hand side and the right hand side

refer to the same string Nameable. The question how to distinguish it is answered by the

GenericBindingResolverFactory which resolves these strings either against the incoming or

the outgoing element bindings according to the used keyword. Thus, the �rst string in such a

chain always denotes a variable which Refactory resolves to the incoming or outgoing bound

elements in case the above keywords are used.

Furthermore, MVEL supports the access to properties of an object just by referring to its name

instead of using getters or setters (Lines 6–12 in Listing 8.4). Properties can also be chained

by using a dot notation. This facility is called property expression in MVEL. As can be seen

in Listing 8.4, property expressions are frequently used in a binding expression. Let us have

a look at this expression: OUT.Nameable.name. It is already known that the used variable is

resolved to the outgoing bound elements. In addition to custom variable resolvers, MVEL also

provides means to register custom property resolvers. Therefore, an implementation of the

interface org.mvel2.integration.PropertyHandler has to be provided. In Refactory, this is

realised by the class GenericBindingResolver. It always takes over the resolution in case a role,

role attribute or collaboration name is denoted as a supposed property. Thus, in the case of

139

9. Refactory: An Eclipse Tool For Quality-Aware Refactoring and Co-Refactoring

Figure 9.15.: Implicit Dependencies view in Refactory.

our example above, the GenericBindingResolver takes over when Nameable and name are to

be resolved. According to the current context, these names are resolved against the incoming

or outgoing bound elements. In case strings are to be resolved which cannot be handled by

Refactory’s variable or property resolvers, the default MVEL resolving takes e�ect. This also

means that language-speci�c properties can be referenced in such a binding expression, since

MVEL uses re�ection for resolving them. Hence, this approach and implementation provides

powerful means to execute bindings or to apply additional modi�cations.

9.3.3. UI and Integration

To examine implicit dependencies of a model, Refactory provides the Implicit Dependencies view.

It is depicted in Fig. 9.15. As can be seen in the upper part of the view, the implicit dependencies

of the Extract X with Reference Class role model are shown. In the lower part of the table, one

can see three dependent models on the left and the concrete dependent elements on the right.

Exemplarily, the dependent elements of the Extract Track role mapping are expanded. Figure 9.15

shows examples for the inverse and mapping dependencies: The dependencies to the RefSpec and

to the role mapping model are inverse, whereas the dependency to the conference metamodel is

a mapping dependency, since the role mapping model of Extract Track maps roles to conference

metaclasses.

One �nal question remained open: How to detect an initial refactoring and how to initi-

ate the refactoring stream? Transparently to the MLDE user, an implementing class of the

org.eclipse.ltk.core.refactoring.history.IRefactoringHistoryListener interface is re-

gistered to the Eclipse refactoring history. This listener always gets noti�ed in case a new

refactoring was applied in Eclipse. Then it checks if the refactoring descriptor is an instance

of the ModelRefactoringDescriptor already described in Sect. 9.1.7. Amongst others, it is used

to add an executed refactoring to the refactoring history. In case the noti�cation was initiated

on a ModelRefactoringDescriptor, Refactory can be sure that it is a model refactoring of its

own. Thus, the point in time to start the refactoring stream is detected. A CoRefactorerFactory

140

9.4. Conclusion

determines all dependent models from the DK-Base. Furthermore, the according Co-RefSpecs

for each of the dependent models are collected from the CoRK-Base. For every combination a

CoRefactorer is created. The CoRefactorer contains the according IRefactorer for the initiat-

ing and the dependent model, respectively. Prior application of the co-refactoring, the condition

expression is checked and, if satis�ed, the binding expression is evaluated by MVEL as explained

previously. After successful application of a co-refactoring, it is again persisted in the refactoring

history. As a consequence, this work�ow starts again until no co-refactorings can be determined

anymore or a cycle is detected. If an error occurs it will be communicated to the user, but only

the failing co-refactoring is rolled back. Thus, not the whole refactoring stream is reverted and

the user has a more �ne-grained focus on the failures instead of starting the whole refactoring

stream from new.

9.4. Conclusion

In this chapter, the feasibility of the proposed approaches regarding the generic refactoring,

quality smells and co-refactoring has been demonstrated. As a result, the Eclipse-based tool

Refactory has been developed which is open-source and publicly available. As a main objective,

the user expectations regarding the application of refactorings have been in focus. At all costs, it

should be possible that refactorings can be applied in a accustomed manner: A refactoring must

be applicable by a selection of the desired elements and a click in the Refactor context menu, as

it is known from the Eclipse platform. It has been shown that Refactory seamlessly integrates

into the existing refactoring work�ow of the platform and, therefore, uses existing extension

points and methodologies. Co-Refactorings are executed transparently to the user.

Furthermore, means for extensions are provided, such as the registration of new editor connect-

ors in order to support other kinds of editors, or constraint interpreters to enable the evaluation

of pre- and post-conditions other than OCL-based constraints. In addition, structure-based

quality smells can be registered by means of IncQuery patterns which emerged as a mature

mechanism for detecting structural quality smells in EMF-based models. Metrics-based quality

smells can be registered by means of providing a class which implements the Metric interface

of Refactory. The extension mechanisms of the expression language MVEL could be exploited to

implement the evaluation of condition and binding expressions for the co-refactoring scenario.

Hence, language-speci�c modi�cations can be easily declared in a fashion similar to the Java

programming language.

In summary, the implementation of Refactory ful�lled some last requirements, such as the

support for pre- and post-conditions (Requirement 5 on page 25), the comfortable speci�cation of

structure-based quality smells (Requirement 5 on page 33) or the language-speci�c binding de�n-

ition for co-refactorings (Requirement 6 and Requirement 8 on page 39). Refactory contributes

the �rst tool which incorporates quality smells, resolving model refactorings and co-refactorings.

With the help of our tool, quality-related model de�ciencies can now be detected and resolved

easier. If all required information for applying refactorings and co-refactorings are provided

beforehand, quality smells can now be resolved automatically.

141

10
Evaluation

10.1. Case Study: Reuse of Generic Refactorings in many DSLs

To evaluate the feasibility of our generic refactoring approach, we collected refactorings for

di�erent modelling languages and implemented them according to the procedure presented in

Sect. 4.2 and with the help of the Refactory editors illustrated in Sect. 9.1. A test suite has been

realised to validate the execution of refactorings automatically. Therefore, a model intended

to be refactored and an expected model have to be provided. A particular refactoring then is

applied to the former and the result is compared to the expected model with the help of EMF

Compare. Thus, the test suite can easily be extended just by providing more models and a new

entry in the con�guration �le regarding which refactoring has to be applied.

The goal of this evaluation is to collect information about the number of speci�c refactor-

ings that can bene�t from reusing a generic refactoring. In addition, the question how many

refactorings would require speci�c extensions to the generic refactoring should be answered.

10.1.1. Threats to validity

The validity of our evaluation is in�uenced by multiple factors. First, the selection of metamodels

heavily accounts for the applicability of generic refactorings. Thus, we used languages of di�erent

complexity and maturity for our evaluation. The metamodels for UML, BPMN, Java and Timed

Automata exposed the highest number of classes and structural features. Other languages (e.g.

OWL, Concrete Syntax and Ecore) have a medium complexity. Some metamodels (e.g. PL/0,

AppFlow, Role Models or Feature Models) were rather small and taken from the EMFText Syntax

Zoo.
1

We are aware that this selection of metamodels is by no means exhaustive, but we are still

convinced that it supports the idea of generic refactorings.

Second, the selection of refactorings (both generic and concrete) has an impact on our eval-

uation. To obtain a representative result, we tried to cover as many refactorings as possible.

1http://www.emftext.org/zoo/

143

http://www.emftext.org/zoo/

10. Evaluation

Also, we collected concrete refactorings from catalogues to make sure that the evaluation is not

biased towards our approach. However, the list of refactorings can never be complete, which is

why the results of our evaluation must always be considered with respect to the languages and

refactorings under study.

Third, our evaluation is quantitative in its nature. We count the number of mappings that

were established, but we did not measure the time or the skills required to do so in comparison

to the direct creation of concrete refactorings. From a practical perspective, this is an important

point, because DSL designers are not only concerned about the applicability of our approach,

but also about the e�ort that is required to use it.

10.1.2. Results

The concrete results of our evaluation can be found in Table 10.1. The complete list of all de�ned

refactorings is depicted in Table C.1 in the Appendix C. The metamodels to which refactorings

were applied are depicted as columns, the generic refactorings form the rows. The numbers in

the cells denote how often the generic refactoring was mapped to the metamodel. Underlined

numbers indicate that the according mappings required post-processors to augment the generic

refactoring with additional transformation steps. The table is divided into two parts. The upper

part indicates those role mappings which bene�t from reusing generic refactorings. The graphical

representations of the according role models can be seen in Appendix A. The role mappings in

the lower part denote role mappings being de�ned speci�cally for particular target metamodels.

In the following, we will discuss the upper part �rst and the lower part afterwards.

In total, we created 96 mappings by applying 27 generic refactorings to 18 metamodels. The

generic refactorings that were reused most often are Rename X and Extract X with Reference

Class. The latter is an extended version of Extract X.

In Sect. 3.1, we have identi�ed two types of limitations of previous works. The �rst limitation—

no reuse of refactorings across languages—applies to approaches that de�ne refactorings on

MOF layer M2. When looking at the upper part of Table 10.1, one can see that each generic

refactoring was applied to at least two metamodels. Some of them were even applicable to the

majority of the languages under study.

The second limitation—having a single �xed mapping for each metamodel—was observed

for approaches that reside on the MOF layer M3. All cells from Table 10.1 that contain a value

higher than 1 indicate cases where our approach is superior to existing approaches. Here, the

same generic refactoring was mapped multiple times to a metamodel to obtain di�erent speci�c

refactorings.

The lower part of Table 10.1 shows two kinds of refactorings. The �rst one is covered by the

generic Select X refactoring. It contains only one role which is meant to be used as an entry

point so that Refactory can take e�ect upon an editor selection. The intrinsic modi�cations

then must be implemented in Java with respect to a domain-speci�c API. This is the reason why

all eight concrete refactorings in this row are realised by means of post-processors. The seven

refactorings of Java are those presented in the quality smell catalogue in Sect. 7.4. The second

kind can be observed in the other rows of the lower part. As can be seen, each generic refactoring

is instantiated only once. These refactorings can be considered as speci�c for the particular

target language they have been de�ned for. This means that the role models are a structural

abstraction of the particular refactorings, which have not been reused for other languages. But

144

10.1. Case Study: Reuse of Generic Refactorings in many DSLs

T
a
b
l
e

1
0
.1

.:
R

e
f
a
c
t
o

r
i
n

g
s

a
p

p
l
i
e
d

t
o

m
e
t
a
m

o
d

e
l
s
.

OWL

Java

UML

AppFlow

Conference

Forms

PL/0

SimpleGUI

TextAdventure

ConcreteSyn-

tax

Company

O�ce

RoleModels

Sandwich

TimedAuto-

mata

Ecore

BPMN2

FeatureModels

R
e
n

a
m

e
X

2
1

1
1

1
1

3
2

3
3

2
1

1
1

1
1

1

E
x
t
r
a
c
t

X
w

i
t
h

R
e
f
e
r
e
n

c
e

C
l
a
s
s

2
1

1
1

1
1

1
1

1
1

M
o
v
e

X
1

1
4

1
1

E
x
t
r
a
c
t

X
2

5

I
n

t
r
o

d
u

c
e

R
e
f
e
r
e
n

c
e

C
l
a
s
s

2
1

1

E
x
t
r
a
c
t

S
u

b
X

1
1

1
1

R
e
m

o
v
e

E
m

p
t
y

C
o

n
t
a
i
n

e
d

X
1

1
1

M
o
v
e

X
l
o

o
s
e
l
y

1
1

1

R
e
m

o
v
e

C
o

n
t
a
i
n

e
d

X
2

1

R
e
m

o
v
e

U
n

u
s
e
d

C
o

n
t
a
i
n

e
d

X
1

1

D
u

p
l
i
c
a
t
e

W
i
t
h

R
e
f
e
r
e
n

c
e

1
1

S
e
l
e
c
t

X
1

7

C
r
e
a
t
e

R
e
f
e
r
e
n

c
e
d

E
l
e
m

e
n

t
s

1

I
n

t
r
o

d
u

c
e

I
n

v
e
r
s
e

R
e
f
e
r
e
n

c
e

I
n

C
o

n
t
a
i
n

e
r

1

I
n

t
r
o

d
u

c
e

S
i
m

p
l
e

R
e
f
e
r
e
n

c
e

C
l
a
s
s

1

I
n

t
r
o

d
u

c
e

I
n

v
e
r
s
e

R
e
f
e
r
e
n

c
e

1

C
o

n
v
e
r
t

X
1

R
e
p

l
a
c
e

F
e
a
t
u

r
e

I
n

C
o

n
t
a
i
n

e
r

1

I
n

l
i
n

e
X

1

R
e
-
r
e
f
e
r
e
n

c
e

X
1

I
n

t
r
o

d
u

c
e

C
l
a
s
s

A
n

d
R

e
f
e
r
e
n

c
e

1

E
x
t
r
a
c
t

X
L

o
o

s
e
l
y

1

I
n

t
r
o

d
u

c
e

R
e
f
e
r
r
e
r

T
o

A
l
l

X
1

R
e
p

l
a
c
e

F
e
a
t
u

r
e

1

S
i
m

p
l
e

M
o
v
e

X
1

E
x
t
r
a
c
t

X
f
r
o

m
C

h
i
l
d

r
e
n

1

S
l
o
w

F
o

r
L

o
o

p
1

145

10. Evaluation

by using our approach, it is possible to reuse them, e.g., for the speci�cation of quality smells.

Thus, they can be declared as resolving refactorings of quality smells and the �ner grained such

a role model is the more speci�c the element bindings of the roles of interest of a quality smell

can be mapped to them (cf. Sect. 6.2.1).

Even with respect to the restricted number of languages and refactorings that were evaluated,

we think that the results support our approach. First, we were able to instantiate many speci�c

refactorings from few generic ones, which shows that reusing generic refactoring speci�cations

is bene�cial. Second, the low amount of customisation that was needed (16 out of 96 refactorings),

indicates that most refactorings can be instantiated without additional e�ort, besides specifying a

role mapping. Furthermore, we have seen that not only reusing generic refactoring speci�cations

is bene�cial. On the one hand, mapping one rudimentary role model (such as Select X) can be

considered as entry point to the whole Refactory infrastructure. Thus, DSL designers using this

alternative only need to implement the particular modi�cations by means of their accustomed

language-speci�c API. All the other features of Refactory are then delivered automatically. On

the other hand, realising domain-speci�c refactorings by specifying them with a role model

and a RefSpec, results in the fact that it can be integrated into the whole quality smell and

co-refactoring frameworks and mechanics. Thus, it can be de�ned which qualities they improve

by resolving particular quality smells, or it can be declared as part of coupled refactorings in the

co-refactoring scenario.

However, the conclusions drawn above apply �rst of all to the selection of languages and

refactorings of our evaluation. That means we only evaluated a subset of all possible refactorings

(cf. Sect. 5) in the respective DSLs and do not present a complete list. Especially, in complex

languages, such as the UML or Java, we expect more refactorings which have to be customised

with post-processors. Reasons for this assumption are that language-speci�c semantics, such as

type inference for Java, cannot be generalised structurally. Nonetheless, our approach fosters the

reuse of generic refactorings and its speci�cations across di�erent languages as it was claimed

in [MTM07].

An additional discussion about the e�ort of instantiating a generic refactoring can be found in

the following section.

10.1.3. Experience Report

As shown above, our approach is suitable to reuse generic refactorings for various di�erent DSLs.

Since we are using a model-based approach, one might wonder how much e�ort is needed to

instantiate a generic refactoring for the metamodel of choice in contrast to implementing an

appropriate transformation in a common transformation language. Based on our experiences,

we can say that specifying a role mapping to a certain structure of a DSL’s metamodel is not very

di�cult, when the DSL designer has a good overview about the available generic refactorings

and their purposes. In a situation when she identi�ed a refactoring being useful for her language,

de�ning the role mapping is straight forward. As an example, we consider the refactoring Extract

CompositeState for UML again (cf. Fig. 4.6 (c) on page 59). It moves some selected states into

a newly created composite state. At a point when it is clear that some states are intended to

be moved to a new extracted composite state, the role mapping in Fig. 4.6 (c) is easy to achieve

since the DSL designer knows the metamodel and has identi�ed a generic refactoring which can

be used for it.

146

10.2. Case Study: Suggestion of Valid Role Mappings

This mapping is su�cient to get a new entry in the context menu of an Eclipse environment

which then invokes this refactoring. Beyond the generic transformation steps in this special case

of state machines, some more steps have to be executed. Namely, besides moving the original

states into a new composite state, the incoming and outgoing transitions must be calculated.

Those steps cannot be modelled generically and, thus, must be implemented in a post-processor.

As mentioned in Sect. 9.1.5, such a post-processor must be implemented in Java and accesses the

EMF-generated API of the particular metamodel. The concrete post-processor of this particular

refactoring is presented in Listing E.9 in Appendix E on page 183. It can be seen that the whole

class contains 73 lines of code. From our experience, we can say that this is a rather complex

post-processor.

Another example for a complex post-processor is the refactoring Extract Method for Java, since

the type inference of local variables of the original methods and depending resulting parameters

in the new extracted method cannot be handled generically. In such cases, the e�ort is relatively

large. But, since a post processor is implemented in Java, every common transformation language

exposing a Java interface can be invoked. In particular, this means that refactorings for which

very language-speci�c transformation steps are needed, such as type inference, we recommend

to implement the transformation as post-processor in a transformation language of choice, as

we did for the resolving refactorings presented in Sect. 7.4. In this case, one can still bene�t

from our approach and our tool Refactory, because refactorings are seamlessly integrated into

the Eclipse IDE and respective model editors. Once the role models are mapped to the target

metamodel and the post-processors are implemented, Refactory provides commands (one for

each refactoring) in the context menu of the particular model editor. These commands are

displayed context-sensitively depending on the metaclasses of the currently selected elements.

As roles are mapped to metaclasses, such a selection identi�es which refactorings are applicable

in a certain context or not.

According to our observations, for larger models most time is spent for printing the refactored

model back to the editor’s presentation mode. This results from the fact that converting textual

models into graphs and vice versa is very time consuming. Since this is not a question of the

refactoring execution itself, we do not provide any detailed evaluation numbers.

10.2. Case Study: Suggestion of Valid Role Mappings

In Chap. 5, our approach regarding the suggestion of valid role mappings has been presented. As

already mentioned, the task of identifying potential valid role mappings is not trivial, especially

if one is not used to it. For this purpose, we explained how it is possible to �nd all potential role

mappings of a role model in a particular metamodel based on graph querying with GUERY.

The goal of this evaluation is to investigate, how often a role model can be mapped in di�erent

target metamodels of di�erent complexity. Since the revealed results show that the amount of

potential valid mappings can be huge, further numbers are provided illustrating the needed

e�ort to still get feasible suggestions.

10.2.1. Implementation

At �rst, we want to provide some numbers that show the complexity of the di�erent target

metamodels under study. For this purpose, consider Table 10.2. As can be seen, the same

147

10. Evaluation

18 DSLs are used as in Table 10.1 from Sect. 10.1.2. Remember that a metamodel is translated

on demand to a graph representation the GUERY engine can operate on to �nd valid matches.

Therefore, we implemented a graph adapter which basically creates a vertex for each metaclass

and determines the needed edges which then are added to the graph as well. Since metamodels

make use of the inheritance semantics between metaclasses, edges have to be created dependent

on the references of super-metaclasses. Thus, if an incoming edge of a vertex is created and

the corresponding metaclass has sub-metaclasses, then this edge has to be propagated to the

corresponding sub-vertices, too.

Having this in mind the table columns have the following meaning.

MC denotes the number of metaclasses of the particular DSL.

SF stands for the total number of structural features in a metamodel.

SF/MC provides the ratio of structural features per metaclass.

Vertices shows the number of vertices of the graph to be queried. If these numbers di�ered from

the according numbers in the MC column, something would be wrong.

Edges denotes the total number of edges in the graph. As explained before, edges must be

propagated along the inheritance hierarchy to cover all possible paths.

E/V then expresses the ratio of edges per vertex.

Table 10.2.: DSL Complexity.

Metamodel MC SF SF/MC Vertices Edges E/V

UML 242 594 2.45 242 229,821 949.67

Java 237 120 0.51 237 5629 23.75

BPMN 2 138 458 3.32 138 3170 22.97

TimedAutomata 77 124 1.61 77 864 11.22

ConcreteSyntax 47 65 1.38 47 468 9.96

OWL 67 97 1.45 67 648 9.67

Ecore 20 81 4.05 20 133 6.65

SimpleGUI 7 4 0.57 7 42 6.00

AppFlow 20 34 1.70 20 63 3.15

Role Models 13 21 1.62 13 39 3.00

PL/0 25 36 1.44 25 54 2.16

Feature Models 7 24 3.43 7 15 2.14

Company 3 18 6.00 3 6 2.00

TextAdventure 8 9 1.13 8 14 1.75

Forms 10 13 1.30 10 11 1.10

O�ce 5 4 0.80 5 5 1.00

Conference 9 10 1.11 9 8 0.89

Sandwich 12 4 0.33 12 9 0.75

148

10.2. Case Study: Suggestion of Valid Role Mappings

Especially the ratios SF/MC and E/V should give information about the complexity of the used

languages. Therefore, the table is sorted by this column. A high E/V value signi�es, e.g., a deep

inheritance hierarchy, which the edges are propagated along. Of course, the numbers are only

relative since a certain metaclass can have no references to others while a di�erent metaclass can

have a very large number of references. But these ratios illustrate the characteristic properties

and will help in the following to interpret the results.

For this study, we focussed only some of our developed role models which we consider most

reasonable. The role model for the generic Rename X refactoring is not part of this set, since it

consists only of one role having a role attribute. It would not make sense to let this role model

be subject of the graph querying, since it matches every metaclass having an attribute. The

following role models are used: Extract X with Reference Class (Fig. A.1 (b) on page 169), Move

X (Fig. A.2 (a) on page 169), Extract Sub X (Fig. A.3 (b) on page 170), Extract X (Fig. A.2 (b) on

page 169), Introduce Reference Class (Fig. A.3 (a) on page 170) and Remove Unused Contained X

(Fig. A.5 (a) on page 170). As explained in Chap. 5, these role models are automatically converted

to GUERY queries and then tried to be matched. We restricted the matching process in the sense

that only paths of length 1 are to be matched because longer paths can be very time consuming

especially for languages of higher complexity. The Table 10.3 shows the result of this matching

process.

The numbers in the cells denote the amount of determined matches corresponding to valid role

mappings. The underlined numbers do not represent the �nal result but a previously maximum

value which we set for being able to interrupt the process. Furthermore, these numbers are by

far not feasible anymore to provide the found matches as suggestions to the DSL designer. As

can be seen in the table, the determined amounts are really high for complex languages such as

UML, Java or BPMN. UML is the language with the highest values which stems from the fact

that it is most complex, since its E/V ratio is 949.67. Obviously, these numbers are not suitable

to present the determined role mappings as suggestions. To still obtain some practical useful

recommendations for role mappings, two initial restrictions on the computation of role mappings

have been placed. First, we constitute that each collaboration is mapped to a single reference

in the metamodel only. We do not allow mappings to paths of references, to prevent matching

explosion. This was already applied to the found mappings in Table 10.3, since the maximum

path length was set to 1.

Second, the number of role mappings is reduced by restricting the mapping between roles

and metaclasses. If a role is mapped to a metaclass having subclasses, we omit the mappings

to these. Thus, we exclude separate mappings for each of the subclasses. Since subclasses

are specialisations of their superclass, mapping a role to the superclass yields a more general

refactoring (role mapping) compared to mapping the role to one of the subclasses. However,

one must admit that potential relevant matches are lost due to this restriction. For example, if a

subclass provides a feature (e.g., a reference) that is required to map a collaboration from the

role model, the respective role mapping is not found.

