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ABSTRACT

Bimanual movements are a subset ot human movements in which the two hands move 

together in order to do a task or imply a meaning A bimanual movement appearing in a 

sequence o f images must be understood in order to enable computers to interact with 

humans in a natural way This problem includes two main phases, hand tracking and 

movement recognition

We approach the problem o f hand tracking from a neuroscience point ot view First the 

hands are extracted and labelled by colour detection and blob analysis algorithms In the 

presence of the two hands one hand may occlude the other occasionally Therefore, hand 

occlusions must be detected in an image sequence A dynamic model is proposed to model 

the movement of each hand separately Using this model in a Kalman filtering proccss the 

exact starting and end points of hand occlusions are detected We exploit neuroscience 

phenomena to understand the beha\ tour o f the hands during occlusion periods Based on 

this, we propose a general hand tracking algorithm to track and reacquire the hands over a 

movement including hand occlusion The advantages of the algorithm and its generality are 

demonstrated in the experiments

In order to recognise the movements first we recognise the movement of a hand Using 

statistical pattern recognition methods (such as Principal Component Analysis and Nearest 

Neighbour) the static shape of each hand appearing in an image is recognised A Graph- 

Matching algorithm and Discrete Midden Markov Models (DHMM) as two spatio-temporal 

pattern recognition techniques are imestigated tor recognising a dynamic hand gesture

For recognising bimanual movements we consider two general forms ot these movements, 

single and concatenated periodic We introduce three Bayesian networks for recognising die 

movements The networks are designed to recognise and combinc the gestures of the hands 

in order to understand the whole movement Experiments on different types ot movement 

demonstrate the advantages and disadvantages of each network
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C h a p t e r  1

INTRODUCTION

Everyday, millions of people, cars, animals, and many other subjects around the world move 

m order to do their tasks A subset ot these movements is human movements A man walks 

in order to reach a place, moves the hands to take an object, point to somewhere, show the 

size of an object, and imply a meaning H e/she talks, laughs, cries, etc in order to convey 

meaning., and emotions m order to transfer information to others to voice his/her needs, 

etc

Understanding all these movements requires a huge amount of knowledge that people learn 

e\eryday from the very first day of their life We look at objects and people to understand 

them to understand their motion, their purpose, and their emotion Looking at all these 

movements and understanding them gne the power o f understanding the environment to us 

By understanding the environment we arrange our needs and tasks, problems and 

programmes ^

Computers have provided us with a better quality ot life Equipping computers with the 

knowledge to understand the cm ironment is a target ot much research in computer science, 

as we will show in Chapter 2 Particularly, getting computers to look at the environment in 

order to analyse it in the same way as we do is the basis of research in a wide spectrum of 

scientific, engineering, and cognitive research projects Equipping computers with this 

knowledge provides us with better ways to interact with computers

Interacting with computers have been traditionally based on artificial devices like keypads and 

switches With the current research in Artificial Intelligence, computers are able to understand a 

large part of their environment The new means o f  interactions have opened new horizons in 

better involving these devices in our daily life

We investigate the subject ot Human Computet Interaction (HCI) from an engineering and 

cognitive science point ot view Different aspects of HCI will be briefly reviewed We study
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1 1 Human Computer Interaction

the problems involved in looking at people by computers for Human Computer Interaction 

Artificial visual systems are introduced and studied in different parts of this thesis We use a 

wide range o f techniques and methods from engineering to neuroscience in order to 

understand a group of movements The integration of all these methods, techniques and 

phenomena enables us to develop an integrated solution to an important and crucial problem 

in Human Computer Interaction

Hand gestures in linguistic communication (e g sign languages) and paralinguistic 

communication (e g reinforcement gestures) are used in HC1 to communicate with 

computers In this thesis we aim to recognise a set of bimanual gestures

11 H um an Computer Interaction

“ Human Computer Interaction (HC1) entails the study of physical, social, cognitive and 

engineering aspects of designing information technology tor ease of use [Salvendy 2001]” 

lhc.sc aspects are illustrated by the author in Figure 1 1 In HCI a wide range of applications 

is being developed in order to provide easier means of interacting with computers than 

traditional keyboards and mice Smart environments, wearable computers and perceptual 

user interfaces are considered as the “fourth generation” of computing and information 

technology [Pentland 2000]

Tiguie 1 1 H um  in Com puter InLencUon aspects

Sensing technology that allows computers to be used without detailed instructions is the 

main technology that this new generation of computers should be equipped with Enough

2



1 2 Visual Sensing

knowledge of people should be provided tor computers to act appropriately with the

minimum ot detailed traditional instructions [Pcntland 2000]

Many sensing technologies are employed to improve the interactions and avoid explicit 

instructions Audio and visual techniques are some ot the most common methods Voice and 

speech recognition techniques enable computers to communicate with people by using 

human languages (see Figure 1 2)

Visual sensing is another technique, which is used by humans as one of the five senses 

Getting a machine to do the visual tasks ot a human is the subject ot the current research in 

artihcial visual sensing Even tor some simple tasks that a human eye can do, large difficulties 

in mechanisation arc involved

1 2 Visual Sensing

By using visual sensors physical connections like wires to transtcr intormation into 

computers are removed Bar codes are a well-known example tor connecting information on 

physical packages ot goods to a database Understanding information within an image 

employs a large number ot algorithms

1 3 Machine Vision

Partially providing the ability o f human \ision tor computers is known as machine vision 

| Davies 1997]

Voice digitizer 
and processor

3



1 3 Machine Vision

Machine v is ion either from the engineering and technological or the theoretical point of view 

is an important research area By looking at scenes, objects, colours and movements machine 

vision provides computers with the ability of understanding environment The domain of 

machine vision includes a wide spectrum of science and technology such jus computer science 

and engineering signal processing, physics, statistics and applied mathematics, neuroscience 

and cognitn e sciences

The components of a usual system include image signal processors, colour modelling, 

geometrical processors, high-speed computers, artificial intelligence techniques, mathematical 

models, programming techniques, etc

131  Machine Vision Aspects

By machine vision we reter to a wide range ot methods trom low-level image processing to 

real-time motion analysis and pattern recognition

In low-level image processing some basic operations on either binary, grey-scale or colour 

images are done tor purposes like noise suppression, edge detection (see Figure 1 3), image 

filtering and masking, etc This level o f processing also includes object locating via edge 

detection, binary shape analysis and boundary pattern analysis

Figme 1 ^ Edge detection

An intermediate level o t processing includes geometrical shape analysis, line and curve 

detection, circle and ellipse detection [Shamaie 1997] (see Figure 1 4), hole detection, polygon 

and corner detection

4



1 3 Machine Vision
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Tigiue 1 4 Cllipse detection md p'U'imetei cx tnc tion

Many different industrial and medical applications use this level of processing For example, 

in industrial and manufacturing environments locating a circular or elliptical object, which 

can be handled by a robot, is one ot the basic problems Different aspects of this problem are 

recognition of an elliptical (or circular) shape, extraction of the ellipse parameters and 

location estimation

For the set ot well-known geometrical shapes like lines and circles, many difterent techniques 

have been proposed in the literature such as Mo ugh Transform [Illingworth 1990], adaptive 

fuzzy C-Shell clustering [Dave 1992], Fourier Descriptors [Pcrsoon 1977], polygon 

estimation [Pavlidis 1977| and numerical optimisations [Shamaie 1999]

The highest level of processing which is called application-level includes abstract pattern 

matching, three-dimensional environments, motion analysis, texture analysis and pattern 

recognition At this lex cl more natural things enter into the processing Natural three- 

dimensional objects and environments, motion analysis and matching, and recognition of 

natural objects with unknown geometrical shapes are the problems that employ not only 

image processing techniques but also artificial intelligence methods

13 2 Human Recognition

Recognition o f ditterent parts ot a human body, analysis and information extraction are the 

tasks at the application-le\el processing Face and gesture recognition, 3D person tracking 

and behaviour understanding have been mainly addressed in the literature as the important 

problems in looking at people by machine vision systems [Pentland 2000] In this area there 

is no complete analytical models for the parts ot human body Ih is  makes it difficult to find a 

totally analytical algorithm to recognise the parts and their features Therefore, many

5



1 4 Machine Learning and Gesture Recognition

statistical algorithms are proposed to deal with this problem In Chapter 2 we will briefly 

discuss these methods The main applications of this area are person identification \ia  face 

recognition, hand and body gesture recognition to interact with computers, and suneillance 

and monitoring of human behaviour tor security reasons [Pentland 2000]

Since the main focus of this thesis is on hand gesture recognition, we discuss this problem 

more and for the other problems we refer the reader to the references

1 4 M achine Learning and Gesture Recognition

Hand gestures are very common in social interaction People usually use hand gestures to 

explain their speech and internal emotions Speech reinforcements, showing directions, and 

showing the size ot an object arc usual gestures However, a large community of people uses 

hand gestures for very basic communication Deaf people use sign language to communicate 

with each other Sign languages contain a large number ot hand gestures These gestures 

have a set of defined static shapes and hand movements Ih e  number of recognisable static 

hand shapes is limited to less than 100 So, in each sign language (eg Irish or American Sign 

Language), normally, a static hand shape is defined for every letter in the alphabet (see Figure 

1 5) However, for the three letters V  and V movements of hand are defined in Irish Sign 

Language Although most of the words in sign languages are dynamic and start with a 

defined static shape ot hand and continue as a movement, these static signs are useful mainly 

tor spelling the words not defined in a language vocabulary like names This is called finger 

spelling

Learning the hand shapes and recognising them is the first part of the research in this thesis 

Recognition of a hand gesture continues by the recognition o f hand movements and changes 

in the shape o f hand hor this, a system needs to learn the movements to be able to classity 

and recognise them Many machine learning techniques ha^e been proposed tor spatio- 

temporal learning and recognition o f hand gestures

All these are the pre-requisites to an important problem that has not been yet specifically 

worked on before

6



1 4 Machine Learning and Gesture Recognition

figULe 1 S lu sh  Sign Langige — slnlic h in d  slnpcs

A large group of movements is called bimanual movements In these moxements both hands 

move in order to do a task or imply a meaning Clapping, opening a bottle, typing on 

keyboard, eating with fork and knife, drumming, guiding a pilot driving an aeroplane into 

parking, etc are some o f the usual bimanual movements (see FiguLe 1 6)

Another group of bimanual movements are the movements m sign languages Particularly, 

British Sign Language is one ot the sign languages in which the two hands are used tor most 

of the gestures, e\ en the alphabet (see Figure 1 7)

Learning bimanual movements by a machine is different from unimanual movements Due 

to the fact that the both hands move simultaneously in order to do one tiling or imply one 

meaning, a system should analyse the moxement of the hands together in order to 

understand the whole movement In this order, many problems arise but the main is 

occlusion Since, in a bimanual movement, one hand may cover the other tor some moments 

recovering the movement ot each hand and analysing it is ditficult Many problems like 

detecting occlusion and tracking the hands betore and atter occlusion are the important parts 

of this issue

7



1 4 Machine Learning and Gesture Recognition

Figuie 1 6 Examples o f  bm vm m l m o\ cmcnls

Tigiue 1 7 Alphabet and weekdays in Butish Sign Languigc

8
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The other problem is to synchronously analyse the movements ot the hands and combine 

them in order to understand the whole movement

In this thesis, we aim to recognise hand shapes and gestures, and track the hands in order to 

understand bimanual movements We start from the basic problems ot static hand shape 

recognition When the static hand shapes are recognised we do temporal recognition of hand 

shapes in order to recognise a hand movement If we can recognise a single-hand movement, 

we can involve the movement ot the other hand For this we first need a method to track the 

two hands separately, detect occlusions and resume tracking the hands correctly alter 

occlusion Given that the hands are tracked correctly how can we recognise the whole 

movement^ In other words, how can we combine the individual movements ot the two 

hands to recognise the whole movement^ What should we do with the parts o f the 

movement where one hand occludes the other-5 How can a machine learn to deal with hand 

occlusions as well as the other parts of a movement^ We will answer all these questions in 

this thesis Techniques, methods and algorithms will be introduced for different parts of the 

problem ot bimanual movement recognition At each part we try to introduce solutions as 

general as possible In other words, we try not to limit the solutions to a tew number of 

restricted cases

In the next chapter we state the main problem ot this research and briefly explain about 

different proposed methods involved directly or indirectly in gesture recognition In Chapter 

3, some techniques tor static hand shape recognition are presented and an application of 

these methods in a real time mouse simulator is introduced In Chapter 4, the problem of 

dynamic hand gesture recognition is discussed We introduce a new technique tor recognising 

dynamic hand gestures Chapter 5 is dedicated to a dynamic model, which will be used in our 

tracking algorithm for detection of hand occlusions and tracking hands in bimanual 

movements

In Chapter 6, Hidden Markov Models and their application in dynamic gesture recognition 

are discussed In this chapter we compare our proposed gesture recognition technique with 

the Hidden Markov Models for single-hand gestures and discuss the advantages and 

disadvantages of each technique In Chapter 7, the problem of occlusion detection and hand 

tracking in bimanual movements is discussed We introduce a new algorithm for detecting 

occlusion, tracking the hands and re-acquiring them at the end of occlusion parts of a 

movement Chapter 8 is dedicated to a new a technique for combining the movements ot the

, 1 4 Machine Learning and Gesture Recognition
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1 4 Machine Learning and Gesture Recognition

two hands and dealing with the occlusion parts ok a movement A technique is introduced to 

segment a bimanual movement A new Bayesian network is proposed for combining the 

hand movements and dealing with occlusion parts simultaneously

At the end ot each chapter we present some experimental results to demonstrate the 

performance of our proposed techniques and algorithms Conclusions and potential future 

work will be presented at the end ot the thesis

10



C h a p t e r  2

PROBLEM STATEMENT AND LITERATURE 
REVIEW

A visual sensor such as a camera captures what visually is observable in a scene The captured 

images constituting a scqucnce represent a temporal event By using a camera connected to a 

computer via an interface an image or a sequence ot images are transferred to the computer 

(see Figure 2 I) Ihe interfaces are called frame grabbers This type of data acquisition is 

called image acquisition “Image acquisition is concerned with the task of interrogating the 

scene under consideration with some energy sources, and subsequently sensing the returned 

energy, which has been modulated by interaction with elements ot- the scene” fPllis 2001] 

Usually a visual sensor converts the received energy to electrical signals These signals enter 

the digitizer and frame grabber to be digitised and stored m the memory of the computer

A hand gesture can be captured as a temporal movement m a sequence ot images

In this chapter we state the main problem to be solved in the thesis A review of the related 

works is presented We survey a wide spectrum of techniques, methods and algorithms 

presented in the literature for static and dynamic pattern recognition Basic statistical pattern 

recognition techniques to advanced temporal pattern matching algorithms are briefly 

presented in this ch ipter

11



2 1 Hand Gestures

2 1 H and Gestures

A hind gesture is a movement of hand to imply a meaning, represent a word or sentence, or 

show an emotion In order to rccognise a hand gesture by a visual system, a sequence of 

images containing the gesture is captured Every frame of this sequence contains a hand 

shape, which is to be analysed However, first, one should extract the hand from the 

background of the image

A very common technique for extraction is colour detection and segmentation A colour 

segmentation procedure should identify the principal object colour and separate it from the 

background Many different colour segmentation algorithms are addressed m the literature 

[Jain 1989]

We use a simple grey-scale detection algorithm, in which every pixel above a certain pre­

defined threshold of grey levels is considered as a point on the principal object I his 

algorithm extracts the hand from the background (sec Figure 2 2) Since we arc using a grey­

scale camera our colour detection algorithm is based on the grey levels

Now, for a sequence of images of an extracted hand the main problem of this research can 

be stated as given in the next section

Figme 2 2 Colour detection md segm entation

12



2 2 Mam Problem

2 2 Main Problem

In this research we are going to solve the following problem

Given a bimanual movement including band ocdmion find a movement in a given database of movements that 

best matches with it spatially and temporally In other words mogmse the input bimanual movement given 

that a set of predefined bimanual motements is provided

Static hand shape recognition, dynamic hand gesture recognition, occlusion detection, hand 

tracking and bimanual movement recognition are the mam parts of this problem

2 3 Approaches to H and Gesture Recognition

A general view of hand gesture recognition has been presented in [Pavlovic 1997J Hand 

gesture recognition is divided into two parts static hand shape analysis and dynamic gesture 

analysis

2 31 Static Shape Analysis

Static shape analysis has been widely addressed m the literature [Theodoridis 1999J as a 

pattern recognition problem Statistical pattern recognition and artificial neural networks are 

some well-known approaches In statistical pattern recognition, different techniques have 

been discussed for classification By classification we mean classifying a shape into one set of 

predefined classes Therefore, every shape must be repiesented by its features that distinguish 

it from the other shapes

By selecting a set o f features of the shape, a space is formed in which every axis is 

represented by one of the selected features This space is called a feature space In image 

analysis the features arc sometimes the pixel values In the feature space every shape has a 

particular position distinguishing it from the other shapes

• Nearest Neighbour

In order to classify an unknown shape, one can find the position o f the shape in the feature 

space Then by finding the nearest point in this space representing a predefined class, the 

unknown shape cm  be identified (see Figure 2 3) This is known is the N eirest Neighbour 

algorithm

13



2 3 Approaches to Hand Gesture Recognition
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The predefined classes are represented by a set ot known shapes, which is used tor training 

the system This set is also known as the training set

• Bayes’ Theorem

Another important method in statistical pattern recognition is Bayes5 decision theory In this 

theory, for a single feature a, the probability of x  being m the class CL is defined as

f(c,i (21)
' 1 P(x)  V ;

where

/

Mathematically, the variables arc

P(C t) aptiofi probability ot class Ct ,

P(x)  probability density for feature a,

P(x  | C{) class conditional probability density tor feature „\ in class Ct , l e the 

probability that feature v arises for objects known to be in class C; ,

P(C, | x) the apostenon probability of class C, when is observed

14



2 3 Approaches to Hand Gesture Recognition

In a real-world problem, the number ot features is usually more than one Bayes’ rule can be 

generalised to cover the case that feature space is a multidimensional space [Davies 1997]

Now the classification procedure is to compare the values of the probabilities P(C  | x) and 

to classify an object as class C, it

P(C, I x) > P(CJ I x) (22)

Bayes’ rule is the base of other lecognition techniques which will be explained in the next

chapters

• Cluster Analysis

As the data in the training set is located in the feature space, many dusters of data are found 

based on the similarities among the data In a set of data, those with the same features are to 

be identified as a single point in the feature space However, small variations in the features

make the points very close but separated Therefore, a set of data with almost the same

features forms a cluster of points in the feature space (sec Figure 2 4) The variation in the 

features are normally because ot noise or other sources ot variations like rotation and 

translation

bb b b  bb b

a a a 
a a a 

a a a

i V
d $

c
c c ( 

Cc c

Figuie 2 4 Clusieis m t two dim ensionil fe-itme spice

For an object with feature a in the space one can find the nearest cluster and classify * as that 

class Identifying the nearest centre ot gravity of each cluster, is one possible way of finding 

the nearest cluster assuming the clusters are roughly spherical

15



2 3 Approaches to Hand Gesture Recognition

• Principal Component Analysis

Principal Component Analysis (PCA) is usually used to reduce the dimensionality of data 

For example, in an image of 32 x 32 pixels there are 1024 pixels and every pixel represents a 

feature in a 1024 dimensional teature spacc Working in a 1024-dimensional space needs 

intensive computational power But, usually, a large number of features do not carry us etui 

intormation Therctore, selecting the features containing the most useful intormation is very 

important By using PCA, one can extract the features with useful information and eliminate 

the rest This technique involves finding the mean of a cluster o f points in teature space, and 

then finding the principal axes o f the cluster

First an axis is found that passes through the mean of data points and which gives the 

maximum 'variance when the data are projcctcd onto it Ih e n  the sccond axis with the same 

specifications is found in a direction normal to the first This proccss continues until N  

principal axes are found Ih e  N  principal axes torm the new feature space Mathematically, if 

a matrix ot observations (images) is given by

is the mean ot the observations, the covariance matrix ot the data can be calculated by

X = |x , , x , ,  ,x„}r

where x, is the t  image reshaped as an M\1  vector ot image pixels in the sequence and

Hx = E{x)

C,  = E { ( x - iuI ) ( x - / i r)7') (2 3)

We can estimate Cx by the following equations

(2 4)

(2 5)

where P  is the length of each vector x

16



2 3 Approaches to Hand Gesture Recognition

Ihe eigenvectors ot the covariance matrix C torm the new feature space called the 

eigenspace However, the number of eigenvalues and eigenvectors of the matrix C is the 

same as the number ot dimensions in the feature spacc One should select fewer eigcm ectors 

that represent the best features and the most valuable data The eigenvectors corresponding 

to the largest eigenvalues show the directions in which the data have the largest variations 

Therefore, a tew eigenvectors are selected and a lower dimensional feature space is formed

By projecting a data vector x t onto the feature spacc, we get

y, = A (x , - f i x ) (2 6)

where A is the matrix ot the selected eigenvectors and y, is a point m the coordinate system 

defined by the eigenvectors This point is the data vector x ( in a lower dimensional spacc 

that contains the most valuable information in x t

In order to reduce the dimensionality ot our images every image is reshaped to a 1024x1 

vector (see Figure 2 5) We call this vcctor x In order to form the covariance matrix many 

independent examples of x arc required The covariance matrix is calculated and the 

eigenvalues and eigenvectors ot the matrix are determined

32 x 32 image

1024 x 1 
image vector

Tigiue 2 5 Resli «ping \ squ n e  to n vecroi
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2 3 Approaches to Hand Gesture Recognition

By selecting a few eigenvectors corresponding to the largest eigenvalues a lower dimensional 

tcature space is formed The projection ot an image vector into this subspace is a point (see 

Figure 2 6)

Figuie 2 6 A thiee dimensional eigensp ice nnd a piojectcd un ige

By using PCA in a lower dimensional space and cluster analysis one can classity an unknown 

shape in a set of known clusters

The above mentioned techniques are mostly used for the purpose of static shape recognition 

But there are other methods like image cwss comlation “Cross-correlation is a standard 

method of estimating the degree to which two series are correlated” [Bourke 1996J Consider

two series xf and y, where i—O 1,2, ,N  1 The cross-correlation ra t delay d is defined as

where and are the means of the corresponding series It the value of t is calculated

tor all the delays d—0,1,2, N  1 it results in a cross-correlation series o f twice the length of 

the series X, and y t assuming they are the same length For example, for the two hand

shapes shown in Figure 2 7 the graphs ot energy level for the pixels ot these shapes are 

shown in Figure 2 8 These pictures are in 32x32 resolution and 256 grey level There tore, 

each picture has 1024 pixels The graph of the cross-correlation of these images is shown in 

Figure 2 9 It is clear that at a little before d -0  (2ero delay) the two series have the highest 

cross correlation, and they have the highest similarity
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2 3 Approaches to Hand Gesture Recognition
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fig iue  2 7 The two Vnnd shapes in 32\32 resolution
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2 3 Approaches to Hand Gesture Recognition

However, our experiments show that the cross-correlation technique is an extremely time 

consuming process, and we will not use it for pattern matching Many other recognition 

techniques have been addressed in the literature

An error-correcting encoding framework tor sohing multi-class pattern recognition problems 

has been addressed in [Erenshteyn 1999] Under tins framework they have developed an 

algorithm for code generation The algorithm allows generating codes of different lengths

A hierarchical static shape recognition technique has been introduced in [Wu 2002] This 

hierarchical approach works by using the idea of “divide-and-conquer” They divide up the 

data set into groups ot images, which are similar to each other This is done by deliberately 

blurring the images so that small differences between similar images will be eliminated Ihus 

a group of original images may become reduced to just one image, which represents die 

entire group So the total si^e o f the data set will be reduced For example, the images 

shown in Figure 2 10(a) are the sign a' in Irish Sign Language at irull resolution, then scaled to 

32x32 pixels and finally blurred The images of ligurc 2 10(b) are the sign 'eT at full 

resolution, scaled to 32x32 and then blurred

(b)

fig u te  2 10 B luum g un iges to make the hiei ircluc il d it ibase The 
images aie binned at different levels (liom  left to tight) so t in t  the 

lmal b inned un igcs look similai

By blurring the lmiges at a series of different levels and grouping the similar blurred shapes 

together a hierarchical database of shapes is made Then for an unknown hand shape it is 

blurred at the corresponding levels and classified The classification is done by recognising
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2 3 Approaches to Hand Gesture Recognition

that the blurred hand shape belong to which group of similar shapes at a level of blurring 

Therefore, instead of searching the whole database of hand shapes that contains thousands 

ot images they search the sets of similar shapes and rccognisc the most similar set By 

reducing the level ot blurring they step-by-step search the smaller sets o f shapes to recognise 

the hand shape in the final stage with zero level ot blurring lheretorc, a hand shape can be 

extracted from within the hierarchy containing thousands o f hand shapes in a short time

In [Eisenstein 2001] a clustering technique has been presented to detect hand signs They use 

K-means and adaptive clustering techniques to recognise static hand shapes using a smart 

glove with 22 sensors that pertain to the position ot different joints that constitute a hand 

I he results show that for 10 different hand shapes performed by 10 people between 55% to 

83% accuracy (varies from person to person) is obtained with the K-means algorithm While 

the K-means algorithm shows sensitivity to the input data and the order it is presented to the 

algorithm die adaptive algorithm is less sensitive with 66% to 11% accuracy Ihey  have also 

tested the Nearest Neighbour technique and achieved 81% to 88% accuracy Then they 

conclude that Nearest Neighbour proudcs superior performance when it is provided with a 

large training set size

An interesting model called the Point Distribution Model (PDM) has been introduced in 

[Cootes 1992] for building shape models In this method a shape is represented by a set ot 

labelled points (see Figure 2 11), m which variation in shape can be included in the model

6

0
Figme 2 11 Point model o l the boundiiy  oi i slnpe

However, tor different samples ot a shape the equivalent points must be aligned in the same 

way with respect to a set ot axes The required alignment is achieved by scaling, rotating and 

translating the shapes so that they correspond as closely as possible This is done by 

minimising a weighted sum o f squares of distances between the equivalent points on 

different shapes Ih ere  are other methods for automatic landmark identification [Hill 2000]
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2.3 Approaches to Hand Gesture Recognition

Others have improved the PDM by making non-linear generalisation either by polynomial 

regression [Sozou 1994] or multi-layer perceptron [Sozou 1995]. In [Heap 1997] the principal 

limitation o f PDM, non-specificity, has been considered, and a two-level hierarchy in shape 

space employed to improve efficiency.

Another hierarchical recognition architecture presented in [Heidemann 2000a] consists of an 

adaptive feature extraction based on Vector Quantization and local PCA. They first structure 

the input data by Vector Quantisation. Therefore, a set of reference vectors is extracted in 

this stage. Then, for each reference vector a locally valid Principal Component Analysis is 

performed. For classification of the features extracted by the local PCA an expert net o f the 

local linear map (LLM) type is attached to each reference vector. A neural network is used in 

this algorithm to classify features.

Classification and recognition of articulated and occluded objects have also been addressed in 

the literature. A hierarchical 3D object representation model [Hauck 1997] has been 

introduced in which recognition is done by first estimating the 3D pose o f the static 

component and afterwards determining the relative 3D pose o f the remaining components 

recursively. This model can cope with the problem o f self-occlusion.

A model-based statistical algorithm has been developed in [Ying 1999] to recognise occluded 

objects from noisy features. In this paper, two different statistical occlusion models, an 

independent prior model and a Markov Random Field prior model, are examined to measure 

their robustness in the presence of occlusion. The first model is based on the assumption 

that each feature in an object template can be occluded with a certain probability 

independent o f whether any other features are occluded. The second model is based on the 

assumption that it one feature is occluded the likelihood that the other nearby features are 

occluded should increase which shows a spatial correlation to the process o f occlusion. Their 

results show that the model with spatial correlation is more robust than the one without.

