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a b s t r a c t

During the development of large software-intensive systems, developers use several modeling lan-
guages and tools to describe a system from different viewpoints. Model-driven and view-based
technologies have made it easier to define domain-specific languages and transformations.

Nevertheless, using several languages leads to fragmentation of information, to redundancies in the
system description, and eventually to inconsistencies. Inconsistencies have negative impacts on the
system’s quality and are costly to fix. Often, there is no support for consistency management across
multiple languages. Using a single language is no practicable solution either, as it is overly complex to
define, use, and evolve such a language. View-based development is a suitable approach to deal with
complex systems, and is widely used in other engineering disciplines. Still, we need to cope with the
problems of fragmentation and consistency.

In this paper, we present the Vitruvius approach for consistency in view-based modeling. We
describe the approach by formalizing the notion of consistency, presenting languages for consistency
preservation, and defining a model-driven development process. Furthermore, we show how existing
models can be integrated. We have evaluated our approach at two case studies from component-based
and embedded automotive software development, using our prototypical implementation based on the
Eclipse Modeling Framework.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The complexity of systems that engineers develop is ever
ncreasing (Murer et al., 2011). Since no single engineer can
nderstand a modern system in its entirety, many ways have
een proposed to cope with the essential complexity and also to
educe the so-called accidental complexity (Brooks, 1987) when
odeling large systems. The view-based paradigm proposes the
sage of role-specific views, each only representing relevant,
artial information of the system. It has proven useful to separate
oncerns and to offer only relevant information to different stake-
older groups (Brunelière et al., 2017; Cicchetti et al., 2019). Due
o the widespread usage of computer-aided design of systems,
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these views not only represent software parts of the system, but
can contain any kind of information, such as hardware layout,
distribution of system parts, communication, energy consump-
tion, and so on. Model-driven technologies have made it easier
to define domain-specific languages (DSLs) for these views, and
to transform instances of these languages into each other.

With a plethora of modeling languages available, new prob-
lems arise in the development of complex systems. First, the
description of a system is now spread across multiple models of
different languages, leading to the fragmentation of the system
description. Since these models are never fully orthogonal to each
other, information has to be repeated and modeled in several
models, such that redundancy in the system description occurs.
inally, and most severely, this can lead to inconsistencies between
hese models. Although automated transformations can assist
evelopers by creating parts of the models automatically, they
re often only used to transform information in one direction at
efined points in the development process. In practice, however,
evelopment does not follow a strict top-down and waterfall-like
rocess. Developers who work at later stages of the process, such
s deployment and testing, may also change the system in such a
ay that other models need to be updated to regain a consistent
ystem description.
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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This problem is still poorly addressed in current develop-
ent processes for large systems, such as automotive system
evelopment, as a recent survey has shown (Guissouma et al.,
018). For example, a development process for Electronic Con-
rol Units (ECUs) of automobiles (Mazkatli et al., 2017) involves,
mong others, the three languages SysML (Object Management
roup, 2019), used for the description of the software archi-
ecture, ASCET (ETAS Group, 2020), used for the definition of
omponent behavior, and AMALTHEA (ITEA, 2020), which de-
cribes the deployment on multi-core platforms. Different engi-
eers use different views from these three languages, such as in-
ernal block diagrams or block definition diagrams in SysML. The
elations between models as instances of these languages are not
ocumented explicitly, which requires manual and potentially
rror-prone consistency checking (Mazkatli et al., 2017).
In general, criteria for consistency are often not specified ex-

licitly, since there are no standardized ways for the definition
f consistency relations and the repair of inconsistent system
escriptions (Stevens, 2018). Thus, inconsistencies can only be
ixed manually. An inconsistent system description can lead to
oor quality of the implemented system concerning correctness,
erformance, reliability, security, maintainability, and other qual-
ty dimensions. Since fixing these problems at late stages of the
evelopment process is expensive, they are often not fixed at all.
n the research area of Bidirectional Transformations (BX), this
ssential problem of consistency preservation has already been
ddressed, but a view- and BX-based development process has
ot yet been defined. Thus, a systematic approach for the defini-
ion of consistency relations and repair, as well as a development
rocess for their specification and application is necessary.
In this paper, we present the model-based Vitruvius approach

or enabling consistency in view-based modeling of complex sys-
ems. It comprises concepts and a process to define and pre-
erve consistency of models as well as to define views through
hich they can be modified consistently. Vitruvius combines
he advantages of synthetic and projective modeling (Interna-
ional Organization for Standardization, 2011) while preserving
ompatibility to existing languages and their instances. Central
deas of this approach have first been published in the disser-
ations of Erik Burger (Burger, 2014), who designed a language
or defining views on multiple models, Max E. Kramer (Kramer,
017), who developed a language family for delta-based con-
istency preservation, and Michael Langhammer (Langhammer,
017), who defined and analyzed consistency rules between ar-
hitecture descriptions and code, and how existing models can
e integrated into a consistency-preserving process. This paper
resents the overall concept of the Vitruvius approach, for which
he dissertations provide selective contributions. We provide a
ormalization for the central ideas underlying the Vitruvius ap-
roach and define a development process for the description
f large systems. In detail, this article presents the following
ontributions:

oncept formalization (C1): We formalize a notion of consis-
tency, inductive consistency preservation and view-based mod-
eling to clarify assumptions and properties of our approach.

Development process (C2): We define a model-driven develop-
ment process, which consists of a method for the construc-
tion of languages to describe systems, called Virtual Single
Underlying Metamodels.

Consistency preservation languages (C3): We introduce a fam-
ily of novel delta-based consistency preservation languages
that fit to the needs of the envisioned development process.
2

Existing model integration (C4): We discuss two general ap-
proaches to integrate existing languages and instances into the
inductive consistency preservation process.

Overall evaluation (C5): We provide an evaluation of the con-
sistency preservation and integration concepts to show the
general applicability of our approach.

While the contributions C1 and C2 are completely novel contri-
butions of this article, C3 is a summary of the languages designed
in the dissertation of Kramer (2017), C4 is a generalization of the
integration strategies in the dissertation of Langhammer (2017)
and C5 is an extension of his evaluation.

The Vitruvius approach supports the development of
software-intensive systems in different engineering disciplines,
which have to cope with the problem of information fragmen-
tation across different tools and consequential inconsistencies. It
helps to solve that problem by defining a development process
and mechanisms to explicitly represent dependencies, and, as far
as possible, automatically preserve their consistency. We have ap-
plied the approach to the software engineering domain (Kramer
et al., 2015), but we also have preliminary results for other
domains such as automation systems (Ananieva et al., 2018a).

This article is structured as follows: We begin with a running
example in Section 2, and foundations in Section 3. In Section 4,
we identify drawbacks of current approaches and give a general
overview on our Vitruvius approach. We formalize the essential
concept of virtual single underlying models and their properties
in Section 5. Section 6 introduces the development process of
the Vitruvius approach, its roles and envisioned scenarios. and
Section 7 presents the two languages for consistency preservation
used in this process. The integration of existing models into a
consistency-aware development process is the topic of Section 8.
After an extensive evaluation in Section 9, we close with related
work, future work, and conclusion (Sections 10, 11, 12).

2. Running example

We use a scenario from previous work (Langhammer, 2013) as
a running example. It contains a simplified version of the Palladio
Component Model (PCM) (Reussner et al., 2016) as an Archi-
tecture Description Language (ADL) to describe the component-
based architecture of a system, and a simplified metamodel for
object-oriented design to represent code, in compliance with
UML class diagrams and the class structures in the Java language
specification (Gosling et al., 2014).

The simplified component-based ADL is depicted in Fig. 1(a):
An architecture model contains a repository. It lists component in-
terfaces and reusable components, which are identified by unique
names. A component interface groups services that are required
or provided together and declares a service signature for each of
hese services (Reussner et al., 2011). Such a service signature
onsists of a name, an optional return type, which is a datatype,
nd parameters, which have a name and also reference a datatype.
component references required and provided component inter-

faces to denote which services are provided and required by the
component. Two service signatures of two different component
interfaces can be identical, and a component interface can be
provided or required by multiple components. In our running
example, a component has no further properties than its name
and relations to provided and required interfaces.

The object-oriented design of a system is represented in our
running example using packages, classes, interfaces, methods, and
fields, as shown in the simplified metamodel in Fig. 1(b). It is
irrelevant whether these elements are defined using a program-
ming language, such as Java, or a modeling language, such as
the UML. For the sake of simplicity, we only define fields in
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Fig. 1. Simplified metamodels for the running example.
bject-oriented design and also treat associations, known from
he UML, as fields. Constructors, method implementations, as well
s other concepts of object-orientation, such as class inheritance
r interface extension, are not necessary for our examples.
We use a simplification of the MediaStore case study (Koziolek

t al., 2007; Strittmatter and Kechaou, 2016) as a sample system.
t consists of a server with download and upload functionality
or media files. In our simplified version, displayed in the left
alf of Fig. 2, the component repository consists of the two
omponents MediaStore and WebGUI, and the two interfaces
MediaStore and IWebGUI, which are required and provided
y the components, respectively. Both these interfaces contain
ethods for uploading and downloading media files.
We employ the mapping defined by Langhammer et al. (2016)

o represent the component-based system architecture in object-
riented code. Fig. 2 exemplifies the application of this mapping
o the simplified MediaStore system. A component repository is
epresented as a package structure consisting of a root package
ith the name of the repository. The root package contains ded-

cated packages for interfaces and components. Component
nterfaces are represented by equal object-oriented interfaces
ithin the interfaces package of the repository. Their service

signatures are realized by methods in the corresponding inter-
faces. The datatypes of parameters and return types are mapped
to classes in the object-oriented design model. In the example,
the component interfaces IWebGUI and IMediaStore and their
signatures are mapped to interfaces with method declarations in
their corresponding object-oriented interfaces.

A component is mapped to a package that has the same name
as the component and is placed within the components pack-
ge of the repository, and to a component-realization class with

the suffix ‘‘Impl’’ placed within that package. In the example,
the component WebGUI is realized by the component-realization
class WebGUIImpl and is contained in the package webgui. The
omponent MediaStore is mapped analogously. Provided inter-
aces of a component are mapped to interface implementations of
he component-realization class and lead to the implementation
f methods provided by the interface within the component-
ealization class. In case of the example, the provided interface
WebGUI of WebGUI is realized by an interface implementation in
he component-realization class WebGUIImpl, as well as an im-
lementation of the methods httpUpload and httpDownload.
3

Finally, required interfaces are represented by an association of the
component-realization class to the required interface. This asso-
ciation is realized by an appropriate field that is typed with the
component interface and that is set within the constructor of the
component-realization class. Therefore, the WebGUIImpl expects
an instance of the IMediaStore as a constructor argument that
is assigned to the field iMediaStore.

This mapping describes the relations between different ab-
stractions of a software system. One realization of a component-
based architecture description language is the PCM. It can be used
to predict quality attributes of a software system via simulation
of an abstract architecture specification before its implementa-
tion. To achieve this, different roles work on different views of
the architecture, which concern abstract specifications of ser-
vice realizations (component developer), the assembly of compo-
nents (system architect), the resource environment executing the
system (system deployer), and typical usage scenarios (domain
expert) used for simulation.

3. Foundations

In the following, we introduce the foundations on view-based
and orthographic software modeling and the formal constructs
and notations that we use throughout this article.

3.1. View-based modeling

View-based development is a paradigm that addresses the
problems of separation of concerns and reduction of accidental
complexity. It does so by arranging information in views. The
terms view, view point, as well as view type are used throughout
the modeling domain in several ways, going back to approaches
as early as the 1980s (Wood-Harper et al., 1985; Finkelstein et al.,
1992). The ISO standard 42010 (International Organization for
Standardization, 2011) contains a broad definition for ‘‘architec-
ture view’’ and ‘‘architecture viewpoint’’. The standard also con-
tains a distinction between projective and synthetic approaches:
While projective approaches use an underlying repository as the
system description and derive views that are only projections, in
synthetic approaches a composition of views and their connec-
tion with correspondences forms the system description. Recent
surveys (Brunelière et al., 2017; Cicchetti et al., 2019) provide an
overview of existing view-based modeling approaches.
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Fig. 2. Mapping between the MediaStore component model and its object-oriented realization. The package structure is depicted in UML syntax, classes and interfaces
are represented in Java syntax. The root package and the component repository are omitted for simplicity. Arrows depict elements that are mapped to each other.
Fig. 3. View and view type terminology, based on Burger (2014).

In this paper, the term view denotes a projective concept, as
described by Atkinson:

‘‘a view is a normal model which just happens to have been
generated dynamically for the purpose of allowing a user to
see the system from a specific viewpoint’’ (Atkinson et al.,
2010, Sec. 3.1)
4

We use the term view type, as introduced by Goldschmidt et al.
(2012), for the metamodel of a view. A view type describes the
kinds of elements and relations that a view can contain. A view
point groups one or more view types by the concerns that they
serve (International Organization for Standardization, 2011). The
relation of these terms is depicted in Fig. 3.

3.2. Orthographic software modeling

Orthographic Software Modeling (OSM) is a view-based devel-
opment paradigm (Atkinson et al., 2008, 2010). It is built around
the concept of a Single Underlying Model (SUM). There is no
definition of this term in literature, so we provide one here.

Definition 1 (Single Underlying Model (SUM)). A SUM is a com-
plete definition of a system and contains all known information
about it. It contains no redundant or implicitly dependent infor-
mation and is thus always free of contradictions, i.e., inconsisten-
cies.

Definition 2 (SUM Metamodel). The formalism that is used to
describe a SUM is called a SUM metamodel.
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able 1
lements, sets and notations.

(Meta-)model elements
e Metamodel element (meta-class, attribute/reference)
e Instance of an element e
I(e) = {e1, e2, . . .} All possible instances of an element e ∈ M

(Meta-)models
M = {e1, e2, . . .} Universe of all metamodel elements
M ⊆ M Metamodel
IM =

⋃
e∈M I(e) Universe of all element instances of a metamodel M

M ⊆ IM Instance of metamodel M ⊆ M, i.e., a model
IM ⊆ P(IM ) Set of all valid instances of metamodel M

Notations
⟨A⟩ = ⟨a, b, . . .⟩ Notation for a tuple ⟨A⟩ of elements, models, etc.
Func Notation for a function Func

A SUM metamodel can be expressed with well-defined de-
cription formalisms, such as domain-specific languages, meta-
odels, or general-purpose programming languages.
In OSM, the SUM is displayed or manipulated exclusively

hrough partial, user-specific, and customizable views. Model
ransformations create these views dynamically from the SUM
Burger et al., 2014; Tunjic and Atkinson, 2015; Burger and
chneider, 2016; Atkinson and Tunjic, 2017). The views allow
he users to make modifications to the system and operate on
temporarily inconsistent state of the system description. While
he SUM is always consistent, a view may contain inconsistent
nformation, such as invalid Java code, like it is necessary when
eveloping a system. Whenever a developer wants to share his
r her progress with others, he or she can propagate the changes
ack to the SUM with the transformation used to create the view.
he transformation ensures that the performed changes lead to a
onsistent state of the SUM afterwards. Tolerating inconsistencies
eyond the modification of views is a subject of current research
nd part of future work (see Section 11.2). The view types are
rganized in dimensions to facilitate navigation through the SUM.
deally, these dimensions are chosen in such a way that they are
rthogonal to each other. OSM defines a development process
ith two roles: The methodologist is responsible for creating SUM
etamodels and view types. The developer instantiates the SUM
etamodel and modifies its instances using the generated views.
As suggested in the OSM approach (Atkinson et al., 2010),

he metamodel of a SUM should be specific for the development
rocess, the domain in which the system is to be used, and the
odeling standards that have to be supported. It is evident that it

s impossible to define a SUM metamodel that serves all possible
oftware and system development scenarios. Many projective
iew-based approaches, such as DUALLy (Malavolta et al., 2010),
r KobrA (Atkinson et al., 2008), rely on a fixed and pre-defined
UM metamodel, which is supposed to represent all concepts
ecessary for the modeling task. Those SUM metamodels are
onolithic, as they represent all concepts in one, potentially large
etamodel, whereas modular approaches separate the concepts

nto smaller, more specific metamodels.

.3. Notation

For the formalization of our concepts, we use the mathe-
atical set notation of the Essential MOF (EMOF) established
y Burger (2014, Sec. 2.3.2), which is based on the notation of
he OCL specification (Object Management Group, 2014, A.1). We
ntroduce the symbols that are relevant for the remainder of this
rticle in Table 1. They describe metamodels and model elements,
ut deliberately lack the more sophisticated concepts of Burger
 t

5

(2014). In general, a metamodel M is represented as a set of
elements. The elements in a metamodel can be meta-classes,
attributes, references, and so on. For example, the metamodels
in Fig. 1 consist of elements representing the meta-classes such
as Package, the attributes such as name, and the references
between them, such as the subpackages reference between a
Package and its subpackages. For the following definitions, this
distinction is not relevant, so we usually only write e ∈ M for
an element of a metamodel. A metamodel M is a subset of the
universe, i.e., the set of all possible metamodel elements M.

Moreover, we use the M3–M1 level hierarchy of the UML
to describe elements at different modeling levels: metamodels
reside at level M2, while instances are at M1. Elements at level
M1 are written in underlined type, e.g., e indicating an instance
of a metamodel element e. We denote the set of all instances
f an element e as I(e). The universe of all possible instances of
he elements of a metamodel M is defined as IM , of which each
odel is a subset. Without loss of generality, we assume that

wo metamodels are always disjoint, which in practice is usually
chieved by assigning a unique namespace to each metamodel.
he set of all models that are valid instances of a metamodel
is characterized by a subset of the power set of all element

nstances IM . We do not discuss how that subset of valid in-
tances may be retrieved or defined but assume it as given
ccording to definitions in existing metamodel formalisms such
s the OCL specification (Object Management Group, 2014, A.1)
r Ecore (Steinberg et al., 2008).
In addition to sets of elements for describing metamodels and

odels, we use tuples to describe elements involved in rules that
ormalize consistency. We extend the subset operator to define
tuple as a subset of a set. We consdier a tuple ⟨a1, . . . , am⟩ a
ubset of a set A if all its elements are contained in the set:

⟨a1, . . . , am⟩ ⊆ A :⇒ {a1, . . . , am} ⊆ A

imilarly, an element a is considered an element of a tuple
a1, . . . , am⟩ if it is contained in the tuple:

a ∈ ⟨a1, . . . , am⟩ :⇒ ∃i ∈ {1, . . . ,m} : a = ai

. The Vitruvius approach

In this section, we present an overview of the Vitruvius1
pproach for consistency in view-based system development.
itruvius is based on the OSM paradigm (see Section 3.2). It pro-
ides a solution to the problem of how SUM metamodels should
e constructed, since defining a SUM metamodel according to
efinition 2, which has no redundancies or implicit dependencies,
s hard to achieve (Meier et al., 2019, 2020): We propose the
oncept of a virtual SUM metamodel (V-SUM metamodel), which
as an internal structure of modularized, coupled metamodels,
ut, externally, appears and can be used as if it were a sin-
le, monolithic (i.e., non-modularized) metamodel. This especially
eans that its instances are also free of inconsistencies, like
rdinary SUMs according to Definition 1. In contrast, it does not
chieve this consistency guarantee by being free of redundancies
nd implicit dependencies, but by preserving consistency of them
nternally. Using a virtual SUMmetamodel over a monolithic SUM
etamodel is motivated by the following considerations:

ompatibility to existing metamodels: The development of
software and systems usually has to adhere to pre-existing,
externally defined languages and standards, with, for example,
specific editors, simulators, generators, and other tools. In
Vitruvius, existing metamodels can be included as parts of a
V-SUM metamodel without modifications. Existing instances
of the metamodels, tools, and transformations can be reused.