By these restrictions the complexity of the metamodels under study are reduced partly drastic-

ally. Therefore Table 10.4 provides adjusted numbers with respect to the restrictions. It is again

sorted by the E/V column and it can be observed that the order changed compared to Table 10.2.

Especially, the extremely high E/V ratio for the UML was reduced from 949.67 to 19.37. Further-

more, the value of Java decreased to 1.35 which will hopefully result in better numbers for the

determined valid role mappings. Based on the above restrictions, the queries which represent

149

10. Evaluation

Table 10.3.: Automatically determined role mappings with maximum path length of 1.

E
x
t
r
a
c
t

X
W

i
t
h

R
e
f
e
r
e
n

c
e

C
l
a
s
s

M
o
v
e

X

E
x
t
r
a
c
t

S
u

b
X

E
x
t
r
a
c
t

X

I
n

t
r
o

d
u

c
e

R
e
f
e
r
-

e
n

c
e

C
l
a
s
s

R
e
m

o
v
e

U
n

u
s
e
d

C
o

n
t
a
i
n

e
d

X

UML 1,000,000 100,000 49,376 1,000,000 100,000 5794

Java 1,000,000 1022 1924 0 0 5517

BPMN 2 1,000,000 5506 19,107 78,782 11,124 1874

TimedAutomata 3 0 0 0 1 5

ConcreteSyntax 132,068 17 2555 0 112 399

OWL 88,234 294 2223 92 10 561

Ecore 893 146 35 87 345 47

SimpleGUI 1512 63 0 0 18 21

AppFlow 0 0 0 0 0 0

Role Models 38 0 0 0 17 14

PL/0 137 0 5 0 0 43

Feature Models 35 6 3 6 8 7

Company 0 0 0 0 0 0

TextAdventure 2 0 0 0 2 7

Forms 11 0 0 0 1 10

O�ce 0 0 0 0 0 3

Conference 2 0 0 0 0 6

Sandwich 0 0 0 0 0 5

the role models are tried to be matched to the adjusted graphs of the reduced metamodels again.

To explain the results gained using the recommendation engine, consider the generic Extract

X refactoring (cf. Fig. A.2 (b) on page 169) and the UML metamodel explained in [OMG11a]. Our

suggestion engine calculated 16,866 valid matches. That means that Extract X can be mapped at

least 16,866 times to the UML metamodel, with respect to the restrictions stated before. This

is in fact a very high number, which makes it impossible for a DSL designer to pick suitable

mappings. As a consequence, we extended the process of suggesting role mappings in such a

way that the possible results are reduced, if the DSL designer maps one role to one metaclass

manually. By this extension, only the matches which contain the manually provided mapping

remain. This strategy reduces the search space signi�cantly. To give an example, let us consider

the generic Extract X refactoring and the UML metamodel again.

If a DSL designer wants to map this role model and manually maps role Extractee to the

metaclass Region, only one valid match remains. All the other roles and collaborations can

be mapped automatically. The complete role mapping which can be derived from this manual

mapping can be seen in Listing 10.1. The concrete resulting refactoring can be named Extract

StateMachine in Interface because a Region in a ProtocolStateMachine, which de�nes the

150

10.2. Case Study: Suggestion of Valid Role Mappings

Table 10.4.: DSL Complexity reduced due to omitting sub-metaclasses.

Metamodel MC SF SF/MC Vertices Edges E/V

UML 242 594 2.45 242 4687 19.37

BPMN 2 138 458 3.32 138 1228 8.90

Ecore 20 81 4.05 20 82 4.10

Feature Models 7 24 3.43 7 15 2.14

Company 3 18 6.00 3 6 2.00

OWL 67 97 1.45 67 130 1.94

Role Models 13 21 1.62 13 24 1.85

TimedAutomata 77 124 1.61 77 111 1.44

SimpleGUI 7 4 0.57 7 10 1.43

Java 237 120 0.51 237 320 1.35

AppFlow 20 34 1.70 20 26 1.30

ConcreteSyntax 47 65 1.38 47 57 1.21

PL/0 25 36 1.44 25 29 1.16

TextAdventure 8 9 1.13 8 9 1.13

Conference 9 10 1.11 9 6 0.67

Forms 10 13 1.30 10 6 0.60

O�ce 5 4 0.80 5 3 0.60

Sandwich 12 4 0.33 12 6 0.50

protocol of an Interface, is extracted to a new StateMachine which then is referenced as

extendedStateMachine in the original one. By mapping a single metaclass to a role, the

complete mapping can be derived.

On the contrary, there are also manual mappings which lead to reduced result sets that are still

quite large. For example, mapping role OriginalContainer to the metaclass Behavior [OMG11a,

p. 356] leads to 4581 remaining valid matches. As shown by this example, manually mapping a

role to a metaclass can reduce the resulting possible mappings signi�cantly but they may still

be of too much quantity to make suitable suggestions. In such a case, we assume that the DSL

designer wants to restrict the valid matches further and, thus, continues with a next manual

mapping of a role to a metaclass. As a consequence, the previously �ltered result set is restricted

by another manual mapping and the resulting set of valid matches decreases incrementally. We

applied this strategy to the valid matches as they are calculated by the graph query engine. The

results of a reasonable subset of the languages from Table 10.1 can be found in Table 10.5 and

are evaluated and discussed in the following section.

10.2.2. Evaluation and Discussion

Table 10.5 contains pairs of numbers in each cell. The �rst number in a cell designates the quantity

of all valid matches, i.e. all possible complete role mappings with respect to the restrictions

explained previously. As far as our experience goes, we think that tool support is only useful for

the DSL designer if at most 20 suggestions can be provided by our engine. A larger number of

valid matches would not be perceived to be feasible, because too many suggestions have to be

151

10. Evaluation

Table 10.5.: Number of possible matches (�rst number in pair) and average needed manual

mappings to get a result set of at most 20 matches (second number in pair).

M
o
v
e

X
(
3
)

I
n

t
r
o

d
u

c
e

R
e
f
e
r
-

e
n

c
e

C
l
a
s
s

(
3
)

E
x
t
r
a
c
t

X
(
4
)

E
x
t
r
a
c
t

X
W

i
t
h

R
e
f
e
r
e
n

c
e

C
l
a
s
s

(
5
)

E
x
t
r
a
c
t

S
u

b
X

(
3
)

R
e
m

o
v
e

U
n

u
s
e
d

C
o

n
t
a
i
n

e
d

X
(
2
)

UML

(MC: 247, SF:

586, E/V: 19.37)

10,793;2.69 11,944;2.68 16,866;3.51 89,068;4.33 4197;2.57 1440;1.82

Ecore

(MC: 20, SF: 81,

E/V: 4.10)

74;1.66 45;1.38 13;0 208;3.13 41;1.45 42;1.0

Feature Mod-

els

(MC: 6, SF: 26,

E/V: 2.14)

6;0 9;0 6;0 35;1.98 3;0 7;0

OWL

(MC: 67, SF: 97,

E/V: 1.94)

30;1.0 2;0 2;0 21;1.0 6;0 99;1.35

Timed-

Automata

(MC: 77, SF:

124, E/V: 1.44)

0;0 13;0 0;0 3;0 1;0 5;0

Java

(MC: 233, SF:

121, E/V: 1.35)

0;0 5;0 0;0 407;2.61 158;1.97 309;1.38

Concrete-

Syntax

(MC: 47, SF: 65,

E/V: 1.21)

4;0 5;0 0;0 10;0 2;0 40;1.0

PL/0

(MC: 25, SF: 36,

E/V: 1.16)

0;0 0;0 0;0 3;0 2;0 24;1.0

152

10.2. Case Study: Suggestion of Valid Role Mappings

1 ROLEMODELMAPPING FOR
2 <http://www.eclipse.org/uml2/3.0.0/UML>
3

4 "Extract State Machine in Interface" maps <ExtractX> {
5

6 ContainerContainer := Interface{
7 source := protocol;
8 target := nestedClassifier;
9 };

10

11 OriginalContainer := ProtocolStateMachine{
12 extracts := region;
13 reference := extendedStateMachine;
14 };
15

16 NewContainer := StateMachine(newName -> name){
17 moved := region;
18 };
19

20 Extractee := Region;
21 }

Listing 10.1: Derived role mapping Extract StateMachine in Interface.

examined by the DSL designer. This procedure is time consuming and not very supportive in

�nding a feasible role mapping. For this reason, the second number in each cell represents the

average count of manual mappings of a role to a metaclass a DSL designer has to specify, in order

to reach a result set containing at most 20 valid matches. To better compare the given quantities,

we expose the MC, SF and E/V values of each metamodel in the row headings of Table 10.5 again.

The values of the reduced complexity in Table 10.4 are used according to the made restrictions.

Furthermore, besides the name of the role model, each heading in a column contains the number

of roles in the particular role model.

As can be seen in the table, there are a lot of very di�erent numbers, although the complexity

of some metamodels is similar. Consider, e.g., the numbers of the TimedAutomata and the OWL

languages. The metaclasses and structural features count of the former is slightly higher than

these from the latter. However, the amount for the role model Remove Unused Contained X is

much higher for OWL. In contrast to this observation, the quantity of valid matches for Introduce

Reference Class is higher for TimedAutomata. Such controversial observations can be made

throughout the whole table.

For example, consider the metamodels of Ecore and Java. Although Ecore has fewer metaclasses

and structural features than Java, it has much higher numbers for the valid matches of the role

models Move X, Introduce Reference Class and Extract X. This would speak in favour of the higher

E/V ratio of Ecore, but the numbers for the other three role models are the other way around,

which cannot be explained with the E/V value anymore. It can be also noticed that the average

manual mapping count for those two metamodels for the role model Extract X with Reference

Class is worse (i.e., higher) for Ecore (3.13) than for Java (2.61), even though the number of all

153

10. Evaluation

possible role mappings is with 208 almost one half of 407 for Java.

Another interesting fact is that the quantity of many valid matches for the Feature metamodel

is much higher compared to ConcreteSyntax, TimedAutomata, PL/0 or OWL, although it is the

metamodel with the lowest complexity since it has only 6 metaclasses and 26 structural features.

The main reason for this is that the Feature metamodel has a relatively high E/V ratio compared

to the others. This means that not only the number of structural features per metaclass but

also the edges per vertex are quite high. This results in more possibilities for larger role models

such as the one for the generic refactoring Extract X with Reference Class. The same can be

observed for Ecore and UML. The ratio of the edges per vertex for UML is still very high with

19.37. Java has many valid matches for this role model, too, but they result from the high number

of metaclasses in general.

The objective of our incremental matching strategy is to reduce all possible valid matches for

supporting the DSL designer in specifying a role mapping. The contents of Table 10.5 can be

interpreted as follows. The best results are achieved for languages, where the overall number

of matches (i.e., the �rst number) is greater than 0 and less than 20. Such cases indicate that

no manual mappings need to be speci�ed to get full suggestion support. The DSL designer

simply needs to select one of the suggested role mappings. This holds for every role model for

TimedAutomata (excluding the role models that cannot be matched). Some other languages

almost achieve such results: OWL, Concrete Syntax and PL/0. In these cases, only few role

models require to map one role in order to get less than 20 valid matches.

In total, there are 48 cells in Table 10.5, each representing a metamodel/rolemodel pair. 20

of these pairs have less than 20 possible matches, 5 cells do indicate more possible matches,

but these can be reduced to under 20 solely by mapping one role manually. All other cells

represent cases where more than 1 role must be mapped manually. But only in 7 cases more than

2 mappings have to be established manually to reduce the set of valid matches appropriately.

Thus, we can summarise that suggestion support is feasible here.

Compared to the number of existent roles in the particular role models, the average numbers

of manual mappings for the metamodels of Java and especially UML are quite bad. Consider,

e.g., UML and Extract X with Reference Class where we �nd an average of 4.33 manual mappings

to yield a result set of at most 20 valid matches. This value is relatively poor because it almost

correlates with the number of 5 roles in the role model. That means that, in average, one must

almost map �ve roles to get a role mapping derived which contains �ve roles which is not

supportive for the DSL designer. At least, the role collaborations are mapped automatically. The

average numbers for the other role models are analogous. At �rst sight, those numbers really

seem not supportive. But, on the other hand, matching every role model to every metamodel

always yields cases in which manually mapping a role to a metaclass once results in a set of less

than 20 valid matches. That means, there are always situations in which the DSL designer only

needs to do one manual mapping and the suggestion engine can provide support by calculating

the few resulting valid matches. This is also the case for complex metamodels such as UML or

Java.

Furthermore, it is obvious that one concrete target role mapping can be derived from di�erent

possibilities of manual mappings, let it be only one or incrementally more than one which yield

the same role mapping. One interesting fact here is that some variants of manual mappings need

less manual mappings than others to produce a manageable set of valid matches containing the

target role mapping. In other words, it depends on the order of mapping roles to metaclasses.

154

10.3. Proof of Concept: Co-Refactoring OWL and Ecore Models

Remember, for example, the previously derived role mapping in Fig. 10.1 from manually mapping

the role Extractee from the role model Extract X to the metaclass Region from the UML. The

same role mapping can be obtained if the incremental matching strategy is processed in the

following order of manual mappings:

1. NewContainer := StateMachine

2. ContainerContainer := Interface

3. Extractee := Region

As one can see from this example, the same results can be achieved in di�erent ways. The

reason for this is that the metaclass Region is referenced (in terms of a containment reference) less

times from other metaclasses (4) than the metaclass StateMachine references other metaclasses

(23). Thus, more possibilities remain when starting with the mapping from NewContainer
to StateMachine than with the mapping from Extractee to Region. This is an important

fact which must be taken into consideration by DSL designers. More supportive results can

be achieved by mapping roles to metaclasses holding relations to other metaclasses which

correspond to the role collaborations and, more importantly, which are few in quantity. Thus, it

is obvious that if a role model is to be matched onto a structure of a certain metamodel which

re�ects the same structure as the role model, only a single role mapping is possible for this

structure. The high number of structural features per class in the UML metamodel, hence, is the

reason for the extremely high quantities of possible valid matches.

To summarise, we can say that suggestion extremely depends on the complexity of the target

metamodel. If there is a high number of metaclasses and a high number of structural features per

metaclass the DSL designer only gets constructive support if she maps some roles manually to

reduce the resulting set of valid matches. Furthermore, it can be useful to map roles to metaclasses

having, �rst, relations to other metaclasses which correspond to the role collaborations and,

second, having a number of relations which correlate approximately to the number of role

collaborations. But, we are aware that the latter is not always possible. If a DSL designer exactly

knows which role to manually map to which metaclass it might be the case that she does not

need tool support at all. In this case she can map the whole role model by herself.

Beyond that, it must be emphasized that the determination of all valid role mappings needs to

be performed only once per metamodel version. The result then can be persisted into a database,

e.g., and the suggestion engine than can query the database instead of determining potential

mappings on demand. This must be avoided at all cost, especially for complex metamodels.

10.3. Proof of Concept: Co-Refactoring OWL and Ecore Models

As a last evaluation scenario, a proof of our co-refactoring concept and implementation is

provided in this section. Here, we want to return to the running example of Sect. 8.2: ontology-

driven requirements engineering and development. Consider again the process illustrated in

Fig. 8.3 on page 107. We argued that the ontology serves as base for successive transformations.

Hence, domain models in terms of Ecore can be generated from the ontology. We restrict the

presentation of this proof of concept to the situation where an Ecore model is generated from an

155

10. Evaluation

ontology encoded in the OWL syntax. For being able to achieve this on the base of EMF, we use

the textual DSL for OWL speci�ed with EMFText
2

in order to consider OWL artefacts as models.

In the following, we describe seven coupled refactorings between OWL and Ecore models.

Afterwards, the concrete realisation of the respective Co-RefSpecs is shown before we close with

a discussion.

10.3.1. Coupled OWL-Ecore Refactorings

The following coupled refactorings between OWL and Ecore models have been jointly discovered

and de�ned with Tittel in [Tit11].

Ontologies are used in the IT to de�ne concepts and relations between them in a particular

domain. In contrast to domain models, an ontology also contains the instances of such concepts

which can hold speci�c relations to other constituents of the ontology again. Thus, ontologies

are used to represent knowledge and to reason about it.

The main concepts of ontologies are classes, individuals and properties [Hor08; Tit11]. Classes

denote the concepts of a domain, whereas individuals represent instances of them. Relations

between all constituents can be speci�ed by properties. Thus, ontologies are related to domain

models, but are more expressive.

When ontologies are the base of an ontology-driven development process, they are most

likely subject to evolution; especially, it must be supported to refactor them. As a consequence,

domain models which were generated from an ontology must stay consistent in such a scenario.

Therefore, coupled refactorings between OWL ontologies and Ecore models are presented in the

following.

Renamings

Renaming ontology elements yields the renaming of the according elements in the Ecore model.

Since the name of an ontology itself has a slightly di�erent meaning than the name of ontology

classes or properties, these cases are distinguished. The name of an ontology is considered to

be the identi�er for the outer world. Thus, an ontology is not meant to be just a local artefact.

Therefore, the name can be considered as a uni�ed identi�er (which must be unique) in contrast

to the names of classes and properties. Their names must be unique locally in the ontology, but

are distinguishable from the outside with respect to the ontology name. Hence, on the one hand,

the renaming of an ontology corresponds to the renaming of the metamodel contained in an

Ecore model. In contrast, renamings of classes in an ontology yield renamings of metaclasses in

an Ecore model.

Extracting an OWL Class

As already mentioned, relations between ontology concepts are represented by properties.

Properties are �rst class constituents in ontologies, but are re�ected by references in metamodels.

In OWL, such relations are represented by object properties having a domain and range referring

to other classes. Such object properties can be generalised by providing a new class which

2http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo_OWL2_Manchester (visited

1st March 2015)

156

http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo_OWL2_Manchester

10.3. Proof of Concept: Co-Refactoring OWL and Ecore Models

becomes the new domain of the object property. Then, the previous domain class must subclass

the new one. Thus, such an extraction of a new OWL class corresponds to the extraction of a

super-metaclass in a metamodel.

Pulling up a Property

Similar to the extraction, an ontology property can be pulled up to an existing class. The

di�erence to the extraction is that the class already exists. Pulling up a feature in the metamodel

to an existing metaclass is the corresponding refactoring.

Introducing an Inverse

When classes in an ontology are related via an object property, this property is directed from

the domain to the range. To realise the other direction, a new object property is created having

the reversed domain and range set. This modi�cation is re�ected in metamodels by adding a

new reference in the target metaclass of the reference belonging to another metaclass. Both

references then must be declared as their inverse.

Class Duplication

To introduce a new ontology class which has the same properties as another, but which should

be re�ned further, the other class can be duplicated and a new name must be set. The subClassOf

relations must be incorporated as well. The same procedure should be applied for metamodels.

Conversion of Data to Object Properties

Ontology classes can also be related to simple data types such as strings. Therefore, a data

property de�nes the class as domain and the simple type as range. In case this relation to the

simple data type is not expressive enough anymore, it should be converted into an object property

which then can be enriched by other properties. This refactoring is similar to the Replace Data

Value with Object refactoring proposed in [FBB+99], for which reason it is the coupled refactoring

in the metamodel.

10.3.2. Realisation

In the following, the Co-RefSpecs of the presented coupled refactorings are shown. They are

pretty much straightforward and most often, domain-speci�c role models were used for the role

mapping. We denote the mapped role models in the captions of the following listings for the

purpose to be looked up in the Table 10.1 in Sect. 10.1.2. For the captions the following syntax

pattern is used: <OWL refactoring> (<mapped role model for OWL >) ⇒ <Ecore refactoring>

(<mapped role model for Ecore>).

The depicted listings represent the Co-RefSpecs of the de�ned coupled refactorings from the

previous section. As can be seen in Listing 10.5, the Co-RefSpec for the pull-up co-refactoring

has no binding expression speci�ed. The reason is that ontologies can be more expressive than

domain models speci�ed with Ecore. Therefore, no assumptions about the potential target of the

157

10. Evaluation

1 CoRefSpec for <http://www.eclipse.org/emf/2002/Ecore>
2 import owl:<http://org.emftext/owl.ecore>
3 {
4 incoming refactoring owl:<Rename Ontology>
5 outgoing corefactoring <Rename EElement> $
6 OUT.Nameable.name = IN.Nameable.name
7 $
8 }

Listing 10.2: Rename Ontology (Rename X)⇒ Rename EElement (Rename X).

1 CoRefSpec for <http://www.eclipse.org/emf/2002/Ecore>
2 import owl:<http://org.emftext/owl.ecore>
3 {
4 incoming refactoring owl:<Rename Element>
5 outgoing corefactoring <Rename EElement> $
6 OUT.Nameable.name = IN.Nameable.name
7 $
8 }

Listing 10.3: Rename Element (Rename X)⇒ Rename EElement (Rename X).

1 CoRefSpec for <http://www.eclipse.org/emf/2002/Ecore>
2 import owl:<http://org.emftext/owl.ecore>
3 {
4 incoming refactoring owl:<Extract Superclass>
5 outgoing corefactoring <Extract Super Class>$
6 OUT.NewContainer.name = IN.NewContainer.name;
7 $
8 }

Listing 10.4: Extract Superclass (Extract Loosely X)⇒ Extract Super Class (Extract X).

1 CoRefSpec for <http://www.eclipse.org/emf/2002/Ecore>
2 import owl:<http://org.emftext/owl.ecore>
3 {
4 incoming refactoring owl:<Pull Up Property>
5 outgoing corefactoring <Pull Up Feature>
6 }

Listing 10.5: Pull Up Property (Re-reference X)⇒ Pull Up Feature (Move X).

158

10.3. Proof of Concept: Co-Refactoring OWL and Ecore Models

1 CoRefSpec for <http://www.eclipse.org/emf/2002/Ecore>
2 import owl:<http://org.emftext/owl.ecore>
3 {
4 incoming refactoring owl:<Introduce Inverse Property>
5 outgoing corefactoring <Introduce Inverse Reference>$
6 OUT.InverseReference.name = IN.InverseReference.name;
7 $
8 }

Listing 10.6: Introduce Inverse Property (Introduce Inverse Reference In Container)⇒ Introduce

Inverse Reference (Introduce Inverse Reference).

1 CoRefSpec for <http://www.eclipse.org/emf/2002/Ecore>
2 import owl:<http://org.emftext/owl.ecore>
3 {
4 incoming refactoring owl:<Duplicate Class>
5 outgoing corefactoring <Duplicate Class> $
6 OUT.Duplicate.name = IN.Duplicate.name
7 $
8 }

Listing 10.7: Duplicate Class (Duplicate With Reference) ⇒ Duplicate Class (Duplicate With

Reference).

1 CoRefSpec for <http://www.eclipse.org/emf/2002/Ecore>
2 import owl:<http://org.emftext/owl.ecore>
3 {
4 incoming refactoring owl:<Convert Data Property To Object Property>
5 outgoing corefactoring <Replace Data Value with Object> $
6 OUT.NewFeature.name = IN.NewFeature.name;
7 OUT.Range.name = IN.Range.name;
8 $
9 }

Listing 10.8: Convert Data Property To Object Property (Replace Feature)⇒ Replace Data Value

with Object (Replace Feature In Container).

159

10. Evaluation

pulled up property can be made. In case no binding expression was speci�ed, the user is asked

on-demand.

For being able to test co-refactoring scenarios automatically, we implemented an extensible

and highly �exible test suite. Similar to the one mentioned in Sect. 10.1, the desired models to

run the tests on are de�ned in a con�guration �le. Thus, new use cases can be easily appended.

One must provide an input model for both the initiating refactoring and the co-refactoring.

Furthermore, for each of them an expected model must be provided, which then can be compared

to the result of the refactoring and co-refactoring.