An interesting occlusion recognition algorithm based on a neural network model has been 

addressed in [Fukushima 2000]. The authors argue that in the presence o f occluding object, 

recognition of partially occluded object is easier (see Figure 2.12). When the occluding object 

is not visible, distinguishing which features are relevant to the original pattern and which are 

newly generated by the occlusion is hard. These irrelevant features will hinder a visual 

recognition system from recognising the occluded pattern correctly. A hierarchical neural
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2 3 Approaches to Hand Gesture Recognition

network has been presented to block the signals tor irrelevant disturbing features to reach 

higher stages ot the recognition system

I h

Figme 2 12 P u tem s p u tn llv  occluded b\ invisible md \isible 
in iskmg objects

A matching technique has been presented in [Edwards 1997] for interpretation of colour 

scenes containing occluded objects This algorithm uses an interactive, coarse-to-fine 

correlation-based method that uses hypothesised occlusion e\ents to modify the scene-to- 

template similarity measure at run-time An algorithm has been introduced in [Heidemann 

2000b] tor supervised learning the segmentation of partially occluded objects The algorithm 

works based on the classification ot object windows The object windows are smaller than 

the object size but large enough to e\aluate the structural objcct features and colour In every 

input window, features are extracted by local PCA and subsequently classified by a neural 

network

An unsupervised clustering technique has been presented [Yanez-Suarez 1999] tor 

identification of partially occluded objccts I he contour ot each objcct is modelled with an 

approximating polygon whose edges arc then projected into the Hough space (tor more 

information about Hough Space please reter to [Leavers 1992]) A structurally adaptive 

neural network generates clusters of collmear and/or parallel edges, which are used for 

identifying the partially occluded objccts within each polygonal approximation

Dealing with occlusion, also, has been addressed in stereo imaging [Intillc 1994 Jojic 1999] 

In stereo imaging, except tor thin objects with large matching disparity, all stereo scenes obey 

the ouienng const mini it object a is to the left ot object b in the left image then a will be to the 

lett o t b in the right image In [Intillc 1994] they ha\e developed a data structure called 

disparity spate image (DSI) which is used in a stereo algorithm that finds matches and 

occlusions simultaneously By incorporating highly-reliable matches or ground contrnl points 

(GCPs) the algorithm’s occlusion-cost sensitivity and algorithmic complexity is reduced 

significantly
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2 3 Approaches to Hand Gesture Recognition

Many gesture recognition algorithms use Principal Component Analysis (PCA) for feature 

extraction and representation A standard PC A technique discussed in Qolifte 1986] was 

explained in detail earlier A comparison among PCA and Linear Discriminant Analysis (LDA) 

has been presented in [Martinez 2001] Despite some reservations about the superiority ot 

algorithms based on LDA versus the algorithms based on PCA it has been shown that this is 

not always true Indeed, it has been demonstrated that PCA can outperform LDA when the 

training data set is small and, also, that PCA is less sensitive to different training data sets

linear and quadratic discriminant analysis ha\c been presented in [Friedman 1989| Non linear 

Component Analysis is a non-hnear form o f PCA [Scholkopt 1996, 1998] It generalises PCA to 

the case where the principal components in input space are not of interest, but rather in 

principal components of \ariables, or features, which are non-linearly related to the input 

\ariables

Another approach in Nonlinear PCA has been studied in [Moghaddam 1999] The Linear 

PCA manifold, Linear Independent Component Analysis (IGA) manifold and Non-linear 

Principal (NLPCA) manifolds have been compared in his paper Ihcy are employed to 

recognise a large set ot individual faces It has been shown that the PCA and ICA result in 

better recognition rate than the NLPCA The general difficulty ot computing non-linear 

manifolds and complexity of cost functions riddled with local minima can be the main 

reasons for the poor performance ot NLPCA

A probabilistic matching technique has been addressed in [Moghaddam 1998, 1999] for 

direct visual matching of faces in a database They dmde the variation of facial images into 

two classes intrapersonal, which are the variations in appearance ot the same individual, due 

to different expressions or lighting and extra personal which are the variations in appearance 

due to a difference m identity Then a probabilistic measure to measure the similarities based on 

a Bayesian analysis ot images differences in the mentioned classes has been introduced

Non-linear component analysis as a kernel eigenvalue problem |Scholkopf 1996] and 

statistical pattern analysis based on nonlinear Kernel PCA [Ruiz 2001] have been addressed 

as a new generation ot PCA m pattern recognition A kernel version of Mahalanobis distance 

and a kernel \ersion of minimum squared error (MSE) have also been introduced [Ruiz 

2001]
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2 3 Approaches to Hand Gesture Recognition

PCA has been used to find adaptive bases for multircsolution [Brennan 2000J An input 

image is decomposed into components, which are uncorrelated fhen a single layer network 

using Generalised blebbian Algorithm (GTLA) with a minor modification is used to implement 

the multiresolution PCA A method has been introduced [I yons 1999] for automatic 

classification ot facial images based on elastic Graph-Matching, a 2D Gabor wavelet 

representation, and LDA First, the images are transformed using a multiscale, 

multiresolution set of Gabor filters I hen two type of grids, rectangular and fiducial, are 

registered with the face The amplitude of the Gabor transform coefficients are sampled on 

the grid and combined into a single vector called labelled graph vector or LG vector Then 

they use PCA to reduce the dimensionality of input spacc for the ensemble of LG vectors 

from a training set ot images The LG-PCA vectors from the training set are then analysed 

using LDA in order to separate vectors into different clusters with individual facial attributes

A multi-view dynamic face model has been developed tor the shape and pose five facial texture 

patterns [Li 2001] Using a kernel technique to perform LDA in high-dimensional feature 

spacc a Kernel Discriminant Analysis is developed to extract the significant non-linear 

features which maximise the between-class variance and minimise the within class variance 

They have implemented this technique in the problems o f modelling faces across multi- 

views, extracting the non-linear discriminant features, and recognising moving faces in image 

sequences

Finally, a general review of statistical pattern recognition has been presented in [Jain 2000]

2 3 2 Dynamic Movement Tracking and Recognition

A dynamic gesture is a movement and change in the shape ot hand appearing in a sequence 

of images In dynamic gesture recognition a sequence of images is analysed to be classified as 

one of the known classes o f gestures In every image a hand is presented which is gradually 

moving and changing in the sequence

A prerequisite to recognition of hand and body movements is tracking In a movement 

where the hands are moving in order to do something or imply a meaning tracking the hands 

is crucial

A 3D model o f hand has been presented in [Davis 1999] tor tracking hand movements In 

this model, the hand is represented by five cylindrical models, which are fitted, to the third
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2 3 Approaches to Hand Gesture Recognition

phalangeal segments o f the fingers (see Figure 213) Six 3D-motion parameters for each 

model are calculated that correspond to the m o\cm ent ot the fingertips m the image plane 

Then the 3D nature of the hand motion is presented by establishing the trajectories of the 

moving models

In order to track the articulated objects in motion the EigenT?etching algorithm has been 

introduced in [Black 1996J Estimating the view and the transformation that takes this view 

into the image are the main problems in pattern matching in eigenspaces For a particular 

view ot an object they define a jitbspace constancy assumption between the eigenspace and the 

image Then they do a non-linear optimisation in order to reco\cr the view and 

transformation

Figure 2 13 3 D  c)Undueal model

furthermore, an EtgenPyianud is defined for the problems with large transformation between 

model and image

A simple Kalman Filter-based method [Kohler 1997] has been used for remote controlling 

devices in a \ery natural environment without the need of markers attached to the user’s 

body

Tracking a moving object by Kalman filtering has been widely addressed in the literature 

[Brown 1997 Chui 1999 Bowden 2000] An algorithm for tracking multiple objects in the 

presence of occluded motion has been addressed in [Dockstader 2000] They use dynamic 

frame differentiating to detect changes between the frames and motion Then by using a 

probabilistic mixing of coarse motion estimates, change detection information, and 

unobservable prediction the algorithm creates accurate trajectories ot moving objects

In stereo imaging an algorithm has been introduced |Jojic 1999] for tracking articulated 

structures in dense disparity maps They introduce a Bayesian network where tracking is
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2 3 Approaches to Hand Gesture Recognition

addressed as an inference problem in the image formation model This model is a statistical 

model where occlusion has been taken into account

Another tracking algorithm is called Conditional Density Propagation (CONDENSATION) 

[Tsard 1998a] CONDENSATION uses learned dynamical models, together with visual 

observation, to propagate a random set over time This random set represents the probability 

distribution of possible interpretations, which is used in factond sampling Ih e  results are 

robust but the process is time-consuming A smoothing filter has been dc\ eloped flsard 

1998b] for CONDENSATION It is a statistical tcchniquc o f conditioning the state 

distribution on both past and future measurements when tracking is complete Howe'ier, it 

has been shown in [Sherrah 2000] that in the case o f occlusion a Bayesian network has some 

advantages over CONDENSATION from the computationally expensive point of view

In [Gong 2002] an approach has been addressed to learning the semantics of scene context in 

order to interpret visual events without object segmentation and motion grouping They have 

used adaptive Gaussian Mixture models to separately model and recognise slow changes such 

as illumination cyclcs A Bayesian network has been presented to model the semantics of 

human body configuration Then the visual tracking problem has been addressed by 

reasoning about observations using a semantic-based inference model

Another model has been introduced in [McAllister 2002] tor hand tracking in smart desks 

and driving In this technique, a circle is fitted to palm and a line to the forearm in order to 

model each hand (see Figure 2 14) Therefore, a top-uew camera is needed to observe the 

hands from the correct angle Also, the palm shape should be so that the algorithm can fit a 

circle to that It has been shown that tor some shapes of palm the model fails to fit a circle

A tracking algorithm has been also proposed [Zicren 2002] tor tracking the hands of a user m 

a frontal camera view Ihcy use multiple cues5 incorporate tracing and prediction algorithms,

Figuie 2 14 A cucle and i line is htted to the h mds lo t tuck ing
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and apply probabilistic inference to determine the trajectories o f the hands even m the case 

of hand-face overlap, but not hand-hand overlap

Another approach to the tracking problem has been presented in [Stauffer 1999] Given that 

the tracking system is unaware of the identity of object the identity remains the same for the 

entire tracking sequence They use Linear Vector Quantisation (LVQ) to develop a code- 

book o f representations on the entire set of representations acquired by the tracker ihen 

they accumulate joint co-occurrence statistics over the code-book by treating the set of 

representations in each sequence as an equivalency multi-set Finally, they perform 

hierarchical classification using only the accumulated co-occurrence data

After tracking the hands in a sequence of images we should recognise the gestures Many 

different approaches to tins problem have been addressed in the literature [Pavlovic 1997] 

Gesture recognition via pose classification [Ng 2000] employes a Radial Basis Function 

(RBF) Neural Network to rccognisc a static hand pose Then the combined outputs from a 

set of recurrent neural networks (RNN) and Hidden Markov Model (HMM) chains have 

been used to recognise gestures from the temporal sequence of pose classifier outputs

In a spatio-temporal approach to the hand gesture recognition [Lin 1998], an RBF network 

and Dynamic Time Warping method are used to design a space invariant and time interval 

imariant system, which can distinguish between various spatio-temporal data representing 

hand gestures

A method based on a Hyper mtangnlar Composite Neural Network (I-IRCNN) has been 

presented [Su 1998], in which the HRCNN is trained to generate templates for basic hand 

shapes Then by computing accumulative similarities a hand gesture is classified

A technique has been developed [Campbell 199S] for representation of human body 

movements based on space cur\es in subspaces of a phase spate Using tins representation, 

they develop a system tor learning new body movements from ground truth data by 

searching for constraints which are in effect during the movement to be learned, and not m 

effect during other movements

Dynamic Time Warping and Hidden Markov Models (HMM) arc two techniques, which are 

used in speech (Jelinek 1997] and hand gesture recognition [Schlenzig 1994, Starner 1995a 

Huang 2000 Bunke 2001J
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In [Starner 1995a Starner 1995b] I-IMMs have been introduced tor the recognition of 

American Sign Language (ASI) They use colour gloves in order to track the hand Then by 

using Hidden Markov Models they recognise hand gestuies excluding finger spelling The 

same research group have tested their system [Starner 1996J using a wearable camera in a cap 

worn by the user and have shown that it results in a better recognition rate

Many other approaches have been made based on Hidden Markov Models A parametric 

HMM (PHMM) has been introduced in [Wilson 1999] for the recognition of gestures Their 

approach is to extend the standard HMM method ot gesture recognition by including a 

global parametric variation in the output probabilities ot the HMM Using a linear model of 

dependence they developed an expectation maximisation (EM) algorithm for training the 

parametric HMM A similar EM algorithm maximises the output likelihood of die PHMM 

for a given sequence during testing

In [Lee 1999], a threshold model based on HMM has been introduced m order to handle the 

non-gesture patterns in a hand motion Ih is  model calculates die threshold likelihood of an 

input pattern Then it approves or rejects the pattern as a gesture

A multi-Principal-Distribution-Model (PDM) has been presented in [Huang 2000] that uses a 

PDM model to track die hand shape The training hand shapes are divided into a number of 

similar groups, with each group trained for an individual PDM shape model Then the 

I-IMMs arc employed to determine model transition among these PDM shape models

An HMM-based method has been introduced in [Nam 1996] lor recognising the space-time 

hand movement patterns In this method, an HMM models the spatial variance as well as 

time variance in the hand mo\ements Then an HMM-based segmentation mediod has been 

introduced to deal with continuous connected hand gestures Since the dimensional 

complexity is high in a 3D space, a plane fitting method is used to reduce the dimensionality 

into 2D The 2D data are encoded as the input to the HMMs

Brand ct al [Brand 1997] have used a special structure of HMM called Coupled HMM for 

modelling and recognising two interactive temporal sequences like the two hands With a 

vocabulary ot 3 Lai Chi gestures performed by one person 94 2% recognition rate has been 

observed using a test set that includes one third of the examples of the training set
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Comparisons ot some HMM-based approaches to gesture recognition have been presented 

in [Morguet 1999]

Many other approaches have been made m the literature for gesture recognition A state- 

based technique for the summarisation and recognition of gestures has been presented in 

[Bohick 1995] In this method, a gesture is defined to be a sequence of states in a 

measurement or configuration space lhese states, tor a given gesture, are used to capture 

both the repeatability and \ariability c\idencts in a training set of example trajectories They 

ha\e developed techniques for computing a prototype trajectory of a group of trajectories for 

defining configuration states, and recognising gestures from an unsegmented, continuous 

stream of sensor data

A neural network model called modified CombNEl-11 has been used \\ amar 1999] to do 

temporal analysis and to be used in the large set o f human mo\cments recognition systems 

They present a feature extraction method based on morphological Principal Component 

Analysis that completely describes a hand gesture in a 22-dimensional time \arying vector 

lhcn by using a combination of die network and the feature extraction method they have 

developed a complete Japanese Kana hand alphabet recognition system

A multi-stage hand and face segmentation consists ot colour segmentation, temporal 

segmentation, and video objcct plane generation [Habili 2001] In colour segmentation the 

skin colour is modelled as a normal distribution for classifying the pixels of an image to be 

skin or non-skin In temporal segmentation they localise the moving object in the sequence 

of images I hen the results are analysed to yield a change detection mask

A fast gesture recognition algorithm detects the number of fingers m an image [MacLean 

2001] to recognise a gesture for teleconferencing applications Tins algorithm works with a 

stereo active visual system Another stereo imaging system for recognition of gestures in real 

time is based on 3D prediction of the hand pose [Islnbuchi 1993] In [McKenna 1998] 

gestures are modelled probabilistically as sequence o f events Then the events are matched to 

the visual input using probabilistic models estimated from the motion feature trajectories

A comparison between the trajectory-based and history-based representation tor recognition 

of gestures has been presented in [Morrison 2003] They compare these representations using 

Hidden Marko\ Models, moment features, and normalised template matching Relative 

advantages and disadvantages ot each method have been also presented
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Graph matching-based pattern recognition algorithms have been reviewed in [Bunke 2000] 

Graph matching and graph theory [Diestel 1997 Ivarpinski 1998] are the basis of current 

research in computer vision and artificial intelligence In [Shamaic 2001] a graph matching 

algorithm has been introduced to find the best match among a group o f gestures

Finally, a general reuew of recognising hand gestures, body motion, and face detection has 

been presented in [Pcntland 2000]

As there has not been much research on the particular problem of recognition ot bimanual 

moxements including occlusion we consider this problem as the main problem o f this thesis 

Since the bimanual movements form a large set o f movements we investigate this problem, 

its different aspects and introduce new models, techniques and algorithms Wc try to propose 

general solutions with the least restrictions Wc will compare some of the techniques during 

our in\ estigation and find the best way through them

Summary and Conclusion

In this chapter we presented the main problem o f this thesis A literature review of the 

problems, methods, models, and algorithms, which are directly or indirectly related to our 

recognition problem, was presented A wide spectrum of algorithms and methods from static 

shape recognition to dynamic gesture recognition were reviewed briefly We surveyed die 

advantages and disad\antages of some ot the very well-known techniques in temporal and 

spatial pattern recognition

Details of some o f the models and algorithms like Hidden \'iarko\ Models, Bayesian 

Networks, Kalman Filtering, Vector Quantization and Graph-Matching will be given in 

separate chapters in future
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C h a p t e r  3

HAND SHAPE RECOGNITION

Recognition of shapes without a particular analytical model is more difficult than the 

recognition o f regular geometrical shapes Geometrical shapes such as circles and ellipses 

obey well-known analytical descriptions ihese descriptions arc usually used in pattern 

recognition in order to recognise the geometrical shapes appearing in an image However, 

known analytical and mathematical models cannot describe natural shapes such as the hand 

shapes The problem becomes more difficult when we meet non-rigid objects There are 

many statistical pattern recognition techniques for the recognition of non-rigid objects, which 

we reviewed m the last chapter

In this chapter first we take a look at the basics of image formation and acquisition Then the 

recognition o f hand shapes is addressed using some statistical pattern recognition methods A 

new gesture recognition algorithm with a real-time application for communicating with 

computers with no physical contact is presented at the end o f the chapter

3 1 Im age Formation and Acquisition

General criteria for characterising an image acquisition system are illumination, focusing, 

sensing, and digitisation

311  Illumination

An object should be properly lighted so as to make it visible to a visual system like the human 

eye In machine vision, the first step is to light the object to make it detectable by the sensor 

In an image-capturing system a two-dimensional projection of a three-dimensional object is 

acquired A 2D image has two important attributes contrast and molution These attributes are 

used as a base for an action or for a decision and must be measurable

Contrast is the range of differences between the light and dark parts of an image |Zuech 

2000] I his value is measured between the principal object and the background
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Resolution is a distance measurement associated with the smallest detectable object fZuech 

2000] Based on the area that a \ision system is working on, the required resolution is 

obtained For example, for locating an object within an area of 1\1 inch, the system 

resolution must be less than I inch (sec Figure 3 1)

3 1 Image Formation and Acquisition

T 1 inch

'Object

1 inch

Tiguie 3 1 Lol iling an ob jeu  m the u e i ol 1x1 mcli

L tgbling is a dedicated source of illumination that is needed to get rid of other illumination 

sources which usually are the main source of enuronm ent light and the reflections from the 

objects in the environment Ihese sources of light can result in a complex pattern of light 

and affect the recognition of the principal object

lhe  main objectives of lighting are optimising the contrast (grey scale differences), 

normalising variances due to ambient conditions and simplifying image processing [Zuech 

2000J

Illumination Sensor

r ig m c 3  2 Lighting of 111 ob) ex. I
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3 1 Image Formation and Acquisition

3 1 2  Focusing and Image Formation

In an imaging system the points located in the object plane are projected into the image plane 

as image points where these points are to be sensed by a sensor Like a human eye a sensing 

device like camera has a lens that translates the object points to image points (see Figure 3 3)

Figuic 3 3 lu n g e  io m n lio n  using i thin lens

In this figure

f  focal length o f the lens

u distance between the object planes and the lens 

v distance between the image plane and the lens 

where

I  1 - 1
u V f

Focusing means changing the distance of the lens and the object plane, //, in order to equate 

the ^and the physical distance between the lens and the sensor’s surface The image is sharp 

in this case Otherwise the image is blurred because the image is formed eitfier in front o f or 

behind the sensor’s surface

3 1 3  Sensor

Modern camera sensors are made from Chaise Coupled Devices (CCD), which use light sensitive 

materials to convert light photons to electrical charge In a matrix array, thousands of light
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3 1 Image Formation and Acquisition

sensitive diodes are positioned accurately and shift registers transfer the charge from each 

pixel to form a video signal (see Figure 3 4)

CCD Cells

Figiue 'S 4 A CCD sensoi system

3 1 4  Sampling

lemporal sampling is a function o f the integration time period o f the sensor In modern 

cameras, this integration period can be varied, and since it effectively determines the total 

number of photons per cell it can be used as an electronic shutter

3 1 5  Digitisation

In order to generate data suitable for computer analysis the video signal of the camera must 

first be sampled It normally needs a fast analogue-to-digital converter Selecting an 

appropriate sampling rate is related to the resolution The video signals are sampled both 

spatially and in amplitude Since most imaging devices generate a video signal in which the 

pixels are extracted sequentially, by sampling the signal at equally-spaced, discrete moments 

in time, spatial sampling can be achieved At these discrete moments the amplitude o f the 

signal is measured

3 2 Hand Im age

lo  capture an image of a hand, we used a CCD camera model jAi CV-M40 placed at about 

2 5 meters from the subject’s hand The data sheet o f this camera is presented in Appendix 

A I his monochrome camera is able to capture up to 233 partial frames per second We set 

the camera to work in 120 fps mode Since a hand gesture normally is performed in a traction

35



3 2 Hand Image

of a second, a usual serial webcam working in S tps cannot provide enough information for 

real-time tracking and occlusion detection Also, since the training of the algorithms of 

gesture recognition require large amount of information a fast camera can provide this 

information in real-time Howe^ver, given that the camera is working fast we will show that 

the processing times required by the algorithms do not allow the system to work faster than a 

regular 30 frames per second camera

Figme 3 5 A Innd  mi igc

An image of a hand (see Figure 3 5) is processed in order to extract die hand from the 

background (see Figure 3 6) using the grey-level detection A blob analysis algorithm called 

Giaufuv [Pitas 1993] is used to search an image and find the connected regions with the same 

grey values as the hands Ih e  algorithm scans an image trom lett to right, top to bottom to 

hnd the pixels of connected regions with values belonging to the range o f the hand’s grey 

scale For the first pixel found in that range it searches around the pixel to find other pixels 

Therefore, by finding all the pixels belonging to a connected region the hand is extracted

Figmc 3 6 Hand cx tnc tion  by pixel git^ level detection

In tins thesis we are, specifically, going to deal with rotation and changes in the hand shapes 

as well as the movement of the hand Other research projects have already dealt with the 

change in the angle and position of arm and hand in the room frame [Starner 1995a] But
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3 2 Hand Image

they ha\c totally ignored changes in the fingers and shape o f hand, which is used tor hand 

gestures, e g finger spelling in sign languages

In order to analyse the extracted shape we have to change the format ot the image to a 

standard constant tormat A 32\32 image format was selected and all the hand shapes are 

mapped onto tins format A scaling algorithm is used tor mapping process as explained in the 

next section

3 21 Scaling

In this method first a rectangle around the hand is constructed (see Figure 3 7) Then the 

content of the rectangle, the hand, is mapped onto a big blank square in which the centre ot 

the rectangle is positioned at the centre of the square (see Figure 3 8)

Figme 3 7 A icct ingle aionnd llic hand is consideied 111 which 
the \  nndj' paiam eleis aie the cooidm ates on the hoLizontal and 
\eitical axes o f  image plane lepiesentm g the leftmost, ughtm ost 

top md bottom  o f  the hand's blob 111 the image

Figuic 3 8 M apping an extiacted hand onto \ blank squ ue so that 
(.he centre oi the îect ingle is positioned on the cenuc  o f  the bl ink 

s(jtnie
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3 2 Hand Image

Ihc size of this square, which is a power of 2, is chosen so that the biggest hand shape (the 

hand shape that all the fingers arc open showing the number fnc) is smaller than that This 

size is a parameter that determines the scale factor of final shape in a 32\32 image I hen the 

big square is diuded to 32\32 squares Finall) each small square is mapped to a point in a 

32\32 trame (sec Figure 3 9)

Calculating the mean value o f all the pixels in a small square does this mapping process 

Mathematically, first the \1 ,  \ 2 ,  \  1, and \ 2  arc extracted (see Figure 3 7) Ih cn  the size ot 

big square is selected to be,

5 =aT(max(X2 -Xl ,K2- n ) )  (3 1)

where operator T  can be defined as

T {a) the hrst power of 2 which is greater than or equal to a, and CCe  N  is the 

scaling factor

I lowe\er, 1 must be constant tor all the shapes \n  estimation ot the biggest possible hand 

shape can determine "1 lhe big square is divided by 32 so that every small square has a si/c 

o f j by j, where

V~ 3 2

bor every small square in the area of ( X , X  + s — l)and (VF,H / + A — 1) the mean value is 

calculated as,
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3 2 Hand Image

J V-M-l X+A-l

^  =  (3 2)
>3 z =x

where e is the energy level or the pixel \alue at the position % and I//

Finally, one can normalise the pixel values to be between zero and one For example, if the 

imaging system capture pixels within the range of 0 and 255 grey-le\el, all the \alues can be 

divided by 255 Although, there are other scaling methods, this simple fast method suffices 

our needs

3 2 2 Static Hand Shape Recognition

Now, every image has 32x32 (=1024) pixels that constitute a 1024-dimensional feature space 

To reduce the dimensionality of the feature space we use Principal Component Analysis 

(PC A) explained in the previous chapter By using PC A a new feature space called an 

eigempace is formed where the projection of an image to this space is a point Due to the 

rotation of hand in the images and the presence of noise different examples of a shape form 

a cluster o f points in the eigcnspace (see Figure 3 10) For a number of different hand shapes 

all the examples of all the shapes can be employed to make a common eigcnspace lhe 

projection of examples into this common subspace forms the clusters, each of which 

associated with a hand shape (see Figure 3 11)

Figmc 3 10 Clusici o f  points in i '*> dimension il ugcnsp i l l  foi i 
h md shape
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3 2 Hand Image

i
Figuie 3 11 Clustets lepiesentm g djffeient h in d  slnpes in the 

ugenspacc

For a gn cn hand shape, one can project it into this common space by 

y = a ' x

where A is the matrix ot selected cigemcctors and x is the image \ector of the shape I his 

gi\es a point in the subspace By using cluster analysis and nearest neighbour methods, the 

nearest cluster to the gi\en hand shape can be identified (see Figure 3 12)

Tigme 3 12 The p io jtc u d  m nge is u kn lifiu l is iht third known 
slnpe  b) finding tilt n euest cluster
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3 2 Hand Image

We de\ eloped an algorithm based on this method ot static hand shape recognition By this 

algorithm wc simulate all the functions of a mouse pointer in an Mb Windows environment 

This enables us to use hand gestures to do regular mouse tasks like, clicking, moung, cutting, 

pasting, resizing, etc

3 3 A H um an Computer Natural Interface

In order to interact with a computer without any physical contact we have developed a 

human computer natural interface 1 his interface is based on an algorithm that controls the 

mouse cursor, and controls the computer just by hand gestures

A mouse system has a moving pointer on screen and two buttons Ih e  left button is 

normally used for selecting and opening icons and the right button has different functions 

dehned in every program For controlling the mouse pointer a camera captures the hand 

gestures of a user By moving the hand in every 4 directions on a plane the mouse pointer 

moves And by changing the shape ot hand the two buttons ot the mouse are simulated For 

this purpose three hand shapes were defined as in Figure 313

For each shape we captured 350 to 450 examples to form the training set, and by using the 

algorithm described previously three clusters in the eigenspace are formed In the training set 

some rotations, tor every shape are included Ih e  three-dimensional eigenspace and the 

clusters arc shown in Figure 3 14

A  move B left click C  right click

Figiue 3 13 Iliiee Innd sh ipes used 111 (lie mouse com tolling 
system
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3 3 A Human Computer Natural Interface

I iguie 3 14 The clusteis o f  the thiee hand shapes m the 
cigcnspacc

In the recognition phase by projecting an image into this eigenspacc the hand shape is 

identified \  state-based model is constructed tor the mouse functions 1 his model contains 

four states and connecting edges (see Figure 3 IS)

I he camera captures the hand shape continuously Different cases ma) happen in e\cr) state,

State 1 (default) In this state the hand is in shape A  B) m oung the hand the 

mouse pointer mo\es o \er the screen While we arc in State 1 three eases may 

happen

Case 1 (default) It the hand shape is A  we remain in State 1, and the system 

just responds to the hand movements

Case 2 It the hand shape becomes B it jumps to State 2 through edge E I2 

1 his edge is defined as pressing the left button on mouse 

Case 3 It the hand shape becomes (  it jumps to State 3 through edge h n 

1 his edge is defined as pressing the right button on mouse 

State 2 In this stite hand is in shape B Again three cases ma^ happen

Case 1 It the hand shipe becomes A  it jumps to State 1 through edge 1 21 

I his edge is defined as releasing the left button

Case 2 (default) If the hand shape is B we remain in state 2, and the system 

just responds to the movements

Case 3 If the shape becomes C it jumps to state 4 through edge K 4 1 his 

edge is defined as pressing the ughf button on mouse while holding the left 

button I his is a proper choice Because during dunging the hand from
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3 3 A Human Computer Natural Interface

shape A  to shape C it may pass from near the shape B Therefore, the system 

first goes to state 2, and then moves to state 3

State 3 In this state hand is in shape C

Case 1 If the shape becomes A  it jumps to state 1 through edge E 31 1 his 

edge is defined as releasing the right button

Case 2 It the shape becomes B it jumps to state 2 through edge E32 This 

edge is defined as releasing the right button and pressing the left button 

Case 3 (default) It the hand shape is C \vc remain in state 3, and the system 

just responds to the hand movements 

State 4 In this state hand is in shape C

Case 1 It the shape becomes A  or B it jumps to state 1 through edge II41 

This edge is defined as releasing the right button

Case 2 (default) If the shape is C  we remain in state 4, and the system just 

responds to the hand movements
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3 3 A Human Computer Natural Interface

In order to keep the movement ot mouse pointer smooth, the movement ot the hand is 

processed in parallel with the shape recognition Choosing a point on the hand rectangle, 

which is invariant to a change in the hand shape, is important Since wc have used the point 

and thumb fingers for the different shapes, the corner of the rectangle opposite to the head 

of the point finger is used The position of this point determines the position ot the mouse 

pointer on screen 1 here tore, by moving the hand on a plane the mouse pointer moves But 

changing the shape o f hand for pressing the buttons will not affcct the position of the mouse 

pointer (see Figure 3 16)

We implemented the above algorithm as a real-time interface lh e  algorithm responded in a 

high level o f performance Using this application the user is able to interact with the 

computer with the hand gestures The intertace is general so that the hand gestures are used 

to communicate with c\cry program on the computer It translates the hand gestures to the 

functions detined in e\ery application for the mouse A screen shot o f the program is 

presented in Figure 3 17

figm e 3 16 M owng the ln n d  moves the mouse pomtei on scieen

Summary and Conclusion

In this chapter the basics o f image formation and acquisition systems were presented We 

explained the illumination, the visual sensors and the way diat images are tormcd on the 

sensors We also described the statistical pattern recognition techniques for hand shape 

extraction and scaling Then dimensionality reduction was presented in which the technique 

of Principal Component Analysis is used By using the mediods ot clustering and nearest 

neighbour wc classified the hand shapes and recognised a static hand shape

44



3 3 A Human Computer Natural Interface
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Figme ^17  screen shot ot the gestuie leeogm tion ipplic Uiou 
lo i mouse contio l

An Algorithm was introduced in order to make a human computer natural interface In this 

interlace the functions of a mouse in a Graphical User Interface is simulated by the hand 

gestures Using the statistical pattern recognition tcchniqucs we recognise the hand shapes 

and detect the changcs A state machine was introduced m which the hand gestutes are 

mapped onto the mouse functions We developed the interface as a real-time application and 

the ability of the interface to communicate with c\cry application on the computer was 

demonstrated As a future work we will do some usability testing by different users
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C h a p t e r  4

DYNAMIC HAND GESTURES

A dynamic gesture is a movement of the hand in order to show something or imply a 

meaning A few gestures from British Sign Language are shown in Figure 4 1 These gestures, 

representing numbers, involve hand movements

Using machine vision techniques a dynamic gesture is represented by a sequence of images 

In tins chapter we discuss the recognition ot a dynamic gesture appearing in a sequence of 

images taken by a CCD camera

■  Twelve ■ Thirteen I Twenty ■  Thiny I One hundred 1 Thousand

Tigiue 4 1 The hand movem ents to show the numbers in British 
Sign L m gm ge (source A Z Denfblmduess w tbsite it 

w\vw deifblm d com /signs html)

A dynamic gesture can be ot many types It can be a movement or rotation of the hand or a 

change in the hand shape (see Figure 4 2 (a)) In all cases the projection ot the image 

sequence in the teaturc space is a trajectory (see Figure 4 2 (h)) As in Chapters 2 and 3, the 

feature spaces are the cigcnspaces formed by the eigenvectors ot the covariance matrix of the 

images using Principal Component Analysis A trajectory in the eigenspace is a set of points 

each ot which is the projection ot an image (from the image sequence containing the hand 

gesture) into the eigenspace

In the next section we study the trajectories of gestures m the feature spaces An 

unsupervised clustering technique is presented for clustering the trajectories of the gestures 

We use this technique in the following sections to make HyperClanes of the gestures each of 

which includes a set ot multidimensional gaussian distributions A new spatio-temporal
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4 1 In Feature Space

gesture matching algorithm is introduced that uses the HyperCIasses to calculate the 

probability that a given unknown gesture matches one ot the gestures in the vocabulary This 

algorithm is based on a Graph-Matching technique We present experimental results at the 

end of the chapter and will show that the presented algorithm works \ery well in recognising 

the dynamic hand gestures

■0 6 -02

(b)

Tiguie 4 2 (i) Different ln n d  gestures ippc m ug m the sequences 
oi uinges (b) Lhe li tjectou oi i  gestme m ihe feauue space

4 1 In Feature Space

In order to reduce the dimensionality of data and reduce noise we use the trajectories ot 

gestures in the cigenspaces For this purpose, first an cigcnspace1 for a gesture must be 

established Performing a gesture several times and capturing (at least 1024) images provides 

the required data tor constructing the (1024x1024) covariance matrix and calculating the 

eigenvalues Another advantage o f capturing many samples is the involvement of variations 

By performing a gesture several times variations m the hand shapes and movements arc 

recorded in the sequences This helps us to have a better view of the gesture and its 

variations

1 As we will see in Section 4 4 b  iscd on an experiment we construct in eigenspace with 7 dimensions
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4 1 In Feature Space

By constructing the cigenspacc and projecting the entire image sequences of the gesture into 

it, the manifold2 ot the gesture is tormcd (sec Figure 4 3) I he mamtold has many points, 

each of which is related to an image Projection o f man) examples ot a gesture in the feature 

space makes a large number ot points Working with a large number o f points is usually time 

consuming Ihercfore, we need a technique to reduce the number ot points m a mamtold

1500 >

I iguit 4 3 llic  m im io ld  ot i gcstuie m the eigensp ice I wo 
samples of a gcstuie p io jtc ted  m the eigenspace show \ 'im tions in 

lhe ti ijt clones

We can approximate a manifold by a small number ot points each ot which represents a 

group ot the original points around it I laving a mamtold with a small number ot points 

needs less memory space and makes the processing faster, while the main attributes of the 

original manifold arc presen cd

Since we do not have any prior information about grouping the points in a manifold wc use 

in unsupcr\ised  clustering technique cillcd Vcctor Q u  intis itton for clustering the d ita 

points

4 2 Vector Quantisation

\  ector Quantization (VQ) is a loss) data compression method It approximates the data by a 

method similar to rounding-oft or the nearest integer \  one-dimensional \  Q is shown in 

Figure 4 4

We ust the wotd ünjecroi} foi die tnjtctorv o f i gtstiite in (he ft mue sp ict md du woid niiniiold foi the set o f  
tiajtctoues ot ill the c \  unples ol i gcstuie in the It mite sp ict
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4 2 Vector Quantisation