1 View-Centric Engineering Using a Virtual Single Underlying Model, after
he Roman architect Marcus Vitruvius Pollio (ca. 80-70 B.C.–15 B.C.).
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xplicit consistency definition: It is difficult to define a mono-
lithic SUM metamodel that is free of redundancies (Meier
et al., 2020). First, the methodologist defining such a SUM
metamodel has to know about all information about the sys-
tem for all involved roles, whereas defining consistency in
terms of (binary) relations supports distributed knowledge
about all information dependencies. Second, ensuring absence
of redundancies in such large metamodels is overly com-
plex. A V-SUM metamodel may contain redundancies and im-
plicit dependencies, but the coupling between the metamodels
specifies how consistency is checked and enforced.

Maintainability and evolvability: A major disadvantage of
monolithic SUM metamodels is their poor maintainability due
to missing modularity: A methodologist who carries out a
modification to such a SUMmetamodel must know all possible
effects on every element in this metamodel to ensure consis-
tency, correctness, etc. Thus, this person would have to have
comprehensive knowledge of all domains represented in the
SUM metamodel. In a V-SUM metamodel, the metamodels can
be maintained separately by experts of the respective domain.

eusability: The modular structure of the V-SUM metamodel
eases the reuse of parts to build further scenario-specific V-
SUM metamodels that are subsets or new arrangements of the
metamodels in the V-SUM metamodel.

As an illustration, Fig. 4 depicts a SUM metamodel and a V-
UM metamodel for our running example. The internal structure
f the monolithic SUM metamodel (left) is not shown; it contains
edundancy-free representations of all concepts in the running
xample. The V-SUM metamodel (right) internally consists of
hree metamodels for Java, UML, and ADL, which are coupled
y so called Consistency Preservation Rules (CPRs). For the V-
UM metamodel and the SUM metamodel, the same four view
ypes VT 1–VT 4 are defined. They are in part standardized diagram
types, such as UML class diagrams (VT 2) or component diagrams
VT 4), and in part custom view types, such as Java source code
nriched with architecture information (VT 1) and a combination
f class and component diagrams (VT 3). In the V-SUMmetamodel,
here is also a CPR between Java and the Palladio Component
odel ADL (Langhammer, 2017), which is specific for performing
erformance predictions based on the software architecture. In
his case, the implementation of Java methods is related to a
ontrol flow abstraction with performance annotations in the
CM model. While this can be achieved with explicit consistency
efinitions (Langhammer, 2017), finding a representation in a
UM metamodel from which Java code and a suited control flow
bstraction can both be projected is obviously not that simple.
In terms of the ISO 42010 (International Organization for

tandardization, 2011), Vitruvius is a hybrid approach, combin-

ng projective and synthetic concepts. The internal representation

6

onstitutes a synthetic approach, because the system description
s composed of the different models within the V-SUM. However,
ll views on which users operate are projected from this internal
epresentation, which constitutes a projective approach for the
uter views. The proposed benefit is to combine the advantage of
rojective approaches on the one hand, by enabling the definition
f arbitrary views ad-hoc, and those of synthetic approaches
n the other hand, by modularizing the metamodel. We have
bserved that, in general, more view types than metamodels
re involved in a development process. For example, Fig. 4 de-
icts four view types for three metamodels, because some view
ypes combine information from different metamodels, such as
T3 combining object-oriented design in UML with architectural
nformation in an ADL. In contrast to a purely synthetical ap-
roach, this separation of metamodels and view types reduces the
umber of CPRs that have to be defined.
The Vitruvius approach involves a two-part process: First, a

ethodologist creates the V-SUM metamodel by defining meta-
odels, CPRs, and view types that derive information from them.
econd, one or more developers instantiate the V-SUM meta-
odel as a V-SUM, and use it to derive views and perform mod-

fications to them. In this article, we focus on the first part (con-
tructing a V-SUM metamodel). In its simplest form, a methodol-
gist selects a set of metamodels that shall be used to develop a
ystem. He or she then defines CPRs between all these metamod-
ls to ensure that information is consistently propagated between
ll models upon modifications. Finally, he or she defines view
ypes which extract and combine information from the metamod-
ls, and which can be instantiated as views that are shown to or
odified by developers of a concrete software system.
In summary, Vitruvius proposes a development process that

s based on the V-SUM concept and consists of the following
ssential parts, which we will explain in more detail in the
ubsequent sections:

evelopment process: Vitruvius defines a process for the cre-
ation, instantiation, and usage of V-SUM metamodels. In the
following, we therefore start with a formalization of the con-
cept of a V-SUM in Section 5 to clarify its properties and its
behavioral relation to a SUM according to Definition 1. We
continue with an overview of the V-SUM metamodel con-
struction and operation process in Section 6. We also discuss
a process for integrating existing models into a V-SUM in
Section 8.

onsistency preservation: Vitruvius defines a technique for
preserving consistency between instances of the metamodels
within a V-SUM metamodel. We discuss the essential part of
the V-SUM metamodel construction, the consistency preser-
vation, in more detail in Section 7 and especially propose spe-
cialized languages that support the definition of consistency
and its preservation.
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iew generation: Vitruvius defines a mechanism for deriving
projective views from a V-SUM. We define our formal no-
tion of views and view types in Section 5.4. Since the view
generation is mostly independent from the way the SUM is
constructed (i.e., whether it is a monolithic SUM or a V-SUM),
we refer to existing and current work, e.g., Burger et al. (2014),
Tunjic and Atkinson (2015), Burger and Schneider (2016) and
Atkinson and Tunjic (2017), for that topic and do not discuss
it in more detail in this article.

. Modeling concepts for V-SUMs

In this section, we present the V-SUM concept. We formally
efine our notion of consistency, an inductive approach to its
reservation, and its realization in a V-SUM, as well as the prop-
rties of view types and views to be defined on a V-SUM. The
ifferent concepts for describing a V-SUM and its metamodel are
epicted in Fig. 5. The purpose of this formalization is to precisely
pecify the properties of a V-SUM metamodel, the concepts that
re necessary to describe it, and the behavior of its instances. We
ater use it in Section 6 to emphasize which parts of the practical
pplication process of the approach reflect which necessary parts
f the formalization. Additionally, we derive the justification for
wo specialized languages for consistency preservation presented
n Section 7 at proper levels of abstraction, which are inherently
nduced by the formalization. It constitutes our contribution C1.

.1. Consistency

The following definitions are in part based on Kramer (2017,
h. 4). They describe under which circumstances we consider
odels to be consistent with each other.

efinition 3 (Consistency Rule). Let Ml and Mr be metamodels and
let ⟨El⟩ = ⟨el1 , . . . , elm⟩, eli ∈ Ml and ⟨Er⟩ = ⟨er1 , . . . , ern⟩, eri ∈ Mr
e two tuples of elements of those metamodels. In addition, let
OND⟨El⟩ ⊆ I(el1 ) × · · · × I(elm ) be a condition for ⟨El⟩, and let
OND⟨Er ⟩ ⊆ I(er1 ) × · · · × I(ern ) be a condition for ⟨Er⟩.
A consistency rule for the element tuples ⟨El⟩ and ⟨Er⟩ is a

elation CR ⊆ COND⟨El⟩ × COND⟨Er ⟩. It contains pairs of instance
uples for ⟨El⟩ and ⟨Er⟩ that indicate consistency of two models if
hey co-occur.

In short, a consistency rule is a set that contains pairs of
uples of model elements, each describing that if one of these
uples occurs in a model, another tuple related to it by CR has
o occur in another model that shall be kept consistent. The
elevant element tuples in each of the models are represented
y a condition. Such a condition enumerates the tuples for which
onsistency is restrained in some way, i.e., it defines a condition
or a consistency rule to be applied. Be aware that it may be
llowed that certain instance tuples of ⟨El⟩ and ⟨Er⟩ may not be
estrained regarding consistency and are thus not part of the
onsistency rule. Such a condition contains a possibly infinite set
f tuples of element instances that list model elements that fulfill
condition within one model. In consequence, the consistency

ule relating two conditions will, in general, also be infinite.

xample 1. In our running example, introduced in Section 2, we
nformally introduced a rule that states that each instance of the
DL meta-class Component shall be represented by an instance of
he object-orientation meta-class Package as well as the meta-
lass Class, so that the Class is contained in the contents
eference of the Package and that the name attribute of all of
hem is equal, apart from the Class additionally having an Impl
uffix. A consistency rule according to Definition 3 expressing this

ould consist of two conditions, one containing all components

7

nd one containing all pairs of packages and classes, with the
lass name being the package name with an Impl suffix and the
lass being contained in the content relation of the package.
ote that all other pairs of a package and a class are not contained
n that condition. This is why we need to define a condition
hat restricts the elements for which consistency is defined. The
onsistency rule then contains those pairs of these two conditions
n which the component name is equal to the package name (and
hus the class name without the Impl suffix). In consequence, it
s an infinite set.

The manifestation of such a rule in concrete models is ex-
ressed by the following definition for fulfilling a consistency rule.
t especially reflects that one tuple of elements may be considered
onsistent to one of several other tuples, like a specific UML class
ay be considered consistent to all Java classes with the same
ethod signatures but all kinds of implementations.

efinition 4 (Consistency Rule Fulfillment). Let M1, . . . ,Mn be
etamodels, let ⟨M ⟩ ∈ IM1 × · · · × IMn be a tuple of instances

and let COND⟨El⟩ and COND⟨Er ⟩ be two conditions on which a
consistency rule CR ⊆ COND⟨El⟩ × COND⟨Er ⟩ is defined. We say
that ⟨M ⟩ fulfills CR if, and only if,

∀⟨cl⟩ ∈ COND⟨El⟩ :
(
∃M l ∈ ⟨M ⟩ : ⟨cl⟩ ⊆ M l

⇒ ∃⟨⟨cl⟩, ⟨c ′

r⟩⟩ ∈ CR : ∃Mr ∈ ⟨M ⟩ : ⟨c ′

r⟩ ⊆ Mr

)
∧ ∀⟨cr⟩ ∈ COND⟨Er ⟩ :

(
∃Mr ∈ ⟨M ⟩ : ⟨cr⟩ ⊆ Mr

⇒ ∃⟨⟨c ′

l ⟩, ⟨cr⟩⟩ ∈ CR : ∃M l ∈ ⟨M ⟩ : ⟨c ′

l ⟩ ⊆ M l

)
A tuple of models fulfills a consistency rule CR if for each of

its condition elements that is contained in one model, a condition
element to which it is considered consistent, i.e., for which a pair
of these two is contained in CR, is contained in another model.

Example 2. Referring to Example 1, this means that if a model
contains a component, then another model must contain an ap-
propriate package with a contained class, as defined in the con-
sistency rule, and vice versa. You may imagine a consistency rule
that states that a component may either be mapped to a package
and a class having the component name, or appending an Impl
suffix like in the example. In this case, the consistency rule would
contain two pairs for each component, one having the class with
and one without the suffix at the pair’s right-hand side. According
to Definition 4, if the ADL model contains a component, the
object-orientation model has to contain one of these two package
and class representations, but not both of them are required.

Remark 1. If the, technically, same metamodel is used to describe
two or more disjoint models, this is not explicitly reflected by the
given formalism. Virtually duplicating the metamodel, however,
solves the problem and allows to describe consistency between
multiple instances of the same metamodel. This may, for exam-
ple, be the case if component and class models shall be kept
consistent, although they are instances of the same UML meta-
model. The formalism does not support consistency within a sin-
gle model on purpose, because it should be up to the metamodel
itself to ensure that its instances are internally consistent.

One might argue that consistency is usually traced by means
of a trace or correspondence model, which stores the pairs of
element tuples in models that fulfill a consistency rule. While
the realization of the Vitruvius approach contains an explicit
correspondence model, we do not explicitly consider it in this
formalism for two reasons. First, a trace model is only necessary
in practice if no identifying information for related elements is
present or if performance is to be improved. However, without

loss of generality we can assume such identifying information in a
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Fig. 5. A conceptual model of the relevant concepts for describing a V-SUM and its metamodel, as well as their relations.
c

formalism, like it is usually done in formalisms of transformations
such as the one used in Stevens (2010). Second, a trace model
can, from a theoretical perspective, be treated as a usual model,
thus always defining consistency between one concrete and one
correspondence model. This conforms to the fact that each n-ary
relation can be expressed by binary relations to an additional
model (in this case the trace model), as discussed in Stevens
(2020) and Cleve et al. (2019).

Based on those definitions of consistency rules and their ful-
fillment, we can define consistency of a tuple of models.

Definition 5 (Consistency). Let M1, . . . ,Mn be metamodels, let
⟨M ⟩ ∈ IM1 × · · · × IMn be a tuple of instances of them and let
⟨CR⟩ = ⟨CR1, . . . , CRm⟩ be a tuple of consistency rules. We say
that ⟨M ⟩ is consistent according to ⟨CR⟩ if, and only if,

∀CR ∈ ⟨CR⟩ : ⟨M ⟩ fulfills CR

5.2. Inductive consistency preservation

The Vitruvius approach uses delta-based consistency preser-
vation (Diskin et al., 2011), which means that we define the
preservation of consistency inductively and as consequences of
changes to a model. The advantage of delta-based over state-based
approaches is that they provide information about the modifica-
tions between two model states, whereas state-based approaches
have to estimate these modifications from the (infinite number
of) possible change sequences between two model states (Diskin
et al., 2011). As discussed by Kusel et al. (2013), delta-based
approaches, however, have a drawback over state-based ap-
proaches: They depend on the development environment, be-
cause they require an observer that tracks model changes, whereas
state-based approaches only require the comparison of two model
states. Nevertheless, state-based differences can always be con-
verted into a sequence of changes for the transition from the old
to the new state. Thus, in cases when a change observer cannot
be integrated, a delta-based approach has no advantage over a
state-based one, but also no drawbacks.

We consider a change to a model M to be any modification
ransforming one model to another, which can either be the
reation or deletion of an element in M , an attribute or reference
pdate for an element in M , or any combination of them. More
ormally, we define a change as follows.
8

Definition 6 (Change). Let IM be the set of all valid instances of
a metamodel M. A change is a function:

δM : IM → IM

We say that δM is a change in IM .

A change defines how each valid instance of a metamodel
is transformed into a new one. For example, assume a change
that renames a specific element: For all models that contain the
element to rename, this function will return a model that is equal
to the input except for the changed name in the specific element.
For most input models (those that do not contain the element
to rename), it will behave like the identity function. We denote
changes that only affect one element value, such as an attribute
or reference value, as atomic changes. All other changes can be
composed of atomic changes and are thus referred to as composite
changes. Atomic changes according to Definition 6 return the
same output model as the input model apart from changing one
of the model elements. Modifying several elements, i.e., perform-
ing a composite change, can be realized as a composition of such
atomic changes, i.e., functions according to Definition 6.

Definition 7 (Consistency Preservation Rule). For a tuple of meta-
models ⟨M⟩ = ⟨M1, . . . ,Mn⟩, let I⟨M⟩ = IM1 × · · · × IMn be
the set of all possible tuples of their instances. In addition, let
∆ = {⟨δM1 , . . . , δMn⟩ | δMi is a change in IMi} be the set of all
tuples of possible changes in IM1 , . . . , IMn .

A consistency preservation rule for a consistency rule CR is a
partial function CprCR : I⟨M⟩ × ∆ → I⟨M⟩ × ∆, such that

∀⟨M ⟩ = ⟨M1, . . . ,Mn⟩ ∈ I⟨M⟩ :

∀⟨δ⟩ = ⟨δM1 , . . . , δMn⟩ ∈ ∆ : ∃⟨δ′
⟩ = ⟨δ′

M1
, . . . , δ′

Mn
⟩ ∈ ∆ :

⟨M ⟩ fulfills CR ⇒
(
⟨⟨M ⟩, ⟨δ′

⟩⟩ = CprCR
(
⟨M ⟩, ⟨δ⟩

)
∧ ⟨δ′

M1
(M1), . . . , δ

′

Mn
(Mn)⟩ fulfills CR

)
CprCR expects originally consistent models and a tuple of

hanges. It returns the unmodified tuple of models ⟨M ⟩ together
with the modified changes ⟨δ′

⟩, which, if applied to the original
models, again yield models that are consistent according to CR.
While returning the set of modified changes would be conceptu-
ally sufficient, also returning the unmodified models eases later
composition of those consistency preservation rules.

Example 3. For our example regarding consistency between
a component and its representation as a package and a class
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see Examples 1 and 2), a consistency preservation rule would
eturn the input (i.e., act like the identity function) if the change
oes not affect any component, package or class. In cases where
he given change affects a component, the function may adapt
he representation as package and class in the resulting change.
ore precisely, if the input change adds a component, the output
hange could also add an appropriate package and class. If the
nput change modifies the name of the component, the output
hange may modify the name of the package and class appropri-
tely. And finally, if the input change removes a component, the
utput change can remove the package and the class. Changes to
he package and the class can be propagated vice versa. It is up to
he methodologist to specify what happens if, for example, only
he package name is changed, i.e., whether the class name shall
lso be adapted or whether the component shall be removed, as
he consistency rule does not apply anymore, because package
nd class do not fulfill the name condition. Note that in general
here is no restriction regarding how a consistency preservation
ule restores fulfillment of its consistency rule. In general there is
ore than one possibility how to restore consistency.

Using the terminology and properties of bidirectional trans-
ormations (Stevens, 2010), CprCR is correct by definition: The
application of δ′ to consistent models leads to models that are,
again, consistent according to CR. CprCR is, however, not hippo-
cratic (Stevens, 2010) in general, i.e., it may modify δ even in
cases when the application of δ would already lead to consistent
models. Hippocraticness is not a necessary property for our con-
sistency preservation approach, but may be desirable in practice.
Furthermore, Definition 7 does not make any statements on the
effects of CprCR on consistency rules other than CR; we cover
these in Definition 8.

5.3. Virtual Single Underlying Models

With the definitions for consistency and its preservation, we
can now define a V-SUM metamodel and its instances.