10.3.3. Discussion

In this section, a proof of the co-refactoring concepts (cf. Chap. 8) and implementation in

Refactory (cf. Sect. 9.3) were presented. We have explained seven coupled refactorings regarding

the ontology-driven development scenario from Sect. 8.2. The according Co-RefSpecs were

realised within an extensible test suite, so that it can be validated automatically. As can be

observed, these Co-RefSpecs are not complex and the creation is quite feasible for a co-refactoring

engineer (cf. Fig. 8.5 on page 114).

Nevertheless, we do not claim that the presented proof of concept is all-encompassing. It

covers only a small dedicated scenario, but nevertheless the described use case is fully supported

by the presented solution. But we are convinced that it can be applied to other domains with

little e�ort. An extensive evaluation is left open for future work.

160

11
Summary, Conclusion and Outlook

In this �nal chapter, the contributions of this thesis are summarised. Afterwards, a conclusion is

drawn and the contributions are related with the requirements stated before. A discussion of

open issues and future work closes this thesis.

11.1. Summary

In this thesis, we have presented a comprehensive approach for generic quality-aware model

refactoring and co-refactoring to resolve quality smells. It is divided into three parts: 1) Generic

Model Refactoring, 2) Quality Smells and 3) Co-Refactoring. Since no approach existed before that

covers all of these parts, the discussion of related work is distinguished according to these three

aspects, as well.

Chapter 3 revealed deeper insights regarding the related work in the three areas. First, we

discussed other model refactoring approaches and classi�ed them depending on the MOF layer

refactorings are speci�ed at. It became clear that the M3 approaches are generic but lack �exibility.

They abstract from the potential target languages and expose a common meta-metamodel for

them upon which refactorings are speci�ed. Concepts of the target languages then are mapped

to it. Since such a mapping is �x, the de�ned generic refactorings cannot be reused as di�erent

refactoring in the same language. Thus, the use of one dedicated common meta-metamodel

compares to our approach in the sense that this meta-metamodel can be considered as one single

role model, which can only be mapped once. Thus, the M3 approaches are too static. Refactorings

speci�ed at the M1 layer are de�ned by recording respective modi�cations in example models.

These modi�cations are generalised to the M2 layer. Thus, M2 and M1 approaches share the

same advantages and disadvantages. Refactorings are de�ned for a speci�c target language.

Thus these approaches are �exible, but not generic. The result of this analysis was that the

speci�cation of model refactorings at one MOF layer is not satisfactory.

Second, related work regarding quality smells was discussed. We have shown that only some

approaches support the detection and resolution of model de�ciencies in general, while others

161

11. Summary, Conclusion and Outlook

realise it for speci�c domains or qualities yet. On the other hand, approaches exist that cover the

resolution only. Thus, they can only be applied in combination with other approaches. The main

drawback of the related work in this area is that the relation to qualities is not explicit.

Third, the presentation of co-refactoring approaches revealed that almost none of them takes

into account the detection of model dependencies. We consider this an essential constituent of a

co-refactoring approach. Furthermore, many presented approaches in this area are speci�c for a

dedicated domain or scenario. Thus, they cannot be applied for co-refactoring in general.

The �rst main contribution of this thesis is presented in Chap. 4: Role-Based Generic Model

Refactoring. To overcome the limitations of the M3 approaches, a more �exible abstraction

mechanism was found by the use of role models. In our approach, role models de�ne potential

participants of a refactoring with roles. Required structures the participants must expose are

de�ned by collaborations between roles. Thus, a role model provides an explicit structure of the

participating elements of a refactoring and, therefore, abstracts from the refactoring in contrast to

the target language. The other two main parts of the thesis will heavily bene�t from the concept of

role models. The intrinsic transformation is speci�ed with our refactoring speci�cation language.

It is independent of any target DSL and de�nes the desired modi�cations on top of role models.

To make a generic role model available in a certain target language, a role mapping must be

provided. This is to map the role model of a refactoring to a dedicated structure in the metamodel.

In addition, our approach also contains a solution for the composition of refactorings. This is

achieved by de�ning a sequence of role mappings and correlate the roles of the mapped role

models. This must be applied in order to express which elements from a preceding refactoring

correspond to which elements in a succeeding refactoring. Preservation of static semantics is

covered by means of checking well-formedness rules as pre- and post-conditions.

In Chap. 5, we have stressed the fact that DSL designers need support for specifying role

mappings, since the set of all possible valid role mappings might be huge. Therefore, a suggestion

approach is presented. Therein, role models are translated into graph queries and, thus, can

determine all possible role mappings in a target language. A manual mapping of a role to a

certain metaclass can drastically reduce the resulting set of potentially possible role mappings

and the DSL designer can get automatic support.

The second main contribution is presented in Chap. 6: Role-Based Quality Smells as Refactoring

Indicator. We argue that the term bad smell from Fowler et al. [FBB+99] is too imprecise and

the assumptions regarding qualities are only implicit. Therefore, we de�ned the new term

quality smell and provided a conceptual framework for it. The concept of quality smell explicitly

correlates model de�ciencies with the qualities they deteriorate and refactorings which can

potentially resolve these de�ciencies. Our quality smell approach separates quality smells from

their particular detection strategy to allow for independent development of both. For a quality

smell, further roles can be de�ned which represent relevant participants of interest in a detected

quality smell. The elements bound to these roles (if the quality smell is detected) can be related

to roles of a resolving refactoring again. Thus, model elements causing the quality smell can

be directly de�ned as subjects of a resolving refactoring. Detection strategies are developed

by specifying calculations which can be considered as reusable calculation components. Such

components then can be composed by means of propositional logics to form complex detection

strategies. As components metrics-based and structure-based calculations are supported. As a

concrete instantiation of this conceptual quality smell framework we present a quality smell

catalogue in Chap. 7. It contains 9 structure-based quality smells which can be applied in the

162

11.2. Conclusion

domain of mobile Android development.

The third main contribution is presented in Chap. 8: Role-Based Co-Refactoring in Multi-

Language Development Environments. The principal work�ow of co-refactoring is that a model

is refactored initially and dependent model elements have to be determined which will be co-

refactored then. Regarding the model dependencies, we identi�ed four di�erent categories

and explained how logic programming is used to detect them. We argued that for both the

determination of dependent models and the application of co-refactorings dedicated knowledge

bases are needed. The dependency knowledge base stores explicit model dependencies and can

be queried for implicit ones. The co-refactoring knowledge base contains coupled refactorings

expressing which outgoing co-refactoring must be applied as an implication of a preceding

incoming refactoring. Such couplings can be speci�ed on a generic or a speci�c basis. For the

former, only a role model is declared as incoming refactoring. This means that for speci�cation

time it is not yet known which language the initially refactored model conforms to. For the

latter, a role mapping or a composite role mapping is declared as incoming refactoring and, thus,

the language is known. For the problem of de�ning which model elements from an incoming

refactored model have to be processed in the outgoing refactoring, a binding expression can be

speci�ed. The binding expression is then evaluated by an expression language interpreter at

runtime. The integration of an expression language suits perfectly our role based approach since

expression languages usually can be extended. We realised this in order to support the use of

our role concepts within the binding expression.

In the last two parts of this thesis we provided a reference implementation of the proposed

concepts in our EMF-based tool Refactory (Chap. 9). This is used to evaluate the application of

the concepts (Chap. 10).

11.2. Conclusion

In this thesis, we have shown that the concept of role models is bene�cial for all of our contribu-

tions. For the generic refactoring approach, we used role models to capture structural constraints

of participants of a refactoring in a language-independent manner. A role mapping must be

provided to map roles to metaclasses of a particular target metamodel in order to enable a generic

refactoring in a concrete language. For quality smells, one can de�ne a role model or reference

an existing one to declare certain participants of a quality smell that might be of interest. The

elements which are bound to the roles in a present quality smell then can be passed to a resolving

refactoring. To co-refactor models, again the used roles from an incoming refactoring are related

to the used roles of an outgoing refactoring to prevent the user from having to provide any further

input which is already present. Thus, we can say that role models rendered as a very powerful

abstraction mechanism in the scenario of quality-aware model refactoring and co-refactoring.

As a consequence, role models can be considered as some kind of interfaces for models which

can be used for loosely coupled interaction. The interaction then can be speci�ed just depending

on the roles, regardless the context of interaction such as a refactoring, the detection of a quality

smell or a co-refactoring.

The evaluation in Chap. 10 supports our concepts and their realisation within our tool Refactory

(cf. Chap. 9). We have shown that a huge potential of reusing generic refactorings emerged since

96 concrete refactorings could be instantiated based on 27 generic ones in 18 target languages.

163

11. Summary, Conclusion and Outlook

Table 11.1.: Evaluation of the generic model refactoring approach regarding the ful�lment of the

requirements.

G
e
n

e
r
i
c
i
t
y

(
1
)

F
l
e
x
i
b
i
l
i
t
y

(
2
)

S
p

e
c
i
�

c
i
t
y

(
3
)

B
e
h

a
v
i
o

u
r

P
r
e
s
e
r
v
a
t
i
o

n
(
4
)

P
r
e
-

A
n

d
P

o
s
t
-
c
o

n
d

i
t
i
o

n
s

(
5
)

A
t
o

m
i
c
i
t
y

(
6
)

R
e
v
e
r
s
i
b
i
l
i
t
y

(
7
)

S
p

e
c
i
�

c
a
t
i
o

n
S
u

g
g
e
s
t
i
o

n
(
8
)

A
p

p
l
i
c
a
t
i
o

n
S
u

g
g
e
s
t
i
o

n
(
9
)

I
n

t
e
r
o

p
e
r
a
b
i
l
i
t
y

(
1
0
)

+ + + ◦ + + + ◦ + +

Therefore Hypothesis 1 could be shown to be true. Furthermore, the new term quality smell has

been de�ned and conceptualised in Chap. 6. Our concept abstracts from existing quality models

and supports known approaches for the determination of certain qualities by using metrics-based

or structure-based approaches. The presented implementation in Sect. 9.2 shows that it is now

possible to focus speci�c qualities to detect according quality smells and let them resolve by

refactorings. This proves Hypothesis 2. In addition, Chap. 7 provided a quality smell catalogue

for mobile Android applications. The catalogue explicitly correlates a model de�ciency with the

deteriorating qualities and resolving refactorings according to our quality smell concept. This

shows the validity of Hypothesis 3. The proof-of-concept presented in Sect. 10.3 has shown that

our co-refactoring approach is applicable in the domain of ontology-driven requirements and

software engineering. We have to admit that the case study is quite small since we only de�ned

seven co-refactoring speci�cations between OWL and Ecore models. But we are convinced that

the applicability of our co-refactoring approach could be demonstrated, last but not least, by

the detection mechanism of model dependencies, the speci�cation of coupled refactorings, and

the de�nition of bindings which are interpreted by an expression language. Thus, Hypothesis 4

could be shown to be valid.

To support the comparison of our presented approaches with the related work, we now evaluate

it regarding the requirements stated in Chap. 3. First, Table 11.1 shows the ful�lment regarding

the generic model refactoring requirements from Sect. 3.1.1. The genericity could be achieved by

using role models to abstract from refactorings and specify the according transformation based

on roles. The concept of role mappings then ensures �exibility since a role model can be mapped

to whatever structure in a target metamodel, provided that it respects the structure of the role

model of a generic refactoring. The concept of post-processors supports the speci�city, since

language-speci�c modi�cations can be implemented with them. The behaviour preservation is

evaluated as neutral, since we support the detection of the violation of static semantics based on

WFRs (cf. Sect. 4.3), but no �nal general answer could be given. For the dynamic semantics of a

language, more research has to be invested. Pre- and post-conditions, atomicity and reversibility

could be ensured by means of the implementation presented in Sect. 9.1. The speci�cation

suggestion was evaluated as neutral, since we provided an approach based an graph querying

164

11.2. Conclusion

Table 11.2.: Evaluation of the quality smells approach regarding the ful�lment of the require-

ments.

Q
u

a
l
i
t
y

R
e
l
a
t
i
o

n
(
1
)

R
e
f
a
c
t
o

r
i
n

g
R

e
l
a
t
i
o

n
(
2
)

R
e
f
a
c
t
o

r
i
n

g
S
u

g
g
e
s
t
i
o

n
(
3
)

M
e
t
r
i
c
s
-
b
a
s
e
d

(
4
)

S
t
r
u

c
t
u

r
e
-
b
a
s
e
d

(
5
)

C
a
u

s
e

T
r
a
c
i
n

g
(
6
)

L
a
n

g
u

a
g
e

I
n

d
e
p

e
n

d
e
n

c
e

(
7
)

L
a
n

g
u

a
g
e

S
p

e
c
i
�

c
s

(
8
)

I
n

t
e
r
o

p
e
r
a
b
i
l
i
t
y

(
9
)

+ + + + + + + + +

(cf. Chap. 5), but the evaluation in Sect. 10.2 has shown that the main problem is that a huge

amount of potentially valid role mappings might be calculated. Thus, the DSL designer has to

map roles manually to reduce the amount. The application suggestion conforms to the refactoring

suggestion regarding quality smells and is evaluated as ful�lled, since our concept of quality

smells allows for the automatic suggestion of refactorings. The interoperability is ensured by the

fact that we rely on MOF-based languages.

Second, Table 11.2 shows the ful�lment regarding the quality smells requirements from

Sect. 3.2.1. The quality relation and the refactoring relation is ensured by the new term and

concept of quality smells. It explicitly correlates de�ciencies with deteriorating qualities and

resolving refactorings. Because of this correlation, the refactoring suggestion is also ensured.

Refactorings can be recommended in case quality smells occur. Metrics-based and structure-based

quality smells are supported by calculation strategies. As a proof-of-concept, we have shown

how IncPL is used to specify structure-based quality smells. The result of a detection strategy

references the causing elements and, thus, cause tracing is ensured. The approach itself is language

independent, since we make no assumptions regarding possible target languages. Nevertheless,

language speci�cs can be taken into account in the detection strategies. The interoperability is

ensured by the fact that we rely on MOF-based languages.

Third, Table 11.3 shows the ful�lment regarding the co-refactoring requirements from Sect. 3.3.1.

Our concept of Dependency Knowledge Base ensures that dependent models and according depend-

ent elements can be determined. The requirements of incoming refactoring, condition speci�cation

and outgoing co-refactoring is supported by the Co-Refactoring Speci�cation by means of ECA

rules. Dependent bindings can be speci�ed as a binding expression in a RefactoringAction.

Again, language independent and interoperability is supported by the use of MOF and language

speci�cs can be encoded in the aforementioned binding expressions.

As a conclusion, we can classify our comprehensive approach of generic quality-aware refac-

toring and co-refactoring to resolve quality smells into the category R-CoR-SD-Q. We cover all

required aspects of refactoring, co-refactoring, de�ciencies and the relation to qualities.

165

11. Summary, Conclusion and Outlook

Table 11.3.: Evaluation of the co-refactoring approach regarding the ful�lment of the require-

ments.

D
e
p

e
n

d
e
n

t
M

o
d

e
l
s

(
1
)

D
e
p

e
n

d
e
n

t
E

l
e
m

e
n

t
s

(
2
)

I
n

c
o

m
i
n

g
R

e
f
a
c
t
o

r
i
n

g
(
3
)

C
o

n
d

i
t
i
o

n
S
p

e
c
i
�

c
a
t
i
o

n
(
4
)

O
u

t
g
o

i
n

g
C

o
-
R

e
f
a
c
t
o

r
i
n

g
(
5
)

D
e
p

e
n

d
e
n

t
B

i
n

d
i
n

g
(
6
)

L
a
n

g
u

a
g
e

I
n

d
e
p

e
n

d
e
n

c
e

(
7
)

L
a
n

g
u

a
g
e

S
p

e
c
i
�

c
s

(
8
)

I
n

t
e
r
o

p
e
r
a
b
i
l
i
t
y

(
9
)

+ + + + + + + + +

11.3. Outlook

This thesis raised further questions and some issues have not been addressed yet. In the following,

the remaining open aspects of the thesis are explained shortly. Afterwards, general open questions

and ongoing future work are discussed.

Impact of Refactorings A �rst open issue is the investigation of refactoring impact from di�erent

points of view. As we discussed in Sect. 6.3, a refactoring which resolves a quality smell can in

turn evoke other quality smells. This is due to the fact that qualities might be interrelated, depend

on each other or are rather contradictory [CNYM00; Sai03; Koz11; Are14]. The important point is

that the relations between qualities cannot be generalised. It heavily depends on the system under

development, the platform it should be run on and other factors like the interaction with external

components. Thus, no generic solution can be proposed. In our approach, this problem is faced in

two ways. First, the responsibility is shifted to the DSL designer and we sensitize her to carefully

develop the quality smells. Second, we allow for previewing a refactoring. This means that the

direct impact can be investigated for the model which is to be refactored. As a consequence,

the detection of quality smells can be applied on the preview and newly evoked quality smells

can be revealed on-demand. The drawback of this practice is that it is a runtime approach and

can produce huge overhead because of the additional execution of detection strategies on the

preview. It might be better to have a development time approach, which, e.g., takes into account

the structure of the refactoring’s role model, the roles of interest of the quality smells, and the

target metamodels. We are convinced that research into this direction is promising, since role

models expose relevant structures of refactorings and quality smells beforehand and should be

used for further analysis. In [Are14], Arendt faces this problem by explicitly relating resolving

refactorings with de�ciencies they can cause in turn. But we argue that his approach is too rigid

and can cause huge overhead, because it requires a DSL designer to always investigate every

speci�ed model refactoring in case a new quality smell was de�ned. She must decide if existing

refactorings may evoke a newly de�ned quality smell.

A similar problem arises in the co-refactoring scenario, as discussed in Sect. 8.5. A refactoring

166

11.3. Outlook

can cause a co-refactoring, which again may initiate another co-refactoring, and so on. Thus,

branches of the refactoring stream can result in cycles. The problem is not a cycle itself but

how to avoid endless loops. Currently, our approach only supports the preview of a refactoring

by which the direct impact can be investigated. Theoretically, this preview can be propagated

along the refactoring stream to investigate if loops occur. But this only shifts the problem to the

virtual models of the preview. Endless loops cannot be detected this way. Furthermore, it is not

trivial to analyse this in a static manner because it heavily depends on the current refactoring

stream, which can change dynamically. In practice, we can only detect if a model which is to be

co-refactored already was subject of another (co-)refactoring earlier on the refactoring stream.

In such a case, the user must decide how to proceed and if the refactoring stream should be

stopped.

Impact of Quality Smells As already discussed in Sect. 6.3 and mentioned before, the resolu-

tion of quality smells increases certain qualities but can deteriorate others since they can be

interrelated [CNYM00; Sai03; Koz11; Are14]. Since our quality smell approach abstracts from

measuring certain qualities by using a generic concept of quality, the intrinsic satisfaction of

particular quality requirements must be investigated. Thus, existing approaches for measuring

qualities must be integrated. For the quality energy e�ciency the work presented in [Wil14] is

promising, since it allows for measuring the energy consumption of mobile Android applications

before and after a refactoring. Thus, the quality smells presented in Chap. 7 should be subject of

this further research. Furthermore, the catalogue should be extended and more quality smells be

added. To accomplish this task, at least a strategy for acquiring quality smells has been presented

in Sect. 7.2. In this sense, an intensive evaluation of the triggering of quality smells must be

conducted in future work in which the impact of resolving refactorings regarding the particular

qualities is measured.

Suggestion of Co-Refactoring Specifications In Sect. 8.4.3, we have illustrated two possibilities

to support the co-refactoring engineer in determining appropriate coupled refactorings for

the speci�cation of co-refactorings. The �rst alternative is to suggest role mappings, which

map the same role model is an initial refactoring. This is only feasible in case the dependent

refactorings are really similar, which is not the case in general. The second alternative is to

integrate the user and ask her how to proceed in case no appropriate co-refactoring was de�ned.

As a consequence, other approaches should be investigated. As a �rst research direction, we

propose to learn from the �eld of the composition of semantic web services [PKPS02; SPAS03].

Therein, a semantic description of web services is exposed and a matching engine tries to match

suitable semantic capabilities of web services. Nevertheless, such an approach could not o�er

suggestions regarding the binding expression. It can only recommend matching refactorings

based on their role mappings.

Evaluation in Industrial Context In addition to the presented evaluation in Chap. 10, the whole

concept and the implementation within Refactory should be evaluated in a broader setting.

Therefore, our co-refactoring approach must be evaluated more extensively. Furthermore, an

evaluation in an industrial context should be conducted. We recommend to realise such an

evaluation in a context, which contains a huge tool chain like in the automotive area. For instance,

167

11. Summary, Conclusion and Outlook

the industrial product PREEVision
1

provides a tool chain for the model-based development of

distributed systems for the automotive sector [Vector13]. Standards like AUTOSAR
2

[FMB+09] or

ReqIF [OMG13a] are incorporated in this product. We are convinced that providing refactoring,

quality smell and co-refactoring facilities in an automotive design tool can raise productivity and

quality tremendously. Thus, not only the evaluation in an industrial context should be realised

in future but also an empirical evaluation regarding cost and utility.

Back-Propagation of Structural Quality Smells As a last issue, we consider worthwhile for future

research, the back-propagation of structural quality smells along a transformation chain. Consider,

e.g., the quality smells within our catalogue in Chap. 7. They describe quality smells for mobile

Android applications. Thus, they regard the implementation phase in MDSD processes. Usually,

chains of transformations are used in the MDSD to derive models from other models and �nally

generate code (which is also a model). As can be observed, the generated code is placed at the

end of such a transformation chain. We argue that the root cause, which results in the presence

of a quality smell may be situated in earlier phases and quality smells should be detected as

early as possible [Sai03]. Thus, we propose to investigate if and how structure-based quality

smells can be analysed in order to determine the point in time of a transformation chain, which

causes a particular quality smell. Since we have a precisely de�ned pattern by means of IncPL,

the re�ected structure could be compared with preceding transformations in the chain. Thus,

this investigation is threefold. First, it must be analysed how a transformation chain can be

executed symbolically in order to avoid overhead and to reveal information about the structures

a transformation produces. Thus, symbolic transformations must be forward-propagated up

to the point where the quality smell is situated. Second, the structure of the quality smell

and the determined structure of a symbolic transformation must be compared in order to �nd

out if the quality smell was caused in earlier phases of the transformation chain. Third, if the

comparison rendered successful the quality smell must be back-propagated to the beginning of

the transformation chain to �nd the distinct phase where the quality smell was originally caused.

1https://vector.com/vi_preevision_en.html (visited 5th March 2015)

2http://www.autosar.org/ (visited 5th March 2015)

168

https://vector.com/vi_preevision_en.html
http://www.autosar.org/

Appendix

A. List of Role Models

Nameable
name

(a) Rename

X

ContainerContainer

Extract

MovedReference

OriginalContainer
NewContainer

newName

targetsource

extracts moved

referrer

containerRef

(b) Extract X With Reference Class

Figure A.1.: Role Models Part 1.

Movee

SourceContainer

TargetContainer
target-
Containment

source-
Containment

container-
Reference

(a) Move X

ContainerContainer

NewContainer

newName
OriginalContainer

Extractee

targetsource

moved

reference

extracts

(b) Extract X

Figure A.2.: Role Models Part 2.

169

Appendix

DerivationContainer

Derivation
name

Derivee

derivation

derivees

(a) Introduce Reference Class

NewContainer

OriginalContainer

Extractee
moved

newParent

extracts

(b) Extract Sub X

Figure A.3.: Role Models Part 3.

RemoveeContainer

Removee

removees

(a) Remove Empty

Contained X

Container

Neighbour

Movee

neighbour

movedElements

(b) Move X loosely

Container

Removee

removees

(c) Remove Con-

tained X

Figure A.4.: Role Models Part 4.

RemoveeContainer

Removee

removees

(a) Remove Unused

Contained X

Duplicate

name

Container

Base

Appendix

base duplicate

duplicateAppendixbaseAppendix

reference

(b) Duplicate With Reference

Figure A.5.: Role Models Part 5.