 1 0  1 <8> 1 0  1 0  1------
- 4 - 3 - 2 - 1 0  1 2  3 4

Figuic 4 4 A one dimension il icpiesent Uiou oi Vector 
Quantization

In this figure, e\ery number less than -2  is approximated by -3  Every number between -2  

and 0 and between 0 and 2 is approximated by —1 and 1 respectively Finally, all the numbers 

greater than 2 are approximated by 3

An example of a two-dimensional VQ is shown in Figure 4 5

Tigme 4 5 A two dimensional Vectoi Quantization

In a two-dimensional VQ every point with two coordinates tailing in a particular region is 

approximated by a star associated with that region In Figure 4 5 there are 16 regions and 16 

stars each o f which can be uniquely represented by 4-bits Thereto re, a large number ot 

points in this 2-dimensional space can be approximated by 16 points These points (stars in 

the hgure) arc called codevectors, and the regions defined are called encoding regions The 

set ot all code\ectors is called a codebook

Ihc Vector Quantisation problem can be stated as
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4 2 Vector Quantisation

“Given a set of data and the number ot required eodevectors, find a codebook 

and a partition, which result in the smallest average distortion ”

First we will give a definition ot distortion In lossy data compression, it suffices for the 

decompressed data to ha\e a reasonably close approximation o f the original data A 

distortion measure is a mathematical entity, which specifies how close the approximation is 

For an original data a and its approximation v’, d { x , x )  denotes the amount ot distortion 

between l a n d * ’ where ¿ /(a ,a ')> 0

A squared-error onc-dimcnsional distortion measure is defined as

cl (a, a )  = ( v - x ’)2 (4 1)

In a training set-based Vector Quantization a training set of M vectors is given by 

7t = {a], i 2, , \ m } This training set is assumed to be sufficiently large so that all the

statistical properties ot the source o f data are captured

We assume that the source vectors are ^-dimensional

, m -  1,2, ,Af (4 2)

Let N  be the number ot codevectors and C = {ct , c2, , cN } represents the codebook Each

codc\ ector is ¿-dimensional

» n = 1,2, (43)

Let be the encoding region associated with the codevector c„ and P = {S\,$2, ,5^}

denotes the partition ot the space If  the source vector x,„ is in the encoding region j„, then

its approximation (denoted by Q(xm) ) is

x« =

i

*»i2

X»,k
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4 2 Vector Quantisation

Q ( x J  = C„ (4 4)

The a\erage distortion is given by

D E l k ,  - Q ( x j | | 2 (4 5)

where Ik  -Q (x „ ,) | is the Euclidean distance between x,„ and Q(Xm) defined as

||d|| = + d 2 + + d l  where d = \dx d2 dk ]r (4 6)

Now, we find C and P such that Dai& is minimised The following two criteria must be 

satisfied if the C and P are a solution

1 Nearest Neighbour condition

In the first condition, sn must contain all vectors that are closer to c„ than any other 

codevector Ih e  second condition says that the codevector c„ should be average ot all the 

vectors in the encoding region sn

ih e  Linde, Buzo, Gray (LBG) Vector Quantization algorithm []_jnde 1980] is an iterative 

algorithm, which sokes the above two optimality criteria The algorithm needs an initial 

codebook C 0) which is obtained by a splitting method In this method first an initial 

codevector is found as the average ot the entire data in the training set Then it is split into 

two Ih e  algorithm continues with these two codevectors as the initial codebook Ihe final 

two codcvcctors are split into four and the process is repeated until the required number of 

code\ectors is obtained A mathematical description of the algorithms is presented in 

Appendix B

v„={x | |x - c „ | |2 < | x - c „  ||2 , « '=1 ,2 , , jV} (4 7)

2 Centroid condition

n = 1,2, ,N (4 8)
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4 2 Vector Quantisation

By using Vector Quantisation we cluster the manitolds of the gestures in die teature space 

(eigenspace) Each cluster is represented by a codc\ ector The set o f code vectors of a gesture 

in the feature space represents the spatio-temporal variations ot the hand gestures Then the 

manitolds arc approximated by the extracted sets ot codevectors lhese code\ectors are 

represented as small solid circles in Figure 4 6

By using these codevectors we introduce a new gaussian Graph-Matching algorithm for the 

recognition of dynamic hand gestures

Figme 4 6 A m m ilold (the cloud) ot i gesiutc in the c igcnspicc 
ind Lhe e \lt u.ted codcvcuors (smill solid cucles)
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4 3 A Spatio-temporal Pattern Matching Algorithm

4 3 A Spatio-temporal Pattern M atching Algorithm for Recognition o f 

Dynam ic H and Gestures

In gesture recognition the problem is to find a gesture in a database that best matches a given 

gesture Different techniques such as neural networks [Su 1998 Lin 1998], position-based 

recognition [Ng 2000], and well-known Hidden Markov Models (Starner 1995a, Starner 

1995b Lee 1999 Nam 1996 Wilson 1999] have been proposed in the literature tor 

modelling m d  recognising hand gestures In [Bunke 2000], however, it has been stated that in 

computer vision and statistical pattern recognition there are a number of applications of graph 

mat thing that deserve attention

We introduce an algorithm based on graph matching tor the recognition of dynamic gestures 

In this algorithm we construct the multidimensional gaussian distributions representing the 

\ariations ot the gestures Then a gi\en gesture is matched with the graphs representing these 

distributions in the cigcnspaces In Chapter 6, we will compare the proposed algorithm with 

the widely used Hidden Markov Models m recognising a database ot gestures

4 31 Constructing the Feature Space and the HyperClasses

For each gesture an eigenspace is formed using all the examples o f the gesture We establish 

as many eigenspaces as individual gestures By projecting the examples of each gesture into 

its eigenspace a mam told is tormed We call this the main manifold

Three main manifolds in the associated eigenspaces are shown in Figure 4 7 Each manifold 

represents the spatial and temporal variations ot a gesture We divide each manifold into a set 

ot classes with multidimensional gaussian distributions We call the whole set of classes o f a 

main manifold a HyperClasi

1 herefore, every gesture is represented by a temporal sequence of spatially distributed classes 

An illustration ot a HyperClass with 2-dimensional gaussian distributions is shown in bigure 
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4 3 A Spatio-temporal Pattern Matching Algorithm

Flgme 4 7 Tile m tin im infolds o t tlnee gestures in then three 
dimensioni! eigcnsp ices

Figuie 4 8 E \e iv  m nufo ld  m the eigensp ice is icpresented by i 
sequence o f cl tsscs each o f  which is described by » multi 

dim ensionil g iu ssn n  distribution

hach of- the classes in a HyperClass represents a group o f points in tine eigenspace along the 

trajectory of the mam manifold of the gesture Io  create these classes we must cluster each 

manifold in order to classify the data points belonging to each distribution We cluster the 

main manifolds into an equal number ot clusters m all the eigenspaces

Since we have no prior information about the clustering ot points on each manifold we 

should use an unsupenised clustering technique Iherefore, the Vector Quantisation 

algorithm generates the clusters Ihe clusters are approximated by the multidimensional

54



4 3 A Spatio-temporal Pattern Matching Algorithm

gaussian distributions A HyperClass must be trained with data points ot the main manifold 

Each gaussian distribution in a 1 lyperClass is fitted to the set ot data points extracted in each 

cluster The IiyperClass of each eigenspace is treated as a graph Individual distributions are 

the vertices ot this graph (see Figure 4 9) We call them the main graph of each eigenspace

In order to recognise an input gesture it is projected into all the eigenspaccs A new trajectory 

is formed in each eigenspace lhese trajectories should be approximated by graphs

Due to the tact that the Vector Quantization algorithm is a time consuming process we 

cannot use it in the recognition phase

Go
g z O

g. O
300 300

Hgm e 4 9 Hie g n p h  of 'i H ypetC hss

I he trajectory ot the input gesture is divided into an equal number ot clusters just based on 

the number of data points in the trajectory For every cluster the centre ot gravity is 

calculated These central points are treated as the \ertices ot the new graphs (see Figure 4 10) 

Ihus in each eigenspace two graphs are present I he main graph and the graph o f the input 

gesture We should hnd a match between the graphs in every eigenspace lhe best match 

represents the recognised gesture
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Figuie 4 10 The tnjectorv of an input gestuie (dots) is divided 
into the clusteis The centte ol gi-nity o f the clusteis toini the 

gnph  of the input gestuie (tinugles)

4 3 2 Bipartite Graph Matching

“ lhe bipartite graph matching problem is to find a set ot pairwise disjoint edges ot a bipartite 

graph based on a special characteristic of the edges” [Shamaie 2001] Due to NP- 

Completeness ot the problem, finding the optimal solution requires exponential time 

However, a suboptimal or approximative solution can be satistactory in some cases with 

polynomial processing time [Bunke 2000J I he algorithm we introduce is based on the 

labelled edges o f a complete bipartite graph

4 3 3 The Graphs

Let the main graph Gt o f the t* eigenspace be the set o f vertices Vt and edges E , ,

G ,= (V „ E ,)  (4 9)

In these graphs no edge connects any pair of nodes (vertices) Ihus, E t = 0  The graph of 

die input gesture in each eigenspace is also represented by a graph G 'n G \ = (V \ ,E \  ) in 

which E \ = 0
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For the two graphs of G, and Gt in a subspace (eigenspace) we find a subgraph H l First, 

by using the graphs’ vertices a complete bipartite graph is constructed (see Figure 411)

4 3 A Spatio-temporal Pattern Matching Algorithm

4 3 4 Matching the Graphs

fig iu e  4 11 A. complete b ipn tite  g n p li

The edges ot this graph are weighted by the piobability o f each vertex ot the graph G, in 

each class in the ITyperClass,

g'lkeG \ (4 10)

where i is the eigenspace index, y stands lor the J h class and k  stands for the k th vertex m the 

graph G, The probability o f a vertex g in a class o f data C, is given by the Mahalanobis 

distance and the gaussian probability density tunction,

m i

n g |c ' )= n ^

jY
2a:i j

(411)
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4 3 A Spatio-temporal Pattern Matching Algorithm

where m is the number o f dimensions of the eigenspace, 0“, } stands tor the standard

deviation ot the distribution on the y h principal axis ot the / h class, }JLl is the mean ot the

distribution on the j h principal axis of the / h class and g stands for the component ot point

g projected on the J h principal axis ot the distribution The parameters of the probability 

density tunctions ot each distribution are extracted by using Principal Component Analysis

In the second set ot vertices ot the bipartite graph, the set belonging to the graph o f the 

input gesture, for every vertex we find the incident edge with highest probability and 

eliminate the other edges At the end of this stage the vertices ot the first set, die set 

belonging to the main graph of the eigenspace, with no incident edge are removed (see 

Figure 412)

Tiguit 4 12 The edges with highest piob'ibihties ue lound The 
\eitices with no incident edge ilc removed

We get two sets of nodes (vertices) Vt and T; where T, C  Vl and £2, C G, Tt is a subset 

o f Vt because the number o f vertices ot the first set, Gt at the end ot this stage is smaller 

than or equal to the order of Gt 3 As can be seen in Figure 4 12, a vertex can be adjacent 

with many vertices in graph G \

In the second stage in the first set of vertices, for every vertex we find the incident edge with 

highest probability (the probabilities that the vertices are labelled with in the first stage) At

3 The oidet oi i gi ipli G is deimed is the numbei o f  vertices m the g n p h  V —
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the end of this stage the vertices of G \ with no incident edge are removed Therefore, a set 

ot nodes r f which is a subset of sccond graph (T 'f C V \ )  and Q \ C G \ is obtained The 

remainder is a bipartite graph, which is a subgraph of tine bipartite graph at the beginning 

The orders o f £ ll and Q \ are equal at the end

The algorithm reduces the number ot nodes (vertices) while it is finding the match the 

decision is made based on the order ot the remained bipartite graph The graph of the 

eigenspace with highest order is chosen as die best match In other word, we recognise the 

input gesture as tine gesture in the vocabulary with the best matched graph (the bipartite 

graph with highest order)

Ih e  algorithm is summarised as follow

4 3 5 The Complete Algorithm of Gaussian Graph-Matching

In the following algorithm we refer to v( and et as a vertex and edge of a graph respectively 

1 Training P hase

a Several examples o f a gesture are captured 

b Step a is repeated tor all gestures (N  gestures) in the vocabulary

c By using PCA a subspace is made for each gesture and each gesture is projected into its 

own eigenspace to form the main manifold,

t = 1,2, ,7V

where

A ' is the orthogonal matrix whose column is the k th eigenvector of covariance

matrix o f a sequence of images represented as atJ and % is tine projection o f image 

sequence at into its subspacc 

d Ihe main manifold ot each eigenspace is clustered by the Vector Quantization algorithm, 

the gauss lan distributions arc trained and tine main graph is extracted

G, = {Vl , E t ) , = 1,2, ,/V

where

K = k - v,2- ’v„„}

v((, = the k th codevector
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4 3 A Spatio-temporal Pattern Matching Algorithm

2 Recognition Phjse

a A gesture b is captured 

b b is projected into all the subspaces

* ,= A '*  i = l,2, ,7V

wheie 

tx is the projection of the image sequence b in the subspace

c The graphs of gesture />are constructed in every subspace,

g ;  = ( v ,u ; )  /= i ,2 ,  , n

d The complete bipartite graph is formed with the two sets of vertices

K, = (V ,X )  i = 1,2, ,N

where

v;=v,^v;
and eveiy edge in Enabled with the probabilities

e The subgraph of the complete bipartite graph is tound,

e 1 Starting from a set of vertices V ' i the edge with the largest label incident with a

vertex of the set V[ is tound

e 2 The edge with the largest label is kept and the other incident edges tor each

vertex are removed

e 3 Step e 2 is repeated for all the vertices in the set V '

e 4 The vertices ot the set V, with no incident edge are removed and the subset

( r , c v , )  is obtained

e 5 Steps e 1 to e 4 are repeated with the set o f vertices Vt o t the mam manifold,

and the subset I",' (F  C V ( ) is obtained The results are the matched bipartite

subgraph H ti tor each subspacc 

f the matched subgraph H l with the largest number of vertices, between the matched

subgraphs ot all the subspaces, represents the most similar gesture m the training set to 

the given gesture

The following likelihood is defined,
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4 3 A Spatio-temporal Pattern Matching Algorithm

n.(m_ + 1) ,
L , = - ± - t ------ (4 122  y  v )

where Y  is the number of vertices o f every main graph (usually the main graphs have the 

same number of vertices,) n{ denotes the number of vertices of the bipartite subgraph after

the matching process, and mt is the mean ot the probabilities of the connected vertices in the

final subgraph This likelihood gi\es us a better measurement to find the best match because 

not only the number of matched vertices but also the average probability of the \crtices is 

involved The largest likelihood can be selected as the best match

4 4 Experimental Results

Since only a tew eigenvectors and principal components carry actual data and the rest are 

noisy we should choose tine non-noisy principal components corresponding to the largest 

eigenvalues ot the covariance matrix

In order to choose a reasonable number ot eigenvectors to torm the eigenspaces we did an 

experiment with 10 gestures and a simplified version of the Graph-Matching algorithm In 

this version o f the algorithm the distributions were replaced by the centre of gravity o f each 

cluster of points and the probabilities by the Euclidean distances on the edges of the bipartite 

graph A tew frames of the 10 gestures are shown m Figure 4 13 Given that the examples ot 

the gestures had very little variations (spatially and temporally) the recognition rate ot the 

simplified algorithm is plotted in Figure 4 14 I his figure shows tine recognition rate of the 

simplified algorithm versus the number ot principal components In other words, different 

numbers ot dimensions in the eigenspaces results in different recognition rates Initially as the 

number ot principal components increases better recognition rates arc observed The best 

recognition rate was obtained with 7 principal components By increasing the number of 

principal components further the recognition rate tails Ih is  shows that from the seventh 

principal component onward the noisy principal components are involved that reduce the 

recognition rate of the algorithm Therefore, we use 7-dimensional eigenspaces in the rest of 

our experiments and throughout the whole thesis In fShanfi 2003], however, it has been 

shown that the number ot noisy eigenvalues and eigenvectors of a covariance matrix is 

independent of the amount ot noise in the data Theretore, by increasing or decreasing noise 

in the data the number of non-noisy principal components is almost constant
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4 4 Experimental Results

Figure 4 13 A lew fum es o f (he 10 gestures used m rhe fust 
e \p e  L im e n t

1 0 0  !  
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♦
..............A. ... ......

▼ ---- --------- ---------- ------------

♦  f

Q ^ l
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v u  

8 8  -

♦  ♦

-------- — --------,--------------------- ,--------------------- r — — ---------- !--------------------- 1--------- ----------- r ..... ........... ....i---------------------

0 2 4 6 8 10 12 14 16

Number of Principal Components

Figuie 4 14 Tlie recognition r ue vcisus the num ber o f  principal 
com ponents

In the following, we did some experiments with a vocabulary o f 100 gestures with the 

original algorithm, the algorithm with gaussian distributions and the trained HyperClasses 

Here we present a couple ot experiments to demonstrate the way that Graph-Matching 

algorithm works in real problems
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4 4 Experimental Results

Figure 415 shows a two dimensional representation of a 7-dimensional HyperClass of one ot 

the experiments For a given gestuie which is the same gesture as the gestures used to make 

this eigenspace and train this model the results o f graph matching is as following,

Quiet of matched gutpk 22

which is a bipartite graph with 11 nodes on each partition

The likelihood of Equation 4 12 0 6874

A part of the trajectory o f the given gesture in this eigenspace is shown in Figure 4 16, (the 

trajectory has been moved a bit up on the probability axis not to let it be hidden under the 

meshes) Obviously, the trajectory matches the gaussian distributions along its padn

Another gesture is projected into this eigenspace and its trajectory is shown in Figure 4 17
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4 4 Experimental Results

Figme 4 16 The 2 dimension'll injector} o t 'i cot tec t gestine in 
(he eigens pace
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4 4 Experimental Results

I iguie 4 17 Hit (i ijCLtory of uiothei gcstuie m the eigcnsp ice 
(the tm ngles)

In this figure most ot the points (the triangles) arc concentrated in i small part ot the space 

and the other points arc placed mostly in the \alleys that do not match many ot the gaussian 

distributions lhe results ot matching this gesture in this eigenspace is as following,

Of dei of matched g/aph 2

nhich is a bipartite giaph nith 1 nodes on each partition

I he likelihood of Lqnation 4 12 0 0625

In a second experiment we change the eigenspace to the eigenspace o f the second gesture 

1 he trajectories of the first gesture and the second gesture in tins eigensp ice arc shown in 

I igurc 418 \s can be seen the trajectory of tine second gesture matches more gaussian 

distributions than the first one I he results of matching the first gesture is as following,
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4 4 Experimental Results

Ot dei of matched gi aph X

}} hich is a bipartite graph nith 4 nodes on each partition 

i he likelihood of Lq nation 4 12 0 25

However, the second gesture in the second eigenspace should result in a better match and 

likelihood lhc results are as follows,

Older of matched graph 14

nhith is a bipartite graph nith 7 nodes on each partition

I he likelihood of Lqiiation 4 12 0 4375

Since the number o f gausslan distributions in all the HyperClasses is the same the 

denominator of the Equation 4 12 gives an equal value for all the i TyperCl isses I his 

denominator is actuall) used as a normalising factor It is shown in the experiments that a 

better match results in higher order of matched bipartite graph
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4 4 Experimental Results

However, in calculating the likelihoods, Equation 4 12, the mean ot matched vertices 

probabilities is also invoked This parameter is useful when the algorithm results in the same 

order of graphs tor more than one HyperClass Therefore, the higher mean of the 

probabilities, the higher likelihood The results of the experiments show that the better match 

gives a higher likelihood

As can be seen the algorithm works very well in recognising the gestures In the next chapters 

we measure the recognition rate of the algorithm with a large database of gestures and 

compare the results with another algorithm

Summary and Conclusion

In this chapter we investigated the problem o f dynamic gesture recognition An unsupervised 

clustering technique called Vector Quantisation was presented which is used in our algorithm 

tor clustering the trajectories and manifolds ot the gestures m the eigenspaces We also use 

this technique in future for the algorithms based on Hidden Markov Models

A new spatio-temporal pattern matching algorithm for dynamic gesture recognition was 

introduced In this algorithm tor c\ery gesture an eigenspace is constructed and a HyperClass 

ot many multidimensional gaussian distributions is formed In order to recognise an 

unknown gesture we presented a Graph-Matching technique I his technique matches the 

graph of a given gesture with the graphs of all the gestures in the vocabulary We showed that 

the algorithm works very well in recognising the dynamic gestures We also presented an 

experiment m which the best number o f eigenvectors to form the eigenspaces was estimated

In the next chapters we look into the problem of dynamic gesture recognition in more detail 

with the large vocabulary of gestures We will compare the recognition rate and processing 

speed ot the gaussian Graph-Matching algorithm with anodier algorithm using Hidden 

Markov Models
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C h a p t e r  5

MOTION TRACKING AND A DYNAMIC MODEL

In a bimanual movement recognition system when the two hands are moving togedncr an 

important problem is to track the motion ot each hand indrwdually Detecting occlusion is 

an important problem in hand tracking By tracking the hands the system will be able to 

detect hand occlusions and get the occlusion parts of a bimanual movement under 

control Otherwise, the occlusions may happen at any time and the system cannot 

recognise the occluded hand shapes from non-occluded ones On the other side, a hand 

may leave the scene by leaving the image frame or hiding behind a part ot body In that 

case, only one hand shape is detected in the images

Iherefore, we need a tracking system to keep eyes on the motions ok the hands and 

recognise the hand occlusions and the other types ot mov ements a hand can do For this 

we use an algorithm called kalman filter and a dynamic model tor motion tracking

We use this model in tracking single-hand motions Based on this model we are able to 

approximately detect the beginning ot a gesture belonging to the meaningful part ot a 

movement In Chapter 7 wc employ the dynamic model to track the movements ot the 

two hands and detect the hand occlusions for corrcctly tracking the hands during a 

bimanual movement

First, the Kalman hltcring algorithm is presented very briefly Based on the kinematic 

equations of movement we present the dynamic model tor tracking a hand movement By 

using this model wc detect the beginning of a gesture by looking at the velocity changes of 

the hand We present some experimental results at the end ot chapter to demonstrate the 

pertormance ot the proposed dynamic model in correctly tracking difterent hand 

movements
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5 1 Kalman Filter

5 1 Kalman Filter

“Kalman filtering is an optimal state estimation process applied to a dynamic system that 

imolves random perturbations” [Chui 1999] Ih c  Kalman filter gives a linear, unbiased, 

and minimum error variance recursion algorithm to optimally estimate the unknown state 

o f a dynamic system from noisy data taken at discrete real-time

Kalman filter is used in many areas in science and engineering Real-time tracking ot a 

flying objcct, estimating the planar orbit o f a satellite, target tracking [Chui 19991 and 

Global Positioning System [Brown 1997] arc well-known applications of Kalman filter

We use Kalman filter to track the correct position of the hand in a sequence ot images 

N ot only the position ol the hand but also the velocity and acceleration arc the important 

parameters in our hand tracking problem Using the Kalman filter we track the position, 

\ clocity and acceleration of a hand in an image sequence in order to detect hand pauses, 

collisions, occlusions and appearance and disappearance ot the hands

Ih e  complete description ot the Kalman filter algorithm is presented in Appendix C, 

Section C 1 Ih c  algorithm is briefly shown in Figure 5 1

Figmc S 1 An illustt ltion o f  k n lim n  filleting algonllm i ftom  
[Biown 1997)
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5 2 Hand Motion Tracking

5 2 Hand M otion Tracking

Researchers ha\e used ditterent methods for tracking hands in an image sequence Some 

of- them model the hands by some geometrical descriptions such as circles and cylinders 

[McAllister 2002 Davis 1999| Others have used other techniques such as Bayesian 

Networks and CONDENSATION to track the hands [Gong 2002 lsard 1998aJ Kalman 

filter, however, has been given gLeat attention ot researchers tor tracking objects such as 

airplanes, satehtes, human, etc [Brown 1997 Kohler 1997 Chui 1999 Bowden 2000, 

Dockstader 2000| Important factors ot Kalman filter are the tast processing and 

flexibility to accept different dynamic models Thcretorc, we use this technique tor hand 

tracking

In order to track the hand we use a model in which the position, velocity and acceleration 

ot hand arc modelled by a Kalman filtering process This model is based on the Kinematic 

equations of motion Chen et al [Chen 2003J and Zieren et al [Zieren 2002J have used 

this model to track the hngers and hands in surgical and trontal \ lew gesture recognition 

applications

Let \ (/) denote the trajectory ot hand movement where / is the time \anable Ih is

function is discretiscd by sampling with /  = —, h > 0 where / ‘is sampling rate, and h is
h

the sample interval fheretore,

A(0 can be assumed to have continuous first and second order derivatnes Where the a (0 

is position, the first and second dcmatives of a (/) are the \elocity and acceleration 

respectively For small \alucs of h die position and velocity \ cctors are calculated by,

Xl = V*) k = °>1>

(5 1)

*<+i = h  + /n (5 2)

where
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5 2 Hand Motion Tracking

xk velocity -  the first derivati\ e 

v k acceleration -  the second den\ ati\ e 

k = 0,1,

x k = x (kh) k ~ ®,1,

We define the position o f hand by the centre ot the rectangle around it (see Figure 5 2) 

1 his rectangle represents the leftmost, rightmost, top and bottom of the hand’s blob in 

the image Therefore, the position is denoted by the vector,

(S3)

fig u ie  S 2 Position ot the fund is defined b) the centtc oi the 
icc tingle

where

Xjt the horizontal coordinate o f the hand centre, 

the vertical coordinate ot the hand centre

However, we can only observe the position of the hand in an image while the other 

parameters, velocity and acceleration, are not observable 1 here tore, the m atn\ H in 

Equation C 2 (Appendix C) is defined as,

(5 4)

lh c  hand-tracking model takes on the following linear stochastic description,

H = [I 0 0]

z i
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5 2 Hand Motion Tracking

XA+I = *>*1 + W A

= H x i + v A

In this system, the parameters are given by,

x, =

1
h

X, 1 h  — hk ?
h

x L 0  1 h

X k 0  0  1
<J> =

X l 1 h  — h 2
\

A, 2
k

0  1 h

0  0  1

H
1 0  0 0 0 0 

0 0 0 1 0 0

(5 5)

and v ( and w t arc independent zero-mean Gaussian white noni sequences with the 

following covariances,

E[w<w, ] =T n |Qt l = k

0 i * k

E-r T -I fR*
£ [v ‘ v ' ] = L0 I * k

We assume that

Qi =
Q1 o
0 Q;

R
r ; o 

o r i

1 White no ise  is  dehned  to  be t s t i t io n m  n n d o m  pLOcess widi co n s ta n t s p e c tn l dens it\ In a c t io n ,

S*tntL-,wnt ( Jœ ) “  ^

\\ h e ie r i  is the specti \1 imphtude of the white noise [Btou n 1997]

72



5 2 Hand Motion Tracking

Let

x * =

where x k and x* are defined to be the \ectors ot the horizontal and vertical attributes of 

the hand’s central point with the following definitions,

XA =

x'l

\

>- 
—

•

x k
V

x k

A .
V

3 .

v  —

1— 
-c

 
>

1

.  2 5 V k ~ 2
_w * . - V

1 2  1 ^
where w  k , , and VjT are zero-mean Gaussian white noise sequences with the

following covariances,

e i  w > ; r ]=
i = k 

i ± k
2 27't I Qa I — kE [w [w ; ] =

0 i ± k

zrr 1 1 7 1 ^  1 — kE[vkvt ] = '
0 i ± k

E [v ;v r  ]
0 i ± k

Let,

A =

i  h - h-i
2

0 1 h

0 0 1
z t = 2

C = [l 0 o]

Then the system of 5 5 can be decomposed into two subsystems,
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5 2 Hand Motion Tracking

= A x ' + w ' 

zi  = Cxj + v(
7 = 1.2 (5 6)

where VV[ and \ [  are 3-vectors and z{ and v[ arc scalars, Q /  is a 3\3 non-negative 

definite symmetric matrix and /?/ >  0  is a scalar

Each subsystem is employed to model the hand m o\em ent in a direction, horizontal or 

vertical Assuming,

■ft 
^

 
*

1 1■ft*
1

x f ( 2 ) = (i

1

s
-c

p 1
-ft*

1

where cl is the horizontal or vertical direction (cl = h, v), for one of the subsystems the 

tracking model is described as,

1 h 1 * 212 ^ 0 )

* u i(2 ) = 0 1 h ^  (2)

0 0 1 _xk (3)_

\ < D '
= [l 0 0] ^ ( 2 ) +  v*

x k (3)

+ w

(5 7)

where we have suppressed the superscript cl

If the initial condition £(-X;0) and V ariance(x0) are given, the Kalman filtering

algorithm for this model can be obtained Details of the calculations arc presented in 

Appendix C, Section C 2

lh e  dynamic model presented here is used in two forms Here in, we use this model to 

track the movement o f a hand in a sequence of images in order to track the position, 

velocity and acceleration of hind In Chapter 7 we use this model to track the rectangle 

sides around the hands m order to detect the hand pauses and collisions during hand 

occlusions
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5 2 Hand Motion Tracking

By tracking the movement of a hand we can detect the moments that the hand has a 

pause in each of the horizontal or vertical directions By detecting the first pause the 

beginning of a gesture can be detected First we assume that a hand movement starts from 

a neutral position This condition can be the hand hanging by the side or the hand on lap 

We consider this as the hand out of camera frame When a person performs a hand 

gesture he/she moves the hand up and starts the gesture (see Figure 5 3)

Before the gesture starts the hand should move into the Region of Interest (ROI) Every 

gesture starts with a particular shape of hand So, normally, from the neutral position to 

the start point of the gesture the position and the shape of hand is changed rapidly toward 

the beginning position and shape o f the gesture (see Figure 5 3) At a moment when the 

hand reach the correct position and shape to start the gesture the hand has a short pause 

at least in one of the directions, horizontal or vertical, but usually in both, and then it 

mo\ cs toward the end of gesture In order to detect the moment that the hand has a short 

pause to start the gesture two different ways arc introduced

1 lh e  distance between the current position o f  hand, ^ ( 1 )  in Equation 5 7 and the

two-dimensional image frame the Euclidean distance between the previous position 

and the consequent one is a good approximation,

If this distance is equal to zero we can conclude that the hand has a pause Howe\er, due 

to noise and the fact that in the low speed cameras the sampling rate of the camera may

(b) (c) (d)

Tigme S 1 (n) Hand 111 t iesl position, (b) mowng the lnnd  
tow'ud the beginning of the gestuie (c) the beginning o f  

gestmc (d) the end ot gcstiue

previous position, gives a good approximation of the hand movement In a

(5 8)
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5 2 Hand Motion Tracking

prevent the capturing ot two consequent frames with the same position of hand this way 

cannot be robust in real-time applications

2 A better detection factor is the velocity ot the hand When the hand pauses the 

velocity reachcs zero However, in tact, a well-chosen small threshold gives 

appropriate dctcction accuracy In a two-dimensional image trame,

= 4 vl + v >2 (s 9)

where,

vh horizontal velocity 

vv vertical velocity

For a small chosen £ > 0 if vd < £ wc conclude that the hand has paused In most of

the gestures even a pause in one o f the directions is enough to detect the beginning o f a 

gesture Because when the hand moves toward the beginning ot the gesture it moves 

along the shortest diagonal path while the hand shape is changing to the beginning shape 

Therefore, at the beginning ot the gesture at least in one of the directions, horizontal or 

vertical, the hand has a pause2 From the pause point the system records the beginning of 

the hand gesture

5 3 Experimental Results

In order to investigate the introduced dynamic model some experimental results are 

presented In these experiments the velocity and the acceleration ot the hand arc ot 

interest We demonstrate the pertormance of the dynamic model in tracking the velocity 

and acceleration ot the hand

In the tirst example a normal hand movement is performed to detect the hand pauses in 

both horizontal and vertical directions In the next example, a circular movement of hand 

is performed to investigate the performance of the model

lh e  distance ot the camera and the hand is about 250cm Ihc camera is filming a 70-by- 

70cm area approximately lh e  resolution ot the camera is set to 400-by-200 pixels Each