Definition 8 (V-SUM Metamodel). Let ⟨MVSUMM⟩ = ⟨M1, . . . ,Mn⟩

be a tuple of metamodels and let I⟨M⟩ = IM1 × · · · × IMn be the
possibly infinite) set of all possible tuples of their valid instances.
et ⟨CprVSUMM⟩ = ⟨CprCR1 , . . . , CprCRk⟩ be a tuple of consistency
reservation rules for those metamodels based on their (implicit)
onsistency rules ⟨CRVSUMM⟩ = ⟨CR1, . . . , CRk⟩, let ∆ be the set of
ll change tuples that can be performed on any of the metamodels
nd let App : I⟨M⟩ × ∆ → I⟨M⟩ be a consistency-preserving
hange application function. A virtual SUM metamodel (V-SUM
etamodel) is a structure

VSUMM :=
(
⟨MVSUMM⟩, ⟨CprVSUMM⟩,App

)
uch that

∀⟨M ⟩ = ⟨M1, . . . ,Mn⟩ ∈ I⟨M⟩ : ∀⟨δ⟩ = ⟨δM1 , . . . , δMn⟩ ∈ ∆ :

∃⟨δ′
⟩ = ⟨δ′

M1
, . . . , δ′

Mn
⟩ ∈ ∆ : ∃Cpr1, . . . , Cprm ∈ ⟨CprVSUMM⟩ :(

⟨M ⟩ consistent according to ⟨CRVSUMM⟩ ⇒

⟨⟨M ⟩, ⟨δ′
⟩⟩ = Cpr1 ◦ . . . ◦ Cprm

(
⟨M ⟩, ⟨δ⟩

)
∧

App
(
⟨M ⟩, ⟨δ⟩

)
= ⟨δ′

M1
(M1), . . . , δ

′

Mn
(Mn)⟩ ∧

App
(
⟨M ⟩, ⟨δ⟩

)
consistent according to ⟨CRVSUMM⟩

)
A V-SUMmetamodel consists of a tuple of metamodels, a tuple

f consistency preservation rules, and a change application func-
ion. The preservation rules normatively imply the underlying
onsistency rules according to Definition 3. The change appli-
ation function App can be seen as an interface for performing
hanges on instances of the V-SUM metamodel. Passing a change
9

o it ensures that if the contained models were consistent before,
hey will also be consistent afterwards by executing the consis-
ency preservation rules of the V-SUM metamodel. The function
s also responsible for determining a proper execution order of
onsistency preservation rules such that consistency regarding
ll consistency rules is achieved. Obviously, this orchestration is
ot trivial, since the execution of one consistency preservation
ule may easily lead to the violation of another consistency rule.
t is part of current research (Cleve et al., 2019) and especially
ur current and future work (Klare, 2018; Klare et al., 2019) to
nvestigate how such an orchestration can be generically defined,
hether further assumptions have to be made to the consistency
reservation rules, and in which sense it has to operate con-
ervatively. Some recent research proposes to find a spanning
ree (or a directed acyclic graph) of the transformations for each
erformed change, e.g. Stevens (2020). However, that approach
akes the restrictive assumption that there is always an order
uch that an early executed transformation does not depend on
he results of a later executed one, which is unrealistic. We yet
nvestigated an App function that performs a fixed-point iteration
f the consistency preservation rules, which has the benefit that
t can be used generically for arbitrary V-SUM metamodels, as
eflected by the multiplicity in Fig. 5. Although that realization
s theoretically prone to perform an endless iteration, in recent
tudies we found a categorization of occurring problems that
llows to avoid most of them already by proper construction
f consistency preservation rules (Klare et al., 2019). This helps
he methodologist to define consistency preservation rules in a
ay that there is always an execution sequence of them that
erminates with a consistent state of the models, which is found
y that generic App function.
With the definition of V-SUM metamodels, we can now for-

mally define their instances.

Definition 9 (V-SUM). A virtual SUM or V-SUM is a structure
VSUM of a tuple of models ⟨MVSUM⟩ ∈ IM1 × · · · × IMn and its
V-SUM metamodel VSUMM :

VSUM :=
(
⟨MVSUM⟩, VSUMM

)
with ⟨MVSUM⟩ being consistent according to ⟨CRVSUMM⟩.

To perform modifications on a V-SUM, a change can be applied
using the change application function App of its V-SUM meta-
model, delivering a new consistent state of the models. Starting
with an empty tuple of models, and populating it using this
function only, will inductively ensure consistency of the resulting
tuple of models. This is why a V-SUM behaves like an ordinary
SUM in terms of being free of inconsistencies according to Def-
inition 1. We give a more pragmatic view on how this function
works in the process description in Section 6.3.

Remark 2. The definitions of a V-SUM and its metamodel do not
restrict the behavior of consistency preservation rules. Therefore,
a V-SUM metamodel with a consistency preservation rule that
deletes all model elements or at least those that are involved
in a violated consistency rule would fulfill the definition. It is
the responsibility of the methodologist role to define appropriate
consistency preservation rules.

Remark 3. According to Definition 1, a SUM contains no con-
tradicting information and is therefore always consistent. A SUM
metamodel according to Definition 2 is a single metamodel with-
out consistency rules, in accordance with Definition 5. In conse-
quence, a SUM metamodel can be seen as a V-SUM metamodel
with only one metamodel and an empty set of consistency preser-
vation rules. This does, however, not mean that every metamodel



H. Klare, M.E. Kramer, M. Langhammer et al. The Journal of Systems & Software 171 (2021) 110815

i
o
h
a
c
s
i
s
o
w

5

t
t
D
f
c

D
v
m
i
e

D
V

f
g

D

t

m

W

Fig. 6. V-SUM metamodel for the running example with exemplary roles and views on a possible instance.
s a SUM metamodel or V-SUM metamodel. It is up to a method-
logist to define a SUM metamodel or V-SUM metamodel, thus if
e or she states that there is some metamodel whose instances
re free of redundancies and thus inconsistencies, he or she may
all it a SUM metamodel or V-SUM metamodel with an empty
et of consistency preservation rules. This is inherently the case
f there are multiple metamodels whose instances do actually not
hare any overlap of information, and in other cases it is a matter
f definition by the methodologist, because he or she prescribes
hen models are considered consistent.

.4. Views and their generation

The definitions for specifying projective views on a V-SUM in
his subsection are based on Burger (2014, Sec. 4.3). Such projec-
ive views enable a developer to perform changes according to
efinition 6, which can then be applied to the change application
unction App of the V-SUM from which the view was projected to
onsistently propagate the changes to all models of the V-SUM.

efinition 10 (View Type). Let VT ⊆ M be the universe of
iew type elements. A view type over a V-SUM metamodel is a
etamodel VT ⊆ VT . A view type element eVT ∈ VT represents

nformation of one or more elements in a V-SUM metamodel
VSUMM ∈ M.

efinition 11 (View). An instance VT ⊆ IVT of a view type
T ⊆ VT is called view. Each element eVT ∈ IVT represents at

least one element eVSUM ∈ IM.
Views are supposed to be projections from a V-SUM. Thus a

unction that calculates a view must be able to derive a view only
iven the models in a V-SUM.

efinition 12 (View Definition Function). For a V-SUM metamodel
VSUMM , let ⟨MVSUMM⟩ = ⟨M1, . . . ,Mn⟩ be the tuple of its meta-
models and let I⟨M⟩ = IM1 × · · · × IMn be the set of all possible
tuples of their valid instances. A view type is defined by a view
definition function, which calculates a view VT of a specific view
ype VT from a V-SUM with the model tuple ⟨MVSUM⟩ ∈ I⟨M⟩:

DefVT : I⟨M⟩ → IVT

⟨MVSUM⟩ ↦→ VT

The function induces a relation rep that expresses which
odel element(s) are represented by which view element(s):

rep ⊆ IM∪
× IVT

hile DefVT is functional, rep is not, since a model element can
be represented by multiple elements in one or more views.
10
6. A development process for V-SUMs

In this section, we first introduce the roles associated with
the operation and construction of V-SUMs, then we depict the V-
SUM operation process and discuss the individual process steps
to construct a V-SUM metamodel. Finally, we discuss the do-
mains in which the approach can be applied. This constitutes our
contribution C2.

6.1. Roles

The development process for V-SUMs is an extension of the
development process of the OSM approach (see Section 3.2). The
process distinguishes between the methodologist role, responsible
for the construction of a V-SUM metamodel, and the developer
role, responsible for the operation of a V-SUM. An application of
the process to the running example is depicted in Fig. 6.

Methodologist: Since each V-SUM metamodel is method-specific,
i.e., depending on the involved languages (Atkinson et al.,
2010), there is a special role for creating and maintaining the
V-SUM metamodel, called the methodologist. A methodologist
executes the three steps described in detail in Section 6.3:
selecting metamodels, defining consistency preservation, and
defining view types. Thus, the role is concerned with elements
at the metamodel level.

Developer: A developer uses the view types that have been pre-
defined by the methodologist to create, access, and manipulate
the V-SUM for the system under consideration. He or she
derives views from the V-SUM defined by the Def functions
for view definition (Definition 12), modifies them and applies
the performed changes to the V-SUM using the App function.
He or she is thus concerned with elements at the model
level and cannot change the V-SUM metamodel. Depending
on the domain-specific development process, the developer
role can be subdivided into further roles. A component-based
development process for our running example may define the
roles system architect, component developer, and programmer
(see Fig. 6), each using a subset of the provided view types.

6.2. Operation of a V-SUM

A V-SUM metamodel, according to Definition 8, consists of
metamodels, consistency preservation rules between them and,
in addition, a set of view types. For a practical realization, we
additionally use a so-called correspondence model, which serves as
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Fig. 7. Editing process with automatic application of changes for a V-SUM of the running example.
trace model to identify which elements are related to each other
n terms of fulfilling a consistency rule according to Definition 4.
e already discussed in Section 5 why such a model is only

elevant for a practical realization but not in the theoretical
oundations discussed before.

When a developer instantiates a V-SUM metamodel, according
o Definition 9, he or she can derive views based on the view
ypes of the V-SUM metamodel and perform modifications on
hem, which are consistently propagated to the models of the
-SUM. Such a process of editing a view with a propagation of
he changes to the V-SUM and preservation of consistency can
e seen in Fig. 7. The view VT ADL is derived from the V-SUM (1)
sing a derive view operation, which is based on the Def function
Definition 12), and modified (2.1) into a dirty state (VT ∗

ADL) where
he elements in the view are not synchronized with the V-SUM.
his modification is recorded by an appropriate change monitor
2.2), which may either save editing steps directly or derive them
rom state differences. Changes can now be applied (3) either
anually by the developer, for example by saving the view, or
utomatically if a certain state of the view is reached. This is
chieved by calling the apply changes operation provided by the
-SUM. This function takes the changes of the views and calls the
ppropriate consistency preservation rules (4) for these changes.
hese rules, in turn, modify the internal models and read and
pdate so called correspondences (5) in the correspondence model
o trace the relation of consistent elements. In consequence, the
pply changes function triggering steps (4) and (5) realizes the App
unction of the V-SUM metamodel according to Definition 8.

If the consistency preservation process terminates in a consis-
ent state, the view updates (6) to a non-dirty state (indicated
s VT ′

ADL), which is possibly an update regarding VT ∗

ADL due to
odifications performed by the consistency preservation rules.
his updated view can be edited again.

.3. Construction of a V-SUM metamodel

The methodologist has to execute the following steps to con-
truct a V-SUM metamodel: selecting metamodels, defining con-
istency preservation, and defining view types. In the simplest
ase, they are executed in this order. We present scenarios with
ifferent combinations in Section 6.3.4.
11
6.3.1. Selecting metamodels
A V-SUM metamodel contains a set of metamodels, as defined

in Definition 8. Depending on the domain for which the system is
developed, the methodologist can include metamodels for differ-
ent purposes (e.g., security, performance, real-time properties) or
development paradigms (e.g., component models, class models).
It is often beneficial to reuse existing metamodels, but it is also
possible to create new metamodels specifically for the usage
within a V-SUM metamodel.

In our running example, three languages are used: an ADL,
UML, and Java. The V-SUMmetamodel for the example is depicted
in Fig. 6. We assume that the ADL is already based on a meta-
model definition, as is UML, so the methodologist can included
them into the V-SUM metamodel without further effort. Java as
a grammar-based textual language can, e.g., be expressed using
JaMoPP (Java Model Printer and Parser) (Heidenreich et al., 2010).

If properties of a system shall be described in a language for
which a metamodel is not provided, e.g., if existing and especially
proprietary tools are used, the methodologist has to create the
metamodel or choose a third-party metamodel. For many popular
tools, metamodels, especially based on EMOF, have been reverse-
engineered, such as MATLAB/Simulink (Heinzemann and Becker,
2013; Son et al., 2012; Armengaud et al., 2011). Additionally,
EMF provides an importer for XML-based metamodel specifica-
tions (Steinberg et al., 2008, pp. 86). Most tools, even from other
engineering domains, provide XML-based representations of their
models for interchange purposes, such as the electronic circuit
design tool EPLAN (Gischel, 2013) or the exchange format for
automation system design AutomationML (AutomationML e.V.
(GI), 2018), which eases the integration of such tools into the
presented EMOF-based approach.

6.3.2. Defining consistency preservation
Vitruvius uses an inductive approach to preserve consistency

of instances of a V-SUM metamodel. Changes passed to the ap-
plication function App of a V-SUM trigger the appropriate Con-
sistency Preservation Rules (CPRs). The methodologist can realize
CPRs by defining incremental model transformations, which up-
date one model after another was modified. Transformations
can be defined in a declarative or imperative way, depending
on the transformation language. The methodologist can use im-
perative transformation languages to define CPRs according to

Definition 7, which specify how a consistent state regarding some
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onsistency Rule (CR) is achieved after a change. Alternatively,
he methodologist can use declarative languages for defining
Rs according to Definition 3, which specify conditions under
hich models are in a consistent state, without having to define
ow to reach this state after a change. In declarative languages,
PRs are derived from a specification of CRs, i.e., constraints are
ransformed into routines that restore fulfillment of the CRs.

Highly declarative languages restrict the expressiveness of
onsistency preservation to relations that are covered by the
rovided language constructs, as stated by Kusel et al. (2013),
ut improve compactness and usually provide bidirectionality.
or example, a simple declarative transformation between ADL
omponents and UML packages and classes requires the defini-
ion of only one CR, whereas an imperative approach requires
he specification of CPRs for each possible modification of their
nstances, at least their creation and deletion in both directions.
ven in case in which the declarative language is sufficiently
xpressive, methodologists usually want to be able to affect the
ay consistency is preserved (Stevens, 2020), and will thus favor
language with imperative concepts.
Therefore, Vitruvius contains specific languages to provide

oth: The Mappings language is used for declarative, bidirectional
pecification of CRs. The Reactions language is used for imperative,
nidirectional specification of CPRs. Both languages are discussed
n detail in Section 7.

When CPRs are applied, affected elements in other models
ave to be identified either based on their data, e.g., by searching
lements with a matching name, or by using explicitly stored
races, as, for example, employed by ATL (Jouault and Kurtev,
006) and discussed by Czarnecki and Helsen (2006). We use such
xplicit traces, called correspondences, in Vitruvius to retrieve
orresponding elements from a correspondence model (see Fig. 7)
ven when elements do not contain identifying data.
Consistency preservation mechanisms can automatically re-

tore consistency in specific cases. However, depending on the
omplexity of a consistency rule and the difference in the level
f abstraction of the involved metamodels, further information
ay be required to repair inconsistency: A mechanism can either

estrict the possible solutions by implementing a certain strategy,
r ask the user for a clarification of intent. Some approaches cal-
ulate all possible solutions for restoring consistency, e.g., using
nswer set programming (Eramo et al., 2012) or satisfiability solv-
ng (Macedo et al., 2013). Vitruvius follows a different approach,
s it gives methodologists the possibility to specify interactions
ith the developer who performed the inconsistency-introducing
hange. This gives methodologists the flexibility to implement
ifferent, dynamically selected consistency repair strategies with-
ut overwhelming the user with too many resolution options.
Finally, it is up to the methodologist to decide which kinds of

nconsistencies the CPRs are supposed to handle. Since the speci-
ication of when models are considered consistent is given by the
-SUM metamodel and its CPRs, a methodologist can normatively
efine the notion of consistency. There is no additional speci-
ication to which the CPRs must be somehow correct, although
here will sometimes be an informal notion of how consistency
hould look like, such as for Java and UML. Nevertheless, the
ethodologist can still decide what the V-SUM is supposed to
nsure and which inconsistencies shall not be considered by the
echanisms explicitly, e.g., to support specific workflows that

equire that some inconsistencies are not handled automatically.

.3.3. Defining view types
Vitruvius is a view-based approach, so V-SUM elements are

xclusively accessed by views. For each metamodelM ∈ ⟨MVSUMM⟩

he methodologist must create at least one view type with a
rojectional-complete view type scope (Goldschmidt, 2011, Sec.
12
.4). Such a view type represents all elements in M, which means
hat an instance of that view type contains all elements of an
nstance of M. The purpose of those view types is to replace the
riginally used metamodels. To ensure that existing tools can be
sed, the original metamodels must still be accessible by provid-
ng appropriate view types. The methodologist can then define
urther view types, such as the component-class implementation
iew type (cf. VT3 in Fig. 6), which depicts which classes of the
ML model implement which components of the architecture.
Although the relations between metamodels and view types

ould also be described with the same languages as CPRs, it is
easonable to use specialized view definition languages: First,
uch languages have to support the definition of editability, since
ot all represented properties may be modified in a view for
onceptual or pragmatic reasons. Second, such languages have to
upport the projection of views from multiple models, whereas
PRs only relate two metamodels. Since the definition of view
ypes is a research area of its own, we do not discuss it here
n detail. We discuss existing view definition languages in Sec-
ion 10.3, including our previous work on multi-model views with
odelJoin (Burger et al., 2014).
Since views are the only way of accessing information in a

-SUM, they must be able to abstract from redundancies and to
eorganize information. This is why the view types in Vitruvius
are strongly decoupled from the V-SUM metamodel: It is not
necessary (although possible) that the elements in a view type
are a subset of the elements in the V-SUM metamodel, such that
VT ⊆

⋃
M∈⟨MVSUMM ⟩

M. A view type can reproduce, rearrange,
r aggregate information from these metamodels. Additionally,
view type may implement access control techniques. For ex-
mple, the component developer in Fig. 7 may not be authorized
o change information in the code or the UML model that reflects
rchitectural information of the ADL, because this is a responsibil-
ty of the system architect. In such a case, a view type can restrict
ditability of certain information, e.g. of those classes that realize
rchitectural components.

.3.4. Process scenarios
The order in which the methodologist applies the process

teps depend on the scenario. We can distinguish at least three
cenarios, which can exemplarily be identified in our running
xample applied in Fig. 6:

etamodel-driven: The process steps can be applied in the or-
der in which they were presented. The methodologist starts
with the metamodel selection and then defines the CPRs be-
tween them, as well as view types for them. The latter two
steps can be executed in any order. This applies to the UML
part of our running example: Since UML is a well-known
standard, the methodologist first selects the metamodel, then
the view types (class and component diagrams), since they are
part of this standard, and then defines CPRs.

iew-type-driven (existing view type): If a view type already
exists, the methodologist can start with adding it and after-
wards chooses or defines one or more appropriate metamod-
els representing the information necessary for this view type.
Finally, the methodologist defines the CPRs to other metamod-
els. This applies to the Java part of the running example: the
view type textual syntax for Java source code is known first,
and from there, a suitable metamodel-based representation is
chosen in terms of JaMoPP.

iew-type-driven (custom view type): It is also possible to start
with a notion of elements and relations that are not yet rep-
resented in an existing metamodel or view type. The method-
ologist may be faced with the requirement that elements in
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the object-oriented design shall be traced to the architectural
elements that they represent. From an informal notion of the
rules relating architecture and object-oriented design, he or
she may start defining a custom view type that is able to
represent classes with annotations showing the architectural
elements they implement, which is shown as the component-
class-implementation view type in Fig. 6. From the concepts
in this custom view type, the methodologist then chooses
or defines the necessary metamodels for the component and
class concepts. Finally, he or she formalizes the consistency
rules that are implicitly represented in the custom view type.