170

B. Comparison to Role Feature Model

B. Comparison to Role Feature Model

Based on the role metamodel presented in Sect. 4.2.1, we are able to model the structures required

by all refactorings presented in Sect. 10.1. But we want to compare it with the proposal of Kühn

et al. in [KLG+14], since the authors recognized that there is no clear common understanding

of the role concept. In this publication, they analyse existing role modelling approaches since

the year 2000 and identify commonalities and di�erences which they derive a feature model

from extending the proposed role features of Steimann in [Ste00]. This feature model represents

a language family for role models. The discussed features for role models have a pretty much

more formal grounding than we have in our role metamodel. With the help of the tools Fea-

tureIDE
3

[TKB+14] and DeltaEcore
4

[SSA14] it can then be used to generate a new metamodel

for role models dependent on the selected desired features.
5

According to [KLG+14], we would only need the Role Properties feature regarding the structure.

As valid role Players we only need the mandatory feature Objects since we do not allow that roles

or other role models can play roles again (because in our approach a role model corresponds

to the context). Regarding the Playable concepts, we only select Role Dependent Player Features

and Di�erent Roles Simultaneously. We omitted the whole optional Compartment Types feature

group. A compartment type re�ects the context concept of role models. It is true that we make

use of a context but only implicitly. In our approach di�erent refactorings (not a refactoring

execution) are considered to be the refactoring context for a particular target DSL. In this sense, a

role model corresponds directly to the context in our approach and no additional sub-features

of Compartment Types are needed. That is also the reason why the Dependent sub-feature On

Compartments is deactivated. Furthermore, in our approach only the constraints Role Implication

and Role Prohibition are needed. These Role Constraints correspond to our Collaboration
concept. In addition, our role modelling approach assumes a Shared Identity for a role and

its playing object. As a last feature we select Relationship Cardinality as valid Relationship

Constraints.

Based on a role feature selection and the speci�ed cross-tree constraints from [KLG+14]

a metamodel for roles can be generated. Nevertheless, our proposed role metamodel from

the previous section contains two additional metaclasses not having correspondences in the

role feature model of Kühn et al. at all, namely RoleComposition and RoleAssociation.

According to [Gui05], those are called parthood relations. The reason for this design decision

is that our metamodel is an abstraction for the participants of refactorings. Thus, it must

be capable of re�ecting over the structures of participating elements. Since the MOF meta-

language [OMG13c] provides means to model composite and associative relations, these have to

be re�ected in our metamodel. As a consequence, the role metamodel presented in Sect. 4.2.1 is

speci�c for abstracting over structures in a speci�c context. In contrast to this, a role metamodel

perceived by a feature selection according to [KLG+14] targets the behavioural aspect of role

models and explicit contexts, whereas in our approach the context is a generic refactoring itself

and thus implicit. Nevertheless, Kühn et al. allow for modelling parthood relations by means of

annotating them to relations as constraints.

In addition, both Steimann and Kühn et al. argue that a role is only valid if it shares a context

3http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/ (visited 12th February 2015)

4http://deltaecore.org/ (visited 12th February 2015)

5http://st.inf.tu-dresden.de/RML/ (visited 12th February 2015)

171

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
http://deltaecore.org/
http://st.inf.tu-dresden.de/RML/

Appendix

with a relation to another role. This means that no single role can occur as the only element

in a role model. In contrast to this, our approach allows for this scenario since we abstract

over structural properties of refactoring participants. Thus, it is de�nitely valid if a role model

contains only one role which in turn owns a role attribute as the structural property of interest.

In the terminology of Steimann and Kühn et al. this means that the role shares a context with

a relation to its attribute within the speci�c generic refactoring the role model corresponds to.

An example for this is a generic Rename refactoring (cf. Fig. A.1 (a)). The role model contains

only one role owning one attribute which expresses a property that is to be renamed in the

refactoring.

Furthermore, our metamodel was developed in an iterative process and was published in 2010

already [RSA10]. It was subject to further evolution stages [RSA13; ABB+14] but it is stable now

with respect to our requirements. Therefore, it would be too complex to replace the existing

role metamodel with a completely di�erent one which most likely a�ects existing clients and

their generic refactorings. Besides, a generated role metamodel in terms of a feature selection

according to Kühn et al. would not exactly meet our requirements and intention. Summarising

one can say that for future role metamodel developers we de�nitely recommend the approach

and the tool presented in [KLG+14].

172

C. Complete List of Role Mappings

C. Complete List of Role Mappings

The following Table C.1 shows the complete list of all role mappings we considered useful. In

the �rst column, the metamodel is denoted whereas the second column contains the name of the

concrete refactoring. The third column contains a check symbol in case a concrete refactoring

required a post-processor. Furthermore, the table contains rows covering all three columns and

�lled grey. These rows denote a generic refactoring and the subsequent refactorings are instances

of it.

Table C.1.: Complete list of refactorings.

Metamodel Speci�c Name PP
Extract X with Reference Class

AppFlow Encapsulate In Panel

Conference Extract Track

Forms Introduce Item Group

Java Extract Method X

OWL

Extract to new super class

Extract to new de�ned class

PL/0 Extract Procedure

SimpleGUI Encapsulate In Panel

TextAdventure Move To New Room

UML Extract CompositeState X
ConcreteSyntax Extract Rule X

Rename X

AppFlow Rename Element

Company

Rename Company

Rename Department

Rename Employee

Conference Rename Conference Element

Feature Models Rename Feature

Forms Rename Option

Java Rename Element

O�ce

Rename Employee

Rename O�ce

OWL

Rename Element

Rename Ontology

PL/0

Rename Procedure

Rename Declaration

Rename Program

Roles Rename Role

Sandwich Rename Ingredient

TextAdventure

Rename Room

Rename Door

TimedAutomata Rename EElement

Ecore Rename EElement

BPMN 2 Rename Flow Element

UML Rename Element

ConcreteSyntax

Rename Token

Rename Token Rede�nition

Rename Partial Token

Introduce Reference Class

Ecore Derive Composite Interface

173

Appendix

Feature Models Introduce Constraint

UML

Create Sub Interface

Create Subclass

Remove Empty Contained X

Java Remove Empty Methods

OWL Remove Empty Classes

UML Remove Empty Superclass

Remove Unused Contained X

Java Remove Unused Parameters

UML Remove Unused Classes

Duplicate With Reference

OWL Duplicate Class

Ecore Duplicate Class

Remove Contained X

OWL

Remove Disjoint Axioms

Remove Inverse Property

Ecore Remove Inverse Reference

Move X

Java Move Method

OWL Pull up Axiom

PL/0 Pull Up Constant

Ecore Pull Up Feature

UML

Pull Up Property

Pull Up Operation

Pull Up Operation To Interface

Pull Up Operation To Super Interface

Extract X

Ecore

Extract EEnum

Introduce Parameter Object

Extract Super Class

Extract Interface From Features

Extract Interface From Operations

UML

Extract Super Class

Extract Interface

Move X loosely

Forms Move Group Next To

O�ce Move Employee Next To

OWL Move Element loosely

Extract Sub X

Company Extract Sub-Department X
Ecore Extract Sub EPackage

BPMN 2 Extract Sub Process X
UML Extract Sub Package

Select X

Java

Move GPS resource request to visible state method X
Add Data Compression to Apache HTTP Client based �le transmission X
Transform acquire statement to use timeout X
Let activity class override onLowMemory() method X
Introduce Noti�cation X
Replace exact with inexact Alarm Manager X
Use unique generated id for tracking hardware id X

OWL Add Covering Axiom X
Introduce Referrer To All X

174

C. Complete List of Role Mappings

OWL Make All Individuals Distinct

Inline X

Ecore Inline Class

Replace Feature

OWL Convert Data Property To Object Property

Simple Move X

OWL Move Element simple

Create Referenced Elements

OWL Create Enumerated Class

Introduce Inverse Reference In Container

OWL Introduce Inverse Property

Introduce Simple Reference Class

AppFlow Create Initial State X
Slow For Loop

Java Replace slow for loop with extended for loop X
Re-reference X

OWL Pull Up Property

Introduce Inverse Reference

Ecore Introduce Inverse Reference

Introduce Class And Reference

OWL Create Individuals to Class

Extract X Loosely

OWL Extract Superclass

Convert X

Ecore Convert EClass to EData Type

Replace Feature In Container

Ecore Replace Data Value with Object

Extract X from Children

UML Introduce Parameter Object X

175

Appendix

D. List of all IncPL Patterns for Detecting Quality Smells

1 pattern dataTransmissionWithoutCompressionOptimised(FileBodyConstructor:
NewConstructorCall) {

2 find fileBodyConstructorWithFileConstructorParameter(fileBodyVar,
FileBodyConstructor, _);

3 find transmissionCoreMethodCalls(fileBodyVar, method);
4 } or {
5 find fileBodyConstructorWithFileParameter(fileBodyVar, _, FileBodyConstructor)

;
6 find transmissionCoreMethodCalls(fileBodyVar, method);
7 }
8

9 // the first possibility for instantiating a FileBody:
10 // FileBody bin = new FileBody(new File(args[0]));
11 private pattern fileBodyConstructorWithFileConstructorParameter(
12 fileBodyVar: LocalVariable,
13 fileBodyConstructor: NewConstructorCall,
14 fileArgumentConstructor: NewConstructorCall
15){
16 LocalVariable.initialValue(fileBodyVar, fileBodyConstructor);
17

18 // FileBody constructor
19 NewConstructorCall.typeReference(fileBodyConstructor, fileBodyConstructorType)

;
20 NamespaceClassifierReference.classifierReferences(fileBodyConstructorType,

fileBodyConstructorTypeReference);
21 ClassifierReference.target(fileBodyConstructorTypeReference,

fileBodyConstructorTypeReferenceTarget);
22 Class.name(fileBodyConstructorTypeReferenceTarget, "FileBody");
23

24 // File constructor
25 NewConstructorCall.arguments(fileBodyConstructor, fileArgumentConstructor);
26 NewConstructorCall.typeReference(fileArgumentConstructor,

fileArgumentConstructorType);
27 NamespaceClassifierReference.classifierReferences(fileArgumentConstructorType,

fileArgumentConstructorTypeRef);
28 ClassifierReference.target(fileArgumentConstructorTypeRef,

fileArgumentConstructorTypeRefTarget);
29 Class.name(fileArgumentConstructorTypeRefTarget, "File");
30 }
31

32 // the second possibility for instantiating a FileBody:
33 // File file = new File(args[0]);
34 // FileBody bin = new FileBody(file);
35 private pattern fileBodyConstructorWithFileParameter(
36 fileBodyVar: LocalVariable,
37 fileVar: LocalVariable,
38 fileBodyConstructor: NewConstructorCall
39){

176

D. List of all IncPL Patterns for Detecting Quality Smells

40 // File variable
41 LocalVariableStatement.variable(_, fileVar);
42 LocalVariable.initialValue(fileVar, fileConstructor);
43

44 // File constructor
45 NewConstructorCall.typeReference(fileConstructor, fileConstructorType);
46 NamespaceClassifierReference.classifierReferences(fileConstructorType,

fileConstructorTypeReference);
47 ClassifierReference.target(fileConstructorTypeReference,

fileConstructorTypeReferenceTarget);
48 Class.name(fileConstructorTypeReferenceTarget, "File");
49

50 // FileBody variable
51 LocalVariableStatement.variable(_, fileBodyVar);
52 LocalVariable.initialValue(fileBodyVar, fileBodyConstructor);
53

54 // FileBody constructor
55 NewConstructorCall.typeReference(fileBodyConstructor, fileBodyConstructorType)

;
56 NamespaceClassifierReference.classifierReferences(fileBodyConstructorType,

fileBodyConstructorTypeReference);
57 ClassifierReference.target(fileBodyConstructorTypeReference,

fileBodyConstructorTypeReferenceTarget);
58 Class.name(fileBodyConstructorTypeReferenceTarget, "FileBody");
59

60 // File variable parameter
61 NewConstructorCall.arguments(fileBodyConstructor, fileVarRef);
62 IdentifierReference.target(fileVarRef,fileVar);
63 }
64

65 private pattern transmissionCoreMethodCalls(fileBodyVar : LocalVariable,
classmethod: ClassMethod){

66 IdentifierReference.target(entityVarRef, entityVar);
67 IdentifierReference.next(entityVarRef, addPartCaller);
68 MethodCall.target(addPartCaller, addPartCallee);
69 Method.name(addPartCallee, "addPart");
70 MethodCall.arguments(addPartCaller, fileBodyRef);
71 IdentifierReference.target(fileBodyRef, fileBodyVar);
72

73 IdentifierReference.target(httppostRef, httppostVar);
74 IdentifierReference.next(httppostRef, setEntityCaller);
75 MethodCall.target(setEntityCaller, setEntityCallee);
76 Method.name(setEntityCallee, "setEntity");
77 MethodCall.arguments(setEntityCaller, setEntityEntityVarArg);
78 IdentifierReference.target(setEntityEntityVarArg, entityVar);
79

80 MethodCall.target(executeCaller, executeCallee);
81 Method.name(executeCallee, "execute");
82 MethodCall.arguments(executeCaller, executeHttpPostVarArg);
83 IdentifierReference.target(executeHttpPostVarArg, httppostVar);

177

Appendix

84

85 // give me the method in which everything is contained
86 find parentContainsSomething+(classmethod, fileBodyVar);
87 }
88

89 private pattern parentContainsSomething(parent, child){
90 LocalVariableStatement.variable(parent, child);
91 } or {
92 StatementListContainer.statements(parent, child);
93 }

Listing D.1: Data Transmission Without Compression.

1 pattern droppedData(DataDroppingClass:Class) {
2 find isActivityOrFragment(DataDroppingClass);
3 find classOfField(DataDroppingClass,"EditText");
4 neg find hasMethod(DataDroppingClass, "onRestoreInstanceState");
5 neg find hasMethod(DataDroppingClass, "onSaveInstanceState");
6 }
7

8 private pattern hasMethod(class, method) {
9 Class.members.name(class, method);

10 }
11

12 private pattern classOfField(class,field) {
13 Class.members.name(class, anyFieldName);
14 Variable.name(actualField,anyFieldName);
15 Variable.typeReference(actualField,fieldTypeRef);
16 NamespaceClassifierReference.classifierReferences.target.name(fieldTypeRef,

field);
17 }
18 private pattern isActivityOrFragment(actualClass:Class) {
19 Class.^extends(actualClass, superClassRef);
20 NamespaceClassifierReference.classifierReferences(superClassRef,

classifierReference);
21 ClassifierReference.target(classifierReference, superClass);
22 Class.name(superClass, "Activity");
23 } or {
24 Class.^extends(actualClass, superClassRef);
25 NamespaceClassifierReference.classifierReferences(superClassRef,

classifierReference);
26 ClassifierReference.target(classifierReference, superClass);
27 Class.name(superClass, "Fragment");
28 }

Listing D.2: Dropped Data.

1 pattern durableWakeLock(TimeoutLessAcquire:MethodCall) {
2 Class.^extends(actualClass, superClassRef);
3 NamespaceClassifierReference.classifierReferences(superClassRef,

classifierReference);

178

D. List of all IncPL Patterns for Detecting Quality Smells

4 ClassifierReference.target(classifierReference, superClass);
5 Class.name(superClass, "Activity");
6 Class.members(actualClass, anyMethod);
7

8 ExpressionStatement.expression(bindingStatement, wakeLockIdentifier);
9 IdentifierReference.target(wakeLockIdentifier, wakeLockIdentifierReference);

10 IdentifierReference.next(wakeLockIdentifier, TimeoutLessAcquire);
11 MethodCall.target.name(TimeoutLessAcquire, "acquire");
12 neg find hasArguments(TimeoutLessAcquire);
13

14 LocalVariable.typeReference(wakeLockIdentifierReference,
wakeLockIdentifierReferenceClassfier);

15 NamespaceClassifierReference.classifierReferences.target.name(
wakeLockIdentifierReferenceClassfier, "WakeLock");

16

17 find parentContainsBindingExpression+(anyMethod, bindingStatement);
18 }
19

20 private pattern parentContainsBindingExpression(parent, child) {
21 StatementListContainer.statements(parent, child);
22 } or {
23 ExpressionStatement.expression(parent, child);
24 } or {
25 StatementContainer.statement(parent, child);
26 }
27

28 private pattern hasArguments(args) {
29 MethodCall.arguments(args, _);
30 }

Listing D.3: Durable WakeLock.

1 pattern internalGetter(CallOfGetter:MethodCall) {
2 find isGetter(getter);
3 MethodCall.target(CallOfGetter,getter);
4 }
5

6 private pattern isGetter(actualMethod:ClassMethod) {
7 // return value of method is a field
8 ClassMethod.statements(actualMethod,statemets);
9 Return.returnValue(statemets,ref);

10 IdentifierReference.target(ref,variable);
11 Variable.name(variable,varName);
12 Class.members.name(actualClass,varName);
13

14 // method is contained in the same class as the field
15 Class.members(actualClass,actualMethod);
16 }

Listing D.4: Internal Use of Getters/Setters.

179

Appendix

1 pattern noMemoryResolver(ClassWithoutMemoryResolver:Class) {
2 Class.^extends(ClassWithoutMemoryResolver, superClassRef);
3 NamespaceClassifierReference.classifierReferences(superClassRef,

classifierReference);
4 ClassifierReference.target(classifierReference, superClass);
5 Class.name(superClass, "Activity");
6

7 neg find hasMethod_mom(ClassWithoutMemoryResolver, "onLowMemoryResolver");
8 }
9

10 private pattern hasMethod_mom(class, method) {
11 Class.members.name(class, method);
12 }

Listing D.5: No Low Memory Resolver.

1 pattern rigidAlarmManager(RigidCaller:MethodCall) {
2 Class.^extends(actualClass, superClassRef);
3 NamespaceClassifierReference.classifierReferences(superClassRef,

classifierReference);
4 ClassifierReference.target(classifierReference, superClass);
5 Class.name(superClass, "Activity");
6 Class.members(actualClass, anyMethod);
7

8 ExpressionStatement.expression(bindingStatement, alarmIdentifier);
9 IdentifierReference.target(alarmIdentifier, alarmIdentifierReference);

10 IdentifierReference.next(alarmIdentifier, RigidCaller);
11 MethodCall.target.name(RigidCaller, "setRepeating");
12

13 LocalVariable.typeReference(alarmIdentifierReference, alarmReferenceClassfier)
;

14 NamespaceClassifierReference.classifierReferences.target.name(
alarmReferenceClassfier, "AlarmManager");

15

16 find parentContainsBindingExpression_rig+(anyMethod, bindingStatement);
17 }
18

19 private pattern parentContainsBindingExpression_rig(parent, child) = {
20 StatementListContainer.statements(parent, child);
21 } or {
22 ExpressionStatement.expression(parent, child);
23 } or {
24 StatementContainer.statement(parent, child);
25 }

Listing D.6: Rigid AlarmManager.

1 pattern UnclosedCloseable(UnclosedHolder:ClassMethod, UnclosedParameter:
OrdinaryParameter) {

2 neg find findClassParam(s);
3 OrdinaryParameter.name(UnclosedParameter,s);

180

D. List of all IncPL Patterns for Detecting Quality Smells

4 find findClass(UnclosedHolder,UnclosedParameter);
5 find findCloseableParam(UnclosedParameter);
6 }
7

8 pattern findClassParam(s) {
9 find findClose(s);

10 ClassMethod.name(c,r);
11 ClassMethod.parameters(c,t);
12 ClassMethod.statements(c,h);
13 }
14

15 pattern findClass(c,t) {
16 ClassMethod.name(c,r);
17 ClassMethod.parameters(c,t);
18 ClassMethod.statements(c,h);
19 }
20

21

22 pattern findClose(t) {
23 ExpressionStatement.expression(a,exp);
24 IdentifierReference.target.name(exp, t);
25 IdentifierReference.next(exp, exp2);
26 MethodCall.target.name(exp2, "close");
27 }
28

29 pattern findCloseable(dev:NamespaceClassifierReference) {
30 NamespaceClassifierReference.classifierReferences(dev, a);
31 ClassifierReference.target.name(a, "Closeable");
32 }
33

34 pattern findCloseableParam(t){
35 OrdinaryParameter.typeReference(t,s);
36 NamespaceClassifierReference.classifierReferences(s,r);
37 ClassifierReference.target(r,a);
38 Interface.name(a,"Closeable");
39 find implementsOrExtends(a,b);
40 }

Listing D.7: Unclosed Closeable.

1 pattern UnTouchable(SmallerConstructorCall:NewConstructorCall){
2 Class.^extends(actualClass, superClassRef);
3 NamespaceClassifierReference.classifierReferences(superClassRef,

classifierReference);
4 ClassifierReference.target(classifierReference, superClass);
5 find isActivity(superClass);
6

7 find decimalLessThan(SmallerConstructorCall, argumentExpression);
8 }
9

10 pattern decimalLessThan(constructor, decimalParameter){

181

Appendix

11 NewConstructorCall.typeReference(constructor,g);
12 NamespaceClassifierReference.classifierReferences(g, c);
13 ClassifierReference.target.name(c, "LayoutParams");
14 NewConstructorCall.arguments(constructor,x);
15 DecimalIntegerLiteral.decimalValue(x,decimalParameter);
16

17 check(new BigInteger("48") >= decimalParameter);
18 }
19

20 private pattern isActivity(class) {
21 find isClassOf(class, "Activity");
22 }
23

24 private pattern isClassOf(class, className) {
25 Class.name(class, className);
26 }

Listing D.8: Untouchable.

182

E. Post-Processor of the Extract CompositeState refactoring for UML State Machines

E. Post-Processor of the Extract CompositeState refactoring for UML
State Machines

Listing E.9 shows the post-processor for the refactoring Extract CompositeState. The method

process(..) in Line 6 belongs to the API of Refactory. It can be seen, that the roleBindings to

the concrete model elements is passed as �rst parameter. The second parameter resourceSet

is speci�c to the EMF and provides the set of all directly related models of the refactored

model. The third parameter change is speci�c to EMF Compare and contains a description of the

modi�cations made so far, recorded while executing the generic part of the refactoring.

In this post-processor, the bound elements are determined in Lines 7 and 8. In Line 9, the

method moveRelevantTransitionsToCompositeState() is invoked implementing the analysis,

which transitions to inner states of the newly created composite state now have to end at

the composite state instead of the inner state. Analogously, the outgoing transitions must

be computed. To produce a correct composite state with respect to the UML metamodel, an

Activity must be added to the composite state, which is realised with the method call in Line 10.

1 public class UMLExtractCompositeStatePostProcessor extends
AbstractRefactoringPostProcessor {

2

3 private List<State> movedStates;
4 private State newCompositeState;
5

6 public IStatus process(Map<Role, List<EObject>> roleBindings, ResourceSet
resourceSet, ChangeDescription change) {

7 movedStates = RoleUtil.getObjectsForRole("Extract", State.class,
roleBindings);

8 newCompositeState = RoleUtil.getFirstObjectForRole("NewContainer", State.
class, roleBindings);

9 moveRelevantTransitionsToCompositeState();
10 createActivity();
11 return Status.OK_STATUS;
12 }
13

14 private Boolean moveRelevantTransitionsToCompositeState(){
15 Set<Transition> removees = new HashSet<Transition>();
16 Set<Transition> inComposites = new HashSet<Transition>();
17 Set<Transition> outComposites = new HashSet<Transition>();
18 for (State movedState : movedStates) {
19 List<State> otherStates = new ArrayList<State>(movedStates);
20 otherStates.remove(movedState);
21 List<Transition> incomings = movedState.getIncomings();
22 handleTransitions(removees, inComposites, otherStates, incomings, true);

23 List<Transition> outgoings = movedState.getOutgoings();
24 handleTransitions(removees, outComposites, otherStates, outgoings,

false);
25 }
26 handleInternalTransitions(removees);
27 for (Transition transition : inComposites) {

183

Appendix

28 transition.setTarget(newCompositeState);
29 }
30 for (Transition transition : outComposites) {
31 transition.setSource(newCompositeState);
32 }
33 return true;
34 }
35

36 private Boolean createActivity(){
37 Activity activity = UMLFactory.eINSTANCE.createActivity();
38 activity.setName(newCompositeState.getName() + "Activity");
39 newCompositeState.setDoActivity(activity);
40 return true;
41 }
42

43 private Boolean handleInternalTransitions(Set<Transition> removees) {
44 List<Region> regions = newCompositeState.getRegions();
45 for (Region region : regions) {
46 if(region.getSubvertices().containsAll(movedStates)){
47 for (Transition transition : removees) {
48 EcoreUtil.remove(transition);
49 if(!region.getTransitions().add(transition)){
50 return false;
51 }
52 }
53 }
54 }
55 return true;
56 }
57

58 private void handleTransitions(Set<Transition> removees, Set<Transition>
outsides, List<State> others, List<Transition> transitions, boolean source
) {

59 for (Transition transition : transitions) {
60 Vertex vertex = null;
61 if(source){
62 vertex = transition.getSource();
63 } else {
64 vertex = transition.getTarget();
65 }
66 if(others.contains(vertex)){
67 removees.add(transition);
68 } else {
69 outsides.add(transition);
70 }
71 }
72 }
73 }

Listing E.9: UML-speci�c post-processor for determining incoming and outgoing transitions of

the extracted composite state.