2 Tins is i simphhc ition assumption In manv gesimes a shoit pause happens but tins does not include all gestines
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5 3 Experimental Results

pixel on the vertical axis corresponds to 3 5mm and on horizontal axis to 1 75mm 

approximately on the filming area Ih e  camcra is set to work in 30 trames per second 

ihus, the time unit between Kvo consecutive images is 33 3 milliseconds,

u—33 3 ms

This means that a velocity ok 1 pixel per time unit (33 3 ms) is equal to 30 pixels per 

second On the vertical axis, 30 pixel per second is equal to 105 mm (10 5 cm) per second 

On the horizontal axis 30 pixel per second is equal to 52 5 mm (5 25 cm) per second

In the following experiments, the measurements arc based on the time unit (//) and pixel 

per time unit

5 31 Experiment 1

In this experiment the hand starts trom its position on lap and moves up and docs the 

gesture (see Figure 5 4) Figure 5 5 shows the graph ok the horizontal velocity o f the hand

Tiguic S 4 A lew h  uncs ol the gesture 111 (he Lxpcm nent 1 
In rln«; e \m ip le  the h in d  m o \es into the scene Iris a shoit 

pu ise  il the beginning of thcgcstiue  ind then tn o \es tow aid 
the end ot gestnie

77



5 3 Experimental Results
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dm ing the movement o f  E xpeim ient 1

In this figure, somewhere between the 10th to 20th time unit (frame) the velocity goes to 

zero for the first time We do not consider the velocity of hand in the first frame bccause 

it always starts from zero Ihe interesting point in this figure is the negative velocity 

W ien the hand moves in the decreasing direction of the horizontal axis the horizontal 

velocity is negativ e

Ihe graph o f the vertical velocity ot the hand is shown in Figure 5 6 Ihe negativ e velocity 

at the beginning ot movement in this figure shows that, the hand has had a movement in 

the decreasing direction ot the vertical axis (up direction)

*  5
CL

t  0

s  5

!  io

15

20

f \
/ 11

/
/

/\\
\ / /
\ 1
\/
V

10 20 30 40
time unit (u)

50 60

fig iiie  5 6 The gi iph oi the vcitici] velocity oi the h md 
dining the m o\em enr o t Evpet iment 1
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5 3 Experimental Results

Equation 5 9 finds the exact point that the velocity o f hand in both directions, horizontal 

and \ertical, becomes zero lhe graph ot this equation is shown in Figure i  7 This graph 

shows that at the 17th time unit (frame) vd becomes almost zero 11ns point is detected as 

the beginning of the gesture

45 
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>30
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o25 >
«20 
.c

15 

10 

5 

0
0 10 20 30 40 50 60

time unit (u)

f igm e t 7 The giaph of Equation 5 9 foL the fust expeiiment

5 3 2 Experiment 2

In this experiment we demonstrate the performance ot the proposed model in tracking 

the hand \ elocity and acceleration

First the hand has a circular movement It circulates for several times and then stops and 

docs the main gesture Figure 5 8 shows a few trames of this gesture

Tignic S 8 A few itinges o f the movem ent o f  h md m » 
cn cu h i fashion
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5 3 Experimental Results

As long as the hand is circulating the horizontal and vertical velocities arc oscillating 

Mow ever, at the pause point both become zero and the algorithm detects the pause 

Figure S 9 shows the graph of horizontal and \ertical velocities tor the hand An accurate 

look at the horizontal and the \ertical velocities shows that because ot the circular 

m o\em cnt of the hand, at the points that the horizontal velocity is at one o f the minima 

or maxima the vertical velocity is passing through zero and vice versa (see Figure S 10) 

This is a 90-degree phase difference that causes an oscillation with double frequency of 

oscillation in the Equation 5 9 FIowc\er, it docs not go to zero during the oscillations In 

Figure 5 11 the graph ot Equation 5 9 is sketched I he double frequency of oscillation is 

clearly visible in this graph
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Tiguie 5 i I G l iph o/ Equation S 9 î o l  die c illuI iting Inud

In this experiment, the calculated speed in Equation S 9 becomes zero at the 236th time 

unit (frame) The accélérations of the hand are plotted in Figure S 12 These graphs show 

that the model tracks the acceleration of the hand correctly in both directions

We demonstrated that the proposed model tracks the hand, particularly the \elocity and 

the accélération accurately in order to detect the hand pauses in horizontal and/or vertical 

direction This model is the basis ot a model, which is introduced in Chapter 7 for hand 

occlusion detection and hand tracking m the presence of occlusion

Summary and Conclusion

In this chapter we proposed a dynamic model based on the kinematics equations of 

motion for hand tracking First we stated the general theory ot Kalman filtering Then the 

details ot the proposed dynamic model were presented Based on this model the position, 

velocity and the acceleration ot the hand are tracked in the sequences of images 

containing a hand movement

Using the model, we are able to detect the hand pauses in both horizontal and vertical 

directions We detect the hand pauses to detect the beginning o f a gesture during a hand 

movement Some experimental results were presented to demonstrate the effectiveness of 

the algorithm in correct tracking the velocities and accelerations
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5 3 Experimental Results

In the following chaptcr, wc will use this model to detect the beginning of a gesture in 

order to extract the beginning shape of the gesture for recognising a large number of 

dynamic hand gestures
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C h a p t e r  6

RECOGNITION OF A LARGE NUMBER OF HAND 
GESTURES

Dynamic gesture recognition as a spatio-temporal pattern recognition problem was 

presented in Chapter 4 An important parameter is the number ot gestures in die 

\ ocabulary A vocabulary containing a large number ot gestures can cause a long searching 

and matching time It is crucial to rcducc the processing time of the algorithms while 

keeping the recognition rate as high as possible

In this chapter we look into the problem ot recognition ot a large number of hand 

gestures We introduce two hierarchical algorithms tor the recognition o f canonical hand 

gestures First we review some statistical techniques addressed in die literature tor the 

problem of recognition Hidden Markov Models are a very well known statistical 

technique tor modelling temporal events We review the theory of this model I hen an 

algorithm based on this model is presented for the recognition of large number of 

canonical gestures We replace the Hidden Marko\ Models in the algorithm with the 

gaussian Graph-Matching technique of Chapter 4 and present a new algorithm At the end 

of chapter some experimental results are presented in which the recognition rate of both 

the algorithms are measured and compared We will also compare the relative processing 

time ot the algorithms

6 1 Markov Chain

“A iMarko\ chain deals with a group of random processes that incorporate a minimum 

amount ot memory without actually being memoryless” [Jehnek 1997] In this thesis we 

deal with discrete random variables I  he values of these variables are defined in a finite 

alphabet H  = {l, 2, , M  }

The probability o f observing X {, X 0, , X n is defined by the Bayes' rule as,
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6 1 Markov Chain

P ( X „ X 2, ,x„) = YJp(x l l x l , x2, ,x ,_,) (6 1)
1=I

Ho\ve\er, if a variable depends only on the value ot the previous step,

P(X, ¡ X „ X 2, ,X,_I) = P(X, ¡X,.,) (62)

the random variables arc said to form a Markov chain Therefore, for a Markov chain,

P ( X „ X 2, ,X„)  = r i W X . J  (6 3)
1=2

lhis process only has one step memory A Markov chain is time invariant (stationary) if 

regardless of the value ot the time index /,

P ( X t - x  | = x) -  p { \  | x) for all x , x ' & H  (6 4)

where

X  P(x' I •*) = !> P(x I *) -  0
\eli
x'e H

p( x  | x)  is called the transition function

It we think ot the values of X t as states then the Markov chain is a finite state process 

with transition between states specified by the function p ( x \ x )  Figure 6 1 shows a 

three-state Markov chain In this figure, the arrows show transitions between states and 

their probabilities lhe missing arrows imply that p( l  | 2) = p(2  13) = 0

T ig u te d l  A tL'msition dng i'im  tot i A/ uk o i <_h mi
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6 2 Hidden Markov Models

6 2 H idden Markov M odels

A Hidden Markov Model (HMM) is a finite set of states each of which is associated with a 

probability distribution In the other words, a Hidden Markov Model is a tool for 

representing probability distributions over a sequence of observations [Ghahramani 2001] 

We denote the observation at time fby the variable y ( This variable can take values horn

a finite discrete alphabet, set of real values, or any other set as long as we can define a 

probability distribution over it In a discrete model the observations are sampled at 

discrete, equally spaced time intervals

The term “hidden” m Hidden Markov Models reters to this assumption that the 

observation at time / was generated by some process whose state S{ is hidden from the

observer Further, we assume that the state of this hidden process satisfies the Markov 

property, Equation 6 3

Mathematically, for an output alphabet y = {0,1, , M - 1} a state space

5 ={0,1, , N )  with a unique starting state s0 a probability distribution of transitions

between states p(s '  \ s) and an output probability distribution p( y  | s) associated with 

state j, the probability of observing an HMM output string , y k is given by,

x  n ^ v< k - i i p O ’. i ' . )  (6?)
' t  V  l = ]

Ihe initial probabilities arc also involved in calculating the probability of observations and 

will be described later on in the description of the technique

An example of an HMM with N — 3  is shown in Figure 6 2
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6 2 Hidden Markov Models

Figuie 6 2 A ill Lee state H idden M aikov Model Sou ice 
[Gli iln m um  2001]

In addition to the previous two assumptions, Markov and stationarity, we assume that 

currcnt output (observation) is statistically independent of the previous outputs For a

sequence o t observations Y = y ], y9, , y 1 the probability of the sequence is gnen by,

T

p ( Y \ s lyi,2, i s')  (66)
/=!

However, this assumption has a very limited validity In some cases this assumption is not 

tair enough and therefore become a severe weakness of the HMMs We define an RMM 

completely by A = (A, B, n)  where A — \cilJ )  is a set of state transition probabilities,

= />(Vi = 7 k  = 0  (6 7)

l < i < N
J= 1

where N  is the number ot states ot the model and s, denotes the current state,

£  = l w l  is the probability distribution in each state,

b, (k)  = p ( y , \ s ,  = j )  1 < k < M  (68)

M
¿ , ( * ) > 0 , $ > , ( * )  =  1 1 < J < N

k = ]

where y k is the k Ax observation symbol in the alphabet 71 = {?£,} is the initial state 

distribution,
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6 2 Hidden Markov Models

n  = p(S\ = 0  1 < i < N  (6 9)

The three basic problems of HMMs are

1 I he evaluation problem

Given an HiYlM A and a sequence of observations Y = y ]7y 2, , y T, what is the 

likelihood that Vis generated by the model In other words, what is the probability ot Y  

giv en HMM A ,

P(Y  | A) = ?

Calculation ot this probability requires a number of operations at the order of N T Ih is  is 

a very time consuming process However, there exists a method called the 

Fonvat d/  Batkwai d algorithm with considerably lower complexity This algorithm gives the 

probabilities to all possible state change sequences in an HMM Regardless ot the most 

probable state sequence it finds the likelihood with respect to the probabilities along all 

possible paths Based on [Ghahramani 2001], we use this technique to calculate the 

likelihoods that the different HMMs of gestures in our database generate the given 

sequence ot observations without extracting the sequence of state changes A description 

o f die algorithm is presented in Appendix D

2 1 he decoding problem

Given a model A and a sequence of- observations Y = y n y 2, , y T, vvhat is the most 

likely state sequence in the model that produced Y  In other words, find a state sequence 

that maximises the numerator ot the right-hand side of the following equation

P ( s ^ 2, , sT \ h , y 2, , y , , s 0) = p i s " s*’ K >
P(y\ , y2i  i3v I O

The Vitefbi algorithm is a technique to find the most probable state sequence By this 

algorithm we can find the maximum probability state sequence ot an HMM given the 

sequence ot observations A complete description o f the Viterbi algorithm is presented in 

Ueltnck 1997]
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6 2 Hidden Markov Models

Although, the evaluation and decoding in HMMs can be used interchangeably in many 

applications, we only use the evaluation problem in order to calculate the likelihood that a 

given I-IMM generates a sequence ot observations [Ghahramam 2001]

3 The learning problem

Given a model A and a sequence ot observations Y -  yp y 2, , y T, how should the 

model parameters {a ,B,7 i \  be adjusted in order to maximise P(Y  | A) There are many 

techniques proposed in the literature for estimating the statistical parameters of the 

Hidden Markov Models [Jchnek 1997] Expectation Maximisation and Maximum Entropy are 

well-known methods in this case We use an algorithm based on Expectation 

Maximisation called Baum Welch Details of this algorithm are presented in Appendix D

The evaluation problem is used tor isolated recognition in speech and gesture recognition 

The decoding problem is related to continuous recognition as well as to segmentation 

“Learning” is to adjust the TIMM parameters for the recognition task

In this thesis we only deal with evaluation and learning problems, which are directly 

related to our work

6 3 Algorithms for Recognition of a Large Database of Hand Gestures

As we stated earlier in Chapters 2 and 4, many researchers have used Hidden Markov 

Models (HMM) for modelling a temporal sequence HMMs are widely used in speesh 

recognition [Jelinck 1997] as well as gesture recognition [Starncr 199Sa Starner 1995b Lee 

1999 Nam 1996 Wilson 1999] Its wide applications and great performance in dealing 

with variations m data encourage us to use this technique for recognising a large set of 

hand gestures

HMMs torm distributions over observations in ever)7 state Because of this similarity 

between HMMs and the gausslan Graph-Matching algorithm of Chapter 4, we compare 

the two techniques in this chapter to find the advantages and disadvantages ot each

As in Chapter 4, by using pixel grey-level detection and segmentation one can extract the 

hand from background m an image Herein, it is assumed that in the sequence o f input
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6 3 Algorithms for Recognition of a Large Database of Hand Gestures

images the hand has been segmented from the background I his leads to the following 

definition of the problem

“ Given a hand gesture appearing in a sequence of images, find a gesture in a large 

database of predefined gestures which is the most similar to that ”

6 31 Special Considerations

Since we have a large database the similarity between the gestures is high Therefore, 

variations in the gestures may change the result o f recognition The algorithms should be 

able to deal with both similarities and variations together This makes our job more 

difficult Also working with a large database of gestures involves extensive computation 

and long processing time

We introduce a hierarchical algorithm in which the Hidden Markov Models are used to 

deal with both variations and similarities The hierarchical nature of the algorithm makes 

the processing time shorter

6 3 2 A Quick Review of the Algonthm

In this algoritiim wc have a hierarchical recognition process that uses a multilevel trained 

model By using the dynamic model and Ivalman filtering o f Chapter 5 we are able to 

recognise the beginning ot a gesture The first levels o f the training and recognition phases 

of the algonthm are based on the beginning hand shape of the gestures At this level, 

depending on the beginning shape of an input gesture a group o f gestures within die 

database is sclccted This group is forwarded to the second level At die second level, by 

using cither Hidden Markov Models or the gaussian Graph-Matching algonthm the best 

match between the input gesture and the forwarded gestures is found

By this hierarchy wc are able to find the best match in a short time We use Principal 

Component Analysis to reduce the dimensionality ot data and get rid of noise This 

reduces the running time too Hidden Markov Models are powerful in dealing with large 

vocabularies with great variations Graph-Matching is fast in dealing with small number of 

gestures We compare the advantages and disadvantages ot the two algorithms in the 

second level
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6 3 Algorithms fo r R ecognition of a Large Database of Hand Gestures

6 3 3 Training Phase

By extracting a few beginning hand shapes oi all the gestures a common eigenspace is 

constructed tor the beginning shapes ihe projection ot the beginning shapes into tins 

eigenspace forms clusters o f data points Each cluster represents a group of gestures 

starting with similar hand shapes Therefore, we get as many clusters as different shapes 

It we do not know the beginning shapes ot gestures a clustering technique like Vector 

Quantisation can cluster the data points But, it we know that each gesture starts with 

what hand shape the clustering is straightforward Figure 6 3 shows clusters o f points 

corresponding to the hand shapes tor the English letters in the Irish Sign Language We 

use each cluster of points to form a multidimensional gaussian distribution The seven- 

dimensional data points in the common eigenspace are employed to train the gaussian 

distributions

In the second level we have two choices, the HMMs and the gaussian Graph-Matching 

• The Hidden Markov Models

A common eigenspace is formed by using the full-length image sequences of all the 

gestures This eigenspace is constituted by the seven eigenvectors of the covariance matrix 

made from the whole training set image sequences The projection ot each gesture into 

this subspacc (eigenspace) forms a trajectory Ih e  projection o f all the gestures into this 

subspace looks like a cloud of points In order to employ the HMMs we need to allocate 

codewords (codevectors) to the groups of points in this cloud Vector Quantisation 

algorithm extracts the required codewords
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6 3 Algorithms for Recognition of a Large Database of Hand Gestures
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A well-chosen number of codewords can represent all the points so that the gestures are 

exclusively recognisable by unique sequences of the codewords However, since the 

Vector Quantisation algorithm is a time consuming process, especially in the case of a 

very large number ot data points, one can extract the codewords tor the trajectory of each 

gesture separately as opposed to treating the whole data at once Then, by combining the 

extracted codewords and applying a second stage of Vector Quantisation a reasonable 

number of codewords is extracted Figure 6 4 shows the manitold and the extracted 

codewords for a gesture in a 3-dimensional representation ot the common eigenspace A 

lcft-to-right Hidden Markov Model with four states is trained for every gesture (see Figure 

6 5) The number of states in the HMMs is selected based on the shapes of the manifolds 

and the number of gestures Since the number of gestures is large the differences between 

the gestures should be considered Therefore, for example a 2-state HAIM cannot 

distinguish different manifolds very well With respect to the shapes of the manifold (e g 

sec Tigure 6 4) a 4-states HMM seems suitable to model the gestures in this problem As a 

future work we can vary the number of states and look at the changes in the recognition 

rate ot the algorithm
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6 3 Algorithms for Recognition of a Large Database of Hand Gestures
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Ih is  is done by extracting the sequence of the symbols (codewords) constituting the 

trajectory of a gesture in the common eigenspace The set of codewords for all the HMMs 

are the same However, based on the sequences o f codewords associated with each 

gesture in the training set the HMMs are trained An individual HMM is trained by the 

sequences extracted for all the examples of a gesture in the training set Therefore, at the 

end we have a trained HMM for every gesture in the vocabulary

• The Gaussian Graph-Matching Algorithm

An individuili eigenspace is constructed for every gesture using the examples of the 

gesture By projecting the gestures into their own subspace the main manifolds ot the 

subspaces arc formed Then by using the Vector Quantisation and clustering the mam 

manifolds the HypcrClass o f every eigenspace is formed and trained The algorithm is the 

same as the one in Chapter 4

6 3 4 Recognition Phase

In order to recognise an unknown gesture a 2-level hierarchy is used At die first level, a 

subset ot gestures is selected to be passed to the second level (sec Figure 6 6)
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6 3 Algorithms for Recognition of a Large Database of Hand Gestures

fig u ie  6 6 H ie iu ch ) oi selections m the recognition phise

Level 1

For an unknown gesture appearing in a sequence of images the hand shapes within the 

first tew frames are extracted By using the tracking algorithm of Chapter 5 the beginning 

of a gesture can be detected By extracting a few initial hand shapes of a gesture and 

projecting them into the common eigenspace made in the first level of the training phase a 

few points are formed The centre of gravity of these points is calculated The probability 

that the central point belongs to each of the multidimensional gaussian distributions is 

calculated The point belongs to the class of shapes with the highest probability

However, due to variations and noise this is not always the best estimate and one should 

consider more classes Therefore, a list o f all classes sorted descendingly based on the 

probabilities is constructed By taking a  classes from the top of the list a group o f 

gestures starting with the associated hand shapes arc forwarded to the second level Since 

many gestures may start with the same shape of hand, the number of forwarded gestures 

is usually larger than a

Level 2 

• The Algorithm with Hidden Markov Models

By projecting the input gesture into the common eigenspace formed m the second level of 

the training phase a sequence of symbols (codewords) is extracted The trained HiMMs of 

the forwarded gestures are employed to calculate the likelihood ot the extracted sequence

93



6 3 Algorithms for Recognition of a Large Database of Hand Gestures

The HiMM that results in the largest likelihood is the best match In other words, the 

gesture whose HMM results in the largest likelihood is the best match to the input gesture

• The Algorithm with Graph-Matching

By projecting the input gesture into the eigenspacc of each o f the forwarded gestures, 

formed in the second level of training, the trajectory of the gesture in each subspace is 

extracted As in Chapter 4 the trajectory is divided into an equal number of clusters and 

the graph o f the trajectory is extracted in the eigenspaces By matching the graphs of the 

input gesture with the HypcrClass of each gesture the best match is found

6 4 Exprimental Results

100 gestures were created by a combination of about 3S hand shapes mostly selected from 

the sign language alphabet The gestures start from a shape and end in another shape In 

Figure 6 7 a  tew gestures are shown For every gesture 10 examples were captured Half of 

the examples (500) were used as training set and die rest as the test set

The gestures start from one of the shapes defined as an English letter in the sign language 

For every gesture, die first 5 consccutive hand shapes were extracted and a common 

cigenspace was constructed using all the extracted hand shapes A seven-dimensional 

gaussian distribution was assigned to the similar hand shapes and trained 26 distributions 

for the set of beginning hand shapes associated with the 26 english letters were formed 

(sec Figure 6 8)

In the second level of die training phase die 500 examples in the training set were 

employed to form a common eigenspacc By projecting the training samples into this 

subspace (see figure 6 9) and using Vector Quantisation at the first stage 3200 codewords 

were extracted, 32 for each gesture (see Figure 6 10)
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Figme 6 8 A 3 dimension il lllustntion o f the 2D  gnus sun  
distribution«; of the beginning Ivmd shapes
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6 4 Experimental Results

2000 v,

Principal Component -2000 1000 3rd Pnno,pal Component

Figure 6 9 Projection oi the Lrinuug set (mngcs) into tlie 
com m on eigensp ice

2000.

2nd Principal Component -2000 -1000 3rd Principal Component

Figiue 6 10 3200 e \ t i  icted codewords for rhe pLO]ection of 
the m uges of the ti'lining set gestures
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6 4 Experimental Results

By applying the second stage o f Vector Quantisation, 1024 codewords were extracted (see 

Figure 611) We have chosen this number of codewords based on the variation in the 

data appearing in the manifolds ot the gestures and the processing speed1 An example ot 

variation in the examples ot a gesture will be presented later Figure 6 12 shows the 

trajectory o f a gesture projected into the eigenspace

Although we did not deliberately \ary the samples of each gesture, the trajectories of the 

gestures show significant variations in the samples of a gesture (see Figure 6 13) In tins 

figure, 5 examples of a gesture are projected into the eigenspace Four different paths 

shown in the figure demonstrate the great variations in the samples

2000
c  a>
|io o o -
o O

” - 1000; 
1000

2000

■1000
1000

2nd Principal Component -2000 -1000 3rd Principal Component

Figli Le 6 11 1024 extracted codewords ior the pio |ection  of 
the images ot the training sci in the com m on eigenspace

1 The num ber o tcodew oids must be large enough to captiue \aiiation m d m  md smill enough so tlu t the tnjectones 
o f the gestures are extracted fist The codewords in speech recognition aie chosen based on the numbet o f  
phonemes However since a canonical gesture is just i continuous movem ent ot hand we cannot interpret the 
codewords as meaningful entiLics We Inve chosen one codeword for ipproximately 100 dat i points in the tr uning 
set Tins numbet h ts been selected by trial and enoi In [Shamaie 2003] it has been shown diat bv increasing the 
numbei of codewords from 1024 to 3200 the recognition rate o t the algondnn mere tscs onlv 1 Vi while the processing 
tune is nearly three times longer By LBG Vector Quantization algorithm we can extract powers o t- tu o  numbet o f 
codewords Therefore, 1024 is the neatest power o t two to the 1/100 ot die numbet of data points in the tiamnig set 
As a fuiuie woi_k we can find the optimum number ol codewords in tins problem
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codcwoLds (the dots)

Figme 6 13 V m itio n s  111 the c \n n p le s  ot i gcsim e ippeum g 
in the tn jectones in the cigenspice

By using the extracted sequence o f symbols tor the samples of each gesture, a Hidden 

Markov Model was trained for every gesture Therefore, 100 I-IMMs were trained for die 

100 gestures each with 5 samples ot each gesture in the training set

Also, an individual cigenspace was formed by the 5 samples o f each gesture in the training 

set In the 100 constructed cigenspaces the HyperClasses were formed and trained lhese 

eigenspaces and the HypcrClasscs are used in the algorithm with the gaussian Graph- 

Matching in the second level
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6 4 Experimental Results

6 4 1 First Experiments

In order to measure the recognition rate of the two algorithms we used die 500 gestures in 

the test bet In diese experiments we forwarded all the gestures o f the vocabulary to the 

second level In other words, wc bypassed the first level of die algorithm m which the 

beginning hand shape of a gesture is recognised We are going to estimate the recognition 

power ot the Hidden Markov Models and the gaussian Graph-Matching algondim in a 

large database of gestures and compare them together Using the algorithm with HMMs 

447 out of 500 gestures of the test set were recognised correctly In odier words, 89 4% 

recognition rate was obtained tor die algorithm with HMMs

Using die algorithm with Graph-Matching, 428 out ot 500 gestures ot the test set were 

recognised correctly This means that the Graph-Matching algorithm was able to 

recognise 85 6% ot the gestures Also the Graph-Matching algorithm takes 2 03 times 

longer than the HMMs to calculate die best match The graph ot the recognition rates and 

the processing times are shown in Figure 6 14 Obviously the I-hdden Markov Models 

work better than the Graph-Matching in the large vocabularies

HMM Graph Matching

HMM

Graph
Matching

time

(b)
Figuie 6 14 Cofflp-uisons o f  (a) llie iccogm tion Lite o f the 

ilgonthnv; (1)) I ho p io ce^m g  time o f llie ilgourhms in 
tecognismg n d in b 'ise  o f 100 cm om c il gestmes
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6 4 2 Second Experiments

In this set of experiments we set the O' = 2 in the first level of the recognition phase 

Therefore, 2 groups each ot which containing 4 gestures are forwarded to the second level 

ot recognition In this case, the algorithms ha\e to recognise the input gesture given 8 

forwarded gestures trom the first level

Using the algorithm with HMMs 472 out of S00 gestures in the test set were recognised 

correctly This is equal to 95 4% recognition rate By using the gaussian Graph-Matching 

algorithm, 470 out of 500 gestures in the test set were correctly recognised In other 

words, the Graph-Matching algorithm was able to recognise 95% ot the gestures

Now we should compare the algorithms from computation time point of view For a 

gesture in the test set the algorithm with HMMs takes 6 times longer than the Graph- 

Matching In other words, the Graph-Matching algorithm is 6 times faster than the 

HMMs which is a great advantage Why is tins so?

Since in the algorithm with HMMs we have to extract the sequence o f codewords for the 

input gesture, the large space ot the codewords constructed for the 100 gestures have to 

be searched This searching process takes a long time But, calculating the HMM 

likelihoods is not time consuming Howe\er, in the case of the gaussian Graph-Matclnngs 

die algorithm has to match the graph ot the input gesture with only a small number of 

HypcrClasses (8 in these cxpcrimens) Therefore, the matching space is small and the 

process runs faster Ih e  recognition rates and comparison of die processing times are 

shown in Figure 6 1S

As we saw in the first set o f experiments the Graph-Matching algorithm had to match 100 

graphs each ot which was a 32-by-32 bipartite graph This process took twice longer dian 

the HMMs to find the best match Although, the reduction of the number ot vertices in 

the graphs from 32 to some smaller numbers can result m a faster processing, it may 

at feet the recognition rate ot the algondim

Given that die Graph-Matching algorithm has a bit lower recognition rate than the 

Hidden Marko\ Models it finds the best match in a fraction o f time needed by the Hidden 

Markov Models At the end, we should mention again that all the experiments m this 

chapter were based on canonical gestures and they are not including the gestures 

containing concatenated canonical gestures
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Summary and Conclusion

In this chapter we presented the theory of Hidden Markov Models In order to fast match 

a gesture within a large database oi: pre-defined gestures we introduced two hierarchical 

algorithms, one of them based on the Hidden Markov Models, and the other based on the 

multidimensional gaussian HypcrClasses and Graph-Matching algorithm ot Chapter 4

Ih e  algorithms, at the tirst level, use a multidimensional search space of gaussian 

distributions in order to recognise the beginning shapes o f a gesture An abstracted 

number o f gestures are forwarded to the second level where the HMMs and/or gaussian 

Graph-Matching algorithm are employed Using each of the techniques the algorithms 

hnd the best match between the given gesture and the forwarded gestures
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6 4 Experimental Results

In the experiments we showed that the HMMs have 3 8% better recognition rate than the 

Graph-Matching given the whole database of the gestures

By abstracting the search spacc in the first level of the algorithm wc observed higher 

recognition rates tor both the algorithms In this case the difference between the 

recognition rates fell to 0 4% while the HMMs remained superior However, from the 

processing time point o f m c w  the Graph-Matching algorithm showed great superiority 

over the HMMs of 6 times faster processing

While the algorithms compcte closely in recognising the gestures correctly, the processing 

time of each algorithm is an important parameter

However, since there has been much research on Hidden Markov Models there are many 

models where concatenated canonical gestures are the targets Also the Graph-Matching 

algorithm has the restriction of number o f nodes in the graphs The number of nodes 

should be large enough to gi\ e distinguishing power to the algorithm for a large number 

o f gestures Therefore, it probably does not result in good recognition rate in the case of 

very short gestures (the gestures recorded in a very short time in only a few images) As a 

future work we can changc the equation of the likelihood so that a larger weight is given 

to the probabilities than the number of matched vertices In this case it probably works 

better in recognising short gestures

Given that the HMM has better recognition rate and less restrictions we will use HMM 

throughout the rest of the thesis

102



C h a p t e r  7

OCCLUSION DETECTION AND HAND TRACKING 
IN BIMANUAL MOVEMENTS

Recognition ot hand gestures is more realistic when both hands arc tracked and any 

overlapping is taken into account In bimanual movements the gestures of both hands 

together make a single gesture Therefore, one should look at the movement of the hands 

and track them correctly in order to recognise the whole gesture An important problem in 

this type of movements is occlusion Movement of one hand in front of the other is the main 

source of occlusion in bimanual movements In figure 7 1(a), an example of a bimanual 

movement is shown Also, tor the bimanual movements where there is no occlusion in the 

essence of the movement, changing the viewpoint can cause one hand to be hidden behind 

the other occasionally In Figure 7 1(b) a m o\em ent is shown, from the side (see Figure 

7 1(c)), one hand is occluded by the other for some moments Detecting occlusion and 

tracking the hands are the mam problems to be addressed m this chapter

First a quick review of the hand extraction algorithm will be presented Then a dynamic 

model tor modelling each hand individually is introduced Based on tins model we predict the 

movements ot the hands separately By prediction we can forecast the possible occlusion in 

the movements We introduce an algorithm for detecting occlusion in a sequence o f images 

Having the occlusions under control we present a hand tracking algorithm tor correct 

tracking of both hands in bimanual movements In this algorithm we aim to reacquire the 

hands after the occlusions The behaviour ot the hands during occlusion is the basis of the 

process ot tracking Based on a physiological or perceptual1 phenomenon the hands in 

bimanual movements tend to be synchronised effortlessly 1 his synchronisation is the basis 

o f the intelligent tracking algorithm proposed m this chapter We employ a dynamic model to 

model the hand movements during occlusion The model uses the synchronisation ot the 

hands in order to recognise the hands’ behaviour This behaviour forms the basis ot the 

tracking algorithm

1 Two explanations have been proposed lo t dus phenom enon A gioup ot scientists believe that the bimanual 
synchioms Uion is a \e iy  poweilul consti unt in m otot contiol A.nothei gioup, however has dcmonstiatcd tin t tins 
s w k Ih o i i i s  it ion his i peiceptu il b isis We picsent mote d a  ul ibout tins s\ nclnoms m on in die next sections
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7 1 Hand Extraction and Related Work

«

Figure 7 1 (i) V g cncn l b u n im n l m o\ em en t (Id) a bin null'd  
m ovem ent fiom  iiont il view (c) fiom  side view

7 1 Hand Extraction and Related Work

By using pixel grey-level dctcction wc extract the hands from background In an extracted 

image only the pixels with a non-zero \alue could belong to the hands We use the Grassfire 

algorithm [Pitas 1993] in order to extract the hands Calling trom Chapter 3, Grassfire is a 

noion labelling or blob analysis algorithm It finds all the connected regions and labels them This 

algorithm scans an image trom left to right, top to bottom to find the pixels of connected 

regions with \alues belonging to the range o f hand colour (in grey scale) For the first pixel 

found in th it range it turns around the pixel to find other pixels

By considering a square around a pixel (see Figure 7 2) the algorithm scans the square