.4. Domains

The Vitruvius approach is supposed to support the devel-
pment of software-intensive systems in different engineering
isciplines by coping with the problem of information fragmen-
ation across different tools and preserving consistency of that
nformation. The engineering disciplines range from traditional
oftware engineering to other fields like electrical and mechan-
cal engineering in the context of cyber–physical systems. We
ave already applied the approach to the domain of ordinary
oftware engineering (Kramer et al., 2015), but we also have
ome preliminary results for other domains such as automation
ystems (Ananieva et al., 2018a).
In general, the Vitruvius approach is limited only by what

an be expressed with EMOF-based metamodels. Since EMOF is a
eneric metadata standard (International Organization for Stan-
ardization, 2014), it is not limited to a certain domain. We have
lready discussed in Section 6.3.1 that for several popular tools
rom different engineering disciplines, EMOF-based metamodels
ave been defined, which enable the usage artifacts generated
ith those tools. The complexity of defining CPRs depends on
he quality of the domain metamodels, which is difficult to quan-
ify (Hinkel et al., 2016). Finally, the view types may, in a first
tep, only represent the information already represented in the
etamodel, thus no additional effort to define them is required
s they are given by the used metamodels, to already benefit from
onsistency preservation capabilities. As soon as further view
ypes are defined, developers can even profit from further role-
pecific views, whose complexity to create depends, like for CPRs,
n the domain metamodels to project the information from.
Summarizing, as long as EMOF-based metamodels are given

r can be defined for a domain, CPRs and view types for them
an be defined. There are no specific requirements that prevent
he adoption in a specific domain. The complexity of adoption de-
ends on the quality of the given metamodels and the complexity
f the consistency preservation rules to define.

. Consistency preservation languages

In this section, we introduce the two consistency preservation
anguages of the Vitruvius approach, which form our contribu-
ion C3. The Reactions language (Klare, 2016; Kramer, 2017) pro-
ides imperative and unidirectional specifications of consistency
reservation with declarative constructs for recurring actions,
ut still provides maximum expressiveness. Methodologists can
se it to define CPRs according to Definition 7. The Mappings
anguage (Werle, 2016; Kramer, 2017) provides highly declarative,
idirectional specifications of consistency rules, but with reduced
xpressiveness. A rule in this language conforms to a CRs ac-
ording to Definition 3. Specifications in the Mappings language
re transformed into imperative specifications of the Reactions
anguage, providing a seamless integration of specifications in
oth languages. Thus, CPRs, as required for operating a V-SUM,
13
Fig. 8. Simplified class diagram with meta-classes for representing Reactions in
terms of an AST.

are finally derived from specifications in both languages. Addi-
tionally, the interaction with the user in cases where consistency
cannot be restored fully automated is a feature of the languages.

We developed new languages rather than reusing or extending
existing ones because of two reasons: First, we use an incre-
mental and delta-based approach for consistency preservation,
as introduced in Section 5.2, whereas most existing languages
follow a state-based approach. This allows us to react to ac-
tual model changes rather than to potential deltas that were
derived from a state difference. Second, the two languages can
be used for specifications on two different abstraction levels.
Methodologists should define Mappings whenever possible. If
their expressiveness is not high enough to derive an appropriate
Reaction in a specific situation, they can specify Reactions ex-
plicitly. This exceeds the capabilities of hybrid languages such as
ATL, because it does not restrict the flexibility of imperative code
segments to specific situations, such as the instantiation of a rule
in ATL, but allows methodologists to react to arbitrary events with
Turing-complete code, if necessary.

The languages rely on traces stored in a correspondence model:
Each correspondence refers to two elements, and can be tagged
with metadata to distinguish different correspondences between
the same elements. The correspondence model is an additional
artifact that stores explicit relations between elements, but pro-
vides no guarantee for consistency of the corresponding elements.
While our implementation of the Mappings language automati-
cally creates and uses appropriate correspondences, the method-
ologist has to manage correspondences manually when using the
Reactions language, but is more flexible in specifying them.

The two languages were originally defined by Kramer (2017).
In the following, we introduce the core concepts of the two
languages to show their capabilities and expressiveness. For a
more detailed explanation of the languages and a formalization of
their semantics, we refer to Kramer (2017). The syntax definition
can be found in Appendix A.

7.1. Reactions language

The Reactions language is used to specify unidirectional con-
sistency preservation by updating instances of one metamodel
after changes to an instance of another. A Reaction constitutes
the realization of a CPR (Definition 7). The language provides
declarative elements for typical consistency preservation actions,
such as the management of correspondences. It also includes
check expressions and imperative model manipulations, based on
the expression language Xbase (Efftinge et al., 2012).
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eaction aReaction {
after // trigger definition
check { /* further restrictions */ }
call aSpecificRoutine(...)

outine aSpecificRoutine(...) {
match { /* retrieve corresponding elements */ }
action { /* perform actions and manage correspondences */ }

isting 1: Reaction stub illustrating the main language constructs
nd steps of change-driven consistency preservation.

.1.1. Language structure
The top-level structure of the Reactions language is presented

n Fig. 8. The three main steps are:

1. Triggering Reactions according to the type and properties
of a user change

2. Matching model elements that correspond to elements of
the changed model

3. Performing actions on matched elements and managing
correspondences

e explain these steps in detail in the following subsections. The
op-level keywords of the language are shown in Listing 1. We
eparate the match and action steps from the trigger step using
eaction routines that can be reused by other Reaction routines
nd Reactions. A routine has a name and a list of parameters.
t can be called in the same way a method is called in Java. A
eaction defines only a trigger and the Reaction routines it calls.

.1.2. Triggers and calling routines
The first element of every Reaction is a trigger definition. It

tates in reaction to which changes the Reaction is going to be
xecuted. A trigger definition has two parts in which restrictions
an be defined, based on the change type and based on the change
roperties. The user can define the types of changes after which a
eaction is to be executed using a concrete textual syntax. This
elieves methodologists from performing explicit type checks on
he obtained change. We distinguish four main change types:

1. Replacements of a single attribute or reference value
2. List changes which affect a single list entry
3. Insertions and removals of root elements
4. Creations or deletions of model elements

With these change types, we are able to express all possible
hanges in EMOF-conforming models. Model elements can either
e contained in a containment reference of another element, or
hey are considered root elements if they do not have a container.
nsertions and removals of list entries or root elements may go
long with the creation or deletion of that element. Therefore,
he change types 2 and 3 can be combined with change type 4.
part from that, we only support the specification of Reactions
o atomic changes of types 1 to 4 and no further combinations
f them. It is possible to restrict a Reaction not only based on the
ype of a change, but also based on change description properties.
hese properties yield the type of the modified element, the
odified feature, and the type of the new or the old value, if the
hange type is 1 or 2. A trigger for the insertion of a component
nto the components reference of a Repository in the running
xample can be specified as shown in Line 2 of Listing 2. If it
s necessary that the component was not contained in another
14
1 reaction {
2 after element adl::Component
3 inserted in adl::Repository[components]
4 call {
5 val component = newValue
6 createClass(component)
7 }
8 }
9

10 routine createClass(adl::Component component) {
11 match {
12 require absence of oo:Class
13 corresponding to component
14 val componentsPkg = retrieve oo::Package
15 corresponding to component.repository
16 tagged with "componentsPackage"
17 }
18 action {
19 val class = create oo::Class and initialize {
20 class.package = componentsPkg
21 class.name = component.name + "Impl"
22 }
23 add correspondence between component and class
24 }
25 }

Listing 2: Reaction to the creation of a component.

element, but was created right before its insertion, the trigger
specification can be extended to created and inserted.

Further checks on the change can be performed in an optional
check expression, which is a code block introduced with the check
keyword, as shown in Listing 1, which returns true or false. In
such an expression, all change properties are available. Depending
on the change type, this includes the affectedObject, which
was created, deleted or whose feature was modified, the new-
Value or oldValue that was inserted into or removed from a
feature and the index if a list entry was changed. These proper-
ties are typed according to the specified change type and property
restrictions. For example, the new value of a list entry insertion
is typed with the element type of the list feature specified in the
trigger. The usage of the change type information of the trigger
relieves methodologists from explicitly performing type casts.

The second part of every Reaction definition is a code block
with one or more Reaction routine calls, which are only executed
if the trigger specification matches an occurred change. Within
such a block, the actual change properties, which are the same as
in a check expression, can be accessed and Reaction routines can
be called. Additionally, arbitrary Xbase expressions that cause no
side effects may be defined. This is rarely necessary but can be
useful, for example, to define local variables used as arguments
to Reaction routine calls. Our current prototype, however, does
not yet automatically discover unwanted side effects.

7.1.3. Matching
In the first part of a Reaction routine definition, it is possible

to specify which elements and conditions have to be matched
before actions are executed. For this, retrievals of corresponding
elements can be combined with match checks that may realize
arbitrarily complex conditions. Retrievals contain a declarative
specification of the elements that shall be matched and retrieved
based on correspondences. The specification of a retrieval results
in a lookup in the correspondence model, which contains the cor-
respondences for element pairs that were created by the actions
of previously executed Reactions. These retrievals can have two

different types: Presence retrievals define which elements have to
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e present. They have two subtypes for the retrieval of required
nd optional elements. A required presence retrieval is successful
f exactly one corresponding element exists. Such a presence
etrieval is shown for the components package of our running
xample in Line 14 of Listing 2. An optional presence retrieval
ueries a corresponding element, if existing, but is not required
or a successful match. It can be used if elements do not neces-
arily exist, e.g., because a user was allowed to decide whether it
hall exist or not. Absence retrievals define which elements have to
e absent. They are successful if no corresponding element exists.
uch an absence retrieval can be used, for example, to ensure that
o elements are created twice. Line 12 of Listing 2 contains an
bsence retrieval that ensures that no class already corresponds
o the created component. Actions are only executed if all except
ptional retrievals are successful.
All retrievals specify a source element condition. It yields an

lement for which correspondences are inspected. In the com-
onent repository retrieval in Line 15 of Listing 2, the source
lement is defined as component.repository. Furthermore, it
s necessary to specify the type of the corresponding element
s a meta-class, which is an oo::Package in our example. In
ddition, it is possible to restrict the target elements that are
o be retrieved using a retrieve properties check, which has to
be preceded by the keyword with. Such a check expression can
inspect any of the properties of an element to be retrieved and
it can be necessary, for example, if a corresponding element has
to be identified in a group of several elements of the same type.
Furthermore, a string tag can be assigned to correspondences to
distinguish several correspondences of one element. A retrieval
can define a tag expression, which specifies which string tag had
to be used to register the correspondence in a previous Reac-
tion routine. Line 16 of Listing 2 contains a tag expression that
identifies the corresponding components package among other
corresponding elements of the same type, e.g., the interfaces
repository. In order to make the retrieved elements accessible in
the actions, optional and required presence retrievals can be com-
bined with a variable declaration and assignment. The retrieval of
the components package in Line 14 of Listing 2 is assigned to the
variable componentsPkg.

We provide declarative retrieval statements in order to relieve
methodologists from considering many technical details that have
to be dealt with if correspondences are inspected manually to
obtain corresponding elements. The generated code performs all
necessary operations, including type checks, type casts, variable
declarations and assignments.

7.1.4. Actions
The second part of a Reaction routine definition lists all actions

to perform for restoring consistency. They can have three differ-
ent types, which are the creation, deletion or update of model
elements, the (de-)registration of correspondences, and the call of
other Reaction routines. The statements are executed in the spec-
ified order. Each statement has access to the elements retrieved
in the match block or defined by previous action statements.

With the first type of actions, instances of meta-classes of
the target metamodel can be created, deleted, or updated. An
example for an instantiation of a class is shown in Line 19 of
Listing 2. An element creation action has to provide the meta-
class that is to be instantiated. In the example, this meta-class
is oo:Class. It may be combined with a variable declaration
and assignment as well as with optional initialization code in
which values of attributes or references of the element can be
set. In Listing 2, the created element is assigned to the variable
class, and an initialization code block assigns the package and
he name of the created class. With an element deletion action,
n existing element of an instance of the target metamodel can
15
be deleted by simply listing the variable name it was assigned
to when retrieving the element in the match block. Furthermore,
directly or indirectly contained elements are deleted recursively.

Finally, an element update action allows to modify attribute
or reference values of an existing model element. To this end,
the variable name for the existing element has to be provided
together with a block of update code. The code blocks of both
creation and update actions allow to group code that modifies an
element, e.g., multiple attribute changes, and thus gives method-
ologists a possibility to structure their code. This can make it
easier for them and for future analyses to identify how model
elements are initialized or updated.

An action for adding or removing a correspondence is spec-
ified by providing the two model elements that shall newly or
no longer correspond. Correspondences are added and removed
independently of any further correspondences for the same el-
ements. For cases in which several correspondences shall be
registered for a single element, it is possible to specify a string tag
to identify different correspondences during addition, retrieval,
and removal, analogously to the specification in the retrieval.
The example in Listing 2 shows the creation of a correspondence
between the component and the newly created class in Line 23.

The last type of Reaction routine actions are blocks with calls
of other routines, which are syntactically identical to the routine
call block of Reactions (see Section 7.1.2). This allows modular
composition and reuse of Reaction routines.

We already discussed that preserving consistency is a pro-
cess that cannot always be automated. Considering the running
example for components, as introduced in Example 1, a class
(and a package) is supposed to be created for every component
that is added to the software architecture. It may, however, not
be desired that every class (in combination with its package)
is represented as a component in the architecture. It should be
up to the methodologist (or a dedicated architect) to decide
whether an added class is supposed to represent a component.
In this case, interactions with the user are necessary to deter-
mine the behavior. The Reactions language provides an internal
API for such user interactions, which provides different types of
inputs, such as confirmations, single or multiple choice questions,
and textual input. This API is accessible within all constructs
presented before, such as an initialization, execution or call block.

7.2. Mappings language

In this section, we present the Mappings language that can be
used by methodologists to complement the Reactions language
in symmetric cases. Symmetric cases are those in which for
two metamodels the CPRs for both directions can be derived
from a single declarative specification. This is not restricted to
bijective cases, but requires that all defined conditions can be
enforced in both directions. With these Mappings, it is possible to
declare under which conditions instances of meta-classes of both
metamodels should correspond to each other. It is, however, not
necessary to specify after which changes these conditions have
to be checked or how they have to be enforced. Instead, unidi-
rectional Reactions that consider these details are automatically
generated for both preservation directions from each Mapping.
In consequence, a Mapping conforms to a CR according to Defi-
nition 3, from which Reactions, which realize CPRs according to
Definition 7, are derived.

7.2.1. Language structure
The central concepts of the Mappings language are depicted in

Fig. 9. The language provides two first-level constructs for Map-
pings and Bootstrap Mappings (see Listing 3). A Mapping defines
consistency constraints between meta-classes of two metamod-
els, whereas a Bootstrap Mapping only defines the instantiation
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apping aMapping
depends on ( /* another mapping name */ ) {
map ( /* first meta-classes */ )
with { /* single-sided conditions */ }

and ( /* second meta-classes */ )
with { /* single-sided conditions */ }

such that { /* bidirectional enforcement specifications
*/ }

ootstrap mapping aBootstrapMapping {
create ( /* meta-classes */ )
with { /* bootstrap conditions */ }

isting 3: Mapping stub illustrating the two first class concepts,
appings for both sides and Bootstrap Mappings for a single side,
ith their main language constructs.

f meta-classes in one metamodel, which must always exist. Each
apping relates two metamodels and therefore defines two sets
f conditions. Second, it defines a set of conditions that have to
old between the elements in instances of both metamodels, thus
epresenting the consistency constraints.

For the first set of conditions, a Mapping contains two param-
ter lists in which meta-classes of both metamodels are specified
ogether with identifiers for their instances. For every parameter
ist, methodologists can specify single-sided conditions in a block
ntroduced with with, which have to be fulfilled by the instances
f the list whenever they are mapped to instances of the other
arameter list. This block of conditions can be omitted if it is
ot necessary. These conditions refer, however, to the metamodel
f the parameters in isolation and cannot make any statements
bout properties of instances of the other side. For the second set
f conditions, which are statements that relate elements of both
ides, the language optionally provides two kinds of bidirectional
nforcement specifications, which can be defined in the such
that block: First, single blocks of bidirectionalizable conditions are
nforced in both directions, but only support certain operators.
n this case, bidirectionalizable means that from a condition its
preservation in both directions can be derived. Second, pairs of
forward and backward enforcement blocks with arbitrary code can
be defined, which are executed if all Mapping conditions from the
left/right metamodel hold after a change in their respective in-
stances. The result is always that the instances of the meta-classes
of both parameter lists are mapped to each other.
16
A Mapping can depend on another Mapping, defined in a de-
pends on statement, which makes the elements of that Mapping
accessible, e.g., to place elements relative to elements in the
Mapping it depends on. A Mapping can only be instantiated when
the one it depends on was already instantiated. If a Mapping has
no dependencies, this statement can be omitted.

Bootstrap Mappings are similar to ordinary Mappings, but
contain only one list of parameters for one metamodel and only
one set of single-sided conditions. Such a Bootstrap Mapping
defines elements that always have to exist due to the defined
consistency rules. Thus, the defined elements are created and the
conditions are enforced before any change to the models is made.
Therefore, the keyword create is used. This can, for example,
be necessary to set up some primitive types, which are used
throughout other ordinary Mappings and thus have to pre-exist
before other Mappings are applied.

Whenever all single-sided conditions of a Mapping get fulfilled
for a set of classes in one model, an appropriate set of elements is
instantiated in the other model that fulfills both the single-sided
conditions as well as the bidirectional enforcement specifications.
Additionally, correspondences between the elements are created,
which are used to update or remove the corresponding elements
after modifications. We say that a Mapping is instantiated. When-
ver model features are changed that are used in the bidirectional
nforcement specifications, the other model is updated appro-
riately to fulfill that specification. Finally, whenever one of the
ingle-sided conditions of an instantiated Mapping is not fulfilled
nymore, the Mapping is destroyed. This means that if the single-
ided conditions at one side of the Mapping are not fulfilled
nymore, the elements that fulfill the parameters at the other
ide are removed from the model, as well as the correspondences
etween the elements. To achieve that behavior, Reactions for all
elevant changes that affect either the single-sided conditions or
he bidirectional enforcement specifications are generated, which
ppropriately instantiate or destroy the Mapping, or update the
eatures of the bidirectional enforcement specifications.

.2.2. Example mapping for component repositories

Listing 4 shows the repository consistency rule introduced in
ection 2 expressed in the Mappings language. A Mapping be-
ween a component repository on the left side and two packages
n the right side is defined. The single-sided conditions state
hat the root package needs no parent package, that all other
ackages have to be contained in the root package, and that they
ave to be appropriately named. These single-sided conditions
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m
apping Repository<->Packages {
map (adl::Repository repository)
and (oo::Package rootPkg, oo::Package pkg4interfaces,
oo:Package pkg4components) with {
null equals rootPkg.parent
pkg4interfaces in rootPkg.subpackages
pkg4components in rootPkg.subpackages
"interfaces" equals pkg4interfaces.name
"components" equals pkg4components.name

}
such that { rootPkg.name = repository.name }

}

Listing 4: Mapping between a component repository and its
package structure representation in object-oriented design.

decide whether a repository has to be created after a change
in the object-oriented design and enforced when a repository
is created in the architectural model. Whenever a repository in
the architectural model is created, the package structure in the
object-oriented model is instantiated. Additionally, when the cre-
ation of the package structure is observed in the object-oriented
model, a corresponding repository is created. To achieve that, for
each change that can lead to the fulfillment of all single-sided
conditions of a Mapping, and thus its instantiation, an appropri-
ate Reaction is generated. If the repository in the architectural
model is removed or one of the packages in the object-oriented
model is removed or renamed, the Mapping is destroyed, thus the
corresponding model elements are removed.

Finally, the Mapping contains a bidirectional enforcement
specification in the such that block, which states that the name
of the repository has to be equal to the name of the root package.
This condition is ensured by generated Reactions that respond
to changes of the package or repository name, respectively. For
operators that are not easily bidirectionalizable, such as the
aggregation of two values, we refer to our previous work (Kramer
and Rakhman, 2016), which proposes an approach for defining
inverters for operators in the Mappings language.