184

F. Speci�cation of the Conference Language

F. Specification of the Conference Language

Abstract Syntax

1 package conference conference "http://www.emftext.org/language/conference" {
2

3 abstract class NamedElement {
4 attribute EString name (1..1);
5 }
6

7 abstract class ConferenceElement { }
8

9 class Conference extends NamedElement {
10 containment reference ConferenceElement elements (0..-1);
11 reference Participant organizers (1..-1);
12 containment reference Participant speakers (1..-1);
13 }
14 class Track extends ConferenceElement, NamedElement {
15 containment reference Slot slots (0..-1);
16 }
17 class TimedElement {
18 attribute EInt hour (1..1);
19 attribute EInt minute (1..1);
20 }
21 class Slot extends TimedElement {
22 containment reference Talk talk (1..1);
23 }
24 class Talk extends NamedElement {
25 reference Participant presenter (1..1);
26 }
27 class Participant extends NamedElement {
28 attribute EString country (1..1);
29 }
30 class Lunch extends ConferenceElement, TimedElement { }
31 }

Concrete Textual Syntax

1 SYNTAXDEF conference
2 FOR <http://www.emftext.org/language/conference>
3

4 START Conference
5

6 RULES {
7 Conference ::=
8 "CONFERENCE" #1 name[’"’,’"’] #1
9 "(" organizers[’"’,’"’] ("," #1 organizers[’"’,’"’])* ")"

10 !0 (!0 elements)*
11 !0 "REGISTERED" "SPEAKERS" ":" !0 speakers ("," !0 speakers)*;
12

13 Participant ::= name[’"’,’"’] #1 "FROM" #1 country [];

185

Appendix

14

15 Talk ::= "TALK" #1 name[’"’,’"’] #1 "PRESENTED" "BY" presenter[’"’,’"’] !0;
16

17 Track ::= "TRACK" #1 name[’"’,’"’] ":" !0 (slots)*;
18

19 Slot ::= "AT" #1 hour[] #0 ":" #0 minute[] ":" #1 talk;
20

21 Lunch ::= "AT" hour[] #0 ":" #0 minute[] #1 "LUNCH" !0;
22 }

186

List of Abbreviations

AOP aspect-oriented programming 29, 31

API Application Programming Interface 116, 121, 124, 126, 131,

135, 144, 146, 147, 183

AST abstract syntax tree 27

ATL Atlas Transformation Language [JK06] 45, 46

BNF Backus-Naur Form [BBG+63] 28

BPMN Business Process Model and Notation [OMG13b] 3, 4, 143,

145, 148–151, 173, 174

CBR constraint-based refactoring 28, 30, 31, 42, 43, 49

CC conservative copy 42

CLS cross-language support 8

Co-RefSpec Co-Refactoring Speci�cation 114, 115, 117–119, 138, 141,

156, 157, 160

CoRK Co-Refactoring Knowledge 113

CoRK-Base Co-Refactoring Knowledge Base 106, 114, 115, 118, 119,

138, 141

CSP constraint satisfaction problem 28, 71

CSS Cascading Style Sheets [W3C11] 3, 4

DK-Base Dependency Knowledge Base 106, 110, 111, 113, 118, 119,

141

DL Description Logics [BMNP03] 29

DSL Domain-Speci�c Language v, 2–13, 15–18, 25–30, 32–35,

38, 40, 45, 48, 51–55, 57, 58, 60, 61, 66, 70–74, 76, 77, 80, 81,

88, 105, 113, 114, 117–119, 121, 122, 132, 135, 143, 144, 146,

148–151, 153–156, 162, 165, 166, 171

DSLE Domain-Speci�c Language Environment 6–8, 121, 130

EBNF Extended Backus-Naur Form [ISO96] 122

ECA event-condition-action 40, 115, 165

EMF Eclipse Modeling Framework [SBPM08] 5, 35–38, 44, 46,

49, 57, 92, 121, 122, 124, 126, 128, 130–132, 134, 141, 143,

147, 156, 163, 183

EMOF Essential MOF 18, 121, 122

187

List of Abbreviations

EWL Epsilon Wizard Language [KPPR07] 28, 31, 48

GME Generic Modeling Environment [LMB+01] 27, 31, 32

GMF Graphical Modeling Framework [Gro09] 18, 46, 121, 132

GoF Gang of Four [GHJV94] 20

GPL General Purpose Language 60, 70, 71, 116, 121

HOT higher-order transformation 27, 41, 47

IDE integrated development environment v, 5, 6, 8, 45, 49, 92,

121, 130, 131, 147

IncPL IncQuery Pattern Language 92, 93, 95–104, 165, 168, 176

IT information technology 3, 156

JaMoPP Java Model Parser and Printer [HJSW10] 9, 83, 93, 95

LTK Eclipse Language Toolkit 130, 131

LW Language Workbench 5, 6, 70

M2C model-to-code 42

MDA Model-Driven Architecture [OMG03] 18, 105

MDSD Model-Driven Software Development [SVB+06] 4, 7, 10,

12, 15, 16, 18, 25, 40, 42, 48, 51, 168

MLDE Multi-Language Development Environment 8, 10, 11, 45,

47–49, 51, 66, 82, 105, 107, 108, 110, 111, 113, 118, 122, 140

MOF Meta Object Facility [OMG13c] 17, 25–29, 31, 32, 34–36,

40, 42, 57, 60, 71, 74, 105, 121, 144, 161, 165, 171

OCL Object Constraint Language [OMG14a] 28, 35, 67, 71, 122,

130, 131, 141

OMG Object Management Group 17

OSGi Open Service Gateway initiative [OSGi14] 121

OWL Web Ontology Language [W3C12] 13, 117, 143, 145, 148,

150–157, 164, 173–175

PAML Performance Antipattern Modeling Language 36–38

QSM Quality Smell Model 81, 82, 85

RefSpec Refactoring Speci�cation 61–66, 81, 114, 124–126, 129, 140,

146

RTE Round-Trip Engineering 45, 47

SoC separation of concerns 16

SUM single underlying model 42, 48

188

List of Abbreviations

TGG triple graph grammar 44, 47

TTCN-3 testing and test control notation 34, 35

UI user interface 82, 93, 98, 103, 122, 126, 134, 140

UML Uni�ed Modeling Language [OMG11a] 3, 4, 16–18, 27, 29,

35, 36, 39, 42, 43, 54, 60, 65, 73, 76, 107–109, 129, 143, 145,

146, 148–152, 154, 155, 173–175, 183

VM Virtual Machine 45, 46, 113

WFR well-formedness rule 28, 42, 48, 71, 72, 129, 130, 164

XMI XML Metadata Interchange [OMG14b] 42

189

Bibliography

[ABB+14] U. Aßmann, A. Bartho, C. Bürger, S. Cech, B. Demuth, F. Heidenreich, J. Johannes,

S. Karol, J. Polowinski, J. Reimann, J. Schroeter, M. Seifert, M. Thiele, C. Wende

and C. Wilke, “DropsBox: the Dresden Open Software Toolbox”, English, Software

& Systems Modeling, vol. 13, no. 1, pp. 133–169, 2014, issn: 1619-1366. doi: 10.
1007/s10270-012-0284-6 (cit. on p. 172).

[ABJ+10] T. Arendt, E. Biermann, S. Jurack, C. Krause and G. Taentzer, “Henshin. Advanced

Concepts and Tools for In-Place EMF Model Transformation”, in Model Driven

Engineering Languages and Systems - 13th International Conference, MoDELS 2010,

Oslo, Norway, October 3-8, 2010, Proceedings, Part I, D. C. Petriu, N. Rouquette and

Ø. Haugen, Eds., ser. Lecture Notes in Computer Science, vol. 6394, Springer, 2010,

pp. 121–135, isbn: 978-3-642-16144-5. doi: 10.1007/978-3-642-16145-2_9
(cit. on pp. 29, 35).

[ABT10] T. Arendt, M. Burhenne and G. Taentzer, “De�ning and Checking Model Smells. A

Quality Assurance Task for Models based on the Eclipse Modeling Framework”, in

9th edition of the BENEVOL workshop, 2010 (cit. on pp. 33, 87).

[Als09] M. Alshayeb, “Empirical investigation of refactoring e�ect on software quality”,

Information and Software Technology, vol. 51, no. 9, pp. 1319–1326, 2009, issn:

0950-5849. doi: 10.1016/j.infsof.2009.04.002 (cit. on pp. 9, 32, 79).

[Amo12] J. Amos. (Jun. 2012). Red dot becomes ’oldest cave art’. Accessed: 2014-09-30

(Archived by WebCite® at http : / / www . webcitation . org / 6SyZIW65G),

[Online]. Available: http://www.bbc.com/news/science-environment-
18449711 (cit. on p. 2).

[AMT10] T. Arendt, F. Mantz and G. Taentzer, “EMF Refactor. Speci�cation and Application

of Model Refactorings within the Eclipse Modeling Framework”, in 9th edition of

the BENEVOL workshop, 2010 (cit. on pp. 29, 35).

[Are14] T. Arendt, “Quality Assurance of Software Models - A Structured Quality Assurance

Process Supported by a Flexible Tool Environment in the Eclipse Modeling Project”,

Dissertation, Philipps-Universität Marburg, 2014. [Online]. Available: http://
archiv.ub.uni-marburg.de/diss/z2014/0357 (cit. on pp. 29, 31, 35, 37, 38,

49, 67, 87, 166, 167).

[ASB10] C. Atkinson, D. Stoll and P. Bostan, “Orthographic Software Modeling: A Practical

Approach to View-Based Development”, English, in Evaluation of Novel Approaches

to Software Engineering, ser. Communications in Computer and Information Sci-

ence, L. Maciaszek, C. González-Pérez and S. Jablonski, Eds., vol. 69, Springer

Berlin Heidelberg, 2010, pp. 206–219, isbn: 978-3-642-14818-7. doi: 10.1007/978-
3-642-14819-4_15 (cit. on p. 42).

191

http://dx.doi.org/10.1007/s10270-012-0284-6
http://dx.doi.org/10.1007/s10270-012-0284-6
http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://dx.doi.org/10.1016/j.infsof.2009.04.002
http://www.webcitation.org/6SyZIW65G
http://www.bbc.com/news/science-environment-18449711
http://www.bbc.com/news/science-environment-18449711
http://archiv.ub.uni-marburg.de/diss/z2014/0357
http://archiv.ub.uni-marburg.de/diss/z2014/0357
http://dx.doi.org/10.1007/978-3-642-14819-4_15
http://dx.doi.org/10.1007/978-3-642-14819-4_15

Bibliography

[AST10] T. Arendt, P. Stepien and G. Taentzer, “EMF Metrics. Speci�cation and Calculation

of Model Metrics within the Eclipse Modeling Framework”, in 9th edition of the

BENEVOL workshop, 2010 (cit. on pp. 33, 37, 87).

[AT12] T. Arendt and G. Taentzer, “Integration of Smells and Refactorings within the

Eclipse Modeling Framework”, in Proceedings of the Fifth Workshop on Refactoring

Tools, 2012, pp. 8–15 (cit. on p. 35).

[Bac73] C. W. Bachman, “The Programmer As Navigator”, Communications of the ACM, vol.

16, no. 11, pp. 653–658, Nov. 1973, issn: 0001-0782. doi: 10.1145/355611.362534
(cit. on p. 19).

[BBG+63] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur, A. J. Perlis, H.

Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden and M.

Woodger, “Revised report on the algorithmic language ALGOL 60”, The Computer

Journal, vol. 5, no. 4, pp. 349–367, 1963. doi: 10.1093/comjnl/5.4.349 (cit. on

pp. 28, 187).

[BBKL78] B. W. Boehm, J. R. Brown, H. Kaspar and M. Lipow, Characteristics of software

quality, ser. TRW Softw. Technol. Amsterdam: North-Holland, 1978 (cit. on p. 81).

[BC87] K. Beck and W. Cunningham, “Using Pattern Languages for Object-Oriented

Programs”, in Proceedings of OOPSLA-87 workshop on the Speci�cation and Design

for Object-Oriented Programming, 1987. [Online]. Available: http://c2.com/
doc/oopsla87.html (cit. on pp. 12, 92).

[BD02] J. Bansiya and C. G. Davis, “A Hierarchical Model for Object-Oriented Design

Quality Assessment”, IEEE Transactions on Software Engineering, vol. 28, no. 1,

pp. 4–17, 2002 (cit. on pp. 33, 37, 87).

[BE08] D. Bildhauer and J. Ebert, “Querying Software Abstraction Graphs”, in Working

Session on Query Technologies and Applications for ProgramComprehension (QTAPC),

collocated with ICPC, 2008 (cit. on p. 92).

[BEK+06a] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer and E. Weiss, “EMF Model

Refactoring based on Graph Transformation Concepts”, ECEASST, vol. 3, 2006

(cit. on p. 29).

[BEK+06b] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer and E. Weiss, “Graphical

De�nition of In-Place Transformations in the Eclipse Modeling Framework”, in,

ser. Lecture Notes in Computer Science. Springer, 2006, vol. 4199/2006, pp. 425–439.

doi: 10.1007/11880240_30 (cit. on p. 29).

[BERS08] D. Bildhauer, J. Ebert, V. Riediger and H. Schwarz, “Using the TGraph Approach

for Model Fact Repositories”, in Proceedings of the Second International Workshop

MoRSe, 2008, pp. 9–18 (cit. on pp. 34, 37).

[BG10] E. Burger and B. Gruschko, “A Change Metamodel for the Evolution of MOF-Based

Metamodels”, in Proceedings of Modellierung 2010, G. Engels, D. Karagiannis and

H. C. Mayr, Eds., ser. GI-LNI, vol. P-161, Klagenfurt, Austria, –2624th Mar. 2010,

pp. 285–300 (cit. on p. 42).

[BGM+11] B. R. Bryant, J. Gray, M. Mernik, P. J. Clarke, R. B. France and G. Karsai, “Challenges

and Directions in Formalizing the Semantics of Modeling Languages”, Computer

Science and Information Systems, vol. 8, no. 2, pp. 225–253, 2011. doi: 10.2298/
CSIS110114012B (cit. on p. 71).

192

http://dx.doi.org/10.1145/355611.362534
http://dx.doi.org/10.1093/comjnl/5.4.349
http://c2.com/doc/oopsla87.html
http://c2.com/doc/oopsla87.html
http://dx.doi.org/10.1007/11880240_30
http://dx.doi.org/10.2298/CSIS110114012B
http://dx.doi.org/10.2298/CSIS110114012B

Bibliography

[BHH+12] G. Bergmann, Á. Hegedüs, Á. Horváth, I. Ráth, Z. Ujhelyi and D. Varró, “Integ-

rating E�cient Model Queries in State-of-the-Art EMF Tools”, in Objects, Models,

Components, Patterns, ser. Lecture Notes in Computer Science, C. Furia and S. Nanz,

Eds., vol. 7304, Springer Berlin Heidelberg, 2012, pp. 1–8, isbn: 978-3-642-30560-3.

doi: 10.1007/978-3-642-30561-0_1 (cit. on pp. 37, 92).

[BJV04] J. Bézivin, F. Jouault and P. Valduriez, “On the need for megamodels”, in Proceed-

ings of the OOPSLA/GPCE: Best Practices for Model-Driven Software Development

workshop, 19th Annual ACM Conference on Object-Oriented Programming, Systems,

Languages, and Applications, 2004 (cit. on p. 48).

[BKR07] S. Becker, H. Koziolek and R. Reussner, “Model-Based Performance Prediction with

the Palladio Component Model”, in Proceedings of the 6th International Workshop

on Software and Performance, ser. WOSP ’07, Buenes Aires, Argentina: ACM, 2007,

pp. 54–65, isbn: 1-59593-297-6. doi: 10 . 1145 / 1216993 . 1217006. [Online].

Available: http://doi.acm.org/10.1145/1216993.1217006 (cit. on p. 36).

[BLS+09] P. Brosch, P. Langer, M. Seidl, K. Wieland, M. Wimmer, G. Kappel, W. Retschitzegger

and W. Schwinger, “An Example Is Worth a Thousand Words: Composite Operation

Modeling By-Example”, in Model Driven Engineering Languages and Systems – 12th

International Conference, MoDELS 2009, A. Schürr and B. Selic, Eds., ser. Lecture

Notes in Computer Science, vol. 5795, Denver, CO: Springer, Oct. 2009, pp. 271–285,

isbn: 978-3-642-04424-3. doi: 10.1007/978-3-642-04425-0_20 (cit. on p. 30).

[BMMM08] X. Blanc, I. Mounier, A. Mougenot and T. Mens, “Detecting Model Inconsistency

through Operation-Based Model Construction”, in ACM/IEEE 30th International

Conference on Software Engineering (ICSE ’08), May 2008, pp. 511–520. doi: 10.
1145/1368088.1368158 (cit. on p. 45).

[BMMM98] W. J. Brown, R. C. Malveau, S. McCormick and T. J. Mowbray, Refactoring Software,

Architectures, and Projects in Crisis. Wiley, 1998 (cit. on p. 89).

[BMNP03] F. Baader, D. McGuinness, D. Nardi and P. Patel-Schneider, The Description Logic

Handbook: Theory, Implementation and Applications. Cambridge University Press,

2003 (cit. on pp. 29, 187).

[Bry14] M. Brylski, “Durchführung einer Entwicklerstudie zum Ermitteln von Quality

Smells und deren Beseitigung auf Android-Systemen”, Minor Thesis (Großer Beleg),

Technische Universität Dresden, 2014 (cit. on pp. 89, 96).

[BS06] J. Baumeister and D. Seipel, “Veri�cation and Refactoring of Ontologies with

Rules”, English, in Managing Knowledge in a World of Networks, ser. Lecture Notes

in Computer Science, S. Staab and V. Svátek, Eds., vol. 4248, Springer Berlin

Heidelberg, 2006, pp. 82–95, isbn: 978-3-540-46363-4. doi: 10.1007/11891451_11
(cit. on p. 108).

[BSW+09] P. Brosch, M. Seidl, K. Wieland, M. Wimmer and P. Langer, “The Operation Re-

corder: Specifying Model Refactorings By-Example”, in OOPSLA Companion, S.

Arora and G. T. Leavens, Eds., ACM, 2009, pp. 791–792, isbn: 978-1-60558-768-4

(cit. on pp. 30, 31).

[Bur14] E. Burger, “Flexible Views for View-based Model-driven Development”, PhD thesis,

Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut

für Technologie, 2014. doi: 10.5445/KSP/1000043437 (cit. on pp. 42, 47, 48).

193

http://dx.doi.org/10.1007/978-3-642-30561-0_1
http://dx.doi.org/10.1145/1216993.1217006
http://doi.acm.org/10.1145/1216993.1217006
http://dx.doi.org/10.1007/978-3-642-04425-0_20
http://dx.doi.org/10.1145/1368088.1368158
http://dx.doi.org/10.1145/1368088.1368158
http://dx.doi.org/10.1007/11891451_11
http://dx.doi.org/10.5445/KSP/1000043437

Bibliography

[BV08] M. Breugelmans and B. Van Rompaey, “TestQ: Exploring Structural and Mainten-

ance Characteristics of Unit Test Suites”, in WASDeTT-1: 1st International Workshop

on Advanced Software Development Tools and Techniques, 2008 (cit. on pp. 35, 37,

38).

[Cam14] F. Campagne, The MPS Language Workbench. Mar. 2014, vol. I (cit. on p. 5).

[CDEP08] A. Cicchetti, D. Di Ruscio, R. Eramo and A. Pierantonio, “Automating Co-evolution

in Model-Driven Engineering”, in 12th International IEEE Enterprise Distributed

Object Computing Conference (EDOC ’08), Sep. 2008, pp. 222–231. doi: 10.1109/
EDOC.2008.44 (cit. on p. 46).

[CH06] K. Czarnecki and S. Helsen, “Feature-based survey of model transformation ap-

proaches”, IBM Systems Journal, vol. 45, no. 3, pp. 621–645, 2006, issn: 0018-8670.

doi: 10.1147/sj.453.0621 (cit. on p. 67).

[Chu13] K.-m. Chung, Expression Language Speci�cation – Version 3.0 Final Release, Apr.

2013 (cit. on p. 116).

[CK94] S. Chidamber and C. Kemerer, “A Metrics Suite for Object Oriented Design”,

Transactions on Software Engineering, vol. 20, no. 6, pp. 476–493, 1994 (cit. on pp. 33,

87).

[CLMM07] Y. Crespo, C. López, M. E. M. Martínez and R. Marticorena, “From Bad Smells to

Refactoring: Metrics Smoothing the Way”, in Object-Oriented Design Knowledge:

Principles, Heuristics and Best Practices. Idea Group Publishing, 2007, ch. VII, pp. 193–

249 (cit. on pp. 27, 37).

[CNYM00] L. Chung, B. A. Nixon, E. Yu and J. Mylopoulos, Non-Functional Requirements

in Software Engineering. Kluwer Academic Publishers Boston/Dordrecht/London,

2000 (cit. on pp. 87, 166, 167).

[Cou90] B. Courcelle, “Graph Rewriting: An Algebraic and Logic Approach”, in Handbook of

Theoretical Computer Science, J. van Leeuwen, Ed., Cambridge, MA, USA: MIT Press,

1990, ch. 5, pp. 193–242. [Online]. Available: http://dl.acm.org/citation.
cfm?id=114891.114896 (cit. on p. 111).

[Cun13] W. Cunningham, Anti Patterns Catalog, visited 4th March 2015, 2013. [Online].

Available: http://c2.com/cgi/wiki?AntiPatternsCatalog (cit. on p. 89).

[DB91] A. M. Davis and E. H. Berso�, “Impacts of Life Cycle Models on Software Con�g-

uration Management”, Communications of the ACM, vol. 34, no. 8, pp. 104–118,

Aug. 1991, issn: 0001-0782. doi: 10.1145/108515.108537 (cit. on p. 5).

[DGG95] K. R. Dittrich, S. Gatziu and A. Geppert, “The Active Database Management System

Manifesto: A Rulebase of ADBMS Features”, English, in Rules in Database Systems,

ser. Lecture Notes in Computer Science, T. Sellis, Ed., vol. 985, Springer Berlin

Heidelberg, 1995, pp. 1–17, isbn: 978-3-540-60365-8. doi: 10.1007/3-540-60365-
4_116 (cit. on p. 115).

[DGLD05] S. Ducasse, T. Gırba, M. Lanza and S. Demeyer, “Moose: a Collaborative and

Extensible Reengineering Environment”, Tools for Software Maintenance and Reen-

gineering, RCOST/Software Technology Series, vol. 71, 2005 (cit. on p. 27).