1 o 1
i --------—>

Figiue 7 2 The sq im e n o u n d  i  pixel
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I here to re by finding all the pixels belonging to a connected region the whole region is 

extracted A blank matrix is constructed with the same size as the image We call it the 

shadow matrix For every extracted pixel a numeric label is placed at the same position in the 

shadow matrix All pixels in the same connected region get the same label W ien a connected 

region is totally extracted and labelled in die shadow matrix the algorithm searches for other 

connected regions Also, for every connected region its area is measured Ih e  process repeats 

until all the connectcd regions in an image arc extracted and labelled At the end of the 

algorithm the shadow matrix stores the labels corresponding to all the connected regions in 

the image (see Figure 7 3) Due to noise there might be some other spots appearing in an 

image with the same grey range as the hands Thereto re, we should separate the hands from 

die noisy spots We look at die size o f the objccts The objects with very small areas are 

treated as noisy spots and ignored

Now, we have extracted the hands and labelled them separately But, in the images where the 

hands are in contact the algorithm extracts only one connected region and is not able to 

separate the hands due to occlusion There to re, we cannot recognise the hands correctly in 

the presence ot hand-hand overlapping

7 1 Hand Extraction and Related Work
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7 1 Hand Extraction and Related Work

There are a number ot techniques proposed m the literature tor tracking two ovet lapping 

objects CONDENSATION is the natural extension ot Kalman filter to factored sampling 

psard 1998a] Mammen et a) [Mammen 2001] have employed CONDENSATION 

algorithm to track the hands off-line in video sequences captured at 12 frames-per-second 

No performance has been reported regarding the processing speed and the efficiency ot the 

algorithm in tracking a set of hand motions

Although, by tracking the edges of two objects the CO N D EN SA1IO N  algorithm tracks the 

overlapping of objects robustly, it is a very time consuming process (see Section 2 3 2) which 

cannot be used in a real-time system (Shcrrah 2000] On the other hand, we do not really 

need that much degree o f accuracy m tracking the edges of the two hands during occlusion 

because the separation o f the hands during occlusion does not provide us with significant 

useful information about the occluded hand

The other technique for tracking is Point Distribution Model (PDM) [Cootes 1992], which 

was explained in Chapter 2 But this technique has also some disadvantages diat prevent 

using it as an efficient technique for tracking The model breaks down for complex objects, 

and more importantly is that it needs quadratic optimisation to automaticly identify a set of 

landmark points, which is not an efficient way to work m real-time applications The 

analytical models such as [McAllister 2002 Davis 1999] also need to do non-linear 

optimisations

Gong et al [Gong 2002] have used a Bayesian network to track two interacting hands Their 

proposed algorithm can process S frames per second on a Pentium II 330 MHz computer

As it was mentioned m Chapter 5, a fast and efficient technique tor tracking is the Kalman 

filter [Brown 1997, Chui 1999] Dockstader et al [Dockstader 2000] have used the Kalman 

filter to track human head and body in the presence of occlusion Zieren et al [Zieren 2002] 

have used Kalman filtet to track the two hands but not in the presence of hand-hand 

occlusion

Based on the advantages of Kalman filter we use this technique and a dynamic model to 

track the hands in the presence o f  occlusion Ihe first step is occlusion detection in a 

sequence of images
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7 2 Occlusion Detection in Bimanual Movements

7 2 O cclusion D etection in Bimanual M ovements

Two types of occlusion are considered here First, the case where one hand occludes the 

other We call it hand-hand occlusion Second, the case in which something else occludcs a 

hand or the hand hides behind something, e g  the body, partially or completely When one 

hand occludes the other we must detect the exact beginning point of occlusion By this we 

arc able to separate the hand-hand occlusion from the other type of occlusion For this we 

introduce the following model

As before, a rcctanglc is constructed around each hand in an image Therefore, by moving a 

hand its rectangle moves m the same way By tracking these rectangles we detect the start and 

end points of occlusion lo  detect the beginning point we look at the movement of the 

rectangles If at some stage there is any intersection between the rectangles it can be 

recognised as occlusion However, in some cases there might be an intersection with no 

occlusion (see Figure 7 4)

Also, if we suppose that at time /"there is no intersection of the rectangles and at time t+1 

occlusion happens, there is only one big blob and one rectangle is constructed around it (see 

Figure 7 5) It happens because the hand shapes are connected together and the Grass fire 

algorithm extracts the connected region o f the hands as a single object Occlusion is not 

detectable because this is similar to a hand’s movement out of camera frame or hiding behind 

a part of body

To overcome this problem, we use a model to predict the future movement of each hand
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7 2 Occlusion Detection in Bimanual Movements

Figiuc 7 5 Occlusion h ippens in two consecutive tm n es

We propose a dynamic model based on kinematic equations of motion and Kalman filtering 

to track the movements and predict the future position of the rectangles By this, we can 

predict possible intersection of the rectangles a tew steps in advance This gives us an alarm 

of any probable occlusion

Every rectangle is modelled by die following equation,

= a>xA + w ,  ( 7 i )

where \ k is the state vector representing the rectangle at time k, O  is the matrix relating the 

two consequent positions of a rectangle, and w A is 7ero-mean Gaussian white system noise

[Brown 1997] The movement of a rectangle can be modelled by the movement of its sides 

(see Figure 7 6) Therefore, Equation 7 I is expanded to,

1■*1 k+\
X 2k+l = o X< a2 <
y ln +1 y i *

.¿ll_ -
>- 1

where x[ k, x ‘2ki y[ k and y \ k arc the sides of the rectangle l at time k
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7 2 Occlusion Detection in Bimanual Movements

[ X]1 x \  yf y \  ] 7 is the tcct mgle oi the fust h in d  md

r 2 2 2 2-i T
y ^  \ is the icet mgle of the second h md

For c\ery parameter in this model we have the position, velocity and acceleration Therefore, 

using the dynamic model of Chapter 5 our model is expanded to the Equation 7 3 for /= 1,2

X

X,

I A+l 

A +1

A +1 

V2 JUI 

X 2 k + \ 

X2 Ul
i

3*1 u i

y h+i

y \ u  i 

y 'iM  

y 'iM

+i

1 h 

0 1 

0 0

! îl
2
h

h 2
1 h

Y
0 1 h

0 0 l
h 2l h T

0 1 h

0 0 1

1 h  —
2

0 1 h

0  0  1

I k

I k

x ,k

2 k 

X 2 k 

X 2 k

y'u

y\k

y\k

y :2k

y ik
y ‘2k

+ w
(7 3)

where x[, x \ , y[ , y l2 are assumed to have continuous first and second order derivatives 

denoted by one-dot and double-dot variables, and h>0 is the sampling time [Chui 1999] 

The position, velocity and the acceleration o f every side of a rectangle are related based on 

the following equation,
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7 2 Occlusion Detection in Bimanual Movements

■j u i

A+i

/A ; A ■y * » = 1,2 y = 1,2 (7 4)
= x 1. , + hxi a j a

where is the position, * the velocity and * the accélération ok a side As in Chapter 5, only 

the position of a rectangle is observable Therefore, wc define the matrix H  as following,

H = [l o o] (7 5)

where I is the identity matrix and H  gi\cs the noiseless connection between the measured 

vector z \ and the state vector x  ̂ in,

A  = H x ;  + \[  , ¡ = 1,2 (7 6)

where

x, =

i k

\ k

'2 k
a2 k 
* 2 k

y\k

y\k

y lik

y lik

y !2k

and v^ts the zero-mean Gaussian white measurement noise Then the Kalman filtering 

model takes on the following stochastic description [Chui 1999J for /= !, 2,

* i = H x ; + v ;
(7 7)

As in Chapter S, we can decompose the model into 4 submodels, each of which is presented

by,
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7 2 Occlusion Detection in Bimanual Movements

1 h - h 21 
2

**+,(2) = 0 1 h **(2)
0 0 1 (3)_

= [1 0 0] x k (2)
_xk(3)

(7 8)

where xk (1) = x k , x k ( 2 ) - x k and *¿(3) = a* The Kalman filtering equations for this 

model are the same as equations stated in Chapter 5 and Appendix C

In this model the prediction o t the future is performed by projecting die current state ahead, 

Equation 7 9

(7 9)

This equation predicts the next state of the vector x one step in advance In other words, it 

predict the position of the rectangle i one step in advance

We set an oulmion alarm it the algorithm predicts an intersection between the rectangles on 

the next step (see higure 7 6) Having the occlusion alarm set, as soon as the hand shapes join 

togedier we dctect the occlusion Therefore, we are able to capture die hand-hand occlusion 

and differentiate if from the other type o t occlusion

prediction t+1
Figure 7 7 Piediction ol mlci section o f the îec tangles ty k ih m n  

filtei and the dynamic m odel

The occlusion detection algorithm is summarised as following,
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7 2 Occlusion Detection in Bimanual Movements

1 By using Grass fin  the hands an ext) acted and the rectangles ate constructed
2 The dynamic model is applied to each rectangle and the future positions ate predicted
3 I f  (he predicted rectangles have any intersection the occlusion alaim is set
4 In the next captured image i f  only one hand is detected by Grassfte and the occlusion alarm is already 

set the hand hand occlusion has happened Otherwise if we see one band in the ¿wage and the occlusion 
alarm is not set, the other type of occlusion (eg occlusion by a part of body or leaving the scene) is 
detected

5 image capturing is continued
6 In any step that two hands are detected in an image while the hand hand occlusion rariabk is set the 

end of occlusion d detected

By this algorithm we are able to detect the beginning and end of occlusions very accurately

7 3 Hand Tracking in Bimanual M ovements

A problem with the hand extraction algorithm (Grassfire) is that the first shape found in an 

image is labelled as the first hand Tins causes difficulties in two forms,

1 The hands move so that in two consecutive images the hand shapes are labelled 

interchangeably (see Figure 7 8) This happens because of the search manner of the Grassfire 

algorithm

t t~\~1
Figme 7 8 The lnncls in two consecutive um ges n n j be labelled 

m teichm geiblv  b\ the Innd ex tn c tio n  algom lun

Chen et al [Chen 2003] track the centroids of colour finger glo\es to track the fingers in a 

surgical operation We use the centro id of the hands to track them in a sequence of images 

By finding the centroids of the handa and comparing them in two consecutive frames the 

problem o f mislabelling in the consecutive frames can be recovered (see Figure 7 9) The 

centroids of the hands are the centres of the tracked rectangles in the last time frame and the 

hand centres in the current obscn ation The mo\ ement of the centroids in the consecutive 

images is smooth that enables us to track the correct position o f hands even it the Grassfire 

algorithm labels them interchangeably
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7 3 Hand Tracking in Bimanual Movements

By using this technique we are able to track the hands correctly even when something else 

occludes them For example, it one of the hands is occluded or totally hidden by the body tor 

some moments and then appears, it can be tracked corrcctly by keeping records of its last 

position before occlusion and the position of the other hand Ihis is expected because when 

a hand moves behind something like die body or moves out o f the image frame it most 

probably appears in an area close to the last position before the occlusion Therefore, if at 

some points there is only one hand in the image the algorithm keeps tracking the hands 

properly without any contusion

/ /+ /

Figme 7 9 By com piling  the h md centioids we c m  tn c k  the 
lnnds Lonccllv m the co n scu itn e  um ges

2 In a bimanual movement, when one hand, completely or partially, covers the other hand 

the hand extraction algorithm detects one big blob in the images In this case tracking and 

resuming the hands accurately at the end of occlusion is crucial

Since we don’t know what exactly happens during occlusion, after the end of occlusion, we 

have to know which hand in the image is the right hand and which hand is the left This is 

the important and difficult problem ot tiacking in the presence of occlusion We introduce 

another algorithm for this problem In order to track the hands we classify the bimanual
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7 3 Hand Tracking in Bimanual Movements

movements based on the path of each hand’s movement The movements are classifies as 

follows,

Class 1 The hands move toward each other, one occludcs the other for some moments and 

passes o^er it Models of a c d, and h presented in Figure 7 10 (a), (c), (d), and (h)

Class 2 The hands m o\e toward each other, they collide and return in the opposite 

directions Models of b,g, k  and /shown in Figure 7 10 (b), (g), (k), and (1)
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7 3 Hand Tracking in Bimanual Movements

Class 3 The hands move, at some point one occludes the other with no collision and they 

return to their previous sides Movements o f model e,f, i and j  shown in Figure 7 10 (e), (f), 

(i), and ())

Class 4 The hands move with no hand-hand occlusion Occasionally one of the hands may 

he occluded by something else either partially or completely Movements of model m and n 

shown in Figure 7 10 (m) and (n)

In the hrst class the hands continue their smooth movements without any collision In the 

second class they collide and change their path In die third class they do not collide but 

changc tiieir padi And in die fourdi class there is no hand-hand occlusion A tracking system 

has to be able to rccognise these classes and track the hands correctly at the end of occlusion

For example, clapping can be represented by model g, tying a knot by modelj s etc We aim to 

reacquire die hands at the end o f occlusion periods Therefore, we find the class that a 

movement belongs to in order to understand the behaviour of the hands during a hand-hand 

occlusion period

We approach the problem from a neuroscience point of view, because in this way we can 

understand the behaviour o f the hands during occlusion periods First, we review a motor 

control phenomenon called Bimanual Cooichnation and our motivation for using it as die basis 

of our tracking algorithm Based on this phenomenon we introduce a tracking algorithm to 

capture bimanual coordination and intelligently track and reacquire the hands m bimanual 

mo\ ements

7 31 Bimanual Coordination

Neuroscience studies show that in bimanual movements the hands tend to be synchronised 

effortlessly [Jackson 2000] This synchronisation appears in bodi temporal and spatial forms 

[Diedrichscn 2001] Temporally, when the two hands reach for different goals they start and 

end dieir movements simultaneously [Diedrichscn 2001] For example, when people tap with 

both hands, the taps are highly synchronised Spatially, we are almost not able to draw a circle 

with one hand while simultaneously drawing a rectangle with the other [Diedrichsen 2001] 

“Synchronisation of the two hands is in a mirror-like fashion [Mechsner 2002]” I his 

synchronisation appears in two forms symmetrical and parallel (see Figure 7 11)
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7 3 Hand Tracking in Bimanual Movements

Researchers have presented different explanations for this phenomenon [Donchin 1998] 

Some scientists explain that the tendency to move in symmetry is closely related to the 

symmetrical structure of the body and the nervous system This can be explained by a 

tendency to co-activate anatomically homologous muscle groups Homologous muscles, as 

well as bilaterally situated areas in the two brain hemispheres and in the spinal cord can be 

activated together This is because ot their interconnection through neuronal pathways 

[Mechsner 2002]

However, Mechsner et al [Mechsner 2001] argue that the symmetry in bimanual movements 

has a perceptual basis They suggest that spontaneous coordination phenomena of this kind 

are purely perceptual in nature

(W
Figure 7 11 (t) Symmetrical m o\em ent o f fingers (1)) P itillcl 

m ovem ent o f fingeis (Reprinted with permission N itme 
Publishing G roup ind f  Mechsner ief[M cchsnei 2001])

lemporal coordination implies that the hands velocities are synchronised in bimanual 

movements Also the hands pauses happen simultaneously We exploit hands temporal 

coordination to track the hands in the presence ot occlusion

In order to detect the pauses we monitor the hand velocities A well-known experiment 

shows that the two hand velocities are highly synchronised in bimanual movements 

[Kennerley 2002] 'Circle drawing is the task of drawing circles by the two hands 

simultaneously in a symmetrical fashion [Kennerley 2002]” Figure 7 12 shows the result of 

tins experiment on a healthy person [Kennerley 2002]
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Figuie 7 12 C ncle dnw m g e\peiim ent Position (top) velocity 
llong the y axis (nuddlc) md lehlive ph ise  relationship between 

the two hm ds (bottom) (Repimted with pci mission N ituie 
N eiuosuence md R I\ t\ le i  [Kenneilev 2002])

In tins experiment it is shown that the >-velocities of the two hands are highly synchronised, 

and no phase difference is observed \  elocity synchronisation and concurrent-pauses 

detection m bimanual movements are the bases of an intelligent tracking algorithm presented 

in the next section

7 3 2 Tracking Algorithm

\Yc introduce a technique based on the dynamic model o f Section 72  As in that section a 

rectangle is constructed around each hand As soon as the occlusion is detected by the 

occlusion-dctection algorithm of Section 7 2 a  occlusion-rectangle around the big blob is 

formed (see I igurc 7 13) We call it I he oulm/o/i m  (angle
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7 3 Hand Tracking in Bimanual Movements

a

c d

b

Tigme 7 13 An exclusion te a  mglc is to inicd no mid the big blob 
o t hands

We use the dynamic model to model the occlusion-rectangle Iheretore, for every side o f the 

rectangle the position, X s velocity, X , and acceleration, X 3 are involved in the model lhe 

horizontal movement ot the hands are modelled by the vertical sides, c and dm  Figure 7 13, 

and the vertical movement by the horizontal sides, a and b For simplicity we define the 

following auxiliary \ ariables,

V(, =  velocity o f side a

v b = *b velocity o f  side b

Vc — Xc velocity o t side c

V(! ~  '  elocity o f side d

Then the following band pause model is defined to model the velocities o f the hands in the 

vertical and horizontal directions,

same sides prior to the occlusion period In these movements the parallel sides of the 

rectangle in either horizontal or vertical directions pause when the hands pause or collide

previous sides In the models g and j  they pause and return in both horizontal and vertical 

directions The horizontal pauses of the hands are captured by the pauses ot the vertical sides

(7 10)

where the subscript k  indicates the discrete time index

In the mov ements where the hands either collide or pause (Classes 2 and 3) they return to the

Tot example, in the models o f l and I the hands horizontally pause and return to their
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7 3 Hand Tracking in Bimanual Movements

of the occlusion-rectangle and vice versa Due to bimanual coordination the pauses of the 

parallel sides are simultaneous in other words, when the hands pause either horizontally or 

vertically the parallel sides associated with the horizontal and vertical movements of hands 

pause simultaneously For example, in the models / and k  the horizontal sides of the 

occlusion-rectangle pause simultaneously when the hands pause or collide vertically during 

occlusion In tins case the velocities of the horizontal sides o f the occlusion-rectangle reach

zero 1 his is captured by Vx k m the hand-pause model In fact, a small threshold £ > 0 can

provide a safe margin because we are working m discrete time and our images are captured at

discrete points in time If Vv L or Vh k tails below the threshold we conclude that the hands

have paused vertically or horizontally By detecting the pauses in the horizontal or vertical 

direction we conclude that the hands have paused or collided and returned to the same sides 

prior to occlusion in that direction

In the movements where the hands pass each other, no pause or collision is detected but a 

change in the sign of the velocities is observable Ihc sign change is due to the fact that when 

the hands pass each other they push the sides in opposite directions (see Figure 7 14) 

Therefore, the sign of the velocities are changed without passing through zero If no hand 

pause is detected vve conclude that the hands have passed each other

Tiguie 7 14 The vetuc »1 sides oi the occlusion-iect-mgle me 
pushed b ick bee uise hands pass e ich othei and push the \e itic  il 

sides in opposite dnection

In a typical movement the hand shapes may change during the occlusion period For 

example, in a movement where the hands move, the fingers may also move concurrently so 

that the shape of hand is changed In this case the movement of fingers may prevent the 

detection of the simultaneous pauses of the hands 1 his is also true when a pair o f parallel
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7 3 Hand Tracking in Bimanual Movements

sides ot the occlusion-rectangle are both connected to one hand since the other hand is in a 

small shape In this case, for example, one ot the vertical sides is connected to the palm while 

the other is connected to the fingers Therefore, the change in the hand shape may prevent 

simultaneous pauses ot both the vertical sides

To investigate this problem we did an experiment presented in Appendix F The result shows 

that the fingers and the hand are coordinated m the movement o f one hand In other words, 

the hand and fingers are temporally synchronised Our experiment shows that the velocity of 

the hand and the velocity of the fingers are highly synchronised with almost no phase 

difference Therefore, the pauses ot the hand and the pauses of the fingers that change the 

hand shape happen simultaneously This is due to the fact that m motor control the temporal 

coupling not only between the limbs but also within a limb is a very powerful constraint [Ivry 

2003] Therefore, the hand-fmger coordination guarantees that the velocities ot the parallel 

sides ot the rectangle arc synchronised and the pauses happen simultaneously I  his 

phenomenon makes the algorithm independent of the changing hand shape

In some ot the models where the hands have purely horizontal (models d and 1} or vertical 

(models c, i, and k) movements, an unwanted pause may be detected in the vertical or 

horizontal directions For example, when the hands move only horizontally (see Figure 

7 10(d)) a vertical pause may be detected because vertically they have not much movement 

and the speed o f the vertical sides may reach zero Also, in the models where a pair o f parallel 

sides ot the occlusion-rectangle move in the same direction2 (e g horizontal sides in models 

a, b, and e), while no zero velocity (pause) is detected, we may wrongly conclude that the 

hands have passed each other in that direction (vertical direction in models a, b, and e) These 

problems can cause the tracking algorithm to run into trouble

In order to solve these problems we classify the velocity synchronisation of the hands 

mentioned m Section 7 3 1 into two classes, positive and negative In the movements where 

the two hands move m opposite directions (eg left and right) the velocities are negatively 

synchronised, while in the movements where they move in the same direction (e g down) die 

velocities are positively synchronised

T Ie ie  b\ d n e cu o n  we m e tn up d o w n  le lt  01 u gh r
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7 3 Hand Tracking in Bimanual Movements

To distinguish the positive and negative synchronisations we define the following velocity 

synthromsalion model, which is the standard deviation of the relative velocities o f the parallel 

sides,

*,2 =  1 y
N - l ,

( -. " v *
)

S" ~  N - 1 ? 1 
1 

J?
1 

1
■"j

11■̂3>1

where N  is the number of images (frames) during the occlusion period, i and j  are the frame 

indices, vnk> vbk, v, k, and vd k arc the velocities o f sides a , b, c, and d at the frame 

during occlusion

This model results in small standard deviations m the purely horizontal or purely vertical 

movements as well as the movements where the parallel sides arc positively synchronised 

For example, in a movement of model cs the vertical sides of the occlusion-rectangle have 

almost no movement during the occlusion period Ihereforc, sh in the velocity-

synchronisation model (System 7 11) will be small In model e, the horizontal sides of the 

occlusion-rectangle are positively synchronised s] in this case becomes small However, if

the velocities of the parallel sides of the occlusion-rectangle are negatively synchronised (e g 

model J) the standard deviations are large Because in this case the velocities of parallel sides 

are m opposite directions with different signs Ih e  thresholds for the small sh and a, are 

determined by experiment

Before we detect the hand pauses we capture any possible positive synchronisation of parallel 

sides of the occlusion-rectangle during the occlusion period using the velocity- 

synchronisation model If a positive synchronisation for any pair o f parallel sides is observ ed5 

the tracking is performed based on the pauses of the other sides of the occlus ion-rectangle

For example, it a small is observed we base the tracking on the pauses of the other sides, c

and d A small standard deviation in the velocity-synchronisation model means that a pair o f 

parallel sides o f the rectangle have been positively synchronised with quite similar velocities 

during occlusion Therefore, we should look at the pauses o f the other sides of the occlusion- 

rectangle during occlusion
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7 3 Hand Tracking in Bimanual Movements

Based on the velocity-synchronisation and hand-pause models the hand tracking algorithm is 

summarised as following,

1 Ifthe hot i^ontal sides of Ihe feti angle an positively synch mimed (small s , ) dating the occlusion period

1 A  I f  dining occlusion ihete is a k such that vh k < £ then the hands an

horizontally back to then onginalposition
1 B Else the hands hot i%ontally passed each other

2 Else i f  the ve iti tal sides of the wet angle aie positi hely synchronised (small sb) duung the octlnsion
pei iod

2A  I f  dating occlusion there is a k such that Vv k < £ then the hands an

leitically back to then original position
2 B Else the hands vertically passed each othei

3 Else i f  dnting occlusion then is a k such that v h k < £ then the hands ate horizontally back to 

their original position
4 Else i f  during occlusion then is a k such that k < 8  then the hands ate lettically back to then 

onginalposition

5 Else the hands passed each other

The above algorithm tracks the hands smartly during occlusion and makes a decision on the 

position of the hands at die end ot occlusion
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7 4 Experimental Results

7 4 Experimental Results

Before we start the experiments some information should he given about the distance of 

camera and the hands, and the filming area

In our experiments, the camera is placed about 250cm from the subject filming a 70-by-70cm 

area approximately The resolution of the camera is set to 400-by-200 pixels Therefore, each 

pixel on the vertical axis corresponds to 3 5mm and on horizontal axis to 1 75mm 

approximately on the filming area Also based on our experiments, that will be presented 

later, an image takes 26 6ms to be processed by the algorithm In other words, the time unit 

between two consecutive images is 26 6 milliseconds

n-2 6  6 ms

Therefore, a velocity of i pixel per time-unit is equal to 131 25mm per second or 13 125 

cm /s on the vertical axis For example, a velocity of 10 pixels per time-unit is equal to I 3 

meter per second approximately on the vertical axis Also, a velocity7 of 1 pixel per time-unit 

on the horizontal axis is equal to 65 626 millimetre per second All the units in the following 

examples are image pixels and the time unit, u

First, we look at the performance ot the dynamic model m predicting the future position of 

the rectangles The results o f employing the dynamic model in tracking and predicting a 

vertical side of a rectangle is shown in Figure 7 15 In this figure, the solid dots connected by 

lines are the actual position of the side of a rectangle during a hand movement fhe small 

circles show the result of prediction by the dynamic model A closer look at this graph gives a 

better view ot the effectiveness of the algorithm in predicting the next position of a side ot 

the rectangle In figure 7 16 the part ot the graph of Figure 7 15 from the 115th to 162nd time 

unit is magnified It is clearly visible that the dynamic model is able to predict the future 

position of the side of the rectangle accurately The graphs o f the other sides of the rectangle 

in this experiment are shown in Figure 7 17
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7 4 Experimental Results

time unit {u)

Figure 7 IS The position of i side o f  a rectangle dm mg a hand 
movem ent jih ! the piedicuons

Figure 7 16 A  closer v lew of the graph ol the ictu il position and 
the piedichon by the dynamic m odel
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7 4 Experimental Results

In the second experiment the complete algorithm ot occlusion detection and tracking during 

occlusion is employed to track the hands in a movement in which the hands pass each other 

(see Figure 7 10 (h)) Some frames o f this movement are presented in Figure 7 18 In the hfdi 

to the ninth frame we sec that die algorithm has detected occlusion and the occlusion 

rectangle around the both hands is formed From the tenth frame it is visible diat the 

algorithm has tracked and labelled the hands correctly The hand labels are the small vertical 

lines on top of the hand rectangles The hand with one line is die right hand and with two 

lines is the left hand

TlgiiLe 7 18 A. bim 'iiunl m ovem ent o f  tvpe h The rectangle with 
one small veitic )1 hue on top denotes the Light h m d  md the 

lectnngle with two small \c tü c  il lines denote the left hand The 
li mds ue tncked  conectlv  at the end o t occlusion

To investigate the process of tracking we look at the graph ot the occlusion-rectangle sides 

The graph of velocities of the horizontal sides of the occlusion-rectangle is shown in Figure 

7 19(a) and lor the vertical sides in Figure 7 19(b) lhese velocities belong to the frames in 

Figure 7 18 with hand-hand occlusion

In this experiment, since the hands pass each other in opposite directions (see Figure 718) 

we observe opposite movements in the rectangle-sides velocities These velocities are 

negatively synchronised Large standard deviations in this experiment enable us to detect the 

opposite movements o f the hands The values o f velocity-synchronisation model are 18 035 

for the horizontal sides and 8 828 for the vertical sides In the graphs of Figure 7 19 we can

see that at no point the velocity ot the parallel sides reach zero together The graphs of the
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7 4 Experimental Results

hand-pause model (System 7 10) tor the parallel sides of the occlusion-rectangle are plotted in 

Figure 7 20

1 2 3 4 5

time unit (u)

(b)
Figuie 7 19 Velocities oi (i) the hori?ontil sides o f the occlusion 

Lee tingle (on the veLtic il i u s )  (b) the \e ttic il sides oi the 
occlusion i c c  tingle (on the honzontil i\is)

Figuie 7 20 The gi iph of the h m d  p in  se model to i (i) the 
h o n zo n n l sides of (lie occlusion i c c tingle (on the vem cil i \ i s ) ,  

(I)) the veiticil sides oi the occlusion îect ingle (011 the honzoni il 
i\is)

In Figure 7 J9 in all the velocities we observe a sign change at some stage Since the side^ o f 

the rectangle represent the rightmost, leftmost, top and bottom of the big blob during
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7 4 Experimental Results

occlusion, when one hand passes over the other they push the sides in the opposite

directions Therefore, a sign change in the velocities is observed

In the third example we look at the dynamic model in detecting hand pauses Some images of 

an experiment are shown in Figure 7 21 In this movement (clapping) of type g the hands 

collide and return in opposite directions In the 11th image (the 7th frame during occlusion) 

the grey box at the left o f image shows the detection of hand pause in the horizontal 

direction Immediately, in the 12th frame (the 8th frame during occlusion) the algorithm 

detects the vertical pause The grey box on top left o f the 12th frame shows the pause 

detection on the vertical direction

An interesting point is the independence of the algorithm from the hand shapes It is shown 

in this experiment that during the whole movement the hand shapes are changed but the 

algorithm keeps tracking and labelling them correctly In this algorithm we do not recognise 

the shapes and therefore it is independent from hand shape which is a great advantage 

Processing hand shapes is usually a time consuming process In a real-time hand tracking 

applications time is so precious The less processing the taster running

In order to investigate the algorithm m tins example the velocities of the parallel side of the 

occlusion-rectangle are plotted in Figure 7 22 In these graphs at the 7th frame during

occlusion the velocities of the vertical sides (on the horizontal axis) reach almost zero (see

Figure 7 22(a)) 1 hereto re, the algorithm detects the pause in the horizontal direction The 

velocities of the horizontal sides of the rectangle reach zero at the 8th frame during occlusion 

(see Figure 7 22(b)) The graphs of the hand-pause model are plotted in Figure 7 23 These 

graphs show that the hand’s horizontal pause was detected at the 7th frame and the vertical 

pause at the 8Lh frame

128



7 4 Experimental Results

Figure 7 21 A hand m ovem ent o f  type g in wlncli the hands 
collide md leturn  in opposite dnection Note the change in the 

hand shape before and alter occlusion

Note that the zero threshold for the horizontal axis is twice the zero threshold for the vertical 

axis This is due to the fact that the camera is capturing an area ot 70\70cm in a 400x200 

pixels frame Therefore, in a diagonal movement where the horizontal and vertical velocities 

ot the hand are equal the dynamic model estimate the horizontal velocity as twice as the 

vertical velocity
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(b)
I igute 7 22 G i )phs ot the velocities o f  paiallel sides of: the 
occlusion tec tangle (a) veitical sides (b) honzont il sides

H guie 7 23 G iaph o f the hand pause mode] foi (i) the honzontal 
sides of (he occlusion reclangle (b) the veitical sides o f  the 

occlusion-iec tangle

Another movement o f type a demonstrates synchronisation between the velocities of the 

horizontal sides of the occlusion-rectangle For this experiment the graphs of the velocities 

are plotted in Figure 7 24 It is clear that the horizontal sides are positively synchronised with 

quite similar velocities Ihe velocity-synchronisation model, which is used to catch this
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synchronisation, gives the values presented in Table 7 1 The similarity ot the horizontal-sides 

movement is better presented by a high-low lines graph in Figure 7 25

(b)
Figure 7 24 G n p h  o f  the \elocities o t p u  illel sides o t the 

occlusion LCct ingle in i movement o f  type a (n) ho i wont'll sides 
(b) \eLtical sides

Table 7 1 Values o f velocity synchronisation model for the parallel sides ot the occlusion rectangle