7.3. Combination of Mappings and Reactions

The example Mapping in Listing 4 already illustrates the two
main advantages of the Mappings language compared to the
Reactions language:

1. With Mappings, methodologists only specify once in a
mostly direction-agnostic way which elements have to cor-
respond, but the Mappings are automatically enforced in
both directions.

2. Methodologists declare Mapping conditions that have to
hold in a change-agnostic way, but if a change can lead to
the fulfillment of these conditions or require that they are
fulfilled, this is automatically checked or enforced.

Methodologists can specify Mappings that abstract away from
direction- and change-specific details. To adapt the abstraction
level for the consistency preservation directions, they can also
consider the direction where this is necessary. This adaptation
can be achieved either by specifying separate check-and-enforce
code for single-sided conditions or by directly specifying enforce-
ment code for both directions if the abstraction of bidirectional-
izable conditions is not sufficient.

Listing 5 shows the Mapping to keeping components con-
sistent with a package and a component-realization class. From
this Mapping, at least six Reactions have to be derived: the
insertion of a component into a repository (see Listing 2) as well
17
mapping Component<->PackageAndClass
depends on (Repository<->Packages repoPkgs) {
map (adl::Component component) with {

component in repoPkgs.repository.components
}
and (oo::Package componentPkg, oo::Class class) with {

componentPkg in repoPkgs.pkg4components.
subpackages

class in componentPkg.classifiers
class.name = componentPkg.name + "Impl"

}
such that {
component.name = componentPkg.name
component.name + "Impl" = class.name

}
}

Listing 5: Mapping between a component and its representation
of a package with a component-realization class in object-
oriented design.

as its removal, the insertion of a class into a package as well
as its removal, and the renaming of a component and a class.
Each of these Reactions has a Reaction routine that checks the
preconditions, e.g., the placement of the class in an appropri-
ate package, and performs modifications of the architecture and
object-oriented design models, as well as the correspondence
model. This gives an initial impression of the abstraction that can
be achieved with Mappings compared to Reactions. We provide
one of the Reactions that would need to be implemented using
the Reactions language to realize the relations of the Mapping in
Listing 4 in Appendix B.

This example has emphasized the advantages of Mappings
over Reactions. Mappings are however restricted to what can be
expressed by means of a bidirectional, declarative specification.
For more sophisticated consistency rules, such as asymmetric
or complex relations, the expressiveness of Reactions is ben-
eficial. Such scenarios could, e.g., be relating each component
to a class but not vice versa, or performing complex processes
for checking and enforcing consistency rules, such as running a
simulation to check that a performance requirement is fulfilled
by the implementation. For that reason, we propose to provide
these two languages and always use the one that provides a
sufficient level of abstraction for the current consistency rule or
part of it to realize. Since we generate Reactions from Mappings,
the Reactions generated for a Mapping can be easily extended
or adapted. In consequence, the combination of Mappings and
Reactions allows to always use an appropriate level of abstraction,
improving expressiveness and conciseness at the same time.

8. Integration of existing models

In the previous sections, we have discussed how Vitruvius can
be used to keep models consistent during the development of
a system. Due to the inductive approach to consistency preser-
vation, this only covers the ‘‘greenfield’’ perspective, where the
Vitruvius approach is used from the beginning of the develop-
ment. In existing systems, developers may already have invested
a great amount of time to create models without using the Vit-
ruvius approach. Such models, however, may not adhere to the
consistency rules defined in a V-SUM metamodel in general and,
additionally, miss the required correspondences. To enable devel-
opers of such systems to use Vitruviuswith their already existing
models, we present two approaches to integrate existing models
into the Vitruvius process, constituting our contribution C4.
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Fig. 10. Reconstructive Integration Strategy (RIS).

The Reconstructive Integration Strategy (RIS) simulates the
construction of an existing model by generating a change se-
quence for its construction and applying it to a V-SUM, such
that the CPRs for creating other models are applied. The Linking
ntegration Strategy (LIS) links an existing model with another
odel that is created using a generation or transformation, such
s a reverse engineering tool, by generating appropriate corre-
pondences. Both approaches are able to integrate one existing
odel into the Vitruvius approach. Integrating more than one
odel is subject of future work.

.1. Reconstructive Integration Strategy

The Reconstructive Integration Strategy (RIS) integrates an ex-
sting model by simulating its creation (see Fig. 10). Therefore, we
eed an algorithm that describes how instances of metamodels
an be built by atomic changes (cf. Definition 6). During this
econstruction process, Vitruvius monitors the changes that are
ecessary to create the model. The monitored changes are used
o create the other models within the V-SUM using the standard
rocess applying changes to its interface (App).
For EMOF-based metamodels, the atomic creation order can

e determined by following the containment hierarchy of objects.
his means we can start at the root object and follow the contain-
ent hierarchy in order to ensure that all objects exist. During the
reation, we also create changes for the attributes of an object, as
ell as its non-containment references.
As an optional initial step before the actual reconstruction,

e propose to have a refactoring step for conflict resolution. In
his step, additional conditions on the models that are introduced
y the CPRs have to be fulfilled. For example, the consistency
ules between code and ADL, introduced in Section 2, require
epresentations of architectural interfaces in code to be placed
n a specific subpackage of the component repository package.
epending on the implemented CPRs, it is possible that those
nterfaces are otherwise not correctly mapped to the architectural
odel. Thus, the code should be refactored in advance so that it
dheres to this constraint. We will consider a more convincing
xample in the evaluation in Section 9.4.

.2. Linking Integration Strategy

A Linking Integration Strategy (LIS) (see Fig. 11) can be used
o integrate a source model and a target model that is created by
n existing transformation or generation approach. This can, for
xample, be a reverse engineering tool or a code generator. This
ransformation or generation needs to create a correspondence
odel that describes which source element led to the creation
f which target elements. If this information is available, we are
ble to create a model transformation that uses the source model,
he target model, and the correspondence model as input, and
enerates an instance of the Vitruvius correspondence model
ontaining correspondences between source and target model
18
Fig. 11. Linking Integration Strategy (LIS).

elements. These correspondences can be used by Vitruvius as
normal correspondences during the execution of CPRs.

One disadvantage of the described approach is that the model
generation or transformation tools need to create the same target
models as the CPRs, as otherwise the CPRs cannot be properly
applied. In general, this precondition does not hold, as an existing
transformation approach may not follow the same rules as the
defined CPRs for keeping the models consistent. As a simple
example, a reverse engineering tool for extracting UML class
models from code may represent list-type parameters of Java
methods as parameters with the list-type in the UML model,
whereas the CPRs keep the list-type Java parameters consistent
with parameters in the UML model that have the type of the list
elements with infinite multiplicity (*). To overcome this draw-
back, we need to create integration-specific correspondences for
elements that cannot be kept consistent with the defined CPRs.
These correspondences need to be created by the model trans-
formation that generates the Vitruvius correspondence model,
so this transformation needs to be specific for the CPRs. After the
creation of integration-specific correspondences, during the actual
consistency preservation, they need to be treated differently.

To keep those elements with integration-specific correspon-
dences consistent, we propose the following solutions:

• A simple solution is to warn users that the performed
change cannot be kept consistent automatically, i.e., users
need to keep them consistent manually.

• At least parts of the elements can be kept consistent auto-
matically using the standard CPRs, e.g., an element name.

• Special project-specific CPRs for elements with integration-
specific correspondences can be implemented.

The usage of special CPRs relying on integration-specific corre-
spondences is only necessary for the integrated elements. For all
elements that are added to the model after the integration, the
existing CPRs can be applied.

Example 4. Assume the consistency rule of the running example
explained in Example 1, which maps each component to a combi-
nation of a package and a class. While this is a rule that could be
enforced when starting with a new project, existing projects will
usually not follow exactly that pattern to represent components
in the object-oriented design. For example, in existing code a
component may only be represented by a class that is placed
anywhere instead of also being placed in a specific package. This
can be represented by integration-specific correspondences and
appropriate CPRs that only propagate information of a component
to a class and not to a package as well (Langhammer, 2017).
Evolving the project, all further added components can then
be represented in the object-oriented design by applying the
standard consistency (preservation) rules.
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As we need to have existing transformation respectively gen-
ration approaches between the source model and the target
odel, a LIS highly depends on those. Hence, a LIS needs to be
ustomized for a specific set of source models and target models.
n the following example section, we show how a LIS can be used
o integrate source code and an architectural model based on
everse engineering approaches.

.3. Integration example

In this section, we first explain how a RIS can be used to
ntegrate an architectural model, and second, we explain how a
IS can be used to integrate source code.

.3.1. Integration of an existing architectural model
To integrate the architectural model from our running exam-

le, we use a RIS and the standard algorithm, which traverses
he model according to its hierarchy, i.e., every element is visited
long the containment hierarchy. During the visit, a creation
hange for the element is created. In the architectural model from
he running example introduced in Section 2, first the repository
ediaStore itself is visited. The next elements that are visited are

he top level elements, which are the interfaces and components.
or the running example, the interfaces IWebGUI and IMedia-
tore and the components WebGUI and MediaStore are visited.
fterwards, the signatures of the interfaces in the components
re traversed. Finally, the provides and requires relations of the
omponents are visited.
After visiting all elements, the generated changes are applied

o the change application function (App) of a newly instantiated
-SUM, which executes the appropriate CPRs, in our case from
he architectural model to source code.

.3.2. Integration of an existing source code base
To show how we can integrate an existing source code base,

e explain a LIS that is able to integrate source code with an ex-
racted architectural model. To integrate an existing source code
ase, we need to have a tool that creates an architectural model
rom the source code and correspondences as trace information
etween the created architectural elements and the source code
lements. To create the architectural model from source code, we
an use the reverse engineering tools Software Model Extractor
SoMoX) (Becker et al., 2010) or Extract (Langhammer et al., 2016).
oth approaches create a PCM model from existing source code
s well as a correspondence model.
After running one of the reverse engineering tools and gath-

ring the models, we can integrate them into a V-SUM. For
hat integration, we create a model transformation that uses the
hree mentioned artifacts, the Java code as the source model, the
rchitectural model as the target model, and the correspondence
odel created by the reverse engineering tool, as input to create a
itruvius correspondence model. If the source code is compliant
ith the consistency rules from Section 2 between architectural
odel and code, and the reverse engineering tool created the
atching architectural elements, the integration is finished.
Existing source code bases, however, do often not follow

trict consistency rules, which are required by Vitruvius. To
upport such code as well, we need to create integration-specific
orrespondences for such source code bases. In particular, we
eed to create integration-specific correspondences for the source
ode elements and the architectural model elements that are
ot compliant to the already defined CPRs. Therefore, the above-
entioned transformation can be extended in a way that it
reates those specific correspondences for non-compliant ele-
ents. These integration-specific correspondences are handled
ifferently than standard correspondences by Vitruvius. Instead
19
Fig. 12. Integration of existing code with Software Model Extractor (SoMoX).

f using the standard predefined CPRs, a new specific set of CPRs
eeds to be defined and used. This specific set of CPRs needs to
e defined based on the consistency rules, on which the existing
ode base relies. It is, however, possible to reuse some of the
lready existing CPRs. For instance, CPRs handling the renam-
ng of elements, as well as those for changing the signatures
f methods in architectural interfaces can be reused, as these
hanges need to be reflected in the corresponding source code
ethod as well. Furthermore, it is possible to not define specific
PRs for a change. For those changes, the architectural model
lements and the source code elements cannot be kept consistent
utomatically, but need to be kept consistent manually. However,
itruvius is able to (a) notify users that they need to keep a
hange consistent manually, and (b) point to the changed model
lements that need to be kept consistent. The complete process
or integrating existing source code with a reverse-engineered
rchitectural model is sketched in Fig. 12.
Hence, to use a LIS to integrate the source code of our running

xample, we need to perform the following steps:

1. Reverse-engineer the source code using SoMoX.
2. Run the model transformation from source code, architec-

tural model, and the correspondence model to generate the
Vitruvius correspondence model.

3. Create specific CPRs for the source code elements and
architectural elements that are not matching the defined
standard consistency rules.

With the above-created artifacts, we can use the extracted
architectural model and the source code within Vitruvius.

9. Evaluation

We have developed a prototypical implementation of the Vit-
uvius approach in the Vitruvius framework (Vitruvius GitHub,

2020c). Based on this implementation, we have performed differ-
ent kinds of evaluation with a focus on analyzing the applicability
of our approach, forming our contribution C5. We have investi-
gated the applicability of our consistency preservation languages
by using them in different case studies and evaluated their ben-
efit. We have validated the capability of the Reconstructive Inte-
gration Strategy regarding the reuse of existing models in open
source projects. Finally, we have conducted an overall evaluation
of the approach, in which we first applied our Linking Integration
Strategy to an old revision of an open source code repository, and
then applied the changes in the subsequent revisions using the
CPRs from our case study.

9.1. Prototypical implementation

Our implementation is based on the Eclipse Modeling Frame-
work (EMF) (Steinberg et al., 2008). We support all metamod-
els that are based on the EMF metametamodel Ecore, which
mplements the EMOF standard (International Organization for
tandardization, 2014).
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.1.1. Changes
Changes are represented using a generic metamodel (Kramer,

017, Sec. 5.4.1). It defines meta-classes for all kinds of changes
hat are possible in Ecore-based models and thus conforms to
efinition 6. These change types are:

1. Model element creation and deletion
2. Attribute value insertion, removal and replacement
3. Reference insertion, removal and replacement
4. Compositions of 1–3

e call the change types 1–3 atomic as they only concern a
ingle value of one model element, as defined in Definition 6.
ll changes, even complex change sequences performed by the
ser within an editor, can be represented as a sequence of those
tomic changes. This means that the set of supported edit opera-
ions is not restricted. The specified change types can be mapped
o those presented by Hettel et al. (2008) for a generic meta-
odel definition and to those defined by Koegel et al. (2010c)

or versioning Ecore-based models. More details about the change
etamodel can be found in Kramer (2017).

.1.2. Change monitoring
To track those changes, the model of interest has to be mon-

tored. EMF provides an integrated notification mechanism for
his. The monitored notifications are converted into representa-
ions of the specified changes. These changes are then passed to
he implementation of a V-SUM, which executes the appropriate
onsistency preservation specifications according to Fig. 7.
If a model is not modified in an editor that uses an Ecore-based

epresentation of the model, the EMF notification mechanism
annot be used. This is especially the case for models that are
ersisted as text and directly modified as such, for example,
ource code defined in a programming language. To be able to
onitor changes to source code, we presented a monitor for

he Eclipse Java code editor (Kramer et al., 2015). The monitor
etects changes based on the AST changes in the Eclipse IDE. It
onverts detected changes into instances of the Vitruvius change
etamodel and reports them to the Vitruvius framework. Fur-

hermore, the monitor tracks changes that are performed by
efactorings, such as renaming elements, within the Eclipse IDE.

.1.3. Consistency preservation languages
We have defined the consistency preservation languages, the

eactions and the Mappings language, with the Xtext language
ngineering platform and the Xbase expression language (Efftinge
nd Völter, 2006). We decided to use Xtext, because it is the
ost mature language engineering platform available for EMF.
urthermore, we use Xbase, because it is a Java-like expression
anguage defined with Xtext, which can be used within any Xtext-
ased language. Furthermore, Java developers can easily use it
ince it compiles to Java, and thus can be integrated into a Java
ode generator for any Xtext-based language. Both the Reactions
nd the Mappings language provide a textual editor and a code
enerator that produces Java code compliant with the CPRs ex-
ected by the Vitruvius framework. More information about the

implementations of both languages is given in the corresponding
GitHub wiki (Vitruvius GitHub, 2020a).

9.2. Case study domains

We have applied our approach in case studies for two different
domains: component-based software engineering and embedded
automotive software architectures. The case studies comprise six
metamodels in total.

For the component-based software engineering (CBSE) domain,
we have used the following metamodels:
20
Table 2
Elements (containments as a subset of references) in the case study metamodels.
The values for SysML represent the profile, omitting the underlying UML.

Metamodels Classes Attributes References Containments

PCM 152 27 292 93
UML 256 286 510 194
Java 237 15 123 98
ASEM 20 6 10 6
SysML 56 17 80 0

1. PCM to describe an annotated component-based architec-
ture of a software system allowing the prediction of quality
attributes of the system

2. UML component models to represent the component-
based architecture of a software system with the purpose
to support a high-level system design

3. UML class models to represent the fine-grained system
design on a class level

4. Java code for the implementation of the system

Although UML component and class models can be integrated
into a single model with appropriate relationships, we decided
to separate them into different models to foster the independent
usage by different roles. To treat Java code as an Ecore-based
model, we have used JaMoPP (Heidenreich et al., 2010). We use
the consistency rules between architecture and code developed in
the dissertation of Langhammer (2017). They constitute a central
contribution of that thesis and are the result of a comparison of
different possibilities to relate architecture and code. Components
can either be represented as packages and classes in Java (Kramer
et al., 2015), like in the running example, as Enterprise Java Beans
(EJBs), or using a dependency injection framework. A detailed list
of the considered consistency rules between PCM and Java classes
can be found in Klare (2016, p. 114).

In the domain of embedded automotive software (EAS), devel-
opers model the internal behavior of components of an electronic
control unit (ECU) and generate code from these models, for
example, using ASCET (ETAS Group, 2020). In our case study, we
have used the following metamodels:

1. Automotive Software Engineering Model (ASEM) (Soft-
ware Design and Quality, 2020), a structurally equivalent
subset of the ASCET metamodel for modeling components
of ECU software

2. Systems Modeling Language (SysML) (Object Manage-
ment Group, 2019), block diagrams that allow the domain-
independent modeling of the structure of and relations
between such building blocks

Initial consistency requirements for these metamodels have
been described in Mazkatli (2016) and Mazkatli et al. (2017) and
were refined in cooperation with an industrial partner.

To give an impression of the sizes of the metamodels for the
case study domains, we list the numbers of classes, attributes,
references and containments in Table 2. The values for ASEM
are comparatively small, because it only represents a relevant
extract of the metamodel of the commercial ASCET tool. The AS-
CET metamodel consists of several hundred classes and features,
comparable to metamodels such as UML. For SysML, we only
listed the values for the UML profile, excluding those for the UML
metamodel itself on which the profile is applied. The consistency
rules that we defined for these metamodels only cover relevant

subsets of all of them.
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1 reaction {
2 after any change
3 call simulateTuringMachine(change)
4 }
5
6 routine simulateTuringMachine(EChange change) {
7 action {
8 execute {
9 // simulation of arbitrary Turing machine

10 }
11 }
12 }

isting 6: Exemplary Reaction to simulate a Turing machine.

.3. Consistency preservation

We have extensively evaluated the applicability of the Re-
ctions language to preserve consistency in several domains.
detailed evaluation of the Mappings language is presented

n Kramer (2017). Since the Mappings only provide an additional
bstraction over Reactions, which already provide the necessary
xpressiveness required for consistency preservation, we focus
he presented evaluation on the Reactions language. We provide
ifferent types of validation, inspired by Böhme and Reussner
2008, p. 15) for the evaluation of performance models. We have
nalyzed completeness and correctness of the Reactions language
ndependent of a concrete usage scenario. Furthermore, we have
valuated its practical applicability and discuss potential benefits
ased on two case studies comprising several metamodels and
onsistency rules. These case studies, the Reactions compiler and
he complete Vitruvius framework for consistency preservation
re published as open source (Vitruvius GitHub, 2020b).

.3.1. Completeness and correctness
We have evaluated completeness of the Reactions language

n two ways: First, we have shown that the language is EMOF
omplete in the sense that different Reactions can be triggered for
all change types that can be differentiated based on metamodels
that are expressed using EMOF. Second, we provide a discussion
that the Reactions language is Turing complete, because arbitrary
Java code can be executed in response to arbitrary changes as a
result of the embedding of the Xbase language into Reactions and
Reaction routines.