[Dis11] Z. Diskin, “Model Synchronization: Mappings, Tiles, and Categories”, English, in

Generative and Transformational Techniques in Software Engineering III, ser. Lecture

Notes in Computer Science, J. M. Fernandes, R. Lämmel, J. Visser and J. Saraiva, Eds.,

194

http://dx.doi.org/10.1109/EDOC.2008.44
http://dx.doi.org/10.1109/EDOC.2008.44
http://dx.doi.org/10.1147/sj.453.0621
http://dl.acm.org/citation.cfm?id=114891.114896
http://dl.acm.org/citation.cfm?id=114891.114896
http://c2.com/cgi/wiki?AntiPatternsCatalog
http://dx.doi.org/10.1145/108515.108537
http://dx.doi.org/10.1007/3-540-60365-4_116
http://dx.doi.org/10.1007/3-540-60365-4_116

Bibliography

vol. 6491, Springer Berlin Heidelberg, 2011, pp. 92–165, isbn: 978-3-642-18022-4.

doi: 10.1007/978-3-642-18023-1_3 (cit. on p. 44).

[DJK+06] D. Di Ruscio, F. Jouault, I. Kurtev, J. Bézivin and A. Pierantonio, “Extending AMMA

for Supporting Dynamic Semantics Speci�cations of DSLs”, Apr. 2006, [Online].

Available: https://hal.archives- ouvertes.fr/hal- 00023008 (cit. on

p. 71).

[DLP11] D. Di Ruscio, R. Lämmel and A. Pierantonio, “Automated Co-evolution of GMF

Editor Models”, English, in Software Language Engineering, ser. Lecture Notes

in Computer Science, B. Malloy, S. Staab and M. van den Brand, Eds., vol. 6563,

Springer Berlin Heidelberg, 2011, pp. 143–162, isbn: 978-3-642-19439-9. doi: 10.
1007/978-3-642-19440-5_9 (cit. on pp. 46–48).

[DMTS12] J. Dietrich, C. McCartin, E. Tempero and S. M. A. Shah, “On the Existence of

High-impact Refactoring Opportunities in Programs”, in Proceedings of the 35th

Australasian Computer Science Conference, ser. ACSC ’12, vol. 122, Melbourne,

Australia: Australian Computer Society, Inc., 2012, pp. 37–48, isbn: 978-1-921770-

03-6. [Online]. Available: http://dl.acm.org/citation.cfm?id=2483654.
2483659 (cit. on pp. 33, 36–38, 74, 87, 92).

[DPXT12] J. Dexun, M. Peijun, S. Xiaohong and W. Tiantian, “Detecting Bad Smells with

Weight Based Distance Metrics Theory”, in Second International Conference on

Instrumentation, Measurement, Computer, Communication and Control (IMCCC),

2012, 2012, pp. 299–304. doi: 10.1109/IMCCC.2012.74 (cit. on p. 37).

[ELF08] A. Egyed, E. Letier and A. Finkelstein, “Generating and Evaluating Choices for

Fixing Inconsistencies in UML Design Models”, in 23rd IEEE/ACM International

Conference on Automated Software Engineering (ASE 2008), Sep. 2008, pp. 99–108.

doi: 10.1109/ASE.2008.20 (cit. on p. 114).

[EPRV08] R. Eramo, A. Pierantonio, J. R. Romero and A. Vallecillo, “Change Management in

Multi-Viewpoint System Using ASP”, in Enterprise Distributed Object Computing

Conference Workshops, 2008 12th, Sep. 2008, pp. 433–440. doi: 10.1109/EDOCW.
2008.22 (cit. on p. 43).

[ES07] J. Euzenat and P. Shvaiko, Ontology Matching. Heidelberg: Springer, 2007, isbn:

3-540-49611-4 (cit. on p. 78).

[EV06] S. E�tinge and M. Völter, “oAW xText: A framework for textual DSLs”, in Workshop

on Modeling Symposium at Eclipse Summit, 2006 (cit. on p. 5).

[EvSV+13] S. Erdweg, T. van der Storm, M. Völter, M. Boersma, R. Bosman, W. R. Cook, A.

Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. D. P. Konat, P. J. Molina, M. Palatnik,

R. Pohjonen, E. Schindler, K. Schindler, R. Solmi, V. A. Vergu, E. Visser, K. van der

Vlist, G. H. Wachsmuth and J. van der Woning, “The State of the Art in Language

Workbenches”, in Software Language Engineering, ser. Lecture Notes in Computer

Science, M. Erwig, R. F. Paige and E. Van Wyk, Eds., vol. 8225, Springer International

Publishing, 2013, pp. 197–217, isbn: 978-3-319-02653-4. doi: 10.1007/978-3-
319-02654-1_11 (cit. on pp. 3, 6).

[FBB+99] M. Fowler, K. Beck, J. Brant, W. Opdyke and D. Roberts, Refactoring: Improving the

Design of Existing Code. Addison-Wesley, 1999 (cit. on pp. 5, 9, 10, 12, 15, 16, 25, 32,

33, 54, 67, 68, 79, 80, 87, 89, 157, 162).

195

http://dx.doi.org/10.1007/978-3-642-18023-1_3
https://hal.archives-ouvertes.fr/hal-00023008
http://dx.doi.org/10.1007/978-3-642-19440-5_9
http://dx.doi.org/10.1007/978-3-642-19440-5_9
http://dl.acm.org/citation.cfm?id=2483654.2483659
http://dl.acm.org/citation.cfm?id=2483654.2483659
http://dx.doi.org/10.1109/IMCCC.2012.74
http://dx.doi.org/10.1109/ASE.2008.20
http://dx.doi.org/10.1109/EDOCW.2008.22
http://dx.doi.org/10.1109/EDOCW.2008.22
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://dx.doi.org/10.1007/978-3-319-02654-1_11

Bibliography

[FMB+09] S. Fürst, J. Mössinger, S. Bunzel, T. Weber, F. Kirschke-Biller, P. Heitkämper, G.

Kinkelin, K. Nishikawa and K. Lange, “AUTOSAR – A Worldwide Standard is on

the Road”, in 14th International VDI Congress Electronic Systems for Vehicles, 2009

(cit. on p. 168).

[Fow05] M. Fowler, “Language Workbenches: The Killer-App for Domain Speci�c Lan-

guages?”, 2005, Available: http : / / www . martinfowler . com / articles /
language-Workbench.html (cit. on pp. 5, 6).

[GHJV94] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns. Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1994 (cit. on pp. 12, 16, 20, 89,

92, 188).

[GJJW12] M. Gottschalk, M. Jose�ok, J. Jelschen and A. Winter, “Removing Energy Code

Smells with Reengineering Services”, in Beitragsband der 42. Jahrestagung der

Gesellschaft für Informatik e.V. (GI), vol. 208, Bonner Köllen Verlag, 2012, pp. 441–

455 (cit. on pp. 34, 37).

[GJW14] M. Gottschalk, J. Jelschen and A. Winter, “Saving Energy on Mobile Devices by

Refactoring”, in 28th International Conference on Informatics for Environmental Pro-

tection: ICT for Energy E�eciency, EnviroInfo 2014, J. Marx Gómez, M. Sonnenschein,

U. Vogel, A. Winter, B. Rapp and N. Giesen, Eds., Oldenburg, Germany: BIS-Verlag,

Sep. 2014, pp. 437–444, isbn: 978-3-8142-2317-9. [Online]. Available: http://www.
enviroinfo2014.org/ (cit. on pp. 34, 37, 38).

[GKP07] B. Gruschko, D. S. Kolovos and R. F. Paige, “Towards Synchronizing Models with

Evolving Metamodels”, in In Proceedings of the International Workshop on Model-

Driven Software Evolution held with the ECSMR, 2007 (cit. on pp. 41, 118).

[GL12] H. Giese and L. Lambers, “Towards Automatic Veri�cation of Behavior Preservation

for Model Transformation via Invariant Checking”, English, in Graph Transforma-

tions, ser. Lecture Notes in Computer Science, H. Ehrig, G. Engels, H.-J. Kreowski

and G. Rozenberg, Eds., vol. 7562, Springer Berlin Heidelberg, 2012, pp. 249–263,

isbn: 978-3-642-33653-9. doi: 10.1007/978-3-642-33654-6_17 (cit. on p. 71).

[GPEM09] J. Garcia, D. Popescu, G. Edwards and N. Medvidovic, “Identifying Architectural Bad

Smells”, in 13th European Conference on Software Maintenance and Reengineering

(CSMR ’09), 2009, pp. 255–258. doi: 10.1109/CSMR.2009.59 (cit. on pp. 33, 87).

[Gra92] R. B. Grady, Practical Software Metrics for Project Management and Process Improve-

ment. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1992, isbn: 0-13-720384-5

(cit. on p. 81).

[GRK14] S. Getir, M. Rindt and T. Kehrer, “A Generic Framework for Analyzing Model

Co-Evolution”, in Proceedings of the MoDELS 2014 conference workshop Models and

Evolution (ME 2014), 2014, pp. 12–21 (cit. on pp. 43, 47).

[Gro09] R. C. Gronback, Eclipse Modeling Project: A Domain-Speci�c Language (DSL) Toolkit.

Pearson Education, Apr. 2009, isbn: 0321534077 (cit. on pp. 18, 188).

[GS03] J. Green�eld and K. Short, “Software Factories: Assembling Applications with Pat-

terns, Models, Frameworks and Tools”, in OOPSLA ’03: Companion of the 18th an-

nual ACM SIGPLAN conference on Object-oriented programming, systems, languages,

and applications, Anaheim, CA, USA: ACM, 2003, pp. 16–27, isbn: 1-58113-751-6.

doi: 10.1145/949344.949348 (cit. on p. 16).

196

http://www.martinfowler.com/articles/language-Workbench.html
http://www.martinfowler.com/articles/language-Workbench.html
http://www.enviroinfo2014.org/
http://www.enviroinfo2014.org/
http://dx.doi.org/10.1007/978-3-642-33654-6_17
http://dx.doi.org/10.1109/CSMR.2009.59
http://dx.doi.org/10.1145/949344.949348

Bibliography

[GSG+09] J. Gausemeier, W. Schäfer, J. Greenyer, S. Kahl, S. Pook and J. Rieke, “Management

of Cross-Domain Model Consistency during the Development of Advanced Mechat-

ronic Systems”, in Proceedings of the 17th International Conference on Engineering

Design (ICED’09), M. Norell Bergendahl, M. Grimheden, L. Leifer, P. Skogstad and

U. Lindemann, Eds., ser. Design Methods and Tools (pt. 2), vol. 6, Palo Alto, CA,

USA: Design Society, 2009, pp. 1–12 (cit. on p. 44).

[Gui05] G. Guizzardi, “Ontological foundations for structural conceptual models”, PhD

thesis, Centre for Telematics and Information Technology, Enschede, Netherlands,

2005. [Online]. Available: http://doc.utwente.nl/50826/ (cit. on p. 171).

[Gui12] H. Guihot, Pro Android Apps Performance Optimization. Apress, 2012. doi: 10.
1007/978-1-4302-4000-6 (cit. on pp. 99, 101, 103).

[GvDS13] M. Greiler, A. van Deursen and M.-A. Storey, “Automated Detection of Test Fixture

Strategies and Smells”, in Software Testing, Veri�cation and Validation (ICST), 2013

IEEE Sixth International Conference on, Mar. 2013, pp. 322–331. doi: 10.1109/
ICST.2013.45 (cit. on p. 35).

[GW09] H. Giese and R. Wagner, “From model transformation to incremental bidirectional

model synchronization”, English, Software & Systems Modeling, vol. 8, no. 1, pp. 21–

43, 2009, issn: 1619-1366. doi: 10.1007/s10270-008-0089-9 (cit. on pp. 44, 47).

[GWRA12] S. Götz, C. Wilke, S. Richly and U. Aßmann, “Approximating quality contracts

for energy auto-tuning software”, in Green and Sustainable Software (GREENS),

2012 First International Workshop on, 2012, pp. 8–14. doi: 10.1109/GREENS.2012.
6224264 (cit. on p. 81).

[GZvDS13] M. Greiler, A. Zaidman, A. van Deursen and M.-A. Storey, “Strategies for Avoiding

Text Fixture Smells during Software Evolution”, in 10th IEEE Working Conference

on Mining Software Repositories (MSR), May 2013, pp. 387–396. doi: 10.1109/MSR.
2013.6624053 (cit. on p. 35).

[Hax14] A. E. Haxthausen, “An Institution for Imperative RSL Speci�cations”, English, in

Speci�cation, Algebra, and Software, ser. Lecture Notes in Computer Science, S.

Iida, J. Meseguer and K. Ogata, Eds., vol. 8373, Springer Berlin Heidelberg, 2014,

pp. 441–464, isbn: 978-3-642-54623-5. doi: 10.1007/978-3-642-54624-2_22
(cit. on p. 71).

[HB10] H. Höpfner and C. Bunse, “Towards an Energy-Consumption Based Complexity

Classi�cation for Resource Substitution Strategies”, in Proceedings of the 22nd

Workshop "Grundlagen von Datenbanken 2010", CEUR Workshop Proceedings, W.-T.

Balke and C. Lo�, Eds., vol. 581, 2010 (cit. on pp. 34, 96, 97).

[HBJ08] M. Herrmannsdörfer, S. Benz and E. Juergens, “Automatability of Coupled Evolu-

tion of Metamodels and Models in Practice”, in Model Driven Engineering Languages

and Systems, ser. LNCS, K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl and M. Völter,

Eds., vol. 5301, Springer, 2008, pp. 645–659, isbn: 978-3-540-87874-2 (cit. on p. 41).

[HBJ09] M. Herrmannsdörfer, S. Benz and E. Juergens, “COPE - Automating Coupled

Evolution of Metamodels and Models”, in ECOOP 2009, ser. LNCS, S. Drossopoulou,

Ed., vol. 5653, Springer, 2009, pp. 52–76, isbn: 978-3-642-03012-3 (cit. on pp. 41,

46).

[HCW07] A. Hessellund, K. Czarnecki and A. Wąsowski, “Guided Development with Multiple

Domain-Speci�c Languages”, English, in Model Driven Engineering Languages and

197

http://doc.utwente.nl/50826/
http://dx.doi.org/10.1007/978-1-4302-4000-6
http://dx.doi.org/10.1007/978-1-4302-4000-6
http://dx.doi.org/10.1109/ICST.2013.45
http://dx.doi.org/10.1109/ICST.2013.45
http://dx.doi.org/10.1007/s10270-008-0089-9
http://dx.doi.org/10.1109/GREENS.2012.6224264
http://dx.doi.org/10.1109/GREENS.2012.6224264
http://dx.doi.org/10.1109/MSR.2013.6624053
http://dx.doi.org/10.1109/MSR.2013.6624053
http://dx.doi.org/10.1007/978-3-642-54624-2_22

Bibliography

Systems, ser. Lecture Notes in Computer Science, G. Engels, B. Opdyke, D. C.

Schmidt and F. Weil, Eds., vol. 4735, Springer Berlin Heidelberg, 2007, pp. 46–60,

isbn: 978-3-540-75208-0. doi: 10.1007/978-3-540-75209-7_4 (cit. on p. 111).

[HEO+15] F. Hermann, H. Ehrig, F. Orejas, K. Czarnecki, Z. Diskin, Y. Xiong, S. Gottmann and

T. Engel, “Model synchronization based on triple graph grammars: correctness,

completeness and invertibility”, English, Software & Systems Modeling, vol. 14, no.

1, pp. 241–269, 2015, issn: 1619-1366. doi: 10.1007/s10270-012-0309-1 (cit. on

p. 44).

[HJK+09] F. Heidenreich, J. Johannes, S. Karol, M. Seifert and C. Wende, “Derivation and

Re�nement of Textual Syntax for Models”, in Proc. of the 5th Europ. Conf. on

Model Driven Architecture - Foundations and Applications (ECMDA-FA 2009), ser.

LNCS, vol. 5562, Enschede, The Netherlands: Springer, 2009, pp. 114–129, isbn:

978-3-642-02673-7 (cit. on p. 5).

[HJSW10] F. Heidenreich, J. Johannes, M. Seifert and C. Wende, “Closing the Gap between

Modelling and Java”, English, in Software Language Engineering, ser. Lecture Notes

in Computer Science, M. van den Brand, D. Gašević and J. Gray, Eds., vol. 5969,

Springer Berlin Heidelberg, 2010, pp. 374–383, isbn: 978-3-642-12106-7. doi: 10.
1007/978-3-642-12107-4_25 (cit. on pp. 9, 18, 188).

[HK10] M. Herrmannsdoerfer and M. Koegel, “Towards Semantics-Preserving Model Mi-

gration”, in International Workshop on Models and Evolutions, Oslo, Norway, Oct.

2010 (cit. on p. 41).

[HMK05] J. Hannemann, G. C. Murphy and G. Kiczales, “Role-based Refactoring of Crosscut-

ting Concerns”, in Proceedings of the 4th International Conference on Aspect-oriented

Software Development, ser. AOSD ’05, Chicago, Illinois: ACM, 2005, pp. 135–146,

isbn: 1-59593-042-6. doi: 10.1145/1052898.1052910 (cit. on pp. 29, 31, 60, 76).

[Hor08] I. Horrocks, “Ontologies and the Semantic Web”, Communications of the ACM, vol.

51, no. 12, pp. 58–67, Dec. 2008, issn: 0001-0782. doi: 10.1145/1409360.1409377
(cit. on p. 156).

[HS06] H.-J. Happel and S. Seedorf, “Applications of Ontologies in Software Engineering”,

in Proceedings of the 2nd International Workshop on Semantic Web Enabled Software

Engineering (SWESE’06), 2006 (cit. on pp. 107–109).

[HVW11] M. Herrmannsdörfer, S. Vermolen and G. Wachsmuth, “An Extensive Catalog of

Operators for the Coupled Evolution of Metamodels and Models”, in Software

Language Engineering, ser. LNCS, B. Malloy, S. Staab and M. van den Brand, Eds.,

vol. 6563, Springer, 2011, pp. 163–182, isbn: 978-3-642-19439-9 (cit. on pp. 41, 47).

[IM10] J. L. C. Izquierdo and J. G. Molina, “An Architecture-Driven Modernization Tool

for Calculating Metrics”, Software, IEEE, vol. 27, no. 4, pp. 37–43, Jul. 2010, issn:

0740-7459. doi: 10.1109/MS.2010.61 (cit. on p. 3).

[ISO01] Software engineering – Product quality – Part 1: Quality model, ISO/IEC, 2001.

[Online]. Available: http://www.iso.org/iso/iso_catalogue/catalogue_
tc/catalogue_detail.htm?csnumber=22749 (cit. on p. 81).

[ISO96] Information technology – Syntactic metalanguage – Extended BNF, ISO/IEC, 1996.

[Online]. Available: http://www.iso.org/iso/catalogue_detail?csnumber=
26153 (cit. on pp. 122, 187).

198

http://dx.doi.org/10.1007/978-3-540-75209-7_4
http://dx.doi.org/10.1007/s10270-012-0309-1
http://dx.doi.org/10.1007/978-3-642-12107-4_25
http://dx.doi.org/10.1007/978-3-642-12107-4_25
http://dx.doi.org/10.1145/1052898.1052910
http://dx.doi.org/10.1145/1409360.1409377
http://dx.doi.org/10.1109/MS.2010.61
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749
http://www.iso.org/iso/catalogue_detail?csnumber=26153
http://www.iso.org/iso/catalogue_detail?csnumber=26153

Bibliography

[JK06] F. Jouault and I. Kurtev, “Transforming Models with ATL”, English, in Satellite

Events at the MoDELS 2005 Conference, ser. Lecture Notes in Computer Science,

J.-M. Bruel, Ed., vol. 3844, Springer Berlin Heidelberg, 2006, pp. 128–138, isbn:

978-3-540-31780-7. doi: 10.1007/11663430_14 (cit. on pp. 45, 187).

[KDPP09] D. Kolovos, D. Di Ruscio, A. Pierantonio and R. F. Paige, “Di�erent Models for

Model Matching: An analysis of approaches to support model di�erencing”, in

International Workshop on Comparison and Versioning of Software Models, MCVS’09

at ICSE’09, IEEE Computer Society, 2009 (cit. on p. 77).

[KE07] D.-K. Kim and C. El Khawand, “An Approach to Precisely Specifying the Problem

Domain of Design Patterns”, Journal of Visual Languages and Computing, vol. 18,

no. 6, pp. 560–591, 2007 (cit. on pp. 33, 87).

[KGH10] O. Kaczor, Y.-G. Guéhéneuc and S. Hamel, “Identi�cation of design motifs with

pattern matching algorithms”, Information and Software Technology, vol. 52, no.

2, pp. 152–168, 2010, issn: 0950-5849. doi: 10.1016/j.infsof.2009.08.006
(cit. on pp. 33, 87).

[KKK+06] G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T. Reiter, W. Retschitzegger, W.

Schwinger and M. Wimmer, “On Models and Ontologies - A Layered Approach

for Model-based Tool Integration”, in Proceedings of Modellierung 2006, H. C. Mayr

and R. Breu, Eds., ser. Lecture Notes in Informatics, vol. GI-Edition, Innsbruck,

Austria, 2006 (cit. on p. 108).

[Kle09] A. Kleppe, Software Language Engineering: Creating Domain-Speci�c Languages

Using Metamodels. Pearson Education, 2009, isbn: 0321553454 (cit. on pp. 4, 16, 19).

[KLG+14] T. Kühn, M. Leuthäuser, S. Götz, C. Seidl and U. Aßmann, “A Metamodel Family

for Role-Based Modeling and Programming Languages”, in Software Language

Engineering, Springer, 2014, pp. 141–160 (cit. on pp. 19, 57, 171, 172).

[KLR+12] G. Kappel, P. Langer, W. Retschitzegger, W. Schwinger and M. Wimmer, “Model

Transformation By-Example: A Survey of the First Wave”, English, in Conceptual

Modelling and Its Theoretical Foundations, ser. Lecture Notes in Computer Science, A.

Düsterhöft, M. Klettke and K.-D. Schewe, Eds., vol. 7260, Springer Berlin Heidelberg,

2012, pp. 197–215, isbn: 978-3-642-28278-2. doi: 10.1007/978-3-642-28279-
9_15 (cit. on p. 30).

[Köh06] C. Köhler, “A Visual Model Transformation Environment for the Eclipse Modeling

Framework”, Diploma Thesis, TU Berlin, Oct. 2006 (cit. on p. 29).

[Koz11] A. Koziolek, “Automated Improvement of Software Architecture Models for Per-

formance and Other Quality Attributes”, PhD thesis, Institut für Programmstruk-

turen und Datenorganisation (IPD), Karlsruher Institut für Technologie, Karlsruhe,

2011. [Online]. Available: http://nbn-resolving.org/urn:nbn:de:swb:90-
249552 (cit. on pp. 36–38, 49, 79, 87, 166, 167).

[KPPR07] D. Kolovos, R. F. Paige, F. Polack and L. M. Rose, “Update transformations in the

small with the Epsilon Wizard Language”, Journal of Object Technology, vol. 6, no.

9, pp. 53–69, 2007 (cit. on pp. 28, 35, 188).

[KRGP13] D. Kolovos, L. Rose, A. García-Domínguez and R. Paige. (Apr. 2013). The Epsilon

Book (cit. on pp. 28, 35, 38).

[KT08] S. Kelly and J.-P. Tolvanen,Domain-Speci�cModeling: Enabling Full Code Generation.

John Wiley & Sons, 2008 (cit. on pp. 3–5).

199

http://dx.doi.org/10.1007/11663430_14
http://dx.doi.org/10.1016/j.infsof.2009.08.006
http://dx.doi.org/10.1007/978-3-642-28279-9_15
http://dx.doi.org/10.1007/978-3-642-28279-9_15
http://nbn-resolving.org/urn:nbn:de:swb:90-249552
http://nbn-resolving.org/urn:nbn:de:swb:90-249552

Bibliography

[KV10] L. C. L. Kats and E. Visser, “The Spoofax Language Workbench: Rules for Declarat-

ive Speci�cation of Languages and IDEs”, in Proceedings of the 25th Annual ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and

Applications, OOPSLA 2010, M. C. Rinard, Ed., Reno/Tahoe, Nevada: ACM, 2010,

pp. 444–463, isbn: 978-1-4503-0203-6. doi: 10.1145/1869459.1869497 (cit. on

pp. 5, 6).