Rectangle Sides Standard Deviation of the Relative
Velocities

Horizontal sides S, =149
Vertical sides S h =20 13

I he positively synchronised movement of the horizontal sides is caught by the model and the 

decision is made based on the pauses of the vertical sides

The negative synchronisation of the vertical sides of the rectangle is observable in Figure 

7 24(b) In this figure, the rectangles sides have pretty similar velocities but in opposite 

directions
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From Figure 7 24(b) it seems that at the 6th frame die velocities o f the vertical sides reach 

zero but the algorithm keeps tracking correctly Although, in this example the algoridim 

tracked the hands correctly, there arc some cases occasionally in which the algorithm makes 

wrong decisions We will measure the performance ot the algorithm later

Figure 7 25 The \elocities o t the p in lle l sides oi the occlusion 
lectm gle lie positively synchionised with i  su iu lu  m ovem ent 

which is c iught by the velocity synchioms ition model

Ih c  tifth experiment is presented to demonstrate the independence ot the tracking algorithm 

from the camera’s angle ot view and the type of movement In dus experiment, a bimanual 

movement is performed twice In the first time, the camera is placed on the side looking at 

the hands horizontally (see Figure 7 26(a)) In the second example we changed the position 

o f camera to look at the scene from a top-corner view (see Figure 7 26(Id)) The selected 

movement is so that from the side view the hands pass each other but from die top-corner 

view they pause and return to their previous sides The results of tracking are presented in 

Figure 7 27 In 7 27(a) the movement is shown from the side view In 7 27(b) the movement 

is shown from the top-corner view As can be seen the algorithm tracks die hands correctly 

in both examples

(fl)
Figure 7 26 The two ingle o f  views (a) side view, (b) top-corner 

v lew
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(b)
Tigme 1 21 A  him mu il m ovem enr seen tiom  two angle of view«;, 

(a) h o m  the side view (b) from  the top com er view
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7 4 Experimental Results

In order to evaluate the algorithm 3500 experiments associated with different models were 

performed with many different hand shapes The results of the experiments are presented in 

lable 7 2 It is shown that the algorithm is able to track the hands correctly in almost 90% ot 

times

Table 7 2 Perform ance ol the tracking algorithm  using the dynam ic model

#  Movements #  Errors Error Rate Tracking Rate
(events) (%) (%)

3500 351 10 03 89 97

An important factor m the bimanual movements is the speed of movement A movement 

can be performed slowly, moderately, or fast In our experiments we tried to include all 

classes ot speeds Therefore, m some of the movements where the period of occlusion is 

short, e g movement of type /;, the camera speed brings some restriction to the algorithm In 

this case the number ot images taken during occlusion should be large enough so that the 

algorithm can detect hand collisions, e g  the movements ot type /;, or hand pauses, e g  the 

movements of type e Particularly, when a movement is performed fast very few images are 

captured during occlusion The Kalman filtering process is based on the Kinematic equations 

ot motion Therefore, in a fast movement the sides of the occlusion-rectangle have the 

potential to move further rather than to stop quickly In other words, a large difference 

between the position ot a rectangle side m two consecutive images causes the algorithm to 

estimate a high velocity for the side Therefore, it will be hard to detect the quick stop of 

hands in a few consecutive images containing a fast movement

In order to overcome this problem we changed the mechanism of pause detection of the 

algorithm In this case, the pattern of the v elocity changcs of the rectangle sides during the 

occlusion period is determined to match one ot the previously trained patterns for hand- 

pause or hand-pass The new algorithm has demonstrated a good performance The details 

of the changes are presented in Appendix E

The other important parameter is the processing speed We did many experiments in order to 

measure the processing speed ot the algorithm With a fast camera working in 120 frames per 

second on a Pentium II, I GHz the algorithm is able to process 37 5 frames per second in 

a\ erage It means that every image takes 26 6 milliseconds to be processed by the algorithm 

on this machine
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Although some other groups have done some work on hand tracking in the presence of 

occlusion, none o f them has considered the problem ot tracking the hands in bimanual 

movements so widely The CONDENSATION algorithm |Isard 1998a] has been 

implemented by Gong et al [Gong 2002J works at a low speed able to process an image in 27 

seconds on a Pentium II, 330 MHz Gong et al have also a Bayesian Network-based 

technique for modelling the semantics of interactive behaviors able to process 5 frames per 

second on a Pentium II, 330 MHz [Gong 2002J lheir result ot 13% error is based on the 

number ot images in the database and not the number of events In our experiments of 

Fable 7 2 the tracking results are event-based in which each event (movement) may consist 

dozens of images If we present our measurement in this way, assuming that on average the 

number of images before the occlusion period and alter the occlusion period are almost 

equal in a movement, the performance ot the algorithm increases to approximately 95% 

This is due to the fact that betore the occlusion period the hands are correctly tracked and 

the number of fails corresponds to the images atter the occlusion periods

All the experiments and results presented here demonstrate that the hands have quite similar 

velocities in the same or opposite directions in bimanual movements In other words, they 

are either positively or negatively synchronised This reconfirms the coordination in bimanual 

mo\ ements

Summary and Conclusion

A dynamic model based on the kinematic equations of motion was presented to track the 

hands in bimanual movements A procedure tor predicting the future movement ot the 

hands in order to detect possible hand-hand occlusions was introduced Therefore, we were 

able to dctect the cxact moment that occlusion happens and ends in a bimanual m ovem ent

We introduced a novel intelligent algorithm based on the dynamic model to track and 

reacquire the hands in a movement where hand-hand occlusion exists Based on the 

bimanual coordination phenomenon we presented a model to capture the coordination in the 

bimanual movements in order to detect the positive or negative synchronisation o f the 

hands Also, the concurrent hand pauses were detected in a model to track the hands in 

different types o f bimanual movements presented in this chapter

We presented some experimental results in which the proposed tracking algorithm was 

examined under different types o f movements We also demonstrated that the algorithm is
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independent from the type of movement, changing hand shapes, and the angle of \iew In 

this order, it was shown that given that the hand shapes are changed in the movement the 

algorithm tracks the hands correctly Also, wc changcd the cameia’s angle o f  view and tested 

a movement in which from a view direction it belongs to a type of movement while from 

another view it belongs to another type

We will use this algorithm in the next chapter tor tracking and mo\ ement segmentation in 

order to recognise bimanual movements
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C h a p t e r  8

RECOGNITION OF BIMANUAL MOVEMENTS

In the List chapter we introduced an intelligent tracking algorithm for tracking the hands in 

bimanual movements in which the hands are partially or completely occluded tor some 

moments Now, we m o\e forward to recognise bimanual movements

✓

By using the tracking algorithm we can separate the hands from each other and look at the 

mo\ement of each hand individually in order to understand the whole bimanual movement 

The meaning of cach hand movement must be combined so that the bimanual movement is 

recognised as a single entity We introduce a Bayesian network tor the recognition ot 

bimanual movements First, a quick rc\ lew of Bayesian networks and the beliet propagation 

algorithm is presented Then the Bayesian network tor recognition is described in detail In 

this network Hidden Markov Models arc employed to recognise the partial mo\ements of 

the hands Partially rccognised movements arc fused at different levels of the network to 

torm the whole bimanual movement The movement is recognised at the top node ot the 

network as a single movement constituted from the partially recognised movements

For another set o f movements called concatenated periodic bimanual movements we change 

the beliet propagation algorithm to stabilise the belief of the network in these movements A 

short-term memory is applied to the network for the stabilisation of the beliet

A Bayesian network containing a single loop is also introduced for the recognition process 

We deeply explore some of the problems involved in the loopy networks The reasons for 

the comcrgence o f  the loopy network tor the recognition o f  bimanual movements are 

presented We also explore the parameters involved m the convergence rate ot the loopy 

networks A new analytical tramework is presented to tormalise the conditions where the 

loopy networks converge rapidly Wc assess the presented networks on the two sets ot test 

data, and show that all the proposed networks recognise the single bimanual movements very 

accurately In the case of concatenated periodic movements the networks demonstrate 

ditterent recognition rates which are reported at the end of this chapter
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8 1 Bayesian Networks

CCA Bayesian netm ik  is a graphic'll model that encodes probabilistic relationships among 

variables of interest” [Hcckerman 1996] Over the last decade, Bayesian networks have been 

used for probabilistic reasoning in a wide range of applications trom medical to forensic 

investigation Particularly, Bayesian networks are employed to combine a set ot diagnostic 

data in order to make a decision Ihcrc are other similar methods such as Dempster-Shafer 

[Pearl 1998] or Fuzzy Logic [Zadeh 1992], which arc used in the literature for data fusion 

Although^ these methods are m many ways similar to each other, each application needs 

particular models based on the type of application and the required result We will discuss 

our application and the reasons about choosing Bayesian networks instead of e g Dempster- 

Shater later on in this chapter

The heart of Bayesian networks lies in Bayes5 rule,

(81 )
P(e)

where H is the hypothesis and e is the evidence This formula states that the beliet that H  is 

true upon obtaining evidence e can be computed by multiplying our previous belief p(H) by 

the likelihoodp(e \ H) that ¿will be materialised it H  is true Ih e  term p(e) is the denominator 

that is used tor normalisation

Causal hm  are Bayesian networks in which e\ery new piece of evidence e propagates through 

via message-passing Tn causal trees each node has at most one parent (sec Figure 8 I)

Figuie 8 1 A cans \\ lic t

Another type ot Bayesian network is the causalpolytm In this type ot network each node may 

have more than one parent (see Figure 8 2) There are other types o f Bayesian networks
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which can be found in the literature [Pearl 1988], [Neapolitan 1990], [ Cowell 1999] A set ot 

networks are the causal polytrees containing loops Regular rules ot causal trees and polytrees 

do not hold for this type of Bayesian network We will discuss these networks turther in die 

next sections

811  Belief Propagation in Causal Trees

Pearl has proposed a message-passing technique [Pearl 1988] m which the local belief at each 

node ot a causal tree is updated by die message received from the neighbouring nodes ihese 

local belief propagation rules are guaranteed to comerge to the optimal belief: for singly 

connected networks A singly connected network is a network in which no more dian one path 

exists between any pair o f nodes Causal trees are singly connected

Suppose diatw c have a tree depicted in Figure 8 3

Figure 8 3 4. p n t  o t a c im  il tiee
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A message which is communicated by a child to its parent is expressed as X The messages 

that is sent by a parent to its children is expressed as n  Assuming a typical node X  has m 

children, Y{,Y2, ,Ym and a parent U the belief propagation rules are summarised as 

following,

• Belief updating

M * )= n v A)
j

7t(x) = 1i x(U) M xu 

BEL(jc) = dk{ x)n(x)

(8 2)

(8 3) 

(8 4)

where \ Y (a) stands for the message communicated from the child ot

node X,  which is the current strength oJ- the diagnostic support,

n x(U) stands for the message communicated trom parent which is the

currcnt strength of the causal support, 

a  is a normalising constant,

M xt/ is die conditional probability matrix, in which the (\, //) entry is given 

by

M xu P(x\u)  = P(X = x \ U  - u )

where it the variables at the nodes ot the tree are multi-valued with 

■̂i i x ~), , Jf and w | , £i t  ̂w

M XU

/ ? ( - * , ! « , )  p ( x 2 \ u t ) P ( x „ \ u j

p ( x t \ u 2 ) p ( x 2 \ u 2 )  p ( x l t \ u 2 )

P(xz \u,„) P(x„ \ u,„)_

(8 5)

• Bottom-up propagation

(8 6)
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where Xv(w) is the message calculated at node X, using the Ï. messages 

received, to be sent to its parent U 

• Top-down propagation

l*j

where k Y (x) are the messages calculated at node A7 to be sent to each of its 

children

In Equations 8 2 to 8 7 the parameters have the following probabilistic meanings,

where e stands for the total evidence available, e v is the evidence contained in the tree 

rooted atX , and e* stands for the evidence contained in the rest of the network

8 1 2  Causal Polytrees

In causal polytrces the belief propagation is summarised as following,

• Combine all messages coming into X  cxcept for that coming from Y  into a

vector V by multiplying all the message vectors element by element

• Multiply V by the matrix corresponding to the link from X  to 1 '

•  Normalise the product M ^ Kv Ihc normalised vector is sent to Y

• The belief vector of node X  is obtained by combining all incoming messages to

Details of the propagation rules for singly connected networks can be found in [Pearl 1988], 

[Neapolitan 1990], [Weiss 2000]

Pearl in [Pearl 1988] discusses that the absence of loops m the network permits us to develop 

a local updating scheme similar to that used for causal trees Local belief propagation rules

(8 7)

(8 8)

(x) = P(x  | e* ) (8 9)

BEL(x) = P(x | e) (810)

X  and normalising
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proposed by Pearl are guaranteed to converge to optimal beliefs in singly connected 

networks

8 2 Recognition o f Bimanual M ovements

Recognition of bimanual movements can be accurately achieved by recognising the gesture 

ot each hand separately

First, in a sequence ot images, we ha\e to separate the hands from each other Then for each 

hand we must recognise the gesture At the end the recognition of the whole bimanual 

gesture can be achieved by tusmg the results o f each individually recognised hand gesture

8 21 Hand Tracking and Separation

In order to separate the hands wc use the tracking algorithm o f C hapter 7 By this algorithm 

we track the hands individually in a sequence o f images Therefore, we are able to separate 

the movement ot each hand while no hand occlusion exists However, when we have 

occlusion the hands are not separately recognisable Thus, we cannot separate the 

mo\ ements of the hands

"there can be two solutions tor this problem We can ignore the parts of the movement with 

hand occlusion and just recognise what we see m the whole movement excluding occlusion 

parts However, in many gestures such as time signs in British Sign Language the important 

part of the gesture is when the hands are seen connected together (see Figure 8 4)

f ig u ie 8  4 Signs io i week two weeks 'md m onth m British Sign 
L uiginge

There to re, we cannot ignore the occlusion parts of a movement The second solution is to 

take the occlusion parts into account and recognise it separately Then, the recognised
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indiudual movements ot hands and the occlusion parts must be fused in order to understand 

die whole bimanual movement

Each hand is tracked and separately projected into a blank sequence ot images (see Figure 

8 5) In order to presen e the m o\em ent of the hands with respect to the image frame, the 

direction ot movement of cach hand is recorded For this we divide the 2-dimensional space 

ot die image frame into 8 equal regions [Wu 2002] as in Figure 8 6

figure  8 5 Hie h »ids movem ents ue scpai ited and piojecfed info 
the blank sequences of images
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Wc call this the iegional-map The index ot each region represents the direction of movement 

in that region Index of zero represents immovability

By tracking the movement o f the ccntrc ot each hand a vector representing the movement is 

extracted for every single trame I his vector represents the movement from the last image to 

the present one (see Figure 8 7) The angle of the vector with respect to the horizontal axis 

determines the region in the regional-map in which die vector maps onto The region index 

is recorded tor the movement at each time / Even tor a partial sequence including hand 

occlusion the direction vector tot the movement o f  the big blob is extracted and the region 

index is recorded

r  iguie 8 7 The e \  tin , ted v e u o i foi t m ovem ent

8 2 2 Movement Segmentation

A bimanual movement is constituted trom two groups ot parts, the occlusion parts in which 

one hand is occluded and the other parts, we call them non-occlusion, where the hands are 

recognisable separately Since a bimanual movement can be a periodic movement like 

clapping we separate different parts, which we call segments Four segments are obtained as 

following,

A The beginning segment, trom the beginning ot a gesture to the first occlusion 

part

B The occlusion segments, where one hand is occluded

C The middle segments, a part ot the gesture between two consecutive occlusion 

segments

D The ending segment, from the last occlusion segment to the end of gesture

An example of a segmented bimanual movement is illustrated over the time axis m Figure 

8 8 Although we have assumed in this figure that the movement starts and ends in non-
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8 2 Recognition of Bimanual Movements

occlusion segments, extending the algorithm to the other cases is straight-forward and makes 

no difference in the essence of the algorithm Also for the gestures in which no occlusion 

segment is observed the process is the same with only one segment for the whole gesture

A matrix representing the hand segments is crcated tor a gesture We call it the segments- 

matrix In this matrix, c\cry row is associated with a single frame in the captured image 

sequence I he first column ot the matrix represents the segment index, 1 for A, 2 for 13, 3 for 

C and 4 tor D

Figme 8 8 Segmentation of i  b iim m n l gestme o \e i  n peiiod oi 
time The sepm »te lines u  segments A C, and D  show the 
sep u^ted h uids In segments B the oveil iped lines show 

oec lu sion

The sccond column is the region index of the movement of the hand number 1 (normally the 

right hand) Ih e  third column represents the region index ot the movement of the hand 

number 2

For the segments ot occlusion the second column is the region index ot the movement of 

the big blob and the third column is set to zero An example o f the segments-matrix is 

presented in the Figure 8 9,
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8 2 Recognition of Bimanual Movements

Figmc 8 9 The segments n n t i i \  is used to lecoid the segments 
index ind  the m otion vectoi of e icli liu id  in in  lim ge Hie fust 
colum n is the segment m de\, Llie second nnd thud  columns -lie 

the m otion vectors oi the lust md second hinds

For each hand a separate image sequence is recorded Also, a sequence of: images is recorded 

for the occlusion segments Iherefore, for a bimanual movement three files of- images are 

recorded, one tor each hand separately and one tor the occlusion parts In order to 

synchronise the segments-matrix with the recorded image sequences we create another 

matrix called synchronisation matrix In this matrix, e\ery row represents a segment I he first 

column of this matrix is the number of images in a segment and the sccond column is the 

segment index For example, tor die above segments-matnx the synchronisation matrix is 

extracted as following,

By using the synchronisation matrix we can extract the partial sequence ot images of each 

segment from the recorded files In the above example, the first 4 images of die sequences of 

the hands belong to the beginning segment o f the gesture The first two images of: die file o f 

occlusion are the first occlusion segment and so on
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8 2 Recognition of Bimanual Movements

8 2 3 Bayesian Fusion of Partial Discrete Hidden Markov Models

In a bimanual movement there can be several occlusion and middle segments I or example 

in Figure 8 8 there arc 3 occlusion and 2 middle segments Thus, a data fusion structure must 

be able to deal with multiple occlusion and middle segments as well as the beginning and the 

ending segments m order to understand the whole bimanual movement

As it was mentioned earlier, there are different methods for data tusion The well-known 

methods o f data fusion are Bayesian networks, Dempster-Shafer theory, Fuzzy Logic, and 

Neural Networks [Pearl 1988 Petrou 2001 Zadeh 1992 Theodoridis 1999] Each of these 

methods can be used to combine the information of the partial hand movements within 

different segments of a bimanual movement

The movement of a hand within a segment (or the two hands in an occlusion segment) can 

be treated as a single movement appearing in the sequence ot images of the segment These 

partial movements can be modelled and recognised by Hidden Markov Models as explained 

in Chapter 6 Therefore, for a bimanual movement we get a set o f recognised partial 

movements of the two hands and the occlusion parts We must combine this information to 

rccognise the bimanual movement1

Dempster-Shafer theory is a method tor data fusion [Pearl 1988] When we have a synthesis 

task where the constraints are imposed externally, our concerns centres on issues of 

possibility and necessity In this case, the Dempster-Shafer theory seems more suitable for 

anticipated queries On the other hand, the Bayesian networks arc more suitable for the tasks 

ot analysis (eg diagnosis) to piece together a model of physical reality [Pearl 1988] 

Therefore, it we consider the partial movements o f hands as the pieces constituting a 

bimanual movement, Bayesian networks seems more suitable to be employed for our data 

tusion problem As a future work, however, we can use Dempster-Shater theory, Fuzzy 

Logic and Neural Networks for the fusion task and compare them with the Bayesian 

networks m bimanual movement recognition

An alternative to all the above techniques is the Coupled Flidden Markov Models [Brand 

1997] Although this model has been used to model interactive hands [Brand 1997], a major 

weakness is that this model is unable to deal with occlusion In this model the two hands

1 Thete ue tluee types o f  fusion reported in die literature JPetiou 2001], data level fusion, ieanue level fusion and decision 
le\el fusion O m  appioich  to iccognise the ptill'll h ind  movements by Hidden M aiko\ Models and combine them by 
each o t the d Ua fusion m ediods is an e \  unple of decision level fusion
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8 2 Recognition of Bimanual Movements

must be separately recognisable throughout the whole image sequence 1 hereto re, no 

occlusion (including hand-hand occlusion) can be dealt with using Coupled HMM Since 

occlusion may happen in most bimanual movements we cannot ignore this part as we 

mentioned earlier and a solution must be able to deal with it On the other hand, in some of 

the movements one hand may be occludcd by something else (e g the body) or leave the 

scene in a segment other than occlusion segment A general solution must deal with this type 

of occlusion too Thus, we must rccognisc the movement o f the hands separately so that we 

can deal with the segments containing two hands or one hand as well as (hand-hand) 

occlusion segments

We introduce a Bayesian network in which die whole gesture is divided into the movements 

of the two hands The movement of each hand is also divided into the tour segments (see 

Figure 8 10) In this figure, the BEG, MID, OCC, and EN D  are the evidence nodes The 

occluded part o f a gesture is a common part for the both hands I hereto re, a single shared 

node is considered According to the number ot cases it can accept, each node in this tree 

represents a multi-\alucd variable Ihus, for a vocabulary containing ^ bimanual gestures 

every node is a vector with length g I he three top nodes of Bimanual Gesture, Left Hand 

Gesturv, and Right Hand Gestun arc non-evidence nodes updated by the messages 

communicated by the evidence nodes The evidence nodes are ted by the partial Discrete 

Hidden Markov Models o f different segments separately

Due to the tact that the beginning, middle, and ending segments of a gesture have no time 

overlapping, and assuming that the segments are o f  equal weight, the causal tree can be 

abstracted to the tree depicted in Figure 8 11 Ihe NS nodes represent the evidences of the 

beginning, middle, and ending segments at ditterent times for each hand These evidences are 

the normalised vectors of likelihoods provided by the partial Discrete Hidden Markov 

Models at the lowest level ot the network These values represent the likelihoods that a given 

partial gesture is each of the gestures in the \ ocabulary in the corresponding segment 

Flow do the partial Discrete Hidden Markov Models work and calculate the likelihoods? We 

discuss this in the next section
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Figure 8 10 A Bivesi m netw ork for fusing pnrtnl Discrete 
H idden Mni.ko’v Models loi the lecogm tion ol b iim nm l 

m o\em ents

F ig u te8 1 1  lh c  ibstucled  B ivesnn neiw'oik iot t he recognition 
o l b u m n m l m ovem ents
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8 2 Recognition of Bimanual Movements

8 2 4 Partial Discrete Hidden Markov Models for Partial Gesture Recognition

In order to recognise the whole movement we rccognisc the partial gestures o f each segment 

separately For this, we construct an eigcnspace tor each hand based on the results ot

Chapter 6 A separate eigenspace is created, also, tor the occlusion segments These

eigenspaces are made by the movements in the training set As in Chapter 6, by projecting all 

the images ot one hand into its own eigenspace a cloud ot points is creatcd A set ot

codewords is extracted tor each eigenspace using Vector Quantisation Iherefore, by

projecting a segment ot a gesture into the corresponding eigenspacc a sequence o f 

codewords is extracted For each hand in a non-occlusion segment a 2-state left-to-nght 

Discrete Hidden Markov Model (see Figure 8 12) is constructed Due to the fact that a partial 

movement of a hand in a segment is normally a short movement a 2-state DITMM is suitable 

to capture the beginning and end of the movement Every segment of a gesture has its 

individual DITMMs Thus, for every gesture in the vocabulary ot bimanual movements seven 

DFIMMs are constructed, two for the beginning segments tor the two hands, one for the 

occlusion segments, two tor the middle segments, and two for the ending segments By using 

the extracted sequence o f codewords the DHMM of each hand in different segments is 

trained Ihe DITMMs of the occlusion segments are trained by the extracted sequence of 

codewords of the projected images into the corresponding eigenspace

For example, for a vocabulary of 10 bimanual movements 70 DHMMs are created and 

trained In the recognition phase the same procedure is done A given gesture is segmented 

Images of each segment arc projected into the corresponding eigenspace and the sequence ot 

codewords is extracted By employing the trained DHMMs the partial gesture of each hand 

presented in a segment can be recognised However, we use the DHMMs to calculate the 

likelihoods that a given partial gesture is each of the corresponding partial gestures in the 

vocabulary A normalised vector o f the likelihoods for a given partial gesture m a segment is 

passed to one of the evidence nodes in the Bayesian network of Figure 811 For example, 

the second scalar in the NS vector o f  the left hand is the likelihood that

Tiguie 8 12 A 2 st ue leit to nght Hidden M aikov Model is used 
lot the p u tn l gestuits
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8 2 Recognition of Bimanual Movements

• In a beginning segment the given partial gesture is the gesture number 2 in the

vocabulary, calculated by the partial DHMM of the beginning segment of the left

hand ot this gesture

• In a middle segment die given partial gesture is the gesture number 2 in the

vocabulary, calculated by the partial DHMM of the middle segment of the left

hand of this gesture

and so on

I  he occlusion vector, which is ted by the likelihoods o f the DHMMs o f the occlusion 

segments, is a shared message communicated to the III and RH nodes as evidences for the 

two hands

The network looks loopy (containing a loop) The nodes of BG, LH, OS, and RH form a loop 

Tli ere to re, the network does not seem to be singly connected and a message may circulate 

indefinitely However, the node OS is an evidence node Referring to the propagation rules 

the evidence nodes do not receive messages and they always transmit tire same vector 

Therefore, the NS and OS nodes are not updated by the messages ot the LIT and RH nodes In 

tact, the LI-1 and RI-I nodes do not send messages to the evidence nodes Therefore, although 

the network looks like a loopy network, the occlusion node of OS cuts the loop and no 

message can circulate in the loop This enables us to use tire belief propagation rules ot singly 

connected networks in this network In the next sections, however, we change the structure 

of the network to a loopy one and will assess it in recognising the gestures

The procedure ot recognising partial gestures and tusing the results by the proposed Bayesian 

network in order to recognise a bimanual movement is summarised in the following 

algorithm,

The Algorithm for Bimanual Movement Recognition

1 A  bimanual gesture is segmented by the tlacking algouthm

2 The beginning segment
2 1 Fof eueiy hand the beginning segment is pwjected into the etgenspace of the corresponding hand 
2 2 The sequence of codewords is extractedfor each hand
2 3 By employing the DTlMMs of the beginning segment of each hand the vector of likelihoods is 

caludated and normalised
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8 2 Recognition of Bimanual Movements

2 4  The vectors of likelihoods an passed into the corresponding N S  nodes while the vector of occlusion 
node is set to a vector of all 1s

2 5 The nodes' beliefs an updated

3 A n occlusion segment
3 1 The image sequence of the segment is projected into the eigenspace of the occlusion segments 
3 2 A  sequence of codewords is extracted
3 3 The vector of likelihoods is calculated and normalised by using the corresponding DHMMs
3 4 The vector is passed into the OS node
3 5 The nodes’ beliefs an updated

4 A  middle segment
4 1 Fot every hand the corresponding image sequence is projected into the cof responding eigenspace 
4 2 The sequences of codewords ate extracted
4 3 The vectors of likelihoods an calculated and normalised by using the cotnspo riding DHMMs
4 4 The vectors of likelihoods an passed to the corresponding N S  nodes
4 5 The nodes' belief ate rpdated

5 While there an mon occlusion and middle segments the parts 3 and 4 of the algorithm an repealed

6 The ending j egment

6 1 Fot every hand the image sequence is projected into the corresponding eigenspace 
6 2 The sequence of codewords an extracted
6 3 The vectors of likelihoods an calculated and normalised bj> using the DHMMs of the ending 

segments
6 4 The vectors an passed to the cornspondingNS nodes
6 5 The nodesy beliefs an updated

7 The gesture with the highest probability in the local belief of the root node is the best match 

8 2 5 Experimental Results

15 bimanual movements were crcated as it the hands were doing regular daily movements 

like clapping, signing Wednesday in the British Sign Language, knotting a string, turning over 

the leaves o f a book, and some movements trom sign language A tew sample frames of each 

mo\em ent are shown in Figure 8 13
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Figure 8 13 Four sample frames o f  each bimanual m o; em cnt
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8 2 Recognition of Bimanual Movements

Tiguie 8 13 (con td) Tout maniple frames o f  each bimanual 
tiiov etnenr

For every movement we captured 10 samples Half of the samples (75) were treated as the 

training set and the rest as the test set By using Principal Component Analysis the 

eigenspaces were formed By applying Vector Quantisation 128 codewords for each 

eigenspace were extracted By this number, each codeword represents approximately 100 

data points in the training set2 A two states lett-to-right Discrete Hidden Markov Model was

- In C lnptei 6 ii Ins been shown (hu b tscd on die vainuon in data, similarities and piocessmg speed dns late is a piopei 
choice
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8 2 Recognition of Bimanual Movements

created for the segments o f the hand gestures The DHMM of every segment of a gesture 

was trained by the S samples in the training set

In the recognition phase the samples ot the test set were used Here we present die results of 

some experiments on the gestures in the test set The belief changes of the LH, RH, and BG 

nodes of the network for a clapping gesture are shown in Figure 8 14 In this figure, the dun 

lines represent the \alue of the behel vector corresponding to the correct gesture The other 

lines, which appear as thick solid lines represent the other elements of the belief vector At 

the beginning the network is initialised Due to the fact that all the gestures in the vocabulary 

are assumed to have equal prior probabilities the prior probability of the root node is 

assumed to be a 15-vector with equal values which are 0 0667 Also the initialisation of the 

network is done by setting all the evidences to 1 The transition matrices were set to,

[0 8  i = j
tn  = \

,J [0 014286 i ± j
The belief ot the nodes starts from the initial equilibrium This initial point is presented as the

initial segment in the graphs of Figure 8 14 By processing the beginning segment of the

gesture the beliefs of die nodes are updated and presented as the second segment in the

graphs The graphs show that the gesture has been recognised rapidly in the beginning

segments and this result has been preserved throughout the rest of gesture

Ih e  network was employed to recognise all the movements in the test set By this algorithm 

74 out of 75 movements in die test set were recognised correctly The graphs ot the belief 

change ot the only gesture that was not recognised correctly are sketched in Figure 8 15 At 

the beginning the gesture was correctly recognised From one point onward the beliefs are 

changed so that the gesture was recognised differently Our investigation shows that from 

this point the DHMMs have resulted in different likelihoods and this result has been 

preserved throughout the rest o f  die movement Although, m the mis-recognised part ot the 

m o\ement the beliefs are not as confident as the correctly recognised part, recognition is 

performed based on the highest probability Therefore, it is concluded that the recognised 

gesture is the gesture with highest probability in the local belief ot the root node
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6 8 
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Tigiue 8 14 The g n p h s o f behcf clnnges m the (a) L H  (I)) R H , 
n id  (c) B G  nodes foi the clapping gestuic
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8 3 Recognition of Concatenated Periodic Bimanual M ovements

Many bimanual movements can be periodic in essence Clapping and drumming are some 

examples In the environments where die bimanual movements arc used as a communication 

method, c g Virtual Reality, recognising concatenated periodic movements is crucial 1

We use the Bayesian network of the last section in order to recognise tins type of movement 

The important points in such a process are correct recognition o f the movements over the 

whole repetition periods and exact detection o f gesture changes when different movements 

are concatenated We use the trained models of the last section

8 31 Recognition by the Original Bayesian Network

Using the proposed Bayesian network, we did many experiments on concatenated periodic 

movements The results of one of them are presented here

Three bimanual gestures were performed consecutively, each of which was repeated dozens 

of times From the IS movements, first gesture number 3 was repeated 5 times It was 

followed by gesture number 2 repeated 30 times and followed by gesture number 5 repeated 