EMOF completeness is given because all changes in EMOF-
ased models can be represented as a single atomic change of
model element respectively of a model element’s property or
s a combination of such atomic change representations. This is
ossible because all characteristics of EMOF-based models are
ealized in terms of objects and object values for properties that
re defined and typed in an EMOF-based metamodel. Thus, the
ossible change types are induced by the EMOF metametamodel
nd thus equal for all metamodels. In consequence, everything
hat can be changed in EMOF-based models can be described with
trigger using the Reactions language.
Computational completeness is given because the language

rovides a fallback: A developer may express all update behavior
n a single block with arbitrary Java code. To execute this code
fter arbitrary changes, a single Reaction and Reaction routine can
e used (see Listing 6). A Reaction to the simple change type any
hange, which reacts to arbitrary changes, can be specified (Line
), followed by a call to a Reaction routine (Line 3). This routine
Lines 6–12) only calls the arbitrary Java code (Line 9). As the
ava language is Turing complete, this reduction shows that the
eactions language is also Turing complete. Such a minimalistic
21
Fig. 13. Domains and realized Reactions in the case studies. The GPPL marks
show which transformations were additionally implemented in a GPPL.

use of the Reactions language as an execution environment for
Java code is, however, not necessary. The reason is that the first
two of the three main steps of Reactions (see Section 7.1.1)
can always be expressed with appropriate language constructs.
This means that it is always possible to use constructs of the
Reactions language to express after which changes and on which
corresponding elements these actions shall be performed. The
fallback to Java code is only necessary to express what action shall
be performed (Kramer, 2017, pp. 330–331).

To show the correctness of the Reactions language, i.e. the
correct behavior of each statement in response to all kinds of
changes by the language, we have developed an artificial meta-
model that contains elements on which every change type that
is possible in Ecore can be performed, and implemented CPRs
in terms of 20 CPRs that transfer all modifications in one model
to a second model instance. Our considered modification types
also conform to the change types identified by Yohannis et al.
(2018), which they claim to be complete for Ecore-based models.
We defined 22 test cases (Vitruvius GitHub, 2020c) that perform
modifications for all modification types that are possible in Ecore-
based models in one model instance and checked if the second
instance is correctly kept consistent. Their successful execution
indicates correctness of the language, since all other types of
transformations are compositions of the modifications we made
in this evaluation. For more information on this completeness and
correctness evaluation, we refer to Klare (2016, pp. 109).

9.3.2. Applicability
To show practical applicability, we have realized Reactions

specifications for the case studies, as depicted in Fig. 13. In the
CBSE case study, we have implemented the update of Java code
after modifications in a PCM model for the consistency rules to
Java packages and classes, for the consistency rules to EJBs, and
for the consistency rules to the dependency injection framework
Guice (Google, 2020). We have also implemented Reactions in
the other direction for updating PCM models after changes in a
Java application. Additionally, we have implemented Reactions
that keep PCM and UML component models, UML component
and class models, as well as UML class models and Java code
consistent all in both directions. These Reactions can be found in
the associated GitHub project (Vitruvius GitHub, 2020d). In the
EAS case study, we defined Reactions that preserve consistency
of ASEM models after changes in SysML models and vice versa,
which is also available on GitHub (Vitruvius GitHub, 2020e).

In total, we have implemented and evaluated CPRs for twelve
unidirectional consistency relations. The size of the implemented
Reactions is shown in Table 3. We have counted the numbers
of Reactions, which is equal to the number of different atomic
change events we are able to react to. In all Reactions and helper
classes, we have counted the Source Lines of Code (SLoC), which
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able 3
umber and SLoC of Reactions SLoC in each transformation of the case study.

Transformation #Reactions SLoC SLoC
Reaction

Java → UML Class 47 756 16
UML Class → Java 51 876 17
UML Class → Component 23 546 24
UML Component → Class 16 368 23
UML Component → PCM 30 690 23
PCM → UML Component 31 653 21
Java Package → PCM 16 683 43
PCM → Java Package 45 1436 32
PCM → Java EJB 39 905 23
PCM → Java DepInj 47 1097 23

SysML → ASEM 17 926 54
ASEM → SysML 23 558 24

Overall 385 9494 25

we defined for the Reactions language as those lines that are
neither empty nor only consisting of comments. In sum, we have
implemented 9494 SLoC in 385 Reactions and in helper methods
to realize the CPRs. As also shown in Table 3, the SLoC count per
single Reaction is on average 25 and scarcely differs between the
different case studies. The outliers in the SysML to ASEM and in
the Java to PCM implementation are caused by comparably large
helper classes. This indicates that the reaction to a single change
can on average be defined with a small number of statements,
promising high comprehensibility of single Reactions.

To evaluate correctness of the implemented CPRs, we em-
loyed tests, at least one for each implemented Reaction. Each
est creates a model that is as minimal as possible regarding the
eeded elements to perform a change that triggers the Reaction.
fter performing this change, the test checks if the correspond-
ng model is in the expected state according to the consistency
ules using assertions. We have ensured with those tests that all
eactions update the corresponding models and elements as ex-
ected. We were able to successfully express all change property
estrictions, retrievals of corresponding elements, model element
reations and deletions, and correspondence updates using the
anguage constructs. This indicates that the provided constructs
re well suited and sufficient to realize consistency preservation.

.3.3. Benefits
To decide whether one programming language should be used

nstead of another for solving a certain problem, potential bene-
its of the language should be analyzed. These benefits could be
oftware development that is faster, more concise, or less error-
rone. Literature on evaluating metrics for general code quality,
or example by correlating them with the number of detected
aults, have, however, shown that such properties are difficult to
easure (Gyimóthy et al., 2005; Yu et al., 2002). These studies
id not report significant correlations to code quality for most
etrics, but instead identified a high correlation for the two
etrics measuring the coupling between object classes (CBO) and

ines of code (LOC) (Gyimóthy et al., 2005, p. 907).
To evaluate an indicator for the potential benefit of the Re-

ctions language, we have implemented functionally equivalent
onsistency specifications using a general-purpose programming
anguage (GPPL). We used PCM models and Java code, as well
s SysML and ASEM models. We did not use an existing model
ransformation language as the baseline for comparison, as none
f the existing languages supports incremental and edit-based
onsistency preservation specification (see also Section 5.1). Our
anguages thus especially support proper renaming and moving
f elements. Operating on changes allows to track that an el-

ment that was renamed or moved is still the same. This is,

22
Fig. 14. SLoC for case studies with a GPPL and the Reactions language.

for example, important for the project-specific CPRs explained
in Example 4, which relate a component to a class that may be
placed in any package. If a class is moved from one package to
another, handling the according change allows to identify that
the class still belongs to a component, whereas languages that
are not edit-based consider this as the removal and addition of
a class, resulting in the corresponding component to be removed
and newly created. In consequence, all additional information of
the component, such as an abstraction of the functionality as
represented in PCM, is removed as well. Therefore, a GPPL-based
implementation represents the most appropriate evaluation base-
line in our opinion. Additionally, we have reduced potential bias,
since methodologists will most probably have less experience
with a reference transformation language than with a GPPL such
as Java. We used Java for the PCM to Java rules and the Java dialect
Xtend for SysML to ASEM rules. In both cases, we have compared
these GPPL implementations with Reactions. As the Reactions
language does not provide classes to measure the CBO metric, we
have counted and compared the SLoC of both implementations.

The number of SLoC may depend on the individual program-
ming style. Therefore, we have used the Eclipse formatter with
default settings without line wrapping to format Java and Xtend
code. Furthermore, we automatically added line breaks to all
Reactions to split chained constructs, i.e., before corresponding
elements or tags for a retrieval were listed, before properties
of changes or corresponding elements were checked, and before
element initialization code.

We have counted the SLoC of all classes used for the consis-
tency preservation implementation, including helper classes. In
order not to favor the Reactions language, we excluded import
statements, since the GPPL code is spread across more classes
and therefore contains more of these statements. The SLoC of all
implementations are shown in Fig. 14. It is evident that in both
case studies, the implementation with Reactions is more concise
than the counterparts implemented with a GPPL. All Reactions
implementations required at least 33% less SLoC. At least two
reasons prohibit a more drastic reduction in SLoC: First, the
GPPL implementation was based on an auxiliary framework that
provides an internal API that only requires the implementation
of an interface for specifying the reaction to a specific type of
change. The framework processes the individual changes and
automatically dispatches them to the appropriate methods of the
implemented interface. In consequence, that auxiliary framework
relieves the developer from implementing repetitive tasks. The
complete logic that was encapsulated in the interface and the
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ispatcher was not counted in the comparison and also provides
n abstraction regarding an independent implementation in a
PPL. Second, the Reactions language has the purpose to provide
aximum expressiveness while also providing an appropriate

evel of abstraction for the use case. In consequence, its level
f abstraction is not as high as the one provided by the Map-
ings language, which would yield a more drastic reduction in
LoC. Instead, it especially guides the methodologists in defining
onsistency preservation by providing constructs for recurring
perations and by ensuring transactionality, i.e., that a Reaction
s not executed partially. Although the amount of reduced code
ay depend on the case studies and methodologists, we expect

hat further studies will also yield code size reductions.
The comparison of GPPL and Reactions code in two case stud-

es indicates that consistency preservation can be expressed more
oncisely using the Reactions language. This especially results
rom the language structure and the specialized language con-
tructs it provides, which reduces the necessity to deal with
echnical and recurring problems.

.4. Reconstructive integration

In this section, we present an evaluation of the Reconstructive
ntegration Strategy (RIS), which we described in Section 8.1. It
imulates the creation of existing models. During the creation,
itruvius monitors the changes and reacts to them, such that the
orresponding models are created according to the used CPRs. We
ave evaluated the correct functionality and the practical applica-
ility of the RIS on several case study projects. Its implementation
s available as open source (Vitruvius GitHub, 2020f).

.4.1. Case study projects
We have applied the RIS with two of our consistency preser-

ation specifications between PCM and code to six existing PCM
rchitectural models, varying from simple examples to industrial
ase study models. Table 4 lists the numbers of architectural
lements in the projects. Those projects are:

1. MediaStore, a case study intended to show the appli-
cability of the Palladio approach (Koziolek et al., 2007),
which was recently extended by an EJB-based implemen-
tation (Strittmatter and Kechaou, 2016). We introduced a
simplified extract in Section 2.

2. CoCoME (Common Component Modeling Example), a case
study system to compare approaches for component-based
software systems modeling (Herold et al., 2008). The first
PCM version (Krogmann and Reussner, 2008) has recently
been refined (Heinrich et al., 2016).

3. Open Reference Case, a service-oriented variant of the
CoCoME system. As stated in Heinrich et al. (2016), an
additional web service layer has been introduced to the
original CoCoME architectural model.

4. DPS (Dynamic Positioning System), a model that can be
used to navigate and find the position of a deepwater oil
platform (see Duarte et al., 2010; Gouvêa et al., 2011, 2012).
In Gouvêa et al. (2011, 2012) a PCM instance of a DPS has
been introduced.

5. Industrial Control System, an industrial case study for the
PCM (Koziolek et al., 2010; Brosch et al., 2012). The system
is an industrial size process control system from ABB.

6. BRS (Business Reporting System), has been introduced by
Koziolek (2011) and is loosely based on a real system
introduced by Wu and Woodside (2004).
23
Table 4
Numbers of elements in existing PCM case study systems.

Project PCM Elements

MediaStore 125
CoCoME 174
Open Reference Case 244
DPS 46
Industrial Control System 131
BRS 154

Total 874

9.4.2. Results of the RIS case study
As the RIS only simulates the construction of a model, the

functionality of the approach can only be restricted by an erro-
neous implementation. To evaluate the correct functionality, we
integrated the introduced existing architectural models via recon-
struction, creating the corresponding source code model using
two consistency preservation specifications from Section 9.3.2,
the CPRs between architectural models and Java packages and
classes, as well as those between architectural models and EJBs.
Additionally, we evaluated the practical applicability. Since the
approach is fully automated, the applicability can only be re-
stricted by its application preconditions. The only precondition
for applying the approach is that additional constraints that are
introduced by the CPRs are fulfilled by the model to be integrated.

To evaluate functionality, we have validated the Java code
created by consistency preservation during reconstruction and
additionally compared the expected numbers of classes, inter-
faces, methods and fields with the actual ones. As the result,
all 874 architectural elements were correctly mapped with both
consistency preservation specifications, except for OperationPro-
videdRoles using the consistency rules to EJBs. Only 56 out of
73 OperationProvidedRoles were correctly mapped in that case.
The purpose of OperationProvidedRoles is to represent interfaces
provided by components. The CPRs for EJBs introduce the con-
straint that each interface is only allowed to be provided once
in a component repository, which is not the case for 17 of the
OperationProvidedRoles.

To summarize, we were able to show that the RIS operates
correctly at least using the two selected consistency preservation
specifications applied to six existing projects, which we assume to
be a good indicator for the general functionality of the approach.
Additionally, the evaluation revealed that the applicability of the
approach depends on the strictness of additional constraints in-
troduced by the CPRs. Nevertheless, to make a reliable statement
on the practicability of the approach, it has to be applied to
further case studies with different CPRs.

9.5. Overall evaluation

In this section, we present an end-to-end evaluation of the
Vitruvius approach by showing how source code and architec-
ture can be kept consistent during software development. In
particular, we show that Vitruvius is able to

1. integrate existing open source projects using the LIS based
on reverse engineering technologies, and

2. to monitor changes to the source code and correctly keep
it consistent with the created architectural model.

We show these two points at existing open source projects.
We first integrate an old version of each project and then replay
changes from the integrated version to a later version based
on the commits in the version control system. This simulates a
realistic workflow on non-artificial projects. The implementation
of the LIS is available as open source (Vitruvius GitHub, 2020f).



H. Klare, M.E. Kramer, M. Langhammer et al. The Journal of Systems & Software 171 (2021) 110815

T
I
i
o

g
S
r
p
b

9

b
m
i
h
c

9

w
e
c
o

m
m
m
r
a
t
o
e
C

a
m
i
N
d
t
d
a
r
n
e
i

able 5
ntegrated versions of the case study projects and result of the reverse engineer-
ng process: KSLoC are thousands of SLoC in the project. Comp shows the number
f extracted components, Interf shows the number of extracted interfaces.

Project Integrated version Code Architecture

KSLoC Java files Comp Interf

Gora 0.6.0 5.7 76 16 16
Any23 0.90 12.6 190 16 16
Velocity 1.60 26 229 18 18
Xerces 2.10 112 705 20 20

For the evaluation, we needed to extract and replay fine-
rained changes between different versions in a Version Control
ystem (VCS). A tool that provides such functionality for Git
epositories has been presented by Petersen (2016). The tool
erforms the following steps in order to replay code changes
ased on different versions within a Git repository:

1. Extract intermediate versions between the chosen versions.
2. Calculate fine-grained AST changes between the interme-

diate versions.
3. Replay the fine-grained changes in the IDE.

.5.1. Case study projects
We used four projects for the evaluation, which were chosen

ased on the following two requirements: The projects are imple-
ented in Java, as we defined consistency preservation for Java

n our case study, and the projects are developed with Git, as we
ave a change replay tool only for this version control system. We
hose the following projects:

1. Apache Gora is an open source framework providing an
in-memory data persistence for big data.

2. Apache Any23 (Anything to triples) is a library that allows
to extract structured data in RDF format.

3. Apache Velocity is a template engine for Java. Users can
reference Java objects in a simple template language.

4. Apache Xerces2 is an XML library that allows users to
parse XML files and create XML files.

.5.2. Integration results
For the extraction of an architectural model from source code,

e have used Extract (Langhammer et al., 2016). It is a reverse
ngineering tool, which clusters classes of a software system to
omponents. Table 5 gives an overview of the integrated versions
f the projects and the result of the reverse engineering process.
To perform the integration, we ran the LIS integration transfor-

ation, which we explained in Section 8.2. We defined a transfor-
ation that creates an instance of the Vitruvius correspondence
odel during the integration, based on the information from the

everse engineering approach Extract. We were able to create
n architectural model for all the open source projects with
hat approach and a Vitruvius correspondence model for each
f the used projects. Furthermore, we found that the reverse
ngineering rules of the Extract tool did not conform to the
PRs for Java packages and classes defined in the Vitruvius case

study, introduced in Section 9.3.2, such that none of the reverse-
engineered components, interfaces, and data type elements can
be kept consistent with their corresponding source code elements
using these CPRs. This made the development of project-specific
CPRs for these elements necessary.

9.5.3. Evolution results
The consistency rules followed by the LIS do not adhere to

the generally defined CPRs between PCM and Java. Thus, to apply
changes from the Git repositories of the projects, we first had to
24
Table 6
Integrated versions, numbers of changes to the target version and numbers of
created correspondences.

Project Integrated → target version Changes Correspondences

Gora 0.6.0 → 0.6.1 419 336
Any23 0.90 → 1.0 164 555
Velocity 1.60 → 1.64 737 1130
Xerces 2.10 → 2.11 684 3598

implement project-specific CPRs, which are similar to the ones
described in Section 2 and implemented for the case study in
Section 9.3.2, using Reactions. In particular, we implemented
specific rules for

• adding and removing import statements (replaced the ex-
isting with empty Reactions),

• adding, renaming and removing architecturally relevant
methods, as well as

• renaming and removing architecturally relevant classes and
interfaces.

All CPRs are also defined from the architectural model to source
code. Hence, if users change architectural elements that have
corresponding source code elements in the integrated code, con-
sistency is preserved. These rules are only necessary to preserve
consistency of the integrated model elements as they do not
adhere to the general consistency rules between PCM and Java.
For all elements added during further evolution of the system,
the general CPRs are applied.

After the integration of each existing project, we applied
changes made in the subsequent versions from the Git repository.
Table 6 shows the target versions and the numbers of changes
between the integrated and the target version. For the target
versions, we chose the next minor or major version depending
on how many changes occurred between them.

For all projects, we observed that Reactions were executed
after 329 changes in total. Most of the changes add a method
(69), add an import (62), add a super class (61) and remove an
import (45), while only few changes occurred that create a new
package (2), add a new interface (2) and create a new class (1).
The occurred changes have been kept consistent as follows:

• 2 (0.6%) changes can be kept consistent automatically using
the standard CPRs,

• 303 (92.1%) changes can be kept consistent using the de-
fined project-specific CPRs,

• 24 (7.3%) changes cannot be kept consistent automatically,
i.e., the users need to keep the architectural model consis-
tent manually.

After applying all changes, the architectural model that is kept
consistent was valid, i.e., it was a valid instance of its metamodel
and fulfilled the defined consistency rules whose fulfillment was
checked manually.

With this case study, we have shown that we are able to
integrate existing open source projects into Vitruvius and keep
n architectural model consistent with the existing code after
ore than 92.7% of the performed changes. This gives an initial

ndication of the overall applicability of the Vitruvius approach.
evertheless, it also shows that at least in this case the generally
efined CPRs do not fit well for the projects they were applied
o. For most of the elements, project-specific rules had to be
efined. This implies high effort for the integration of existing
rtifacts and may also be error prone, as the project-specific
ules must not conflict with the general rules in the sense that
ot both kinds of rules are allowed to be applied to the same
lements. Since source code and the consistency rules between
t and architectural models provide many degrees of freedom,
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t may be possible that generic CPRs are more applicable if the
ntegrated models are instances of metamodels with less degrees
f freedom or if at least the consistency rules between them are
ess variable. For example, it may be easier to apply a LIS to a
ML class model and Java code. It will be part of future research
o investigate that hypothesis. Another approach to investigate
ill be to provide refactorings to make models compatible with
efined CPRs, so that no project-specific rules need to be defined.

