692,407 research outputs found

    Multi-view gait recognition on curved

    Get PDF
    Appearance changes due to viewing angle changes cause difficulties for most of the gait recognition methods. In this paper, we propose a new approach for multi-view recognition, which allows to recognize people walking on curved paths. The recognition is based on 3D angular analysis of the movement of the walking human. A coarse-to-fine gait signature represents local variations on the angular measurements along time. A Support Vector Machine is used for classifying, and a sliding temporal window for majority vote policy is used to smooth and reinforce the classification results. The proposed approach has been experimentally validated on the publicly available “Kyushu University 4D Gait Database”

    Vision-based techniques for gait recognition

    Full text link
    Global security concerns have raised a proliferation of video surveillance devices. Intelligent surveillance systems seek to discover possible threats automatically and raise alerts. Being able to identify the surveyed object can help determine its threat level. The current generation of devices provide digital video data to be analysed for time varying features to assist in the identification process. Commonly, people queue up to access a facility and approach a video camera in full frontal view. In this environment, a variety of biometrics are available - for example, gait which includes temporal features like stride period. Gait can be measured unobtrusively at a distance. The video data will also include face features, which are short-range biometrics. In this way, one can combine biometrics naturally using one set of data. In this paper we survey current techniques of gait recognition and modelling with the environment in which the research was conducted. We also discuss in detail the issues arising from deriving gait data, such as perspective and occlusion effects, together with the associated computer vision challenges of reliable tracking of human movement. Then, after highlighting these issues and challenges related to gait processing, we proceed to discuss the frameworks combining gait with other biometrics. We then provide motivations for a novel paradigm in biometrics-based human recognition, i.e. the use of the fronto-normal view of gait as a far-range biometrics combined with biometrics operating at a near distance

    Hand tracking and bimanual movement understanding

    Get PDF
    Bimanual movements are a subset ot human movements in which the two hands move together in order to do a task or imply a meaning A bimanual movement appearing in a sequence of images must be understood in order to enable computers to interact with humans in a natural way This problem includes two main phases, hand tracking and movement recognition. We approach the problem of hand tracking from a neuroscience point ot view First the hands are extracted and labelled by colour detection and blob analysis algorithms In the presence of the two hands one hand may occlude the other occasionally Therefore, hand occlusions must be detected in an image sequence A dynamic model is proposed to model the movement of each hand separately Using this model in a Kalman filtering proccss the exact starting and end points of hand occlusions are detected We exploit neuroscience phenomena to understand the beha\ tour of the hands during occlusion periods Based on this, we propose a general hand tracking algorithm to track and reacquire the hands over a movement including hand occlusion The advantages of the algorithm and its generality are demonstrated in the experiments. In order to recognise the movements first we recognise the movement of a hand Using statistical pattern recognition methods (such as Principal Component Analysis and Nearest Neighbour) the static shape of each hand appearing in an image is recognised A Graph- Matching algorithm and Discrete Midden Markov Models (DHMM) as two spatio-temporal pattern recognition techniques are imestigated tor recognising a dynamic hand gesture For recognising bimanual movements we consider two general forms ot these movements, single and concatenated periodic We introduce three Bayesian networks for recognising die movements The networks are designed to recognise and combinc the gestures of the hands in order to understand the whole movement Experiments on different types ot movement demonstrate the advantages and disadvantages of each network

    Understanding of Object Manipulation Actions Using Human Multi-Modal Sensory Data

    Full text link
    Object manipulation actions represent an important share of the Activities of Daily Living (ADLs). In this work, we study how to enable service robots to use human multi-modal data to understand object manipulation actions, and how they can recognize such actions when humans perform them during human-robot collaboration tasks. The multi-modal data in this study consists of videos, hand motion data, applied forces as represented by the pressure patterns on the hand, and measurements of the bending of the fingers, collected as human subjects performed manipulation actions. We investigate two different approaches. In the first one, we show that multi-modal signal (motion, finger bending and hand pressure) generated by the action can be decomposed into a set of primitives that can be seen as its building blocks. These primitives are used to define 24 multi-modal primitive features. The primitive features can in turn be used as an abstract representation of the multi-modal signal and employed for action recognition. In the latter approach, the visual features are extracted from the data using a pre-trained image classification deep convolutional neural network. The visual features are subsequently used to train the classifier. We also investigate whether adding data from other modalities produces a statistically significant improvement in the classifier performance. We show that both approaches produce a comparable performance. This implies that image-based methods can successfully recognize human actions during human-robot collaboration. On the other hand, in order to provide training data for the robot so it can learn how to perform object manipulation actions, multi-modal data provides a better alternative

    Unconstrained video monitoring of breathing behavior and application to diagnosis of sleep apnea

    Get PDF
    This paper presents a new real-time automated infrared video monitoring technique for detection of breathing anomalies, and its application in the diagnosis of obstructive sleep apnea. We introduce a novel motion model to detect subtle, cyclical breathing signals from video, a new 3-D unsupervised self-adaptive breathing template to learn individuals' normal breathing patterns online, and a robust action classification method to recognize abnormal breathing activities and limb movements. This technique avoids imposing positional constraints on the patient, allowing patients to sleep on their back or side, with or without facing the camera, fully or partially occluded by the bed clothes. Moreover, shallow and abdominal breathing patterns do not adversely affect the performance of the method, and it is insensitive to environmental settings such as infrared lighting levels and camera view angles. The experimental results show that the technique achieves high accuracy (94% for the clinical data) in recognizing apnea episodes and body movements and is robust to various occlusion levels, body poses, body movements (i.e., minor head movement, limb movement, body rotation, and slight torso movement), and breathing behavior (e.g., shallow versus heavy breathing, mouth breathing, chest breathing, and abdominal breathing). © 2013 IEEE

    Fast human activity recognition based on structure and motion

    Get PDF
    This is the post-print version of the final paper published in Pattern Recognition Letters. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2011 Elsevier B.V.We present a method for the recognition of human activities. The proposed approach is based on the construction of a set of templates for each activity as well as on the measurement of the motion in each activity. Templates are designed so that they capture the structural and motion information that is most discriminative among activities. The direct motion measurements capture the amount of translational motion in each activity. The two features are fused at the recognition stage. Recognition is achieved in two steps by calculating the similarity between the templates and motion features of the test and reference activities. The proposed methodology is experimentally assessed and is shown to yield excellent performance.European Commissio
    • 

    corecore