[KVGS11] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc and H. Sahraoui, “BDTEX: A GQM-based

Bayesian approach for the detection of antipatterns”, Journal of Systems and Soft-

ware, vol. 84, no. 4, pp. 559–572, 2011, issn: 0164-1212. doi: 10.1016/j.jss.
2010.11.921 (cit. on pp. 33, 37, 87).

[Läm02] R. Lämmel, “Towards Generic Refactoring”, in Proceedings of Third ACM SIGPLAN

Workshop on Rule-Based Programming RULE’02, Pittsburgh, USA: ACM Press, Oct.

2002 (cit. on pp. 27, 31, 70).

[Läm04] R. Lämmel, “Coupled Software Transformations – Extended Abstract –”, in 1st

International Workshop on Software Evolution Transformations, Y. Zou and J. R.

Cordy, Eds., 2004, pp. 31–35 (cit. on p. 40).

[LBD05] R. Lubke, J. Ball and P. Delisle. (Aug. 2005). Uni�ed Expression Language. Ac-

cessed: 2015-04-26 (Archived by WebCite® at http://www.webcitation.org/
6Y54zCW8u), [Online]. Available: http://www.oracle.com/technetwork/
java/unifiedel-139263.html (cit. on p. 116).

[Leh96] M. M. Lehman, “Laws of Software Evolution Revisited”, in Lecture Notes in Com-

puter Science, C. Montangero, Ed., vol. 1149, Springer Berlin Heidelberg, 1996,

pp. 108–124, isbn: 978-3-540-61771-6. doi: 10.1007/BFb0017737 (cit. on pp. 4, 5,

19).

[LGJ07] Y. Lin, J. Gray and F. Jouault, “DSMDi�: a di�erentiation tool for domain-speci�c

models”, European Journal of Information Systems, vol. 16, pp. 349–361, 2007 (cit. on

pp. 77, 78).

[LM06] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice – Using Software

Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented Systems.

Springer Berlin Heidelberg, 2006 (cit. on p. 84).

[LMB+01] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G. G. Nordstrom,

J. Sprinkle and P. Volgyesi, “The Generic Modeling Environment”, in Workshop on

Intelligent Signal Processing, Budapest, Hungary, 2001 (cit. on pp. 5, 27, 188).

[LWK10] P. Langer, M. Wimmer and G. Kappel, “Model-to-Model Transformations By

Demonstration”, in Theory and Practice of Model Transformations, ser. Lecture

Notes in Computer Science, L. Tratt and M. Gogolla, Eds., vol. 6142, Springer Berlin

Heidelberg, 2010, pp. 153–167, isbn: 978-3-642-13687-0. doi: 10.1007/978-3-
642-13688-7_11 (cit. on pp. 30, 31).

[LXC14] Y. Liu, C. Xu and S.-C. Cheung, “Characterizing and Detecting Performance Bugs

for Smartphone Applications”, in Proceedings of the 36th International Conference on

Software Engineering, ser. ICSE 2014, Hyderabad, India: ACM, 2014, pp. 1013–1024,

isbn: 978-1-4503-2756-5. doi: 10.1145/2568225.2568229 (cit. on p. 34).

[Mah81] H. Mahler (today Heike Reimann), “Der Beitrag Vladislav Krapivins zur zeitgenöss-

ischen sowjetischen Prosa für Kinder”, Dissertation, Pädagogische Hochschule

Potsdam, 1981 (cit. on p. 1).

200

http://dx.doi.org/10.1145/1869459.1869497
http://dx.doi.org/10.1016/j.jss.2010.11.921
http://dx.doi.org/10.1016/j.jss.2010.11.921
http://www.webcitation.org/6Y54zCW8u
http://www.webcitation.org/6Y54zCW8u
http://www.oracle.com/technetwork/java/unifiedel-139263.html
http://www.oracle.com/technetwork/java/unifiedel-139263.html
http://dx.doi.org/10.1007/BFb0017737
http://dx.doi.org/10.1007/978-3-642-13688-7_11
http://dx.doi.org/10.1007/978-3-642-13688-7_11
http://dx.doi.org/10.1145/2568225.2568229

Bibliography

[Mar01] R. Marinescu, “Detecting Design Flaws via Metrics in Object-Oriented Systems”,

in 39th International Conference and Exhibition on Technology of Object-Oriented

Languages and Systems (TOOLS’01), 2001, pp. 173–182. doi: 10.1109/TOOLS.
2001.941671 (cit. on pp. 37, 87).

[Mar04] R. Marinescu, “Detection Strategies: Metrics-Based Rules for Detecting Design

Flaws”, in Proceedings of the 20th IEEE International Conference on Software Main-

tenance (ICSM’04), Sep. 2004, pp. 350–359. doi: 10.1109/ICSM.2004.1357820
(cit. on p. 84).

[MBF11] S. Murer, B. Bonati and F. J. Furrer, Managed Evolution: A Strategy for Very Large

Information Systems. Springer, 2011, isbn: 978-3-642-01632-5 (cit. on p. 45).

[Mer10] B. Merkle, “Textual Modeling Tools: Overview and Comparison of Language

Workbenches”, in Proceedings of the ACM International Conference Companion on

Object Oriented Programming Systems Languages and Applications Companion, ser.

OOPSLA ’10, Reno/Tahoe, Nevada, USA: ACM, 2010, pp. 139–148, isbn: 978-1-

4503-0240-1. doi: 10.1145/1869542.1869564 (cit. on p. 6).

[MGDL10] N. Moha, Y. Guéhéneuc, L. Duchien and A. Le Meur, “DECOR: A Method for the

Speci�cation and Detection of Code and Design Smells”, Software Engineering,

IEEE Transactions on, vol. 36, no. 1, pp. 20–36, 2010, issn: 0098-5589. doi: 10.1109/
TSE.2009.50 (cit. on p. 37).

[MMBJ09] N. Moha, V. Mahé, O. Barais and J.-M. Jézéquel, “Generic Model Refactorings”, in

MODELS, A. Schürr and B. Selic, Eds., ser. Lecture Notes in Computer Science,

vol. 5795, Denver, USA: Springer, Oct. 2009, pp. 628–643, isbn: 978-3-642-04424-3.

doi: 10.1007/978-3-642-04425-0_50 (cit. on pp. 11, 26, 27, 31).

[MRG09] M. Mohamed, M. Romdhani and K. Ghedira, “Classi�cation of model refactoring

approaches”, Journal of Object Technology (JOT), vol. 8, no. 6, pp. 143–158, 2009

(cit. on p. 67).

[MRW77] J. A. McCall, P. K. Richards and G. F. Walters, “Factors in Software Quality. Volume

I. Concepts and De�nitions of Software Quality”, General Electric Co. Sunnyvale

California, Tech. Rep. ADA 049014, 1977 (cit. on p. 81).

[MTM07] T. Mens, G. Taentzer and D. Müller, “Challenges in Model Refactoring”, in Pro-

ceedings of the 1st Workshop on Refactoring Tools, University of Berlin, 2007 (cit. on

pp. 9–11, 16, 25, 32, 52, 67, 79, 80, 146).

[MTM08] T. Mens, G. Taentzer and D. Müller, “Model-Driven Software Refactoring. Integrat-

ing Quality Assurance”, in. IGI Global, 2008, ch. 8, pp. 170–203 (cit. on p. 29).

[MV06] T. Mens and P. Van Gorp, “A Taxonomy of Model Transformation”, in Proceedings

of the International Workshop on Graph and Model Transformation (GraMoT 2005),

vol. 152, 2006, pp. 125–142. doi: 10.1016/j.entcs.2005.10.021 (cit. on pp. 19,

25).

[MWCS11] B. Meyers, M. Wimmer, A. Cicchetti and J. Sprinkle, “A generic in-place transformation-

based approach to structured model co-evolution”, Electronic Communications of

the European Association of Software Science and Technology (ECEASST), vol. 42,

p. 13, 2011 (cit. on pp. 41, 47).

[NB07] H. Neukirchen and M. Bisanz, “Utilising Code Smells to Detect Quality Problems

in TTCN-3 Test Suites”, in Testing of Software and Communicating Systems, ser.

Lecture Notes in Computer Science, A. Petrenko, M. Veanes, J. Tretmans and W.

201

http://dx.doi.org/10.1109/TOOLS.2001.941671
http://dx.doi.org/10.1109/TOOLS.2001.941671
http://dx.doi.org/10.1109/ICSM.2004.1357820
http://dx.doi.org/10.1145/1869542.1869564
http://dx.doi.org/10.1109/TSE.2009.50
http://dx.doi.org/10.1109/TSE.2009.50
http://dx.doi.org/10.1007/978-3-642-04425-0_50
http://dx.doi.org/10.1016/j.entcs.2005.10.021

Bibliography

Grieskamp, Eds., vol. 4581, Springer Berlin Heidelberg, 2007, pp. 228–243, isbn:

978-3-540-73065-1. doi: 10.1007/978-3-540-73066-8_16 (cit. on pp. 34, 35, 37,

38, 80).

[NPA91] E. J. Neuhold, M. Paul and K. R. Apt, Formal Description of Programming Concepts.

Springer Science & Business Media, 1991 (cit. on p. 71).

[NTVW15] P. Neron, A. P. Tolmach, E. Visser and G. Wachsmuth, “A Theory of Name Res-

olution”, in 24th European Symposium on Programming, ESOP 2015, Held as Part

of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015,

J. Vitek, Ed., London, UK, Apr. 2015 (cit. on p. 27).

[OGB+11] R. Oliveto, M. Gethers, G. Bavota, D. Poshyvanyk and A. De Lucia, “Identifying

Method Friendships to Remove the Feature Envy Bad Smell (NIER Track)”, in

Proceedings of the 33rd International Conference on Software Engineering, ser. ICSE

’11, Waikiki, Honolulu, HI, USA: ACM, 2011, pp. 820–823, isbn: 978-1-4503-0445-0.

doi: 10.1145/1985793.1985913 (cit. on p. 80).

[OJ90] W. F. Opdyke and R. E. Johnson, “Refactoring: An aid in designing application

frameworks and evolving object-oriented systems”, in Proceedings of Symposium

on Object-Oriented Programming Emphasizing Practical Applications (SOOPPA), Sep.

1990 (cit. on pp. 5, 15).

[OMG03] The Object Management Group, MDA Guide Version 1.0.1, Object Management

Group, 2003. [Online]. Available: http://www.omg.org/news/meetings/
workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf (cit. on pp. 18,

188).

[OMG11a] The Object Management Group, OMG Uni�ed Modeling Language (OMG UML),

Superstructure, Version 2.4.1, Aug. 2011. [Online]. Available: http://www.omg.
org/spec/UML/2.4.1/Superstructure/PDF (cit. on pp. 3, 17, 150, 151, 189).

[OMG11b] The Object Management Group, UML Pro�le for MARTE: Modeling and Analysis

of Real-Time Embedded Systems, Version 1.1, Jul. 2011. [Online]. Available: http:
//www.omg.org/spec/MARTE/1.1/PDF (cit. on p. 36).

[OMG13a] The Object Management Group, Requirements Interchange Format (ReqIF) – Version

1.1, 2013. [Online]. Available: http://www.omg.org/spec/ReqIF/1.1/PDF
(cit. on p. 168).

[OMG13b] The Object Management Group, Business Process Model and Notation (BPMN),

Version 2.0.2, Dec. 2013. [Online]. Available: http://www.omg.org/spec/BPMN/
2.0.2/PDF (cit. on pp. 3, 187).

[OMG13c] The Object Management Group, OMGMeta Object Facility (MOF) Core Speci�cation

– Version 2.4.1, Jun. 2013. [Online]. Available: http://www.omg.org/spec/MOF/
2.4.1/PDF (cit. on pp. 17, 171, 188).

[OMG14a] The Object Management Group, Object Constraint Language, Version 2.4, 2014.

[Online]. Available: http://www.omg.org/spec/OCL/2.4/PDF (cit. on pp. 28,

188).

[OMG14b] The Object Management Group, XML Metadata Interchange (XMI) Speci�cation –

Version 2.4.2, Apr. 2014. [Online]. Available: http://www.omg.org/spec/XMI/2.
4.2/PDF (cit. on pp. 42, 189).

[Opd92] W. F. Opdyke, “Refactoring Object-Oriented Frameworks”, PhD thesis, University

of Illinois at Urbana-Champaign, 1992 (cit. on pp. 5, 15, 16, 25, 67).

202

http://dx.doi.org/10.1007/978-3-540-73066-8_16
http://dx.doi.org/10.1145/1985793.1985913
http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf
http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://www.omg.org/spec/MARTE/1.1/PDF
http://www.omg.org/spec/MARTE/1.1/PDF
http://www.omg.org/spec/ReqIF/1.1/PDF
http://www.omg.org/spec/BPMN/2.0.2/PDF
http://www.omg.org/spec/BPMN/2.0.2/PDF
http://www.omg.org/spec/MOF/2.4.1/PDF
http://www.omg.org/spec/MOF/2.4.1/PDF
http://www.omg.org/spec/OCL/2.4/PDF
http://www.omg.org/spec/XMI/2.4.2/PDF
http://www.omg.org/spec/XMI/2.4.2/PDF

Bibliography

[OSGi14] The OSGi Alliance, OSGi Core – Release 6, 2014. [Online]. Available: https://
osgi.org/download/r6/osgi.core-6.0.0.pdf (cit. on pp. 121, 188).

[Pfe13] R.-H. Pfei�er, “Multi-language Development Environments - Design Space, Models,

Prototypes, Experiences”, PhD thesis, IT University of Copenhagen, Software

Development Group, 2013 (cit. on pp. 8, 45, 47–49, 105, 114).

[P�98] S. L. P�eeger, Software Engineering: Theory and Practice. Prentice Hall, 1998 (cit. on

p. 5).

[PHZ11] A. Pathak, Y. C. Hu and M. Zhang, “Bootstrapping Energy Debugging on Smart-

phones: A First Look at Energy Bugs in Mobile Devices”, in Proceedings of the

10th ACM Workshop on Hot Topics in Networks, ser. HotNets-X, Cambridge, Mas-

sachusetts: ACM, 2011, 5:1–5:6, isbn: 978-1-4503-1059-8. doi: 10.1145/2070562.
2070567 (cit. on p. 34).

[PJHM12] A. Pathak, A. Jindal, Y. C. Hu and S. P. Midki�, “What is keeping my phone awake?

Characterizing and Detecting No-Sleep Energy Bugs in Smartphone Apps”, in

Proceedings of the 10th international conference on Mobile systems, applications, and

services, ser. MobiSys ’12, Low Wood Bay, Lake District, UK: ACM, 2012, pp. 267–

280, isbn: 978-1-4503-1301-8. doi: 10.1145/2307636.2307661 (cit. on pp. 34, 37,

38).

[PKPS02] M. Paolucci, T. Kawamura, T. Payne and K. Sycara, “Semantic Matching of Web

Services Capabilities”, English, in The Semantic Web — ISWC 2002, ser. Lecture

Notes in Computer Science, I. Horrocks and J. Hendler, Eds., vol. 2342, Springer

Berlin Heidelberg, 2002, pp. 333–347, isbn: 978-3-540-43760-4. doi: 10.1007/3-
540-48005-6_26 (cit. on p. 167).

[PRH10] D. C. Petriu, N. Rouquette and Ø. Haugen, Eds.,Model Driven Engineering Languages

and Systems - 13th International Conference, MoDELS 2010, Oslo, Norway, October

3-8, 2010, Proceedings, Part I, vol. 6394, ser. Lecture Notes in Computer Science,

Springer, 2010, isbn: 978-3-642-16144-5.

[PRW14] R.-H. Pfei�er, J. Reimann and A. Wąsowski, “Language-Independent Traceability

with Lässig”, in, ser. Lecture Notes in Computer Science, J. Cabot and J. Rubin,

Eds., vol. 8569, Springer International Publishing, 2014, pp. 148–163, isbn: 978-

3-319-09194-5. doi: 10.1007/978-3-319-09195-2_10 (cit. on pp. 45, 46, 105,

113).

[PS92] B. Peuschel and W. Schäfer, “Concepts and Implementation of a Rule-based Process

Engine”, in Proceedings of the 14th International Conference on Software Engineering

(ICSE), ser. ICSE ’92, Melbourne, Australia: ACM, 1992, pp. 262–279, isbn: 0-89791-

504-6. doi: 10.1145/143062.143126 (cit. on p. 111).

[PW11] R.-H. Pfei�er and A. Wąsowski, “Taming the Confusion of Languages”, in 7th

European Conference on Modelling Foundations and Applications, R. France, J.

Kuester, B. Bordbar and R. Paige, Eds., ser. LNCS, vol. 6698, Springer, 2011, pp. 312–

328, isbn: 978-3-642-21469-1 (cit. on p. 45).

[PW15] R.-H. Pfei�er and A. Wąsowski, “The design space of multi-language development

environments”, English, Software & Systems Modeling, vol. 14, no. 1, pp. 383–411,

2015, issn: 1619-1366. doi: 10.1007/s10270-013-0376-y (cit. on pp. 8, 45, 110).

[RA13] J. Reimann and U. Aßmann, “Quality-Aware Refactoring for Early Detection and

Resolution of Energy De�ciencies”, in Proceedings of the 2013 IEEE/ACM 6th In-

203

https://osgi.org/download/r6/osgi.core-6.0.0.pdf
https://osgi.org/download/r6/osgi.core-6.0.0.pdf
http://dx.doi.org/10.1145/2070562.2070567
http://dx.doi.org/10.1145/2070562.2070567
http://dx.doi.org/10.1145/2307636.2307661
http://dx.doi.org/10.1007/3-540-48005-6_26
http://dx.doi.org/10.1007/3-540-48005-6_26
http://dx.doi.org/10.1007/978-3-319-09195-2_10
http://dx.doi.org/10.1145/143062.143126
http://dx.doi.org/10.1007/s10270-013-0376-y

Bibliography

ternational Conference on Utility and Cloud Computing, ser. UCC ’13, Washington,

DC, USA: IEEE Computer Society, 2013, pp. 321–326, isbn: 978-0-7695-5152-4. doi:

10.1109/UCC.2013.70 (cit. on pp. 37, 79).

[RASG14] E. Riccobene, P. Arcaini, P. Scandurra and A. Gargantini, “Formal Semantics for

Metamodel-Based Domain Speci�c Languages”, in. IGI Global, 2014, ch. 15 (cit. on

p. 71).

[RBA14] J. Reimann, M. Brylski and U. Aßmann, “A Tool-Supported Quality Smell Catalogue

For Android Developers”, in Proceedings of the conference Modellierung 2014 in the

Workshop Modellbasierte und modellgetriebene Softwaremodernisierung – MMSM

2014, 2014 (cit. on pp. 34, 37, 89, 92, 93).

[Rei10] J. Reimann, “Generisches Modellrefactoring für EMFText”, Diploma Thesis, Tech-

nische Universität Dresden, 2010. [Online]. Available: http://nbn-resolving.
de/urn:nbn:de:bsz:14-qucosa-67762 (cit. on p. 25).

[Ren04] A. Rensink, “Representing First-Order Logic Using Graphs”, English, in Graph

Transformations, ser. Lecture Notes in Computer Science, H. Ehrig, G. Engels, F.

Parisi-Presicce and G. Rozenberg, Eds., vol. 3256, Springer Berlin Heidelberg, 2004,

pp. 319–335, isbn: 978-3-540-23207-0. doi: 10.1007/978-3-540-30203-2_23
(cit. on p. 111).

[RG98] D. Riehle and T. Gross, “Role Model Based Framework Design and Integration”, in

Proc. of OOPSLA ’98, Vancouver, British Columbia, Canada: ACM, 1998, pp. 117–

133, isbn: 1-58113-005-8. doi: 10.1145/286936.286951 (cit. on pp. 11, 19, 20,

54).

[RGdL+13] L. Rose, E. Guerra, J. de Lara, A. Etien, D. Kolovos and R. Paige, “Genericity for

model management operations”, English, Software & Systems Modeling, vol. 12,

no. 1, pp. 201–219, 2013, issn: 1619-1366. doi: 10.1007/s10270-011-0203-2
(cit. on pp. 27, 31).

[RKP+14] L. M. Rose, D. S. Kolovos, R. F. Paige, F. A. C. Polack and S. Poulding, “Epsilon

Flock: a model migration language”, Software & Systems Modeling, vol. 13, no. 2,

pp. 735–755, 2014, issn: 1619-1366. doi: 10.1007/s10270-012-0296-2 (cit. on

pp. 41, 42, 47, 48, 60, 61).

[Rob99] D. B. Roberts, “Practical Analysis for Refactoring”, PhD thesis, University of Illinois

at Urbana-Champaign, Department of Computer Science, 1999, isbn: 0-599-46857-2

(cit. on p. 67).

[Rot89] J. Rothenberg, “The Nature of Modeling”, pp. 75–92, 1989 (cit. on p. 16).

[Roz97] G. Rozenberg, Ed., Handbook of Graph Grammars and Computing by Graph Trans-

formations, Volume 1: Foundations. World Scienti�c, 1997 (cit. on p. 18).

[RSA10] J. Reimann, M. Seifert and U. Aßmann, “Role-based Generic Model Refactoring”, in

Model Driven Engineering Languages and Systems - 13th International Conference,

MoDELS 2010, Oslo, Norway, October 3-8, 2010, Proceedings, Part II, D. C. Petriu, N.

Rouquette and Ø. Haugen, Eds., ser. Lecture Notes in Computer Science, vol. 6395,

Springer, 2010, pp. 78–92. doi: 10.1007/978-3-642-16129-2_7 (cit. on pp. 51,

172).

[RSA13] J. Reimann, M. Seifert and U. Aßmann, “On the reuse and recommendation of

model refactoring speci�cations”, English, Software & Systems Modeling, vol. 12,

204

http://dx.doi.org/10.1109/UCC.2013.70
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-67762
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-67762
http://dx.doi.org/10.1007/978-3-540-30203-2_23
http://dx.doi.org/10.1145/286936.286951
http://dx.doi.org/10.1007/s10270-011-0203-2
http://dx.doi.org/10.1007/s10270-012-0296-2
http://dx.doi.org/10.1007/978-3-642-16129-2_7

Bibliography

no. 3, pp. 579–596, 2013, issn: 1619-1366. doi: 10.1007/s10270-012-0243-2
(cit. on pp. 27, 45, 51, 73, 172).

[RV07] J. E. Rivera and A. Vallecillo, “Adding Behavior to Models”, in 11th IEEE Interna-

tional Enterprise Distributed Object Computing Conference, EDOC 2007, Oct. 2007,

pp. 169–169. doi: 10.1109/EDOC.2007.40 (cit. on p. 71).

[RWL96] T. Reenskaug, P. Wold and O. A. Lehne, Working with objects – The OOram Software

Engineering Method. 1996. [Online]. Available: http://heim.ifi.uio.no/
~trygver/1996/book/WorkingWithObjects (cit. on pp. 11, 19, 54, 57).

[RWZ11] T. Ruhroth, H. Wehrheim and S. Ziegert, “ReL: A Generic Refactoring Language

for Speci�cation and Execution”, in 37th EUROMICRO Conference on Software

Engineering and Advanced Applications (SEAA) 2011, Aug. 2011, pp. 83–90. doi:

10.1109/SEAA.2011.22 (cit. on pp. 28, 31).

[Sai03] J. Said, “Pattern-Based Approach for Object Oriented Software Design”, PhD

thesis, KU Leuven, 2003. [Online]. Available: http://www.cs.kuleuven.be/
publicaties/doctoraten/cw/CW2003_04.pdf (cit. on pp. 12, 92, 166–168).