.6. Threats to validity

In this section, we have first evaluated two individual contri-
utions: We have demonstrated the practical applicability of the
eactions language by giving an indicator for the benefit of our
anguage. We measured its conciseness in comparison to GPPLs,
nd evaluated the functionality of the RIS integration strategy. Af-
erwards, we provided an end-to-end evaluation of the complete
pproach by integrating existing projects and applying existing
hanges from version control to them. There are, however, threats
o the validity of our results, which we classify regarding the
riteria of Runeson and Höst (2008) and discuss in the following.

.6.1. Construct validity
It is disputable if SLoC is a reliable indicator for the benefit

f using one programming language instead of another. There
re, however, no other metrics that are established for that pur-
ose, as stated in Section 9.3.3. Furthermore, we argue that Java,
tend, and the Reactions language have a similar and partially
dentical concrete syntax, and therefore yield comparable SLoC
esults. More specifically, declarative elements of the Reactions
anguage do not replace complex control flow expressions as it
s the case, for example, for functional languages. Instead, they
eplace simple expressions like variable declarations and method
nvocations. Thus, the conciseness that is gained through the
anguage constructs is not sacrificed by an increase in complexity.

We measured the applicability of our approach in the overall
valuation by counting the numbers of modifications that we
ere able to keep consistent. Although we claim that this is a
easonable initial indicator for the applicability of the approach, a
inal statement on its applicability would also require to measure
he effort, especially for defining the CPRs. This will be part of
ontrolled experiments that we plan to conduct in future work.

.6.2. Internal validity
In each of the case studies, the same methodologists were

nvolved in the development of both consistency preservation
ersions with Reactions and a GPPL. Consequently, the order in
hich both versions were implemented may have influenced
heir quality as the second implementation could potentially
rofit from insights during the first one. The Reactions from PCM
o Java, for example, may have been influenced by the preexisting
tend code. We tried to mitigate this by implementing Reactions
n the automotive study first, so that maturity effects may only
ave improved the subsequent Java implementation as suggested
n our evaluation template (Kramer et al., 2016).

Furthermore, all implementations are individual solutions.
ue to many degrees of freedom in both languages, especially in
he GPPL, different solutions are possible and would potentially
ead to other results.

.6.3. External validity
For the consistency preservation languages, we conducted

nly two case studies in two different domains so that it can
e questioned whether our results can be generalized for further
omains. At least, we intentionally selected two case studies from
25
two different domains for our validation. Therefore, we are cur-
rently conducting further case studies that integrate more meta-
models in the context of component-based software development
and in the context of embedded automotive software.

The same threat applies to the overall evaluation, in which we
applied the case study for component-based systems to several
projects. Although the restriction to the domain of component-
based system could be seen a threat to external validity, we at
least applied our approach to four different projects to enhance
validity. Due to the lack of publicly available projects in the
domain of automotive software systems, we were not able to
apply that case study to existing projects in the overall evaluation.

The RIS was only applied to PCM models rather than models
of other domains and only using one set of CPRs. In consequence,
one could argue that it may not applicable to other domains
or with other consistency rules. First, the strategy is designed
to be correct-by-construction, thus functional correctness in the
evaluation only validates that no mistakes were made during
its implementation. Second, the strategy is only sensible to ad-
ditional constraints within a model that are introduced by the
CPRs by construction. This means that CPRs can always create
a consistent other model as long as the rules do not introduce
further constraints to one of the metamodels that further restricts
the space of valid models. Without such restrictions the strategy
has no domain-specific requirements, thus different results when
applying the strategy to other domains are not expectable.

Finally, we briefly discuss why the comparison of our Reac-
tions language with a GPPL and not with a competing approach
is not a threat to external validity. We already discussed the selec-
tion of a GPPL as the evaluation baseline in Section 9.3.3. Existing
languages do not support incremental and edit-based consistency
preservation. Apart from that, in the literature, several promising
approaches that can be used for consistency preservation have
been presented. The potential benefit of these approaches over
GPPLs have, however, not been evaluated empirically. It is, for
example, unclear whether their usage results in code that can
be developed or maintained in less time or with fewer errors
than GPPL code. Therefore, we have not compared the code
size of Reactions to these approaches but to GPPLs. We argue
that it is more likely that consistency preservation for software
development in an industrial setting would be developed with
established languages and not with languages that may pose a
higher risk as their benefits have not been shown yet and efforts
for learning and using them are unknown.

9.7. Discussion

We presented isolated evaluations for the applicability of our
proposed consistency preservation and model integration strate-
gies in the Vitruvius approach, as well as an overall evalua-
tion applying the complete Vitruvius approach to existing open
source projects. The results are an initial indicator that the ap-
proach is feasible and can be applied to realistic scenarios. Al-
though we applied it especially to component-based software
systems, our approach is not limited to this domain. To evaluate
the general applicability of the approach, we will also apply
it to other domains. We started with an initial application to
embedded automotive software development, as described in
Section 9.3.2. We also plan to apply the approach to non-software
domains, such as energy grids (Burger et al., 2016) and electrical
engineering, keeping different models of a circuit board layout in
Matlab/Simulink and EAGLE consistent.

The efficiency of our approach is another property that could
be evaluated. We do not provide a dedicated evaluation of per-
formance and scalability, since it is out of the scope of this article.
We can, however, argue why efficiency is not expected to be
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drawback of our approach. Due to the delta-based operation
f our consistency preservation, performance does not depend
n the size of the involved models, but only on the number of
hanges that are performed. In consequence, we expect efficiency
ot to be an issue of our approach.

0. Related work

In this section, we relate our Vitruvius approach to other re-
search. We discuss the differences to other approaches for holistic
system development, consistency preservation and research on
view-based development.

10.1. Holistic system development

Approaches for holistic system development consider a soft-
ware system or a software-intensive technical system as a whole
instead of dealing with models that are independently developed
by different roles and only kept consistent by manual synchro-
nization. In general, projective approaches, relying on one model
describing the system with projective views derived from it, and
synthetic approaches, composing the complete system of de-
scriptions in different views, can be distinguished (International
Organization for Standardization, 2011).

A projective approach that is most related to Vitruvius is the
Orthographic Software Modeling introduced by Atkinson et al.
(2010). As introduced in Section 3.2, it relies on a SUM containing
all information about the system, from which views can be de-
rived. Nevertheless, the approach does not define a construction
process for SUMs and does especially not support the reuse of
existing metamodels and tooling defined for them. Another SUM-
based approach is OpenMETA (Sztipanovits et al., 2014), which
provides a unified design space for multiple models to sup-
port a model-spanning design space exploration. Nevertheless,
it relies on import and export functionalities rather than a con-
tinuous consistency preservation based on fine-grained changes.
The DesignSpace approach of Demuth et al. (2015) provides a
collaboration platform for keeping different artifacts consistent.
It allows to define consistency preservation mechanisms and
manages trace links to inform developers about changes. Never-
theless, it does not provide languages to support the specification
of consistency rules and to inductively guarantee consistency.

Another research field concerning holistic system develop-
ment is multi-paradigm modeling, originally introduced by
Vangheluwe et al. (2002) and Vangheluwe and de Lara (2003).
It investigates the coupling of different modeling paradigms,
i.e. metamodels, based on integration and transformation, and is
still subject of current research (Amaral et al., 2010). A modeling
framework to define relations between existing model types is
provided by the macromodel approach (Salay et al., 2008, 2009).
This approach focuses on macroscopic relations rather than fine-
grained consistency preservation and especially only supports
the definition of relations between models, but does not provide
a complete framework to abstract from redundancies and to
provide a system that behaves like a SUM. Its main purpose is to
improve comprehensibility and to help maintain the relations by
providing necessary traceability information. It was specifically
applied to the development of vehicle control software (Salay
et al., 2012). A related approach are megamodels, first applied
by Favre and NGuyen (2005). Macromodels are an abstract de-
scription of models and relations between them. Usually, they
are independent from concrete modeling languages (Diskin et al.,
2013). The relations can be used to apply different model man-
agement operations to these megamodels (Salay et al., 2015).
Similar to macromodels, the focus here is on global relations
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between models rather than the fined-grained consistency rules
that we consider in our approach.

Several holistic system development approaches are specific
to one domain. One popular tool is the SysML (Object Manage-
ment Group, 2019; Delligatti, 2013). It provides a common and
extendable language for systems modeling based on the UML. A
project focused on modeling and simulating real-time systems is
Ptolemy (Ptolemaeus, 2014). It especially focuses on the composi-
tion of dynamic behavior models and does not consider structural
models. While these approaches provide domain-specific solu-
tions, Vitruvius is a domain-agnostic framework, which supports
holistic system design for arbitrary domains and metamodels.

10.2. Consistency preservation

In the following, we give an overview on work that inves-
tigates consistency preservation and languages to support its
specification. In active database systems (Paton and Díaz, 1999)
consistency can be preserved based on rules that specify which
updates should lead to further database updates. Such rules are
often expressed in terms of an event, a condition, and an action.
This overall structure of so-called ECA rules is also similar to
the structure of Reactions. In addition to this general structure,
the Reactions language supports methodologists specifically in
preserving consistency between models for which more struc-
tural and typing information is available through metamodels.
The language was designed to leverage all this information from
Ecore-based metamodels. As a result, Reactions and the changes
that trigger them do not need to be described indirectly based on
Java objects. Instead, methodologists can stay on the level of the
domain concepts and their properties defined in the metamodels.

There are different approaches to consistency preservation
for instances of different metamodels. Two models can be kept
consistent by updating one if the other was modified, detecting
modifications either by monitoring edit operations or by com-
puting differences. For that, incremental model transformation
tools are widely used, but many of them are state-based, po-
tentially losing model information in comparison to delta-based
approaches, as discussed in Section 5.1. Especially bidirectional
transformations (BX), which define consistency constraints and
their restoration in both directions (Stevens, 2010), have been
extensively researched (Hidaka et al., 2016). Those languages can
be separated into rather relational and often bidirectional lan-
guages comparable to our Mapping language, like QVT-R or TGGs,
and operational and usually unidirectional languages comparable
to our Reactions language, such as QVT-O and VIATRA. Some
languages follow a hybrid paradigm, expressing relations declar-
atively as far as possible and providing operational constructs
for specific purposes, such as the Atlas Transformation Language
(ATL) (Jouault and Kurtev, 2006) and the Epsilon Transformation
Language (ETL) (Kolovos et al., 2010b).

10.2.1. Operational transformation languages
Regarding operational approaches, most related to our ap-

proach and especially the Reactions language is the VIATRA
project (Bergmann et al., 2015). VIATRA is an event-driven model
transformation platform that can be used for preserving con-
sistency by describing consistency repair in reaction to events.
It defines event-driven transformations that consist of a pre-
condition and an action. A precondition is the creation, update,
or deletion of a pattern in the model graph. Such a pattern
can be specified with EMF-IncQuery (Bergmann et al., 2012;
Ujhelyi et al., 2015). Actions, which are executed if the pre-
condition is fulfilled, have to be defined in Xtend. Preserving
model consistency with such transformations requires precon-
ditions with graph patterns and the complete repair logic with
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tend, whereas our Reactions language offers additional language
onstructs to ease the repair specification. VIATRA provides an
PI for a Java library, which is also sometimes called inter-

nal DSL. The Reactions language, however, is an external DSL,
so that methodologists benefit from additional type safety and
editor features, such as syntax checks and auto-completion. VI-
ATRA supports batch transformations, event-driven consistency
preservation, and continuous validation, whereas the Reactions
language is tailored to a single scenario, which is change-driven
consistency preservation. Furthermore, VIATRA uses an event-
driven virtual machine that supports arbitrary Java object graphs
and therefore cannot leverage metamodel information, such as
explicit containment relations, representations of attributes and
references (in terms of fields with appropriate accessors) and
so on. It uses the same mechanism to handle programmatic
rule activation, model changes, and query result updates. The
Reactions language, however, has separate language constructs
to define which changes trigger a Reaction and to simply call
routines without any indirection.

QVT-O is the imperative language of the QVT standard (Object
Management Group, 2016). Like most other languages, it operates
in a state-based manner. In consequence, operations such as
element renaming or movement are not handled properly but
usually result in treating the removal of an old and insertion of
a new element, loosing all the information in the elements it
was transformed to. The delta-based approach of the Reactions
language prevents that behavior and ensures that after all kinds
of changes related elements are updated properly.

10.2.2. Relational transformation languages
Regarding relational approaches, highly related to our ap-

proach and especially the Mappings language are Triple Graph
Grammars (TGGs). TGGs, originally introduced by Schürr (1995),
are a commonly used transformation approach. They consist of
multiple rules, each consisting of three graphs, which are two
model graph patterns and one correspondence graph between the
patterns. From these rules, forward and backward batch trans-
formations as well as incremental transformations can be pro-
duced. TGG tools were surveyed by Hildebrandt et al. (2013) and
Leblebici et al. (2014), the latter with focus on incrementality.
Two popular TGG tools with support for incremental executions
are MoTE (Giese et al., 2010) and eMoflon (Anjorin et al., 2011).
Many other implementations handle move operations as a com-
bination of a deletion and a creation (Leblebici et al., 2014), which
potentially results in information loss. TGG tools are generally
limited in expressiveness (Hildebrandt et al., 2013). An example
where bidirectional approaches like TGGs reach their limits is the
partial mapping of classes in object-oriented code to architectural
elements: If a user creates a Java class, further information is
necessary in order to decide whether a component has to be
created in the architectural model. With a bidirectional approach
such information has to be encoded, e.g., in naming conventions.
While the Mappings language alone suffers from the same re-
strictions arising from bidirectionality, its operationalization into
Reactions allows to adapt the behavior accordingly and especially
to integrate user decisions. This makes it possible to combine
such conventions in one direction with flexibility in the other
direction. A methodologist may, e.g., specify a Mapping that re-
lates a Java class with an appropriate name in an appropriate
package to an architectural component. This generates a Reaction
that creates a class for each component. The Reaction creating
a component for a class can be adapted, such that the user
who creates a class is asked whether it shall correspond to a
component in order to not require encoding the intent to create
a component in specific naming of a package and class.

QVT-R is the relational and bidirectional transformation lan-
guage of the QVT standard (Object Management Group, 2016). It
27
allows to specify consistency preservation by defining the rela-
tions, comparable to Definition 3, that have to hold between two
metamodels. Although semantics of that language is problematic
at some points (Stevens, 2010), it is comparable to the introduced
Mappings language. A central difference between these two lan-
guages is that the Mappings language generates a delta-based
operationalization in terms of Reactions, while QVT-R operates
state-based. In consequence, the Mappings language is able to
properly handle operations like renaming and movement, which
is not possible when comparing model states like in QVT-R, as
already explained for QVT-O. Furthermore, QVT-R provides when-
and where-clauses with direction-specific semantics, whereas the
Mappings language differentiates between single-sided condi-
tions that are checked in one direction and enforced in the other,
and bidirectionalizable expressions that are always enforced.

10.2.3. Other transformational approaches
Finally, hybrid approaches like ATL (Jouault and Kurtev, 2006)

and ETL (Kolovos et al., 2010b) can be seen as an improvement
of pure operational languages, which provide a declarative frame-
work for defining transformations. They do, however, not provide
bidirectionality and thus do not reach the same abstraction as
languages like QVT-R, TGGs or the Mappings language. They can
be seen as an abstraction between the Reactions and the Map-
pings language. Like discussed for TGGs, both these languages do
not support consistency rules that require user decisions about
how elements shall be related, which is a common necessity in
practice, thus being restricted in expressiveness.

A specific approach to build networks of bidirectional transfor-
mations like in a V-SUM are commonalities models. They intro-
duce further models that contain the information that is shared
between models and thus has to be kept consistent. They serve
as a hub with bidirectional transformations to the actual mod-
els, acting like a multidirectional transformation. Their benefit
is that they explicitly express common concepts of metamodels
rather than implicitly encoding them in a transformation (Klare
and Gleitze, 2019) and that they solve the problem of n-ary
relations not being expressible in terms of a set of binary re-
lations (Stevens, 2020). This concept has been considered on a
rather theoretical basis (Stünkel et al., 2018; Diskin et al., 2018),
discussing which kinds of relations can be expressed with such an
approach, and from an engineering perspective (Klare and Gleitze,
2019), discussing the modular specification and composition of
commonalities. However, all these approaches do not allow the
modular development of transformations based on distributed
knowledge about relations between some of the metamodels,
which is the goal and central assumption of our work.

10.2.4. Non-transformational approaches
Apart from transformation languages, Xiong et al. (2009) pro-

posed an approach for fixing inconsistencies based on the defini-
tion of constraints in an OCL-like syntax. It provides a fixed set
of constraint operators, each having an assigned fixing operation
that restores the constraint when it gets violated. While the pro-
posed language has well-defined semantics, the expressiveness is
restricted to the capabilities of the provided operators, which can
neither be extended nor adapted. In contrast, the Mappings and
Reactions language provide abstraction as well as expressiveness
for serving both needs depending on the context.

The event-driven and reactive programming paradigms are
also related to the Reactions language, as they allow to express
‘‘what to do, and let the language automatically manage when to
do it’’ (Bainomugisha et al., 2013, p.52:3). In reactive program-
ming, data dependencies rather than control flow dependencies
are defined, and dependent values are automatically updated if
a value is modified. Specialized approaches for automated model
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onsistency preservation were, for example, presented by Wim-
er et al. (2012). Their approach detects coarse-grained changes

ather than the atomic changes that the Reactions language han-
les. It is based on the assumption that developers want to
eal with coarse-grained evolution scenarios rather than atomic,
ow-level changes.

0.3. View-based development

View-based software development as a term has been pro-
osed as early as the 1990s (Finkelstein et al., 1992). The first
bject-oriented frameworks, such as OMT (Rumbaugh et al., 1991)
nd Fusion (Coleman et al., 1994), already contained concepts for
everal diagram types for structural, behavioral and operational
iew points, leading to today’s standards such as UML (Object
anagement Group, 2017). These standards describe a decompo-
ition of system descriptions into several views, but often fail to
escribe the interdependencies between these views, and do not
ffer synchronization mechanisms between them. Furthermore,
he set of view points or view types is fixed and cannot be
xtended by the user.
When model-driven tools for the definition of domain-specific

anguages and model transformations became available, the view-
ased paradigm was implemented in several approaches that
ave been named Model View Approaches in a recent survey

(Brunelière et al., 2017). We mention approaches here that pro-
vide functionality for the creation of views on arbitrary metamod-
els (not limited to, e.g., only UML), support editability, and offer a
non-intrusive definition of views, meaning that the original meta-
models do not have to be modified. They do not necessarily pro-
vide multi-model consistency mechanisms. Triple Graph Gram-
mars (Jakob et al., 2006; Jakob and Schürr, 2008; Anjorin et al.,
2014) have been extended to an asymmetric case and can be
used to create non-intrusive views on models. EMF Facet (Eclipse
Foundation, 2020) extends models dynamically at run-time with
so called facets, whose definition is stored in a separate file. Thus,
neither the original metamodel nor its instances need to be mod-
ified to apply the facet. EMF Views (Brunelière et al., 2015) offers
n SQL-like DSL to define views on heterogeneous models. In EMF
iews, the notion virtual model/metamodel is used to describe the
iews and view types, since they are proxies to other metamodels
nd models. Thus, EMF Views is a projective approach. This
iffers from our understanding of ‘‘virtual’’ (as in V-SUM), since
e require editability and consistency preservation mechanisms,
hich EMF views does not offer. The Epsilon-based approach
psilon Decoration (Kolovos et al., 2010a) uses tag-value pairs to
efine views over models. VIATRA Viewers (Semeráth et al., 2016)
s an incremental approach to create a view definition framework.
he ModelJoin language (Burger et al., 2014) offers the definition
f editable views types and views on heterogeneous models in a
extual DSL. The translatability of views and automatic fixes for
ntranslatable views in ModelJoin has also been studied (Burger
nd Schneider, 2016).
The Vitruvius approach is agnostic of the way in which the

iews are defined. Thus, all of the approaches mentioned above
ould be used in conjunction with the current implementation
f Vitruvius. It should however be noted that it is beneficial if
he languages and technologies used for the definition of views
re aligned with those used for the definition of consistency
reservation rules (see Section 11.3).

