14 research outputs found

    Development of Gait Recognition in NI LabVIEW

    Get PDF
    Nowadays, one of the most significantly improving area in security is the world of biometric identifiers. Within the biometric identifiers, the research group is working with the gait recognition speciality. The research group realized a complex gait recognition system in NI LabVIEW, that can detect more reference points simultaneously with a universal camera and is capable of suiting predetermined curves on the detected points. Moreover, the program can compare the functions suited on the reference curve and the actual curve and evaluate if the two gait images are the same or not. In the program there is a saving and a reloading function which contributes to the production of the reference gait image. The foot analysis program before the gait recognition is designed to improve accuracy. The self-developed gait recognition system was tested on more persons and the False Acceptance Rate (FAR) was zero

    Gait Recognition from Motion Capture Data

    Full text link
    Gait recognition from motion capture data, as a pattern classification discipline, can be improved by the use of machine learning. This paper contributes to the state-of-the-art with a statistical approach for extracting robust gait features directly from raw data by a modification of Linear Discriminant Analysis with Maximum Margin Criterion. Experiments on the CMU MoCap database show that the suggested method outperforms thirteen relevant methods based on geometric features and a method to learn the features by a combination of Principal Component Analysis and Linear Discriminant Analysis. The methods are evaluated in terms of the distribution of biometric templates in respective feature spaces expressed in a number of class separability coefficients and classification metrics. Results also indicate a high portability of learned features, that means, we can learn what aspects of walk people generally differ in and extract those as general gait features. Recognizing people without needing group-specific features is convenient as particular people might not always provide annotated learning data. As a contribution to reproducible research, our evaluation framework and database have been made publicly available. This research makes motion capture technology directly applicable for human recognition.Comment: Preprint. Full paper accepted at the ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), special issue on Representation, Analysis and Recognition of 3D Humans. 18 pages. arXiv admin note: substantial text overlap with arXiv:1701.00995, arXiv:1609.04392, arXiv:1609.0693

    Walker-Independent Features for Gait Recognition from Motion Capture Data

    Get PDF
    MoCap-based human identification, as a pattern recognition discipline, can be optimized using a machine learning approach. Yet in some applications such as video surveillance new identities can appear on the fly and labeled data for all encountered people may not always be available. This work introduces the concept of learning walker-independent gait features directly from raw joint coordinates by a modification of the Fisher’s Linear Discriminant Analysis with Maximum Margin Criterion. Our new approach shows not only that these features can discriminate different people than who they are learned on, but also that the number of learning identities can be much smaller than the number of walkers encountered in the real operation

    Gait recognition for person re-identification

    Get PDF
    Person re-identification across multiple cameras is an essential task in computer vision applications, particularly tracking the same person in different scenes. Gait recognition, which is the recognition based on the walking style, is mostly used for this purpose due to that human gait has unique characteristics that allow recognizing a person from a distance. However, human recognition via gait technique could be limited with the position of captured images or videos. Hence, this paper proposes a gait recognition approach for person re-identification. The proposed approach starts with estimating the angle of the gait first, and this is then followed with the recognition process, which is performed using convolutional neural networks. Herein, multitask convolutional neural network models and extracted gait energy images (GEIs) are used to estimate the angle and recognize the gait. GEIs are extracted by first detecting the moving objects, using background subtraction techniques. Training and testing phases are applied to the following three recognized datasets: CASIA-(B), OU-ISIR, and OU-MVLP. The proposed method is evaluated for background modeling using the Scene Background Modeling and Initialization (SBI) dataset. The proposed gait recognition method showed an accuracy of more than 98% for almost all datasets. Results of the proposed approach showed higher accuracy compared to obtained results of other methods result for CASIA-(B) and OU-MVLP and form the best results for the OU-ISIR dataset

    Robust arbitrary-view gait recognition based on 3D partial similarity matching

    Get PDF
    Existing view-invariant gait recognition methods encounter difficulties due to limited number of available gait views and varying conditions during training. This paper proposes gait partial similarity matching that assumes a 3-dimensional (3D) object shares common view surfaces in significantly different views. Detecting such surfaces aids the extraction of gait features from multiple views. 3D parametric body models are morphed by pose and shape deformation from a template model using 2-dimensional (2D) gait silhouette as observation. The gait pose is estimated by a level set energy cost function from silhouettes including incomplete ones. Body shape deformation is achieved via Laplacian deformation energy function associated with inpainting gait silhouettes. Partial gait silhouettes in different views are extracted by gait partial region of interest elements selection and re-projected onto 2D space to construct partial gait energy images. A synthetic database with destination views and multi-linear subspace classifier fused with majority voting are used to achieve arbitrary view gait recognition that is robust to varying conditions. Experimental results on CMU, CASIA B, TUM-IITKGP, AVAMVG and KY4D datasets show the efficacy of the propose method
    corecore