[Şav10] I. Şavga, “A Refactoring-Based Approach to Support Binary Backward-Compatible

Framework Upgrades”, PhD thesis, Technische Universität Dresden, 2010. [Online].

Available: http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-38533
(cit. on p. 111).

[SBPM08] D. Steinberg, F. Budinsky, M. Paternostro and E. Merks, EclipseModeling Framework,

2nd. Addison-Wesley, Pearson Education, 2008, isbn: 0321331885 (cit. on pp. 5, 18,

92, 121, 187).

[SDM13] S. M. A. Shah, J. Dietrich and C. McCartin, “On the Automation of Dependency-

Breaking Refactorings in Java”, in 29th IEEE International Conference on Software

Maintenance (ICSM), Sep. 2013, pp. 160–169. doi: 10.1109/ICSM.2013.27 (cit. on

p. 36).

[Sei11] M. Seifert, “Designing Round-Trip Systems by Change Propagation and Model Par-

titioning”, PhD thesis, Technische Universität Dresden, 2011. [Online]. Available:

http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-71098 (cit. on

pp. 45, 47).

[SGdL14] J. Sánchez Cuadrado, E. Guerra and J. de Lara, “A Component Model for Model

Transformations”, IEEE Transactions on Software Engineering, vol. 40, no. 11, pp. 1042–

1060, Nov. 2014, issn: 0098-5589. doi: 10.1109/TSE.2014.2339852 (cit. on pp. 27,

28).

[SHV13] O. Semeráth, Á. Horváth and D. Varró, “Validation of Derived Features and Well-

Formedness Constraints in DSLs”, English, in Model-Driven Engineering Languages

and Systems, ser. Lecture Notes in Computer Science, A. Moreira, B. Schätz, J.

Gray, A. Vallecillo and P. Clarke, Eds., vol. 8107, Springer Berlin Heidelberg, 2013,

pp. 538–554, isbn: 978-3-642-41532-6. doi: 10.1007/978-3-642-41533-3_33
(cit. on p. 92).

[Sie14] K. Siegemund, “Contributions To Ontology-Driven Requirements Engineering”,

PhD thesis, Technische Universität Dresden, 2014 (cit. on p. 109).

[SK11] S. Singh and K. S. Kahlon, “E�ectiveness of Encapsulation and Object-oriented

Metrics to Refactor Code and Identify Error Prone Classes Using Bad Smells”,

205

http://dx.doi.org/10.1007/s10270-012-0243-2
http://dx.doi.org/10.1109/EDOC.2007.40
http://heim.ifi.uio.no/~trygver/1996/book/WorkingWithObjects
http://heim.ifi.uio.no/~trygver/1996/book/WorkingWithObjects
http://dx.doi.org/10.1109/SEAA.2011.22
http://www.cs.kuleuven.be/publicaties/doctoraten/cw/CW2003_04.pdf
http://www.cs.kuleuven.be/publicaties/doctoraten/cw/CW2003_04.pdf
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-38533
http://dx.doi.org/10.1109/ICSM.2013.27
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-71098
http://dx.doi.org/10.1109/TSE.2014.2339852
http://dx.doi.org/10.1007/978-3-642-41533-3_33

Bibliography

SIGSOFT Software Engineering Notes, vol. 36, no. 5, pp. 1–10, Sep. 2011, issn: 0163-

5948. doi: 10.1145/2020976.2020994 (cit. on pp. 33, 37, 87).

[SMM+12] S. Sen, N. Moha, V. Mahé, O. Barais, B. Baudry and J.-M. Jézéquel, “Reusable model

transformations”, English, Software & Systems Modeling, vol. 11, no. 1, pp. 111–125,

2012, issn: 1619-1366. doi: 10.1007/s10270-010-0181-9 (cit. on p. 26).

[Soc93] I. C. Society, “IEEE Standard for a Software Quality Metrics Methodology”, IEEE

Std 1061-1992, 1993. doi: 10.1109/IEEESTD.1993.115124 (cit. on pp. 33, 87).

[SPAS03] K. Sycara, M. Paolucci, A. Ankolekar and N. Srinivasan, “Automated discovery,

interaction and composition of Semantic Web services”, Web Semantics: Science,

Services and Agents on the World Wide Web, vol. 1, no. 1, pp. 27–46, 2003, issn:

1570-8268. doi: 10.1016/j.websem.2003.07.002 (cit. on p. 167).

[SPLJ01] G. Sunyé, D. Pollet, Y. Le Traon and J.-M. Jézéquel, “Refactoring UML Models”, in

Proceedings of the 4th International Conference on The Uni�ed Modeling Language,

Modeling Languages, Concepts, and Tools, Springer, 2001, pp. 134–148 (cit. on p. 28).

[SS09] A. Schürr and B. Selic, Eds., Model Driven Engineering Languages and Systems

– 12th International Conference, MoDELS 2009, vol. 5795, ser. Lecture Notes in

Computer Science, Denver, USA: Springer, Oct. 2009, isbn: 978-3-642-04424-3. doi:

10.1007/978-3-642-04425-0.

[SSA14] C. Seidl, I. Schaefer and U. Aßmann, “DeltaEcore—A Model-Based Delta Language

Generation Framework”, in Modellierung 2014, ser. Lecture Notes in Informatics,

H.-G. Fill, D. Karagiannis and U. Reimer, Eds., vol. P-225, Bonn: Gesellschaft für

Informatik, 2014, pp. 81–96 (cit. on p. 171).

[SSL01] F. Simon, F. Steinbrückner and C. Lewerentz, “Metrics Based Refactoring”, in Pro-

ceedings of Fifth European Conference on Software Maintenance and Reengineering,

CSMR 2001, 2001, pp. 30–38 (cit. on pp. 9, 32, 33, 37, 79, 87).

[Ste00] F. Steimann, “On the representation of roles in object-oriented and conceptual

modelling”, Data & Knowledge Engineering, vol. 35, no. 1, pp. 83–106, 2000, issn:

0169-023X. doi: 10.1016/S0169-023X(00)00023-9 (cit. on pp. 19, 171, 172).

[Ste11] F. Steimann, “Constraint-Based Model Refactoring”, English, in Model Driven

Engineering Languages and Systems, ser. Lecture Notes in Computer Science, J.

Whittle, T. Clark and T. Kühne, Eds., vol. 6981, Springer Berlin Heidelberg, 2011,

pp. 440–454, isbn: 978-3-642-24484-1. doi: 10.1007/978-3-642-24485-8_32
(cit. on pp. 28, 30–32, 42, 43, 48, 71).

[Ste15] F. Steimann, “From well-formedness to meaning preservation: model refactoring

for almost free”, English, Software & Systems Modeling, vol. 14, no. 1, pp. 307–320,

2015, issn: 1619-1366. doi: 10.1007/s10270-013-0314-z (cit. on pp. 42, 43, 71).

[STZ+11] K. Siegemund, E. J. Thomas, Y. Zhao, J. Z. Pan and U. Aßmann, “Towards Ontology-

driven Requirements Engineering”, in SWESE2011 – The 7th International Work-

shop on Semantic Web Enabled Software Engineering Co-located with ISWC2011,

K. Bontcheva, J. Z. Pan and Y. Zhao, Eds., Bonn, Germany, 2011 (cit. on pp. 107,

108).

[SVB+06] T. Stahl, M. Völter, J. Bettin, A. Haase and S. Helsen, Model-Driven Software Devel-

opment: Technology, Engineering, Management. John Wiley & Sons, 2006 (cit. on

pp. 4, 16, 188).

206

http://dx.doi.org/10.1145/2020976.2020994
http://dx.doi.org/10.1007/s10270-010-0181-9
http://dx.doi.org/10.1109/IEEESTD.1993.115124
http://dx.doi.org/10.1016/j.websem.2003.07.002
http://dx.doi.org/10.1007/978-3-642-04425-0
http://dx.doi.org/10.1016/S0169-023X(00)00023-9
http://dx.doi.org/10.1007/978-3-642-24485-8_32
http://dx.doi.org/10.1007/s10270-013-0314-z

Bibliography

[SW03] C. U. Smith and L. G. Williams, “More New Software Performance Antipatterns:

Even More Ways to Shoot Yourself in the Foot”, in Computer Measurement Group

Conference 2003, Computer Measurement Group, 2003, pp. 717–725 (cit. on pp. 33,

87).

[SWG09] Y. Sun, J. White and J. Gray, “Model Transformation by Demonstration”, English, in

Model Driven Engineering Languages and Systems, ser. Lecture Notes in Computer

Science, A. Schürr and B. Selic, Eds., vol. 5795, Springer Berlin Heidelberg, 2009,

pp. 712–726, isbn: 978-3-642-04424-3. doi: 10.1007/978-3-642-04425-0_58
(cit. on pp. 30, 31).

[TDDN00] S. Tichelaar, S. Ducasse, S. Demeyer and O. Nierstrasz, “A Meta-model for Language-

Independent Refactoring”, International Symposium on Principles of Software Evol-

ution, pp. 157–167, Nov. 2000. doi: 10.1109/ISPSE.2000.913233 (cit. on pp. 16,

27, 31).

[Tit11] E. Tittel, “Refactoring in der Ontologiegetriebenen Softwareentwicklung”, Dip-

loma Thesis, Technische Universität Dresden, Dresden, Germany, 2011. [Online].

Available: http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-69119
(cit. on p. 156).

[TKB+14] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake and T. Leich, “FeatureIDE:

An extensible framework for feature-oriented software development”, Science

of Computer Programming, vol. 79, pp. 70–85, 2014, Experimental Software and

Toolkits (EST 4): A special issue of the Workshop on Academic Software Develop-

ment Tools and Techniques (WASDeTT-3 2010), issn: 0167-6423. doi: 10.1016/j.
scico.2012.06.002 (cit. on p. 171).

[TM15] M. Toll and W. R. Minto. (2015). Principles of Pattern Enabled Java Development,

[Online]. Available: http://gtcgroup.com/ped/toll.pdf (cit. on p. 12).

[TMM08] G. Taentzer, D. Müller and T. Mens, “Specifying Domain-Speci�c Refactorings for

AndroMDA Based on Graph Transformation”, in Applications of Graph Transforma-

tions with Industrial Relevance: Third International Symposium, AGTIVE 2007, Kassel,

Germany, October 10-12, 2007, Revised Selected and Invited Papers, Berlin, Heidel-

berg: Springer, 2008, pp. 104–119, isbn: 978-3-540-89019-5. doi: 10.1007/978-3-
540-89020-1_9 (cit. on pp. 11, 29).

[TOHS99] P. Tarr, H. Ossher, W. Harrison and S. M. Sutton Jr., “N degrees of separation:

multi-dimensional separation of concerns”, in Proceedings of the 21st international

conference on Software engineering (ICSE ’99), ser. ICSE ’99, Los Angeles, California,

USA: ACM, 1999, pp. 107–119, isbn: 1-58113-074-0. doi: 10.1145/302405.302457
(cit. on pp. 35, 37, 80).

[Tri07] T. Triebsees, “Constraint-based Model Transformation: Tracing the Preservation

of Semantic Properties”, Journal of Software, vol. 2, no. 3, 2007. doi: 10.4304/jsw.
2.3.19-29 (cit. on p. 71).

[Tru11] C. Trubiani, “Automated generation of architectural feedback from software per-

formance analysis results”, PhD thesis, University of L’Aquila, Italy, 2011 (cit. on

pp. 36–38).

[USH+15] Z. Ujhelyi, G. Szőke, Á. Horváth, N. I. Csiszár, D. Vidács László Varró and R. Ferenc,

“Performance Comparison of Query-based Techniques for Anti-Pattern Detection”,

207

http://dx.doi.org/10.1007/978-3-642-04425-0_58
http://dx.doi.org/10.1109/ISPSE.2000.913233
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-69119
http://dx.doi.org/10.1016/j.scico.2012.06.002
http://dx.doi.org/10.1016/j.scico.2012.06.002
http://gtcgroup.com/ped/toll.pdf
http://dx.doi.org/10.1007/978-3-540-89020-1_9
http://dx.doi.org/10.1007/978-3-540-89020-1_9
http://dx.doi.org/10.1145/302405.302457
http://dx.doi.org/10.4304/jsw.2.3.19-29
http://dx.doi.org/10.4304/jsw.2.3.19-29

Bibliography

Information and Software Technology, 2015. doi: 10.1016/j.infsof.2015.01.
003 (cit. on p. 37).

[VAPM13] A. Vetro’, L. Ardito, G. Procaccianti and M. Morisio, “De�nition, Implementation

and Validation of Energy Code Smells: an Exploratory Study on an Embedded

System”, in ENERGY 2013, The Third International Conference on Smart Grids, Green

Communications and IT Energy-aware Technologies, S. Fries and P. Dini, Eds., Lisbon,

Portugal, Mar. 2013 (cit. on p. 34).

[Var02] D. Varró, “A Formal Semantics of UML Statecharts by Model Transition Systems”,

English, in Graph Transformation, ser. Lecture Notes in Computer Science, A.

Corradini, H. Ehrig, H.-J. Kreowski and G. Rozenberg, Eds., vol. 2505, Springer

Berlin Heidelberg, 2002, pp. 378–392, isbn: 978-3-540-44310-0. doi: 10.1007/3-
540-45832-8_28 (cit. on p. 71).

[Var06] D. Varró, “Model Transformation by Example”, English, in Model Driven Engineer-

ing Languages and Systems, ser. Lecture Notes in Computer Science, O. Nierstrasz,

J. Whittle, D. Harel and G. Reggio, Eds., vol. 4199, Springer Berlin Heidelberg, 2006,

pp. 410–424, isbn: 978-3-540-45772-5. doi: 10.1007/11880240_29 (cit. on p. 30).

[VD06] R. Van Der Straeten and M. D’Hondt, “Model Refactorings Through Rule-based

Inconsistency Resolution”, in Proceedings of the 2006 ACM Symposium on Applied

Computing, ser. SAC ’06, Dijon, France: ACM, 2006, pp. 1210–1217, isbn: 1-59593-

108-2. doi: 10.1145/1141277.1141564 (cit. on pp. 29, 31, 32, 67).

[vDMT10] M. von Detten, M. Meyer and D. Travkin, “Reverse Engineering with the Rec-

lipse Tool Suite”, in Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering, ser. ICSE ’10, vol. 2, Cape Town, South Africa: ACM, 2010,

pp. 299–300, isbn: 978-1-60558-719-6. doi: 10.1145/1810295.1810360 (cit. on

p. 92).

[Vector13] Vector Informatik GmbH. (2013). Modellbasierte Elektrik-/Elektronik-Entwicklung

vom Architekturentwurf bis zur Serienreife. visited 5th March 2015, [Online].

Available: http://vector.com/portal/medien/cmc/marketing%5C_items/
web/91106.pdf (cit. on p. 168).

[VJM07] R. Van Der Straeten, V. Jonckers and T. Mens, “A formal approach to model refactor-

ing and model re�nement”, Software & System Modeling, vol. 6, no. 2, pp. 139–162,

2007. doi: 10.1007/s10270-006-0025-9 (cit. on p. 16).

[Von13] C. Vonsien, “Spezi�kation von Model Smells zum Vorschlagen von Modell- Re-

factorings”, Minor Thesis (Großer Beleg), Technische Universität Dresden, 2013

(cit. on p. 79).

[vPUTS13] J. von Pilgrim, B. Ulke, A. Thies and F. Steimann, “Model/code co-refactoring:

An MDE approach”, in IEEE/ACM 28th International Conference on Automated

Software Engineering (ASE), 2013, Nov. 2013, pp. 682–687. doi: 10.1109/ASE.
2013.6693133 (cit. on pp. 42, 43, 47, 48, 114).

[vRDDR07] B. van Rompaey, B. Du Bois, S. Demeyer and M. Rieger, “On The Detection of Test

Smells: A Metrics-Based Approach for General Fixture and Eager Test”, Software

Engineering, IEEE Transactions on, vol. 33, no. 12, pp. 800–817, 2007, issn: 0098-5589.

doi: 10.1109/TSE.2007.70745 (cit. on p. 35).

[VWT+14] E. Visser, G. Wachsmuth, A. Tolmach, P. Neron, V. Vergu, A. Passalaqua and G.

Konat, “A Language Designer’s Workbench: A One-Stop-Shop for Implementation

208

http://dx.doi.org/10.1016/j.infsof.2015.01.003
http://dx.doi.org/10.1016/j.infsof.2015.01.003
http://dx.doi.org/10.1007/3-540-45832-8_28
http://dx.doi.org/10.1007/3-540-45832-8_28
http://dx.doi.org/10.1007/11880240_29
http://dx.doi.org/10.1145/1141277.1141564
http://dx.doi.org/10.1145/1810295.1810360
http://vector.com/portal/medien/cmc/marketing%5C_items/web/91106.pdf
http://vector.com/portal/medien/cmc/marketing%5C_items/web/91106.pdf
http://dx.doi.org/10.1007/s10270-006-0025-9
http://dx.doi.org/10.1109/ASE.2013.6693133
http://dx.doi.org/10.1109/ASE.2013.6693133
http://dx.doi.org/10.1109/TSE.2007.70745

Bibliography

and Veri�cation of Language Designs”, in Proceedings of the 2014 ACM International

Symposium on New Ideas, New Paradigms, and Re�ections on Programming &

Software, ser. Onward! 2014, Portland, Oregon, USA: ACM, 2014, pp. 95–111, isbn:

978-1-4503-3210-1. doi: 10.1145/2661136.2661149 (cit. on p. 6).

[W3C11] The World Wide Web Consortium, Cascading Style Sheets Level 2 Revision 1 (CSS 2.1)

Speci�cation, Jun. 2011. [Online]. Available: http://www.w3.org/TR/2011/REC-
CSS2-20110607/ (cit. on pp. 3, 187).

[W3C12] The World Wide Web Consortium, OWL 2 Web Ontology Language: Structural

Speci�cation and Functional-Style Syntax, Dec. 2012. [Online]. Available: http:
//www.w3.org/TR/2012/REC-owl2-syntax-20121211/ (cit. on pp. 13, 188).

[Wac07] G. Wachsmuth, “Metamodel Adaptation and Model Co-adaptation”, in ECOOP,

E. Ernst, Ed., ser. Lecture Notes in Computer Science, vol. 4609, Springer, 2007,

pp. 600–624, isbn: 978-3-540-73588-5 (cit. on pp. 40, 46, 47).

[Wil14] C. Wilke, “Energy-Aware Development and Labeling for Mobile Applications”, PhD

thesis, Technische Universität Dresden, 2014. [Online]. Available: http://nbn-
resolving.de/urn:nbn:de:bsz:14-qucosa-139391 (cit. on pp. 34, 88, 90,

167).

[Wir86] N. Wirth, Compilerbau - Eine Einführung. Teubner, 1986, isbn: 3519323389 (cit. on

p. 130).

[WMV12] M. Wimmer, N. Moreno and A. Vallecillo, “Viewpoint Co-evolution through Coarse-

Grained Changes and Coupled Transformations”, English, in Objects, Models, Com-

ponents, Patterns, ser. Lecture Notes in Computer Science, C. Furia and S. Nanz, Eds.,

vol. 7304, Springer Berlin Heidelberg, 2012, pp. 336–352, isbn: 978-3-642-30560-3.

doi: 10.1007/978-3-642-30561-0_23 (cit. on pp. 43, 44, 47).

[WTW10] C. Wilke, M. Thiele and C. Wende, “Extending Variability for OCL Interpretation”,

in Model Driven Engineering Languages and Systems - 13th International Conference,

MoDELS 2010, Oslo, Norway, October 3-8, 2010, Proceedings, Part I, D. C. Petriu, N.

Rouquette and Ø. Haugen, Eds., ser. Lecture Notes in Computer Science, vol. 6394,

Springer, 2010, pp. 361–375, isbn: 978-3-642-16144-5 (cit. on pp. 28, 130).

[XLH+07] Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi and H. Mei, “Towards Automatic

Model Synchronization from Model Transformations”, in Proceedings of the 22nd

IEEE/ACM International Conference on Automated Software Engineering, ser. ASE

’07, Atlanta, Georgia, USA: ACM, 2007, pp. 164–173, isbn: 978-1-59593-882-4. doi:

10.1145/1321631.1321657 (cit. on pp. 45–47).

[XS06] Z. Xing and E. Stroulia, “Refactoring Practice: How it is and How it Should be

Supported - An Eclipse Case Study”, in 22nd IEEE International Conference on

Software Maintenance (ICSM) 2006, Sep. 2006, pp. 458–468. doi: 10.1109/ICSM.
2006.52 (cit. on p. 5).

[ZLG05] J. Zhang, Y. Lin and J. Gray, “Generic and Domain-Speci�c Model Refactoring

using a Model Transformation Engine”, in Volume II of Research and Practice in

Software Engineering, Springer, 2005, pp. 199–218 (cit. on pp. 27, 31, 32).

[ZVS+07] B. Zeiß, D. Vega, I. Schieferdecker, H. Neukirchen and J. Grabowski, “Applying

the ISO 9126 Quality Model to Test Speci�cations – Exempli�ed for TTCN-3 Test

Speci�cations”, in Software Engineering 2007 (SE 2007), W.-G. Bleek, J. Raasch

and H. Züllighoven, Eds., ser. Lecture Notes in Informatics (LNI), Gesellschaft für

209

http://dx.doi.org/10.1145/2661136.2661149
http://www.w3.org/TR/2011/REC-CSS2-20110607/
http://www.w3.org/TR/2011/REC-CSS2-20110607/
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-139391
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-139391
http://dx.doi.org/10.1007/978-3-642-30561-0_23
http://dx.doi.org/10.1145/1321631.1321657
http://dx.doi.org/10.1109/ICSM.2006.52
http://dx.doi.org/10.1109/ICSM.2006.52

Bibliography

Informatik, vol. 105, Bonn, Germany: Köllen Verlag, Mar. 2007, pp. 231–242 (cit. on

p. 35).

210

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Language-Tool Generation Without Consideration Of Time And Space
	Challenges
	Generic Quality-Aware Refactoring and Co-Refactoring in Heterogeneous Model Environments

	Foundations
	Refactoring
	Model-Driven Software Development
	Role-Based Modelling

	Related Work
	Model Refactoring
	Determination of Quality-Related Deficiencies
	Co-Refactoring
	Conclusion

	Role-Based Generic Model Refactoring
	Motivation
	Specifying Generic Refactorings with Role Models
	Preserving Semantics
	Conclusion

	Suggesting Role Mappings as Concrete Refactorings
	Motivation
	Automatic Derivation of Suggestions for Role Mappings with Graph Querying
	Reduction of the Number of Valid Matches
	Comparison to Model Matching
	Conclusion

	Role-Based quality smells as Refactoring Indicator
	Motivation
	Correlating Model Deficiencies, Qualities and Refactorings
	Discussion
	Conclusion

	A quality smell Catalogue for Android Applications
	quality smell Catalogue Schema
	Acquiring quality smells
	Structure-Based quality smells—A Detailed Example
	quality smells for Android Applications
	Discussion

	Role-Based Co-Refactoring in Multi-Language Development Environments
	Motivation
	Example
	Dependency Knowledge Base
	Co-Refactoring Knowledge Base
	Discussion
	Conclusion

	Refactory: An Eclipse Tool For Quality-Aware Refactoring and Co-Refactoring
	Refactoring Framework
	quality smell Framework
	Co-Refactoring Framework
	Conclusion

	Evaluation
	Case Study: Reuse of Generic Refactorings in many DSLs
	Case Study: Suggestion of Valid Role Mappings
	Proof of Concept: Co-Refactoring OWL and Ecore Models

	Summary, Conclusion and Outlook
	Summary
	Conclusion
	Outlook

	Appendix
	List of Role Models
	Comparison to Role Feature Model
	Complete List of Role Mappings
	List of all IncPL Patterns for Detecting quality smells
	Post-Processor of the Extract CompositeState refactoring for UML State Machines
	Specification of the Conference Language

	List of Abbreviations
	Bibliography