1. Future work

We have given an overview on the central ideas and concepts
f the Vitruvius approach. It provides a well-defined conceptual

nd technological basis for future work and research. We will

28
onduct extended evaluations to also investigate efficiency of
ur approach and the effort to build V-SUMs and especially the
onsistency preservation specifications, which were out of the
cope of this article. Furthermore, we will investigate different
onceptual topics, of which we give an overview in the following.

1.1. Evolving the V-SUM metamodel

A V-SUM metamodel can be instantiated multiple times to
odel different systems that use all or a subset of the meta-
odels and languages. In the running example, multiple systems
an be modeled using the V-SUM metamodel of PCM, UML, and
ava. Like every metamodel, a V-SUM metamodel is subject to
odifications that affect the internal structure as well as the
iew types. This can, for example, be due to the evolution of
he internal metamodels of the V-SUM metamodel, such as Java.
n that case, instances of the V-SUM metamodel have to co-
volve with the metamodel modifications. While there is already
esearch on co-evolution of metamodels and models (Burger and
ruschko, 2010; Herrmannsdoerfer et al., 2011; Demuth et al.,
013a,b; Hebig et al., 2017), it has to be investigated how this
an be transferred to the evolution of a V-SUM metamodel, as
dditionally to the conformity of the instances to the metamodel,
he consistency between the different models within the V-SUM
ust also be preserved according to the defined consistency rules.

1.2. Tolerating inconsistencies

Consistency between models does not always need to be and
ften even cannot be enforced immediately. Having to restore
onsistency immediately after fine-grained changes would re-
trict the developer (Nuseibeh et al., 2001) and is sometimes not
ossible, because the changed model itself is not consistent after
hat modification (Kehrer et al., 2013). In such cases, it is desirable
o tolerate inconsistencies, e.g., as long as they are restricted to
ertain model elements, certain model regions, or certain inter-
ediate model states. The idea of tolerating inconsistency has been
rominently discussed in an article by Balzer (1991).
We allow the temporary toleration of inconsistencies by con-

idering changes of appropriate granularity. According to Defini-
ion 8, a V-SUM always stays consistent after applying a change.
y appropriately defining the set of possible and potentially
eeply composed changes in the models to those resulting in a
tate, in which consistency to all other models can be restored,
he intermediate states when applying only a part of the change
nduce tolerated inconsistencies. Imagine an element that shall be
ransformed into another model, but to avoid ambiguities some
f its attributes have to be defined first. The change describing
he creation and insertion of that element without setting the
ttributes introduces a tolerated inconsistent state. After also
efining the attribute values, that complete change can be pro-
essed and consistency can be restored. This can be seen as an
pproach to handle appropriate transactions of changes. Deciding
hen and where inconsistencies should be temporarily allowed

s, however, a problem that cannot be solved universally. It is
p to the methodologists who creates the CPRs to appropriately
andle such transactions. Since this only allows a short-term
oleration of inconsistencies, it will be part of future work to
igure out appropriate kinds of transactions for recording changes
nd for defining consistency preservation on.

1.3. Coupling view and consistency specification

In the Vitruvius development process introduced in Section 6,
he definition of view types and CPRs are two steps that follow
ach other. First, the definition of view types relies on metamod-
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ls and consistency rules within a V-SUM. Thus their complexity
nd the consistency rules influence the difficulty of defining view
ypes. In consequence, we will further research how view type
efinition depends on the kinds and complexity of consistency
ules and how this process can be supported, e.g., by concepts
rom OSM (Atkinson et al., 2010) (see Section 3.2). Second, to
upport this, the consistency rules should, in parts, be derived
rom the view types, since the information needs of developers
re persisted in them. As a view type definition consists of a
etamodel for the view type and transformations from and to

he V-SUM metamodel, this information could be used to extract
onsistency rules. For example, if two classes from two different
etamodels are mapped to the same element of one view type,
ne can assume that these classes represent the same concept
nd should thus be kept consistent.
In the current implementation of Vitruvius, the definition

f CPRs and view type definitions are technically independent.
t could be beneficial to give hints for CPR creation based on
nformation in the view type definition to the methodologist. Vice
ersa, consistency information should also be respected in the
iew types, so that it becomes impossible to edit views in a way
hat consistency rules are violated. Last, the CPRs could be linked
o the view type definitions to enable their co-evolution.

1.4. Defining multi-model consistency

Consistency preservation in Vitruvius can be defined with the
Reactions and the Mappings language. These languages comple-
ment each other, because they provide different levels of abstrac-
tion and expressiveness. Additionally, Reactions are generated
from Mappings. The languages, however, lack a deeper integra-
tion. Mappings and Reactions are specified in different, indepen-
dent files. We are working on an integration of Reactions into
Mappings with checks regarding conflicts of constraints defined
in Mappings and CPRs described with Reactions.

Furthermore, consistency preservation is currently considered
as the combination of CPRs between metamodel pairs. Defining
consistency between more than two metamodels can easily lead
to contradictions between the CPRs. First, if CPRs are executed
transitively, i.e., the execution of one rule triggers the execution
of others, it is unclear if correspondences can be considered
transitively to achieve proper results. If rules are contradictory,
which can easily occur if they are developed by different domain
experts, propagation cycles due to alternating values or depen-
dencies on the execution order of the CPRs can occur. Defining a
tree of consistency rules to avoid those issues results in reduced
modularity and comprehensibility, and also prevents modular
development of consistency rules Klare (2018). If the consistency
rules between architectural model and code are defined tran-
sitively over UML, the UML metamodel cannot be omitted in
a project, which gets even more problematic if a much higher
number of consistency rules is involved.

Although one could argue that such n-ary relations should
be expressed in n-ary CPRs, Stevens (2020) provides convincing
arguments to stick with the definition of networks of binary
transformations, as the binary case is hard enough to think about
and also fosters the modular definition of CPRs by domain ex-
perts. It was also the result of a Dagstuhl seminar that ‘‘it seems
likely that networks of bidirectional transformations suffice for
specifying multidirectional transformations’’ (Cleve et al., 2019,
p. 7). We will therefore investigate how CPRs can be coupled
such that they are not contradictory by design and modular in
the sense that they can be defined and reused independent from
each other. We will also consider the composition of V-SUM
metamodels by defining CPRs not only between existing meta-
models but also between view types of V-SUM metamodels to
29
stay independent from the internal CPRs of a V-SUM metamodel
and allow modular composition. Our initial ideas for supporting
multi-model consistency preservation in Vitruvius are discussed
in Klare (2018). We also provide a classification of interoperability
issues in transformation networks in Klare et al. (2019).

11.5. Enabling consistency-aware versions & variants management

Management of versions and variants has been well
researched, especially for code-centric software development
projects. While it is basically possible to apply that research also
to a V-SUM-based approach and reuse existing versioning tools
such as Git or variants management and product line approaches,
all of them are not aware of consistency between the artifacts. For
example, if two developers perform modifications that shall be
merged, conflicts during the merge process are currently resolved
based on heuristics or developer decisions, but are not necessarily
compliant with the defined consistency rules.

We will therefore develop an approach for consistency-aware
versions and variants management, which reuses the change-
driven property of Vitruvius to represent variability of software
systems. In consequence, navigating between versions and vari-
ants will always depend on change sequences and the CPRs
defined for them, such that the system description stays consis-
tent according to these rules. This approach can be seen as an
extension of the change-based versioning approach in EMFStore
of Koegel and Helming (2010a), Koegel et al. (2009, 2010b), and
also reuses concepts of the DeltaEcore approach by Seidl et al.
(2014) and Seidl (2015). We gave an initial overview on our
approach in Ananieva et al. (2018b).

12. Conclusion

View-based development is inevitable for creating and evolv-
ing complex software-intensive technical systems. Using several
views leads to the problem of view consistency. In this paper,
we have presented the Vitruvius approach, a view-based, model-
driven approach for consistent development of complex systems.
The approach enables developers to work with different models
(including code-based representations) that represent the system
under development from different viewpoints. It supports the
preservation of consistency between views. Our approach is not
limited to models that describe software, but can be used with
any kind of metamodel or textual formal language. We have
introduced the concept of the Virtual Single Underlying Model (V-
SUM), whose key features are the non-intrusive reuse of existing
metamodels and tools, and a modular structure that enables the
reuse of parts of the metamodels and models, and which makes
the explicit definition of consistency possible.

Consistency preservation rules are first-class entities in the
Vitruvius approach. They are used to express the semantic rela-
tions between models of different languages/metamodels as well
as methods to restore consistency in case a rule is violated. Vit-
ruvius follows a delta-based paradigm: Consistency preservation
rules are defined in relation to possible changes to the models.
We have argued why we deem such an approach beneficial com-
pared to state-based approaches, although it requires additional
effort. Besides a formal definition of multi-model consistency, we
have presented the Reactions and the Mappings language, with
which consistency preservation rules can be expressed.

We do of course not assume that existing development pro-
cesses are changed completely and that existing projects are
redeveloped using the Vitruvius approach. Thus, we have pre-
sented two strategies that allow the integration of existing projects
into a changed-based process such as Vitruvius.

We have evaluated our approach using two case study do-
mains (component-based software engineering and embedded
automotive software architectures). As a research prototype, we
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ave implemented Vitruvius’s concepts in the Eclipse Modeling
Framework. Although it is hard to quantify the benefit of an
approach as fundamental as Vitruvius, we have been able to
how completeness and correctness of our consistency preser-
ation languages, as well as their applicability and compactness,
hich give an indicator for the improvements that can be gained
hrough the approach. We have further evaluated the integration
trategies and the overall approach with historical data from
everal open source projects. The results show that a fully au-
omated consistency preservation is hard to reach, but that the
itruvius approach can aid developers in creating rules that keep
onsistency in most of the cases.
The Vitruvius approach is a comprehensive approach for the

development of systems, in which all the information that is
modeled about a system can be connected semantically to create
a higher level of consistency. Although consistency is a term
that is not central in recent research on system development
and model-driven methods, we believe that it is one of the key
problems in the development of today’s complex systems, and
should be treated as a first-level entity in development processes,
as done in Vitruvius.

Verifiability

The complete implementation of our evaluation presented in
Section 9 is available at GitHub (Vitruvius GitHub, 2020b) and
is documented in an associated Wiki (Vitruvius GitHub, 2020a).
The Vitruvius framework with the consistency preservation lan-
guages, the Reactions language and the Mappings language, are
available in the framework project (Vitruvius GitHub, 2020c).
The implementations of the two case studies can be found in
two repositories, one for the component-based systems case
study (Vitruvius GitHub, 2020d) and one for the embedded au-
tomotive software case study (Vitruvius GitHub, 2020e). These
projects contain the consistency preservation implementations,
as well as test cases and test scenarios. All projects deploy to an
Eclipse update site from which the projects can be installed. All
dependencies, especially to used metamodels, are documented
within the projects and the Eclipse update site specifications.
The tests, however, have to be manually imported from the
repositories. The implementation of the integration strategies LIS
and RIS are not deployed to an update site. They can be found in
an additional repository (Vitruvius GitHub, 2020f).

In addition, we provide a dedicated reproduction package
Klare, 2020), which contains a prepared Eclipse environment
ith the necessary, precompiled repositories and workspaces,
s explained above. It also provides a script that sets up an
nvironment with all necessary dependencies based on Docker.
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reaction = "reaction" , [xbase identifier] , "{" ,
execution time , change type ,

["with" , change properties check] ,
"call" , (routine call | routine call block) ,

"}";

execution time = "before" | "after";

change properties check = xbase expression;

outine call = xbase identifier , "(" , [arguments] , ")";

rguments = argument expression , {"," , argument expression};

rgument expression = xbase expression;

outine call block = "{" ,
{[routine call | routine call expression]} - ,

}";

outine call expression = xbase expression;

outine definition = "routine" , xbase identifier , "(" ,
[parameters] , ")" , "{" ,

{["match" , match block] ,
"action" , "{" ,

{action} - ,
"}" ,

}";

arameters = typed identifier , {"," , typed identifier};

yped identifier = type expression , xbase identifier;

ype expression = xbase identifier , "::" , xbase identifier;

atch block = "{" ,
{(retrieval | match check block)} - ,

}";

etrieval = (["val" , xbase identifier , "="] , "retrieve" ,
["optional"]) | ("requireabsenceof") ,

type expression , "correspondingto" ,
source element expression ,
["taggedwith" tag expression] ,
["with" retrieve properties check];

ype expression = xbase identifier , "::" , xbase identifier;

ag expression = xbase expression;

ource element expression = xbase expression;

etrieve properties check = xbase expression;

atch check block = "check" , "{" ,
{match check} - ,

}";

atch check = xbase expression;

isting 7: Grammar of the Reactions language with rules for
eaction and Reaction routine definitions in EBNF (without rules
or change types), from Kramer (2017).
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ppendix A. Consistency languages syntax
We introduced two consistency preservation languages, the

eactions language and the Mappings language, in Section 7. The
ssential constructs were explained on stub listings, a metamodel
f the language constructs and an example for both languages.
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apping = "mapping" , xbase identifier ,
["dependson(" , mapping dependency, ")"] , "{" ,
"map(" , parameters , ")" ,

["with" , "{" , {single-sided condition} - , "}"] ,
"and(" , parameters , ")" ,

["with" , "{" , {single-sided condition} - , "}"] ,
["suchthat" , "{" , {bidirectionalizable condition} -

, "}"] ,
["forwardexecute{" , {xbase expression} - , "}" ,
"backwardexecute{" , {xbase expression} - , "}"] ,

}";

ootstrap mapping = "bootstrapmapping" , xbase identifier ,
"{" , "create(" , parameters , ")" ,
["with" , "{" , {single-sided condition} - , "}"] ,

}";

apping dependency = xbase identifier , {"," , xbase identifier};

arameters = typed identifier , {"," , typed identifier};

yped identifier = type expression , xbase identifier;

ype expression = xbase identifier , "::" , xbase identifier;

ingle-sided condition = feature condition |
resource condition | check and enforce code;

eature condition = (multi value condition |
single value condition | element condition |
["not"] , "empty") ,
feature expression;

ulti value condition = {value expression} - ,
["not"] , ("equals" | "in");

alue expression = xbase expression;

ingle value condition = value expression ,
(index expression | num compare expression);

ndex expression = ["not"] , "atindex" ,
xbase expression , "in";

um compare expression = "<=" | "<" | ">=" | ">";

lement condition = element expression , "defaultcontainedin";

lement expression = xbase expression;

eature expression = xbase identifier , "." , xbase identifier;

esource condition = "defaultpathfor" , element expression ,
"=" , ["pathof" , element expression , "+"] , xbase string;

heck and enforce code = "check" , xbase expression block ,
"enforce" , xbase expression block;

idirectionalizable condition = xbase expression;

isting 8: Simplified grammar of the Mappings language in EBNF,
rom Kramer (2017).
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reaction CreatedRepository {
after element adl::Repository created and inserted as root
call {

val repository = newValue;
createPackage(repository, null, repository.entityName,

"repository_root");
createSubPackages(repository);

}
}

routine createSubPackages(adl::Repository repository) {
match {

val repositoryPackage = retrieve oo::Package
corresponding to repository

}
action {

call {
createPackage(repository, repositoryPackage,

"interfaces", "interfaces");
createPackage(repository, repositoryPackage,

"components", "components");
}

}
}

routine createPackage(EObject sourceElement,
oo::Package parent, String packageName, String newTag) {

match {
require absence of oo::Package corresponding to

sourceElement tagged with newTag
}
action {

val pkg = create oo::Package and initialize {
pkg.name = packageName;
if (parent !== null) {

pkg.namespaces += parent.namespaces;
pkg.namespaces += parent.name;

} else {
persistProjectRelative(sourceELement,

pkg, "model/" + pkg.name + ".oo");
}

}
add correspondence between pkg and sourceElement

tagged with newTag
}

}

Listing 9: Reactions for the creation of an object-oriented package
structure after creating a repository in the ADL.

We provide the EBNFs for both languages to illustrate their com-
plete capabilities. The EBNF for the Reactions language is depicted
in Listing 7. It omits the definition of supported change types. The
EBNF for the Mappings language is depicted in Listing 8.

Both languages reuse the Xbase expression language (Efftinge
et al., 2012). The xbase identifier rule enables referencing
different kinds of elements, such as meta-classes, methods and so
on. The allowed values of such an identifier depend on the context
and will not be discussed in detail. For example, statements of
the form xbase identifier, ‘‘::’’, xbase identifier are
used for references to meta-classes. The first identifier references
the metamodel, while the second identifier references a meta-
class within the metamodel. The xbase expression rules can
either be a single expression or an expression block, such as the
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eaction PackageCreated {
after element oo::Package inserted as root
call {

createRepository(newValue, "repository_root")
}

outine createRepository(oo::Package pkg, String newTag) {
match {

require absence of adl::Repository corresponding to pkg
}
action {

val repository = create adl::Repository and initialize {
repository.entityName = pkg.name
persistProjectRelative(javaPackage, repository,

"model/" + repository.entityName + ".repository")
}

add correspondence between repository and pkg tagged
with newTag

}

isting 10: Reaction for the creation of a repository in the ADL
fter creating a package in an object-orientation model.

ody of a method. Depending on the context, such an expression
as different input and return values. For example, the expression
n a ‘‘check’’ rule returns a Boolean value.

ppendix B. Reactions language examples

In Section 7.1, we introduced the Reactions language on a
imple example for creating a class in an object-oriented rep-
esentation after a repository in an ADL was introduced. We
emonstrate the language capabilities with more complex Reac-
ions in Listings 9 and 10. For even more sophisticated Reactions,
e refer to implementations in our code repositories (Vitruvius
itHub, 2020d), from which the depicted Reactions are an extract.
he former describes the creation of the package structure in an
bject-orientation model that corresponds to a repository in an
DL after its creation. The latter, on the other hand, defines the
reation of repository in the ADL after a root package is intro-
uced in the object-orientation model. This represents an extract
f the Reactions that provide equal behavior than those generated
rom the Mapping Listing 4, except that using the Mapping, a
epository would only be generated after the complete package
tructure in the object-orientation model is created.
The Reactions can be executed transitively until no further

hanges occur, i.e. after creating a package the Reaction creates a
epository in the ADL model, which, in turn, triggers the creation
f the other packages in the object-orientation model. This ter-
inates because of the absence checks in the Reaction routines,
hich ensure that no duplicate elements are created, according
o the strategy proposed in Klare et al. (2019).

The Reactions use the method persistProjectRelative,
hich is an operation provided by an internal API allowing to per-
ist an element as a root element in a file. This is only mandatory
f the development environment of the V-SUM may get restarted,
equiring a reload of the V-SUM. Otherwise, the model elements

ould also only persist in-memory.
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