41 times Therefore, the first gesture is divided into 11 segments, the second gesture into 61 

segments, and the last one into 83 segments Given the fact that the first segment in the 

graph of local beliefs represents the belief of initialisation, the first gesture transition should 

appear in the 13th segment and the second transition in the 74th segment The local belief of 

the root node is plotted in Figure 8 16 The gestures are correctly recognised most of the 

time Also, the gesture transitions are detected properly However, it can be seen, particularly 

in the graph of the second gesture, that the belief is not ^ery stable and it varies such that at 

some points it fills below the graph of other gestures This happens when the partial gestures 

of one or two hands are recognised wrongly

Although the confusions can be treated as temporary spikes, we may come to a conclusion 

that the gesture has changed at some points In tact the belief in other gestures is higher than 

the second gesture at those points that supports the transition hypothesis

1 M'Uiy Vit.ru\1 RealiW ipplic/Uions hnve been introduced m industry wheie binianuql movements aie the m'irà souice o f 
commmucnuon Some interesting ip pile it ions aie demons tn  fed by i  Cnn-idnn company called Vivid Group nr 
\v\\\\ M udffioupcom  In these ipplic-itions u s c l s  do some basic periodic bm vuunl gestures m oidei lo contiol  ̂
spacecnit shoot die enemy troops etc
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segments

fig u ie  8 16 The local beliet ol die loo t node foi the 3 
concatenited  m ovem ents

8 3 2 A Modified Belief Propagation

In order to avoid these contusing spikes we make a slight change in the belief propagation 

algorithm It: the belief of the root node is somehow memorised so that the temporary 

contusing evidence cannot change tire belief easily the confusing spikes are eliminated

For tins, we add a memory to the root node of the network This is done by replacing the 

prior probability of tire root node with the current local belief of the node In other words, 

the current belief of the root node is treated as tire prior probability of the node in the next 

step When a hypothesis (that one o f the gestures in the vocabulary is tire correct gesture) is 

strengthened multiple times by the messages received from the DHMMs, many strong pieces 

o f evidence are needed to change this belief

Although, by applying this modification the local beliefs are no longer representing the 

correct posterior marginals, the result would be useful for récognition Figure 8 17 shows the 

result of this modification on the m o\cm ent mentioned in the last subsection Obviously, the 

contusing spikes arc eliminated and the gestures arc recognised corrcctly However, replacing 

the prior probability of the root node with the node belief can cause numerical underflows3 

while a gesture is repeated several times Ihis will result in extreme delays in detecting gesture 

transitions (see Figure 8 17)

3 By numerical underflow, wc me ui bodi the IE L E  definition o f numerical underflow and extremely small numbeis
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In this figure, the first gesture transition point is detected after the 20th segment while the 

actual transition point is in the 13* segment I he second transition is detected a little after the 

120Lh segment but the actual transition point is in the 74th segment
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H guie  8 17 Local beliei o f  the too l node io t the network with 

nieniOLV tor the 3 concatenated m o\ ements

l o  avoid the numerical underflows and confusing spikes we restrict the memory By this 

restriction the prior probabilities of the root node cannot fall below a certain limit The 

results of the network with short-term memory with the limit of 103 are presented in Figure 

8 18
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Figuie 8 18 llie  behe t o l  the to o t  n o d e  lo i  ( lie  n c tw o Lk  w iLh 

s h o it  te n n  m e in o w  to r the 3 co n ca ten a ted  m o \  em en ts

In this figure the confusing spikes arc avoided while delays in detecting the transition points 

have reduced to a few units (segments) The first and second transitions were detected one 

segment and two segments respectively after the actual transition points
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8 4 A Loopy Network for Recognition

In Section 8 2 4 we mentioned that the network can contain a loop it the node of OS is not 

an evidence node Pearl in [Pearl 1988J states that

“When loops arc present, the network is no longer singly connected and local 

propagation schemes will invariably run into trouble If we ignore the 

existence ot loops and permit the nodes to continue communicating with each 

other as if the network were singly connected, messages may circulate 

indefinitely around tire loops and the process may not converge to a stable 

equilibrium

Murphy et al [Murphy 1999] have empirically shown that Pearl's beliet propagation 

algorithm works as an approximate inference scheme in a wide range of medical applications 

containing non-singly connected networks or the networks with loop In this section we 

investigate a loopy network to see whether it converges to approximate probabilities in our 

problem, and under what circumstances a loopy network converges rapidly so that we can 

expect little errors in the probabilities Also, we test the loopy network to see if it has any 

advantage over the singly connected network trom a recognition rate point ot view

8 41 Belief Propagation in the Loopy Network

We change the structure of the original Bayesian network of Figure 8 11 so that the node OS 

is replaced by a sub-tree ot two nodes rooted at a non-evidence node making the network 

loopy (see Figure 8 19)

Figuie 8 19 Hie Bnvesnn network coni mimg i loop
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In this network, the OS is an evidence node while ON is not The local beliet of OiN is 

updated by the messages received from OS, LH, and RH Messages can circulate in this loopy 

network indefinitely While the messages arc circulating the local belief o f every node is 

updated regularly

We employed this network to recognise the bimanual gestures in the test set It was observed 

that the algorithm converges to approximate posterior marginals on the correct side of the 

decision line Figure 8 20 shows the result of the same clapping gesture as Figure 8 14 using 

the loopy network
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Figure 8 20 Phe local beliet o t the ( i) LH (b) RH and (c) BG 

node o t the loopv network for the clapping gesture

In order to investigate the beliet convergence of the algorithm we keep tracking the belief 

changes of the nodes in the network As an example the belief change of the root node for 

the above clapping gesture is plotted in Figure 8 21 In Figure 8 21(a) the belief convergence 

of the root node as a function ot iteration for the beginning segment of the gesture is shown
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In this experiment the convergence limit has been set to 10 14 which means that the network 

stop propagating messages when the total change of the beliet vector of root node is less 

than the limit We have chosen this value in this example to better show the comergence of 

the algorithm Normally, a limit of 103 suffices Figures 8 21 (b) to (d) are the convergence of 

the root node belief tor an occlusion, a middle and the ending segments respectively As it is 

shown in these graphs, the algorithm converges rapidly in all the segments ot the gesture

2 3 4 5
iteration

(a)

iteration

(c)

iteration
(b)

(d)

Figiuc 8 21 Belief com  eigence o f the loo t node in the loopy 
netw oik U the (i) beginning (b) occlusion (c) middle -ind (d) 

ending segments ioi the chpptng  gestme

1 2 3 4
iteration

In order to show the convergence rate ot the algorithm the log plots ot the belief changes are 

plotted in Figure 8 22
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The /¿g-plots show that the error rate decreases geometrically as the iteration increases The 

linear relation and the number of iterations in the ¿og-plots demonstrate the rapid 

convergence of the algorithm as is depicted in Figure 8 21 11ns rapid convergence, then, can 

predict that although the calculated beliefs are not correct posterior marginals the error will 

be small

8 4 2 Why Does the Loopy Propagation Converge in our Network

Pearl [Pearl 1988] has stated that in order for a message passing scheme to be successful 

double totalling must be av oided In a singly connected network double counting is avoided by 

the conventional belief propagation algorithm But in the loopy networks double counting 

cannot be avoided as the messages are circulating around the network Then why should the 

loopy propagation ever converge? Weiss in [Weiss 1997] states that
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“ ... although the evidence is double counted, all evidences are double counted 

in equal amounts.”

The double counting in our loopy network can be formalised by an unwrapping technique 

[Weiss 1999], [Weiss 2000]. In order to unwrap the network first we should convert the 

Bayesian network to a pairwise Markov net. For any node that has multiple parents a 

compound node is created into which the common parents are clustered. Then the sub-tree 

rooted at the original node is replaced by a sub-tree rooted at the compound node with the 

original node as its child. The pairwise Markov net for the Bayesian network o f Figure 8.19 is 

shown in Figure 8.23. In order to keep the probability distributions identical to the original 

network the pairwise potentials o f the Markov net are the conditional probabilities of 

children given parents, except for the potentials between the compound node and its parents. 

These potentials are the identity matrix, which elements are set to one if the node has a 

consistent estimate o f the parent node and zero otherwise [Weiss 2000]. The unwrapping of 

the Markov net can be done as following.

For the node BG in our loopy network at iteration time t we construct an unwrapped tree by 

setting BG to be the root node and repeating the following routine t times [Weiss 2000],

• Find all leafs ol the tree (nodes without any children)

• For each leaf, find k  nodes in the loopy graph that neighbour the node 

corresponding to this leaf

• Add k-\ nodes as children to each leaf, corresponding to all neighbours except 

the parent node

The transition matrices are identical to those in the loopy network. For our loopy Markov net 

the unwrapped tree is shown in Figure 8.24 for three iterations.

The unwrapped network is constructed so that the messages received at node BG after t 

iterations are identical to those that would be received at the loopy network. The unwrapped 

network is singly connected. Therefore, it is guaranteed that the belief propagation algorithm 

gives correct beliefs at time t. But every iteration o f the loopy propagation gives the correct 

belief for a different problem. Then, why should this scheme ever converge? The answer is 

that the unwrapped network at time /+ /  is the unwrapped network at time t plus an 

additional hnite number o f nodes at the boundary. Therefore, the loopy propagation will 

converge when adding boundary nodes does not change the posterior probability o f the BG 

node in the centre o f the unwrapped network.
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An important point is how fast the loopy propagation converges. In the subsequent section 

we formalise the circumstances that the algorithm converges rapidly in the loopy network for 

bimanual gesture recognition.

Figure 8.23. The pairwise Markov net o f  the loopy Bayesian 
network

Figure 8.24. The unwrapped netw ork o f  the loopy M arkov net
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8.4.3 Convergence Speed in the Loopy Network

In order to hnd the general principles for the convergence speed o f the algorithm we 

consider a loopy network with N  unobserved (hidden) nodes U , , £ / N and N

observed (evidence) nodes O , e a c h  of which associated with a hidden node 

depicted in Figure 8.25.

Figure 8.25. A single loop netw ork with N  unobserved nodes and 
N  observed (evidence) nodes each o f  which associated with an 

unobserved node

Here, we use the same notation as [Weiss 2000] for the mathematical expressions. Based on 

the basic rules o f message passing in the singly connected networks, the message node U N

sends to £/, is given by,

V(JNu, aM u„ut (vorluN ®  ^uN_,uN ) (8-11)

where z = x  <8) y  <-> z(i) = x ( i ) y ( i ) , ^ is the message the observable node 0 N sends to

U N, ^uN_xuN is the message node U N_x sends to U Ni ^ u Nui the transition matrix

corresponding to the link from U N to U x, and a  is the normalising factor.

Similarly the message that node U N_x sends to U N is
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) (8.12)

Continuing around the loop, we return to U l by,

(8.13)

Thus, the message U N sends to U x depends on the messages U N sends to U x at N  steps 

before,

and the matrix D i is defines as a diagonal matrix whose elements are the constant message 

sent from observed node O, to U i . Using the matrix C N], Weiss [Weiss 2000] has proven 

that in a single loop network,

1. VuNut converges to the principal eigenvector o f C NX.

3. The convergence rate o f the messages is governed by the ratio o f the largest 

eigenvalue of CN] to the second-largest eigenvalue

He states that when the ratio between the second-largest eigenvalue and the largest one is 

small, loopy belief propagation converges rapidly and furthermore the approximation error in 

calculating the correct posterior marginals is small i.e.,

Now we formalise the circumstances for which the above unequality holds.

Obviously the second-largest to largest eigenvalue (SLLE) ratio is related to the evidences 

and the transition matrices. We assume that each node in the network represents a ^-valued

(8.14)

where the matrix CN] is defined as following,

(8.15)

2. Vu2u{ converges to the principal eigenvector of D, .

(8.16)
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variable. Therefore, each message is a vector with length p  and M  UjU is a pxp matrix. We

define vi to be the sum of the elements on the / h row o f CNX excluding the diagonal 

element,

(8.17)
7=1

j*i

The Z1 Gerschgorin disk is defined as the set of points on the imaginary-real plane whose 

distances to cu are at most r{. In other wTords, G{ is the set o f all complex numbers £ such 

that,

G, = z e  Z  :\z
r .

- i = S k
j*i

(8.18)

Based on the Gerschgorin theorem [Hager 1988] every eigenvalue A of CNX,

Â e Q  G,
/=!

(8.19)

Also, if m Gerschgorin disks form a connected region of R disconnected from the other 

disks, then there are exactly m eigenvalues in the region. In order to find the relationship 

between the eigenvalues of CNX and the evidences, we first assume that M U L] is a stochastic

matrix close to the identity matrix. By closeness we mean that the diagonal elements of 

matrix M  are much larger than the off-diagonal elements. In this case, by multiplying M  by 

the evidence matrix D, the diagonal elements o f the product have approximately the same 

values as the evidence D, while the off-diagonal terms are kept small, given D is normalised. 

Specifically,

M  :
m„ = 1 -  £ i  = j

m
p - l

i  * j
(8.20)

where £ is a small value, then
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Q = M  D

Q :
4,1 “  d ij
qt «  1

(8.21)

The Equations 8.20 do not necessarily mean that all the diagonal or off-diagonal elements of 

M  should be equal.

The eigenvalues o fQ  are inside the Gerschgorin disks with as the centre, and the sum of

off-diagonal elements o f row j  as the radius. Due to the fact that the off-diagonal elements 

are very small, the radius o f the Gerschgorin disks will be small too. Therefore, the 

eigenvalues are mainly positioned by the disk centres. Furthermore, the disk centres are 

strongly under the influence of evidence matrix D. We can conclude that the eigenvalues of 

Q  are strongly related to the diagonal matrix D  whose elements are the evidence vector E ,

A °c E  (8.22)

where A is the set o f eigenvalues.

A, e
(8.23)

max max

where Asec and escc stand for the second largest eigenvalue and the second largest evidence

respectively. Therefore, if the ratio of the second-largest value to the largest value of evidence 

E  is small the SLLE ratio will be small too.

In matrix C N] if all the transition matrices along the loop from U l to U N are close to the 

identity matrix, the ratio o f the eigenvalues of CNl is related to the evidences E { to E N ,

X e loopsec ^  sec

A e ,oopmax max

(8.24)

where e l™p and are the second largest and the largest elements in the product of all the 

evidence vectors along the loop.
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Therefore, if the Final value of the term on the right side of Relation 8 24 is very small the 

belief propagation algorithm converges rapidly In other words, if the product of all the 

evidences along the loop support one of the hypotheses strongly, the loopy belief 

propagation converges fast

However, it the diagonal elements ot the transition matrices around the loop are not much 

larger than the off-diagonal elements, then Relation 8 24 no longer holds In fact the ratio ot 

the eigenvalues ot C N] is dominated by the ratio of the eigenvalues ot the transition

matrices Essentially, the ratio of the second-largest to the largest eigenvalue of a stochastic 

matrix with equal elements tends to zero Therefore, the closer the transition matrices are to 

such a matrix, the faster the loopy propagation algorithm converges In other words, the 

higher the uncertainty, in the transition matrices the taster the algorithm converges to some 

uncertain results

8 4 4 Simulation Results

In Section 8 4 1 we showed that the loopy propagation converges rapidly for recognition of 

bimanual gestures In order to investigate the convergence speed of a loopy network we have 

done some simulations Some results are presented m the following

A network same as the one for bimanual recognition is shown in Figure 8 26

Figu Le 8 26 A. loop) network for simili itions to men suie rhe 
conveigcnce n tc
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Ih e  node A. has no evidence node conncctcd to it and equal prior probabilities have been 

assigned Nodes B, C, and D  receive evidences All the nodes represent 15-valued variables 

We present 3 sets of evidences and transition matrices with convergence limit equal to 10 14

1 Small evidence ratio

U  j ' ” ' - 0 9 5  ' = '
l m f/ ~ 0 00357 i *  j

loop
= 0 0209loop 

m ix

The belief- propagation algorithm converges in 9 iterations In other words, the belief change 

of the root node is less than 1014 after 9 iterations Given the small evidence ratio the rapid 

convergence ot the network was expected

Ih e  graphs of product ot the evidcnccs (the evidences-product vector) and the final belief at 

the root node are plotted in Figure 8 27 Ihe convergence rate as a function ot iteration is 

plotted in Figure 8 28
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Tlgiue 8 27 (a) The noi im hsed product oi ill the evidences along 
the loop and (1)) the fmal belief at the loo t node when the belief 

piopagation algorithm converge
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Tigme 8 28 The belief p iopagition  dgonthm  converges 111 9 
iterations in this example ( i) The gtaph oi total change 111 the 

locil bebei of the toot node while the algO Litlm i coirveiges, (b) the 
log-plot of the total change m the local bchci ol the xoot node

2 Large evidence ratio
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> = J 

J

loop
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Figure 8 29 shows the graphs ot the product o f all the evidences along the loop (normalised) 

and the hnal belief at the root node In this example, the process converges very slowly in 9S 

iterations This was expccted due to the fact that in tins example the SLLE ratio is large I he 

graphs o f the convergence rate as a function of iteration are shown in Figure 8 30

0 4  

0 35

CD 0 3

O3 0 25 >
8 02 
f  015

O 0 1
0 05 

0

0 4

0 35
X

0 3
©
=> 0 25 
03 
>  0 2

X

y  w v
**♦—
a>

- s 0 1 5  

n  01

X
A  X X

X

X  x

0 05
X  xX

•u- ' v'  ^  X  y  s / X  X  X
X v Y ^  

X X ,  , v v ,  , x ,  , x , , ,
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
case

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
belief elements

(b)
Tigiue 8 29 The gi iph o( (a) the p ioduct o f  all the evidences 
dong the loop (1)) final belief at the l o o l  node when the belief 

p iop )g it ion dgoiiLlmi converges In tins example the loopv belief 
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In the third set ot data the transition matrices are not close to the identity matrix as opposed 

to the Examples 1 and 2 Wc use the second set o f evidences with which the belief 

propagation algorithm converged slowly in 95 iterations in Example 2 However, with the 

new transition matrix the process converges \ ery rapidly

3 Transition matrix not close to identity matrix

M  i " - - 0 1
| mtJ ~ 0 064286 i * j

loop

-jp _  = 0 9940
loop 

C  m  IX

I h e  belief propagation algorithm converges in 3 iterations The graph ot the local belief of 

the root node at convcrgencc is shown in Figure 8 3 1 The graph of the convergence rate as a 

function of iteration is plotted in Figure 8 32 As can be seen, die speed of convergence is 

tast but the values ot the local belief at the end are not very confident

174



to
ta

! 
ch

an
ge

 
in 

be
lie

f

8 4 A Loopy Network for Recognition

0 4  

0 35 

0 3
CD

0 25
CO>

h -  0 2

© 0  15 .Q
01 

0 05
X X X X X X X X X X X X X X X

1 2  3 4 5 6 7 8 9 10 11 12 13 14 15
belief elements
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pomt H it p iob  ibihties ue almost equal foL  ill the elements oi the 
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elements with high and low p iob  a bill tics h a \e  been leduced

figure  8 32 Convergence late o f  the loopy belief p iop  igition 
algorithm m  the thud example with the Ll insition m »trices not 

close to the identity n n tn x
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8 5 Recognition Results of the Proposed Networks

In this section we employ the three proposed Bayesian networks to recognise the single 

bimanual movements and the concatenated periodic bimanual movements

8 5 1 Recognition of Single Bimanual Movements

The original Bayesian network, the network with short-term memory, and the loopy network 

were tested with the 75 bimanual movements ot the test set All of them recognised the same 

74 out ot 75 gestures correctly (see Table 8 1) The loopy network converged rapidly in all the 

experiments The results show that die loopy network can recognise single bimanual 

movements as well as a singly connected network In other words, despite the conventional 

beliet that the loopy network may run into trouble, it can recognise the single bimanual 

movements well

In [Brand 1997] the Coupled HMM has resulted in 94 2% recognition rate with a vocabulary 

of 3 T ’ai Chi gestures (with no occlusion) and a small test set including one third of the 

examples in the training set As shown in lable 8 1, the proposed algorithm is superior to the 

Coupled HMMs with higher recognition rate and a larger number of gestures in the 

vocabulary As it was mentioned earlier the Coupled HMMs cannot deal with occlusion 

which is a considerable weakness

Table 8 1 Recognition results tor the single bimanual 
m ovem ents

Bayesian

Network

#

Gestures

#  Correctly 

Recognised 

gestures

Recognition 

Rate based on 

#  gestures

#

Segments

#  Correctly 

Recognised 

Segments

Recognition 

Rate based on 

#  Segments

Origin ll 

Network

75 74 98 6% 1035 1022 98 74%

Netwoik with 

Short-term 

Memoiv

75 74 98 6% 1035 1030 99 5%

lo o p y  

Netu ork

75 74 98 6% 1035 1021 98 64
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8 5 2 Recognition of Concatenated Periodic Movements

Many concatenated periodic bimanual movements were also tested by the three proposed 

networks The results ot recognition tor the example of Scction 8 3 tor the three networks 

are presented in Figure 8 33

segment

(«)

segment

(b)

segment

(C)

Figuu 8 33 Recognition lesuli o f  (a) rhe otigin >1 network, (b) the 
netw oik with sho it term  memory, (c) the loopy network
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Obviously, the network with short-term memory recognises the movements better than the 

others lh e  loopy network recognises almost the same as the original network

In order to measure the recognition rate of each network in the concatenated periodic 

bimanual movements we tested the networks on all the concatenated periodic bimanual 

gestures we have in our test set The results are presented in lable 8 2

Table 8 2 Recognition rate o f the netw orks for concatenated periodic m ovem ents with total num ber o f segments equal to
398

Bayesian Network Number of correctly 

recognised segments

Recognition rate

Original Network 336 84 4 %

Network with Short­ 348 87 4 %

term Memory

Loopy Network 332 83 4 %

All the networks recognise the concatenated periodic movements very well While the 

original and the loopy networks ha\c quite the same recognition rate the network with short­

term memory has resulted in a few percent better recognition rate

The main sources o f evidences are the Discrete Hidden Markov Models, which produce the 

same set o f evidences lor all types ot the networks we proposed here The better recognition 

rate of the network with short-term memory is due to its robustness in detecting the correct 

gesture transitions As we said earlier, strong evidences are needed to change the belief of the 

root node in the network widi short-term memory Therefore, the occasional misrecognised 

partial gestures by the DI-IMMs cannot easily change the belief of the network A hypothesis 

that the gesture is changed should be repeated at least twice so that the network believes it In 

other words, the network with short-term memory tends to keep a hypothesis unchanged 

rather than changing it quickly Therefore, it works more robust than the other networks in 

the cases where the gestures have more repetitions than transitions

We should not forget that although the DHMMs arc the source o f evidences to the Bayesian 

networks, the bimanual gestures arc tracked and segmented by the tracking algorithm of 

ChapteL 7 Ihcretore, the presented recognition rates summarise the recognition rate of the 

tracking algorithm, the partial Discrete Hidden Markov Models, and the presented Bayesian
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networks together In other words, the error rates presented here include the error rates ot 

the tracking algorithm, DI-IMMs, and the Bayesian networks

Summary and Conclusion

A novel technique for recognition of bimanual movements was introduced A bimanual 

gesture is tracked and segmented by the intelligent tracking algorithm o f the last chapter 

lhcn  partial Discrete Hidden Markov Models are employed to recognise the partial 

movements of the hands in every segment A Bayesian network was introduced in order to 

fuse the likelihoods o f the DHMMs ot the hands to recognise the whole bimanual 

movement Our experimental results showed that the proposed network recognises the 

Bimanual movements very accurately

In order to rccognise a set of concatenated periodic bimanual movements we changed the 

conventional belief propagation algorithm Since we need to stabilise the belief of the root 

node during the periodic movements wc replaced the prior probability of the root node with 

the current local belief Based on this idea we demonstrated that the network’s local belief at 

the root node is stabilised while the correct gesture transition points were almost preserved

Furthermore, a loopy Bayesian network was introduced and the loopy belief propagation was 

employed to recognise the segmented gestures It was shown that the loopy belief 

propagation algorithm converges to approximate posterior marginals on the correct side of 

decision line We formalised the circumstances where the loopy propagation algorithm 

converges rapidly We showed that there is a relationship between the evidences provided to 

the network and the convergence rate of the network

We employed the three proposed networks to recognise the two sets of test data The 

recognition rate of the three proposed Bayesian networks were estimated in recognising the 

single bimanual movements All the proposed networks resulted in very accurate results in 

recognising the single bimanual movements

The second set o f results demonstrated that the three networks recognise the concatenated 

periodic bimanual movements well But the network with short-term memory resulted in a 

better recognition rate than the other networks due to its robustness against temporary 

contusing information
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In comparison with Coupled HMM, the proposed Bayesian networks can deal with hand- 

hand occlusion as well as the other type of occlusion Even when something else occludes 

one of the hands or the hand leaves the scene the proposed Bayesian networks can deal with 

it because the movement ot the two hands are separately rccognised (as opposed to Coupled 

HMM) and the results are combined Therefore, even if one ot the hands is not visible in a 

segment (other than hand-hand occlusion segment) the movement of the other hand is 

recognised and passed into the Bayesian network using the corresponding partial DHMMs 

Also tor hand-hand occlusion we considered an individual recognition component Thus, the 

proposed Bayesian networks have great advantages over the Coupled HMM with rcspect to 

these problems

As a future work, we must consider other techniques tor recognising bimanual movements 

and compare them with the proposed Bayesian networks For example, Fuzzy Logic and 

Neural Networks are two well-known inference schemes We may use these techniques as 

well as different structures of Hidden Markov Models to deal with occlusion and recognise 

bimanual movements
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C h a p t e r  9

SUMMARY, CONCLUSION, AND FUTURE WORK

Human Computer Interaction has engaged a variety of research topics in computer science 

and engineering Computer Vision as a substantial issue in Machine Learning is considerably 

involved in Hum in Computer Interaction Hand and body movement understanding has 

been given great attention by researchers around the world

In this dissertation we aimed to understand bimanual movements, a problem that has not yet 

been addressed in the literature using Computer vision, machine learning, artificial intelligence 

and cognitive techniques

Recognition of bimanual movements, as a large set o f movements people do in their daily life 

and the basis of some ot the sign languages around the world, requires a wide range of 

techniques including single-hand shape recognition, dynamic gesture recognition, hand 

tracking, and recognition o f synchronously performed hand movements

9 1 Summary and Conclusion

We started by reviewing the methods and algorithms associated with static shape recognition 

for the recognition of non-rigid objects, partially occluded shape recognition, motion 

tracking, stereo imaging for occludcd mo\ ing object tracking and spatio-temporal recognition 

of hand and body gestures Then, we took a look at the basic attributes of a visual system 

We briefly explained illumination, image formation, Charge Coupled Devices (CCD) sensors, 

sampling and digitisation to represent an image in a digital format

As the preliminary part of the project we investigated a statistical method called Principal 

Component Analysis This method was exploited to reduce the dimensionality of the data, 

which are the hand images Using the dimensionality-abstracted data we investigated some 

techniques in statistical pattern recognition to identify a hand shape appearing in an image 

taken by a CCD camera
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9 1 Summary and Conclusion

A hand-computer interaction algorithm was introduced tor controlling a mouse pointer in a 

Graphical User Interface We used the Principal Component Analysis and nearest neighbour 

methods to recognise the static hand shapes A state machine was introduced as a graphical 

entity in which the edges arc defined to be events like pushing or releasing a button and 

moving the pointer

Once, we had identified a hand shape we were able to take a step further to analyse a 

dynamic hand gesture

We explored deeply die projections of the hand gestures into the feature space, or 

eigenspacc, constructed by Principal Component Analysis The trajectory of a gesture in the 

eigenspace was used as the identifier of a gesture

An unsupcrviscd clustering technique callcd Vector Quantisation was described m detail, 

which was used m many parts of the dissertation We introduced a new spatio-temporal 

pattern matching technique for the recognition o f dynamic hand gestures Based on this 

model, the gestures in a vocabulary are modelled by multidimensional gaussian distributions 

torming a graph A new unknown gesture is also modelled by a graph lhen a Graph- 

Matching algorithm tinds the best match between the gestures in the vocabulary and the 

input gesture We saw that the proposed algorithm can recognise the dynamic hand gestures 

very well

For the recognition of bimanual gestures we had to track the hand motions We proposed a 

dynamic model for motion tracking I his model, which was based on the Kinematic 

equations ot motion, is a stochastic model which is used in a Kalman filtering process to 

track the position, velocity, and acceleration of a hand m a sequence of images In the 

experiments it was shown that the proposed model is able to track the hand motion 

corrcctly Particularly, the estimated velocity and the acceleration of the hand in both 

horizontal and vertical directions were shown to perfectly match the movement ot the hand 

in difterent types ot movements It was also shown that the model is able to detect hand 

pauses in order to detect the beginning ot a gesture

Betore we enter the bimanual tracking problem we explored a statistical technique called 

Hidden Markov Models (HMM) which has been widely used in speech and gesture 

recognition
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We proposed a hierarchical algorithm based on the beginning hand shape of a gesture 

detected by the dynamic model and the Hidden Markov Models Another version ot the 

algorithm with the HMMs replaced by the gaussian Graph-Matching was also proposed

Ihc two algorithms were employed to recognise a large database ot gestures One hundred 

canonical hand gestures were created Ten examples of each gesture and a total ot one 

thousand examples were recorded for the training and the test set 500 recorded videos were 

used to train the algorithm and the rest were treated as the test set

In the first experiment we tested the Hidden Markov Models by bypassing the first stage ot 

the algorithm that recognises the beginning hand shape of the gesture It was observed that 

the algorithm was able to recognise 89 4 % ot the gestures correctly The second version of 

the algorithm with the gaussian Graph-Matching was employed to recognise the same test 

set We observed that the algorithm recognised 85 6% of the gestures

In the second experiment we employed the complete hierarchical algorithms to recognise the 

gestures in die test set Given that the first stage o f the algorithm forwarded two groups each 

containing four different gestures starting with the same hand shape, the two versions of the 

algorithm competed closely m recognising die gestures The algorithm using HMMs 

recognised 95 4% ot die gestures and the algorithm using gaussian Graph-Matching resulted 

in 95% recognition rate In this experiment the algorithm with gaussian Graph-Matching 

showed great superiority in speed However, despite the tast processing speed of the gaussian 

Graph-Matching algorithm it had some restrictions on die number of nodes in the graphs 

Therefore, we decided to use the Hidden Markov Models in the rest o f the dissertation

Once we had a good single-hand gesture recognition technique in hand we took one step 

further to hand tracking in bimanual movements

In bimanual movements hands tend to be synchronised effortlessly We explored the 

phenomenon of bimanual coordination from a cognitive and neuroscience point of view 

Because ot this phenomenon, temporally, when the two hands reach for different goals they 

start and end their movement simultaneously Spatially, we are almost unable to draw a circle 

with one hand and a rectangle with the other at the same time

We exploited the temporal coordination to detect positively synchronised hand movements 

and concurrent hand pauses in order to distinguish the hands’ collisions and pauses from the
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hands’ passes during an occlusion period A new model was introduced based on the 

proposed dynamic model to model each hand individually and also the blob of die hands 

during occlusion

Using the individual hand models wc introduced a procedure to predict hand occlusions in 

order to detect the exact starting point ot occlusion Having a predictable occlusion period 

we used the model of occlusion to detect hand collision and pauses by monitoring the points 

at which hands velocities went to zero Based on this model we arc able to track die hands 

correctly when the occlusion period is finished In other words, at the end of the occlusion 

period the algorithm is able to recognise which hand is the lett hand and which one is the 

right hand

We presented some experimental results to demonstrate the effectiveness and robustness of 

the algorithm m different types o f movements We also presented an example m which die 

independence ot the tracking algoridim from the camera’s angle of view and the type of 

movement were demonstrated Using the presented algorithm we tested the eight types ot 

movements The algorithm was able to correctly track the hands in almost 90% ot the 

mov ements

We also proposed a gaussian model in order to recognise the velocity changes ot the hands 

during occlusion, (Appendix E) Based on this model die patterns of velocity changes during 

occlusion were classified and recognised by patterns o f gaussian distributions In die 

experiments we demonstrated die patterns of velocity changes in the two classes of 

movements the hand passes and the hand collisions or pauses Our experiments demonstrate 

a good performance for the modified tracking algorithm Since die proposed algorithm was 

independent trom the background ind the actual hands velocities, we tested the algorithm in 

active vision applications It was demonstrated that the algorithm tracks the hands properly 

in these applications

In the next step, we segmented a bimanual movement into four segments using the 

presented tracking algorithm Each segment is associated with the movement of hands at 

different stages ot a bimanual movement

A new Bayesian network tor tusing the parti il Discrete Hidden Markov Models was 

introduced for the recognition of bimanual movements In this network a bimanual 

movement is divided into the movements o f  the left hand and the right hand The movement
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of each hand is divided into the occluded and non-occludcd segments The evidence nodes 

ot the network arc fed by the partial Discrete Hidden Markov Models The T-TMMs are 

classified into seven classes, each ot which is associated with a segment in the segmented 

bimanual movements

Using the conventional belief propagation rules we tested the algorithm on 15 different 

bimanual movements like clapping, knotting, and some gestures from the sign language

Given a test set including 75 examples of bimanual movements the Bayesian network 

demonstrated a performance of 74 out of 75 correct recognition

We discussed the application of the bimanual movements in different areas such as Virtual 

Reality In these applications the bimanual movements are usually used in a periodic manner 

while a number ot them are concatenated in order to do the tasks

We employed our Bayesian network to recognise the concatenated periodic movements

In order to get a stable belief at the root node of the Bayesian network during the periodic 

movements we changed the belief propagation algorithm by replacing the prior probability 

by the beliet o f the root node of the previous step Ih e  network resulted m a very stable 

condition However, due to the numerical underflows the network's response to the gesture 

changes was delayed severely

Therefore, we constrained the prior probability of the root node not to tall below a certain 

level ot belief Using this new algorithm the network’s performance improved dramatically in 

recognising the concatenated periodic bimanual movements We called this network die 

Bayesian network vvidi short-term memory

lhc proposed rules were able not only to stabilise die belief o f die network but also to detect 

the movement changes quite accurately

We also tested a dnrd version o f the Bayesian network called the loopy network Despite the 

conventional belief that the loopy Bayesian network (the networks including loops) may not 

converge to a stable equilibrium we changed the structure ot the original network so diat it 

included a loop It was demonstrated that the algorithm converges to approximate posterior 

marginals on the correct side of the decision line
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9 1 Summary and Conclusion

We also presented the reasons tor the convcrgcncc ot the algorithm by an unwrapping 

method In this method a pairwise Markov net models the Bayesian network An unwrapping 

technique unwraps the Markov net in different stages corresponding to different turns that 

the messages circulate m the loopy network Since the unwrapped network is singly 

connected its convergence to the corrcct posterior marginals is guaranteed

An important parameter in the loop} networks is the convergence rate of the belief 

propagation algorithm We proposed a new analysis in which we showed the convergence 

rate ot the algorithm is related to the evidences provided to the network We tormalised the 

conditions where the loopy propagation converges rapidly under different circumstances A 

set of simulation results was presented regarding the analysis o f the loopy network 

conv crgence rate

We employed the three proposed Bayesian networks, the original network, the network with 

the short-term memory, and the loopy network to recognise the bimanual gestures in the test 

set All the networks showed the high performance o f 74/75 recognition rate While the 

network with short-term memory was proven to result in more stable beliefs the loopy 

network represented overly confident results in recognising the gestures

We also, employed the three networks to recognise a set o f concatenated periodic bimanual 

movements The original network and the loopy network resulted in quite the same 

recognition rate ot 84 4% and 83 4% recognition rates respectively The network with short­

term memory, however, demonstrated a superior recognition rate o f 87 4% Since the beliefs 

in the network with short-term memory are stabilised it is more robust than the other 

networks in recognising the periodic bimanual gestures

The results show that the techniques and the algorithms we presented for tracking the hands 

and recognising the bimanual movements work robustly and effectively m the real 

applications We believe that this project as die first project ever in tracking and recognising 

bimanuaJ movements is a big step toward a complete movement recognition system We 

tried to introduce general solutions with the least restrictions in every step of the project

The tracking algorithm as an example works independent o f die hand shapes or the position 

o f the camera 1 hereto re, in applications where the camera can be positioned at different 

places (e g surveillance applications) die proposed algorithm can track the hand motions
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9 1 Summary and Conclusion

accurately Since the algorithm does not work based on the hand shapes or the type of

movement it correctly tracks the hands from any angle ot view

Also the proposed Bayesian networks for data tusion and recognition ot bimanual 

movements work independent of the type ot movements Thereto re, if the partial Hidden 

Markov Models are trained so as they arc able to recognise the partial gestures appearing in a

segmented movement trom any angle ot view the Bayesian networks can fuse the partially

recognised gestures to recognise the whole movement

In the next scction we propose some further possible work in order to improve the proposed 

system to cover more general problems
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9 2 Future Work

We must compare the proposed Bayesian networks for recognition o f bimanual movements 

with other techniques Fuzzy Logic, Neural Networks, and Dempster-Shafer theory are the 

alternatives to the proposed Bayesian networks that must be considered and compared

The techniques for recognition of hand shapes from different angle of views can be 

employed in order to recognise a partial gesture even if the system is not trained to do so 

This idea can provide the movement recognition systems with a recognition power to 

understand the movements ot people trom any angle, which can be \ery usetul in the Virtual 

Reality and surveillance systems

the recognition ot movements from any angle of view requires the recognition ot occasional 

partially hidden gestures For example, in a movement where one or both hands are hidden 

behind the body tor some moments, the recognition of the whole movement cannot be 

complete without recognising the hidden part

A solution to this problem is to recognise the hidden part based on the previously seen 

sequence of the movements A technique called Probabilistic Suffix Automata (PSA) has been 

proposed in the literature fllon 1996J with application in different areas including natural 

language processing

This model is a variant o f order L  Markov chains in which the order (or the memory) is 

variable When PSA generates a sequence, the probability distribution on die next generated 

element is completely defined given the previously generated sequence Theretore, in a 

sequence of hand shapes the hidden part can be predicted based on the previously observed 

sequence of hand shapes 1 his estimation can be improved by a smoothing filter given the 

obsen cd sequence ot the hand shapes atter the hidden part

In the bimanual movements where the canonical gestures are closely concatenated to imply a 

meaning, e g the British Sign Language, the recognition of a partial gesture in a segmented 

movement may entail the recognition ot many canonical gestures appearing m the segment 

In this case each of the canonical gestures must be recognised separately

An approach to this problem can be the Hierarchical Hidden Markov Models (HHMMs) 

[Fine 1998] In these models, unlike the conventional Hidden Markov Models, every state is a 

HHMM as well Therefore, the states output sequences rather than i single symbol These
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sequences arc produced by actuating the submodels each o f which with a different length 

Given that a segment in a segmented bimanual movement is modelled by a HHMM the 

canonical gestures of different length can be recognised by the sub-HHMMs

Ihe bimanual movement recognition can be a part of larger research in order to understand 

all human movements Still the recognition of human movements particularly in the presence 

o f occlusion in low-rcsolution images is an open research area

An enormous number of applications in Virtual Reality (VR) are waiting for the new models 

and algorithms of hand and body gesture recognition to realise the wish for human-computer 

natural interfacing Freedom of movement in Virtual Reality environments is a wish that 

when it comes true, thousands of VR systems around the world have been waiting to utilise 

it

Recognition of speech, hand gestures, facial expressions and body movements should be 

combined so that a person in a short time-period is totally understood by a machine Given a 

trained model of hand movements and body expressions a robotic system can imitate the 

human behaviour

The proposed bimanual recognition system can be used to tram the models of human 

behaviour for hand movements An example is the recognition o f the hands’ movements in 

different moods of a person An angry person normally moves his/her hands faster with 

more stress on die meaningful parts o f the movements Instead, a tired person moves the 

hands slowly with less stress on the hand pauses in different gestures

In the same way we can understand the mood of a person, a machine can too When the 

machines learn how to behave as humans they will be moved from desks and isolated rooms 

to the world outside

By tracking people and recognising dieir movements they can find their position in die daily 

life o f communities in order to help people improve the quality of life
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A P P E N D I X  B

A MAfHEM/Yl IC/YL DESCRIPTION OF VECTOR QUANTISATION

Let T  be a training set of M vcctors given by T — {x ,,x7, , x M } where each vector is k- 

dimensional,

Xm 2 

Xmk

, m = 1,2, ,M

Let N  be the number o f codevectors and C = {c , ,c 2, ,cN } represents the codebook Each

codevector is ^-dimensional,

*n2

n k

, n = l,2, , N

Let j,, be the encoding region associated with the codcvcctor ct and P  = {s, ,s 2, , s N} 

denotes the partition ot the space

lhen  the Vector Quantisation algorithm is as following,

1 G nen T  Fi\ 8 > 0 to be a small number

2 Let IV -/ and

*
Ci =

i M

— I
M

(D 1)

Calculate
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M
d *, , = — y  \\x... -  c, 

M k t l 1
(B2)

Splitting For ¿—1,2 N, set

d 0> = ( i + e ) c ; ,  

c Z = 0  - e ) c ,
(B3)

Set N = 2 N

(0 ) *
Iteration Let D avg =  Set the iteration index ¿~0

I For m—1 2 , M, find the minimum \aluc of

v  - c (l) Ln (B4)

over all n—1 2 , N  Let n be the index which achieves the

minimum Set

(0Q(xm) = c . (B5)

Il I 7or n—1, 2, , N , update the codcvector

'Q{*mi£Cn( I )

(B 6)

ITT Set i = i + 1  

IV Calculate
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d <,; ,) -  d H’
V lf  U'n('-D  > £ ’ g0 back t0 Step ®

* T"'* (0 * (/)
VI Set D avt, = D axg For n—1, 2, N 3 set Cn — as the final codevectors 

Repeat Steps 3 and 4 until the desired number of codevectors is obtained



A P P E N D I X  C

KALMAN FILTERING PROCESS AND THE TRACKING MODEL OP 
CHAPTER 5

C 1 Kalman Filter

To explain tins filter we assume the process to be estimated can be modelled in the form 

[Brown 1997],

At discrete points in time the measurement o f the process occurs with the following linear 

relationship,

x k the state vector of process at time tk 

a matrix relating x k to x k+[

Wk a white noise sequence with known co\ariance structure 

z k measurement vector at time tk

matrix gn ing the noiseless connection between the measurement 

and the state vector at time tk 

v k measurement error — assumed to be a white noise sequence with 
known covariance structure

( C l )

z* =H*xt +v (C2)

where

Ihe co\ariance matrices for the w k and v k arc given by,

i = k 

i * k

i -  k

\ ± k

£Tw a ] = 0 foral i  k and i
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The third equation abo\e shows that the measurement error and the system error are

not correlated Ihe state-vector XA represents an initial estimate o f the process at time tk 

Tins estimate is based on all our knowledge about the process prior to tk There to re, the 

estimation error is gn en by,

APPENDIX C Kalman Filtering Process and the Tracking Model

= x * “ X*

with the covariance matrix,

P a =  E l ^ i T ] =  -  *1  ) (XA -  K  )T ] (C 3)

To improve the prior estimate a linear equation is chosen with a mixture of noisy 

measurement .and the prior estimate

Xa = x ' + K ( (zt -HjXj) (C 4)

where

the updated estimate 

K  k a factor to be determined 

should be determined so as the update estimate is optimal Ihe error covariance matrix

associated with the updated estimate is,

= E[eke[  ] = E[(xk -  xk ) ( \ k -  x* )T ] (C 5)

By substituting C 2 into Equation C 4 and then into C 5 the error covariance matrix is 

obtained as,

Pk = ( l - K kR k) P [ ( l - K kn , ) T +K* RtK[ (C 6)

The individual terms along the ma)or diagonal ot represent the estimation error variance 

tor the elements ot the state-vector being estimated Iheretorc, K^. should be determined
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so as these terms are minimised The optimisation problem can be done in different ways 

addressed in the literature [Brown 1997]

The optimal K  k is calculated as,

K k = p ; h [ ( h î p ; h ;  +R, ) - '  (C 7)

which is known as the Kalman gain By substituting the optimal K k in Equation 5 6 the error 

covariance matrix for updated estimate will be,

p , = ( I - k , h a)p; (c s)

The updated estimate is projected ahead by the transition matrix,

* r +1 (c 9)

By calculating the error covariance matrix for X k+] and substituting in Equation C 4,

+ Q *  ( c io )

Equations C S, C 7, C 8, C 9 and C 10 form the Kalman filtering algorithm

C 2 Dynamic M odel’s Kalman Filter Equations

Given the following stochastic description ot the tracking model,

APPENDIX C Kalman Filtering Process and the Tracking Model

1 h - h 1
2 *L 0)

*t+.(2) = 0 1 h xk (2)
_*x+i (3)^ 0 0 1 _xk (3)_

\ ( D '
= [l 0 0] ^ (2 ) + va

xh (3)_

+ w

(C U)
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If the initial condition E(xQ) and Variance(xQ) are given, the Kalman filtering algorithm 

tor this model is obtained as follows [Chui 1999]

With P 0 = Variance(xQ) , the kalman gain,

k a =
l

pr(i,i) + R, (i,i)

Pi a , i )  

P i i  1-2) 

^■(1,3)
(C 12)

The updated estimate with measurement Z* ,

1 -  K l (1) h ( l - K k(l))
i t (l)
xk(2) = -  K l (2) l - h K k(2)

x,Q)
-  K k (3) - h K k( 3)

h

h2K, (2)

h2K,{  3)

~x:w X d ) '
x;(2) + M 2 )
¿;(3)_ K k( 3)_

with

The error covariance tor updated estimate is given by.

(C 13)

i

Pk (l,l) + Rk(l,l)

Pk 2(1,1) P-  (1,1) p - (1,2) Pk (1,1) P - (1,3)

p - (1,1) P~ (1,2) Pr  2 (1,2) p- (1,2) P~ (1,3)

P^ IDP,-  (1,3) Pk- (1,2) P~ (1,3) P i  2 (1,3)

and the prior error covariance,

(C14)

with
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o  =

1 h - f i  
2

0 1 h 

0 0 1

is calculated as following,

Pk-+l (1,1) = Pk (1,1) + 2hPk (1,2) + h 2Pk (1,3) + h2Pk (2,2) + h 'P k (2,3) + —  Pk (3,3) + Q k (1,1)
4

Pk+] (1,2) = Pk (1,2) + hPk (1,3) + hPk (2,2) + Pk (2,3) + ̂  Pk (3,3) + Q k (1,2)

^ , ( 2 ,1 )  = ^ ; ,  (2,1)

Pk+] (2,2) = Pk (2,2) + 2hP, (2,3) + l i  Pk (3,3) + & ( 2,2)

PM  (1,3) -  pk (1,3) + hP , (2,3) + y  /»* (3,3) + Q k (1,3)

/>1; 1(3,i) = /»t; I(i,3)

PM  (2,3) = Pk (2,3) + hPk (3,3) + Q k (2,3) 

PM ( 3,2) = />-+1(2,3)

/><;,(3 ,3 ) = PA(3,3) + ß <(3,3)

line prediction step is calculatcd by,

1 /i

1'i: | 01 x k (\)

*;+,(2) = 0 1 h ^ (2 )
(3)_ 0 0 1 x k (3)

(CIS)
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In these equations x k (1) denotes the position, x k (2) denotes the velocity and Xk (3) is the 

acceleration ot the hand central point at time t k

APPENDIX C Kalman Filtering Process and the Tracking Model

\i
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A P P E N D I X  D

H ID D EN  MARKOV MODELS EVALUATION A N D  LEARNING
PROBLEMS

D 1 Forward Backward Algorithm

In tins algorithm the probability o f the partial observation sequence y {, y 2, ,y,  is

calculated by,

« ,(0  = p(yx,y2, ,y,,s, =0 (Pi)

where (X, is a recursively calculated auxiliary variable Then with boundary conditions,

C(l {j )  = n JbJ( y l ) 1 < j < N  (D 2)

the following recursive relationship holds,

) = * ,(y ,+i ) 2 > , 0 K ,  \ < t < T - \  ( d 3)

Using this recursion wc can calculate (XT (i ), 1 < / < Ihe required probability is given by,

N

p(Y)  = J j a T0 ) (D 4)
;=1

This method has a complexity proportional to N 2T  In a similar way the backward variable 

/3,0 ) is calculated as the probability of partial observation sequence y,+p y/+2, ,}Y given

the current state / ,

= p (y ,+n y l+2’ = 0  P ' i )

Again a recursive relationship holds to calculate (i) efficiently,

A ( 0  = £ A +l( ; M A (>’« ) ’ i < t < r - i  ( d 6)
j = i
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where

jM 0  = i, 1 < I < N

Wc can see that [Warakagoda 1996]^

(D 7)

There to re, by using both forward and backward variables,

P(Y )  = J J p(.Y,s, = /) = $ > ,  (/)£,(/) (D 8)

Full description and expansion of the equations of the Forward/Backward algorithm has 

been presented in [Warakagoda 1996]

D  2 Learning Problem

The learning problem ts to adjust the HMM parameters so that the gn en observations in the 

training set are represented with maximum probability by the model lhere are different 

methods for learning We describe a method based on Maximum Likelihood (ML)

In Maximum Likelihood the probability of a given sequence of observations Y belonging to a 

given class c, given the HMM for this class, is to be maximised This probability is the total 

likelihood of observations,

where Af denotes the HMM of class c

Since we consider only one class at a time we drop the subscript c There is no known way to 

analytically sohe for the model A = (A,B,7l) which maximise the Ltmal But an iterative 

method can be used so that the parameters .ire maximised locally

Baum Wekb Algorithm

By defining a new vaiiable as the probability of being in state i at time / and in state j  at t+1, 

we have,

= P(Y I A, ) P 9 )
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j )  = pi*, =i,  a,+1 = j \ y ^ )  (D io)

p( s  = 1,SH[ = J , y  I A)
/>(*, = »> Vi = J I y>^) = ------------ ------------------p( Y  I A)

Therefore,

(d  11,
P(Y | A)

By substituting the Equations D 3 and D 6 into D l l  we get,

{.(■■;>- ,  f  p , 2)
' £ ' E a i (i)aIJß „ l( j ) b J( y l+l)
i= ]  J=\

Also we define a second variable as the probability o f being in state i at time t gi\en the 

observation sequence Y

Yt (i) = p(&, = z |  Y,X)  (D 13)

By substituting the forward and backward variables,

a . ( 0 A ( 0
7 , ( 0 =  N (D 14)

S « , o ) A o )
/=]

and the following relationship holds,

y ,0 )  = X § , ( / , ; ) ,  1 < i < N ,  1 < t < M  (D IS)
/=t

Assuming an initial model A = (A,B,7l)  the forward variable CC s and the backward variable 

P s arc calculated by Equations D 3 and D 6 respectively £ s and y  s arc calculated using 

D 12 and D 15 Then the parameteis of the model arc updated by the re-estimation formulas,

7T, = / , ( / ) ,  1 < z < iV (D 8)
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T

[ < i <  N,  Y< j  < N (D  16)ij T

I > ,  0)

7

£ y , 0 )

bj i k) T , 1 < j < N ,  [ < k < M (D  17)

The x in die above equations stand For re-estimation ot a variable x

In practice, for long sequences both CCt and /3, become small as the recursion progresses

Therefore, usually they are re-normalised to sum to one at each step of the recursions This 

makes the computation of the relevant e\pectations much more numerically well-behaved, 

and has the nice sidc-ettect that the sum of the log normalisations m the forward pass is the 

log likelihood of the observation sequence [Ghahramani 2001]
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A P P E N D I X  E

LATEST DEVELOPMENTS IN THE HAND TRACKING 
ALGORITHM

During occlusion the number of images should be large enough so that the velocities 

comerge to zero in the cases of hand collisions and pauses The Kalman filtering process 

proposed in Chapter 7 is based on the Kincmatic equations o f motion Therefore, in a fast 

movement the sides o f the occlusion-rectangle have the potential to move further rather than 

to stop quickly The algorithm should ha\e enough time and images so that the rectangle 

sides' velocities reach zero in the cases that a collision or pause is detected

If the speed of movement increases the estimated speeds of the rectangle sides may not 

exactly reach zero This problem becomes more difficult it the camera is working in a low 

speed (low frame rate) Therefore, the algorithm may not detect the collision and pauses 

accurately and may run into trouble Also m some applications where the visual system 

moves (e g active vision) the velocities may not exactly reach zero Therefore, we need a 

technique to make the algorithm independent from the actual velocities

To deal with these problems we investigate the speed changes of the occlusion-rectangle 

sides

When a pause occurs the estimated velocity tends to zero Assume that the hands are moving 

toward each other with almost constant velocities I he acceleration is zero When a pause 

occurs the acceleration increases in the negative direction in order to push the velocity to 

zero Ihe graph of acceleration looks approximately like a negative quadratic polynomial (see 

Figure E l )  The velocity is the integral of the acceleration,

V, = Ja, dt (E l)

Therefore, the graph of the velocity obeys a polynomial of power 3 (see Figure E  2)

Î
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o
time

Figiue E  1 A ccelention chm ges m i m ovem ent wheie pause is 
detected ( i p p L O \ i m  itc g i  i p l i )

0
time

Figuie E  2 The g n p h  o f  the velocity chm gcs in t m ovem ent 
wheie a pause is dclected (liom  the beginning oi occlusion to the 

p mse point)

After the pause the rectangle sides move in opposite directions The velocity changes in the 

same fashion but m the negative direction Therefore, the graph of the velocity during the 

occlusion period looks like Figure E 3

We may approximate this graph by a polynomial of power three or a logarithmic function 

like negative arc tangent hyperbolic,

A = a x '

,  _  ln(l +  jc) -  ln(l -  jc) (£ 2)
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time

rig u ie  E  3 Ilie  g n p li of \elocity  changes m a m ovem ent wlieie a 
pu ise  is detected in the whole petiod o f occlusion

Also, in the cases where hands pass each other the velocity of a rectangle side looks like 

Figure E 4 The rapid sign changc in the graph is due to the fact that when one hand passes 

the other, it pushes the rectanglc sides in opposite direction This graph looks like a logistic 

function,

^ = 7 ^ 7  (E3)1 + e

One may conclude that by approximating the velocity changes with the aboN e equations we 

can make a decision on hand pauses A velocity change that better matches the negative arc 

tangent hyperbolic is more probable to be a hand pause And a velocity change that better 

matches the logistic function is more probable to be a hand pass

V

t
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time

Figure E 4 Flie velocity ch mges in i m ovem ent wheie hands pass 
each othei

Although this seems true theorcticaly, our experiments did not demonstrate a good 

performance for the algorithm This is due to velocity variations in different problems and 

speed ot movement that prevents using a constant analytic model

According to a neuroscience theory [Harris 1998], there exists noise in the motor commands 

In the presence of such noise the intended motor commands will generate a probability7 

distribution over the hand positions and velocities if repeated several times [Wolpert 2001]

In accordance with this theory, wc model the velocity changes by gaussian distributions In 

tins model the graphs of the velocity changes are approximated by a sequence ot gaussian 

distributions for the two main categories hand-pause and hand-pass

As in Chapter 4, 2-dimensional gaussian distributions are constructed by a set ot training 

data The training data set is the velocity changes ot the occlusion-rectangle sides

The following function is defined in order to represent a pair o f parallel sides ot the 

occlusion-rectangle,

v(t) = v{( r ) - v 2(t) (Ji4)

where vt (f) and v2(t) are the velocities ot two parallel sides at time / When the hands are 

negatively synchronised, this function results in a velocity equal to the sum of the individual 

absolute velocities An important feature of this function is that it makes the algorithm
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independent ot the actual velocities Therefore, in some applications (eg active vision) the 

effect o f a constant value added to the both velocities is eliminated

In the movements where a pair o f parallel sides are positively synchronised the velocity- 

synchronisation model (System 7 11) captures the synchronisation ih e  gaussian models of 

velocity changes ot Function E 4 are shown in Figure E  5 Figure E 5 (a) shows the pattern 

ot Function E 4  for a pair o f parallel sides in the movements where a pause is detected 

Figure E  5 (b) shows this pattern for the movements where die hands pass each other In 

these figures, each ellipse shows a 2-dimensional gaussian distribution lhese models 

approximate a given sequence o f velocity changes A decision on whether the hands have 

passed each other or paused and returned is made based on the probabilities that the pattern 

of Function E  4 matches each of these patterns

(a)_ (b)
Figure E  5 11 ic sequences o t gaussim  distributions to m odel the 
occlusion îec tangle velocities during the two mam c itegones (a) 

hm d pause (b) h tnd pass

^0»J  » , )  = n  max (P(vi  | 7/,‘ )) (E 5)J
where v j  is the observed velocity at time j  during occlusion, H.\ is the k dx class o f gaussian 

distribution in the HyperClass H , , and P(yJa \ ) is calculated using the probability

density function o f Equation 418

In order to train the distributions we must classify the data points for each gaussian 

distribution H * in the pattern Ht Vector Quantisation (VQ) as an unsupcrvised clustering

technique can cluster the data points By applying VQ to a set o f training velocity data points 

in each pattern the data points of each distribution are classified Ihen by using Principal 

Component Analysis the parameters of the gaussian distributions arc determined
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Using this pattern matching technique, we can reliably detect the hand pauses even it the 

velocities do not reach zero

Experimental Results

We use the proposed model in order to track all types ot the movements Figure E 6  shows 

the velocity changes ot a large set o f moderate and tast movements In Figures E 6 (a) and 

(b) the hands face cither collisions or pauses In Figures E  6 (c) and (d) the hands pass cach 

other in order to get a better view how the graphs differ from each other the graphs of the 

horizontal pause (see Figure F 6 (a)) and the horizontal pass (sec Figure E  6 (c)) arc plotted 

together in Figure E 7

Using four training sets each of which contained thousands ot data points taken in fast, 

moderate and slow movements, four models were constructed Each of the models includes 

eight gaussian distributions We employed the Vector Quantisation algorithm to cluster the 

data points to make 8 dusters in cach ease

1 Performance

Using the trained model we performed two hundred experiments for each type of 

movement, one hundred in the class o f moderate/fast movements and one hundred in the 

class o f slow/moderate movements The measured performances of the algorithm are 

presented in fables E 1

In both classes o f speed the proposed algorithm works very well with 12% and 5% error rate 

which is a good performance given that the algorithm is independent of the camera view 

direction, changing hand shapes, and the type of movements This is an improvement to the 

algorithm o f Chapter 7 because it has a better performance and a wider range of applications 

due to the independence o f the algorithm from the actual velocities

In the next section we present two sets of experiments to demonstrate the independence ot 

the algorithm from the camera view direction and its application in active vision such as 

mobile robots
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Figuic E  6 Velocity chinges of: Equation 7 11 to i (a) and (1)) 
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Figute E  7 Tlie horizontal pause and horizontal hand pass
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T abic E 1 Perform ance ot the tracking algorithm  in the two classes ot speeds

speed class #  movements #  fails % correct
tracking

slow/ moderate 800 39 95 13
moderate/fast 800 95 8813

2 An Untrained View Direction

Ih e  tracking algorithm was developed as a direction-independent algorithm In this 

experiment, we change the camera view direction from the side-frontal view to a top-corner 

view as in Figure 7 26 of Chapter 7 The algorithm has been only trained in the original view 

direction Given that we defined the movement models to cover almost every angle of view, 

we test the tracking algorithm from the direction in which the algorithm is not trained for

As an example a movement similar to the example in Chapter 7, Section 7 4 is performed 

twice in which from the original view it is represented by the model c and from top-corner 

uew by the model j  o f Figure 7 10 Some images of the two experiments are presented in 

Figure E 8  Despite the new untrained view direction, the algorithm tracks the hands 

properly in the both experiments

(b)
Figme E  8 A b u m n m l m ovem ent in which (a) the hands pass 

each othei m the vertical ditccùon fiom  a side view, model c, (b) 
the hm ds do not pass but len tm  to their pievious sides from a 

top cornei view model j
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3 Active Vision Applications

In active vision, where the position of the camera changes, the view direction, the 

background, and illumination are changed In this case, the tracking algorithms that assume 

these parameters constant cannot cope with the changes and may fail to track the hands 

correctly

We did not make any assumption regarding the constant background In the active vision 

applications, where the visual system moves, a constant value is added to the velocities of the 

pairs o f parallel sides of the occlusion-rectangle at each time unit However, the Function E 4 

makes the constant added values ineffective Also, we considered the cases that the velocities 

do not reach zero in the mov ements that hands pause or collide All these enable us to use 

the proposed tracking algorithm in active vision applications

It we assume that the speed ot the moving visual system is constant the proposed models 

can be applied to the hands movements with a constant positive or negative added value 

which is the speed of the visual system However, this can be a very restrictive assumption as 

in the real-world applications (e g mobile robots) the speed of the visual system cannot be 

kept always constant Therefore, we have to assume that the visual system speed is lower 

than the speed of hands movements In other words, the speed of visual system should not 

be almost equal to the speed ot hands, because it the hands and the visual system have quite 

the same speed, a little variation in the speed ot visual system can cause a wrong model to be 

matched with the behaviour ot the hands during the occlusion period Ih is happens when 

the variation in the speed of moving camcra causes the occlusion detection subroutine to 

bounce between occlusion and non-occlusion

Three experiments are presented in order to demonstrate the ability of the tracking algorithm 

in tracking the hands in active vision In Figure E  9, the path o f the moving visual system 

(the camera) with respect to the room and the subject is shown from a top-view and a side 

view In these movements the camera moves horizontally

The three experiments are as follows,

1 A movement of typc^ (without collision), the camera moves from the point a to point b

2 A movement of type the camera moves from the point a to point b
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3 A movement of types b and d3 the cam era moves from the point a to point b and returns to 

point a

Some images ot the three experiments are shown in Figure E  10

APPENDIX E Latest Developments in the Hand Tracking Algorithm

Tlguie E  9 The path of c m ien  moving honzontall) fiom  a top 
v lew and \ side view

W
Pigine E 10 Tracking ui i mobile cam eta apphcitions (a) A 

m ovem ent of type ̂  (b) a m ovem ent of type and (c) a 
m ovem ent o( types b md cl
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In some of the images (e g the 8th image ot Figure E 10(a) and 5th and 6th images in Figure 

E  10(b)) the extracted hands blobs are connected to some objects in the background Due to 

the fact that we have used a monochrome camera the connected regions ot hands and the 

background objects are extracted as the hands' blobs Flowever, the mis-extraction of hands' 

blobs has no negative cffect on the tracking algorithm as the hands are correctly tracked and 

reacquired all over the movements

In all the movements one o f the hands moves partially or completely out of image frame In 

Figure E  10(c), in the 8th frame the right hand is totally out ot frame and there is only one 

hand \isiblc in the image When the hand returns to the scene the algorithm labels it correctly 

and keeps tracking both hands through the rest o f movement

Figure F 10(c) shows a natural movement of the visual system and the hands, which is an 

example of the reliability of the algorithm in tracking the hands in a natural environment

\l
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A P P E N D I X  F

UNIMANUAL COORDINATION

In this experiment the hand moves in a circular fashion (sec Figure F I) While it is 

circulating the fingers arc opening and closing A few images of the experiment arc shown in 

Figure F 2

Figme F 1 Hie p ith  ot the hand dining cnculai m ovem ent

Figme F 2 The cn cn h i m ovem ent of the hand uid the m ovem ent 
oi the fingers

By constructing a rectangle around the hand (see Figure F 3) we monitor the vertical sides of 

this rectangle, XI and X2 The vertical sides show the horizontal positions of the palm and 

the fingers The velocity of the first vertical side, X I, is the horizontal velocity of the palm, 

and the velocity o f the second vertical side, \ 2 ,  is the horizontal velocity of the palm plus the 

velocity of the fingers

The results of this experiment shows that the velocities are highly synchronised (see Figure 

F4)

V►
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\  closer view o f this graph is shown in Figure F 5 As can be seen in this figure the positive 

and negative peaks ot the velocity ot the fingers matches accurately the corresponding peaks 

ot the velocity ot the palm
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tim e unit

I iguic \ S 1 h e \e lou ties ot palm md hng tis m i u ic u lu  
m o\ ement

I his synchronisation enables us to track the hands in bimanual movement using the 

proposed algorithm of Chapter 7 even in the cases that the hand shape is changing during the 

movement In other words, the change of the hand shape and the movement of hand are 

synchronised In some of the bimanual movements where both the horizontal or vertical 

sides ot the rectangle during occlusion arc connected to one hand (see Figure F 6) the 

ummanual s)nchronisation results in concurrent pauses m both the parallel rectangle sides

H guie I 6 llic  Ycitic il sides oi the lectangle u t  bolli coim ectcd 
to the left hand The umili mual cooidm ation guai uitees that the 
p uises m the \ettical sides oi the icct ingle occtu simultaneously 

even when the hand sh ipe is changing
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