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ABSIRACYT

Bimanual movements are a subset of human movements in which the two hands move
together in order to do a tash or imply a mcaning A bimanual movement appearing m a
sequence of images must be understood in order to enable computers to mteract with
humans 1in a natural way This problem includes two mam phases, hand traching and

movcement recognition

We approach the problem of hand traching trom a neuroscience pomnt ot view First the
hands are estracted and labelled by colour detection and blob analysis algorithms In the
presence of the two hands one hand may occlude the other occasionally Therefore, hand
occlustons must be detected i an 1mage sequence A dynamic model s proposed to modcl
the movement of each hand separately Using this model in a Kalman filtering process the
exact starting and ¢nd points of hand occlusions are detected We exploit neuroscience
phenomena to understand the behaviour of the hands during occluston periods Based on
this, we propose a general hand tracking algornithm to track and reacquire the hands over a
movement including hand occlusion  The advantages of the algorithm and its generality are

demonstrated in the expenments

In order to recognise the movements first we recognise the movement of a hand Using
statistical pattern recognition methods (such as Principal Component Analysis and Nearest
Newghbour) the static shape of each hand appcaring 1in an image 15 recogmsed A Graph-
Matching algorithm and Discrete Hidden Markov Modcls (DHMM) as two spatio-temporal

partcrn recognition techniques are investigated tor recognising a dynamic hand gesture

For recognising bimanual movements we consider two general forms ot these movements,
single and concatenated pertodic We introduce three Bayesian networks for recognising the
movements The networks are designed to recognise and combinc the gesturcs of the hands
in order to understand the whole movement Experiments on different types ot movement

demonstrate the advantages and disadvantages ot each network
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Chapter 1

INTRODUCTION

Everyday, millions ot people, cars, animals, and many other subjects around the world move
i order to do their tashs A subset of these movements 1s human movements A man walks
in order to reach a place, moves the hands to take an object, point to somcwhere, show the
stze of an object, and imply a meaning He/she talks, laughs, crics, ctc i order to convey
meanings, and cmotions i order to transfer mformation to others to voice his/her needs,

etc

Understanding all these movements requires a huge amount of knowledge that people learn
everyday from the very first day of therr lite We look at objects and people to understand
them to undcrstand their motion, their purposc, and therr emotion Looking at all these
movements and understanding them grie the power ot understanding the environment to us
By understanding the environment we arrange our needs and tasks, problems and

programmces

Computers have provided us with a better quality ot lite Equipping computers with the
knowledge to understand the environment 1s a target ot much rescarch 1in computer science,
as we will show in Chapter 2 Particularly, getting computcrs to look at the environment in
order to analyse 1t 1n the same way as we do s the basts of research i a wide spectrum of
scientific, cngmneering, and cognitive rescarch projects Equipping computers with  this

knowledge provides us with better ways to interact with computcrs

Interacting with computers have been traditionally based on artificial devices like keypads and
switches With the current research i Arficial Intellygence, computers are able to understand a
large part of their environment The new means of interacttons have opened new horizons in

better nvolving these devices in our daily life

We nvestigate the subject ot Human Computer Interaction (FICT) from an engineering and

cognitive science point ot view Dafterent aspects of HCT will be briefly reviewed We study



1 1 Human Computer Interaction

the problems involved i boking at pegple by computcrs tor Human Computer Interaction
Arttictal visual systems are introduccd and studied in ditterent parts of this thewis We use a
wide range of tcchniques and methods trom engincering to neuroscience m order to
understand a group ot movements Lhe integration of all these methods, techmques and

phenomena enables us to develop an mtegrated solution to an important and cructal problem

in Human Computer Interaction

Hand gestures i linguistic communication (e g sign languages) and  paralinguistic
communication (eg remntorcement gestures) are used i HCI to communicate with

computers In this thests we aim to recognise a set of bimanual gestures

11 Human Computer Interaction

“Human Computer Interaction (HCI) cntails the study ot physical, social, cognitive and
engineering aspects of designing information tcchnology tor ease of use {Salvendy 2001]”
Lhese aspects are tllustrated by the author in Figure 11 In HCI a wide range of applications
ts being developed in order to provide casier means ot interacting with computers than
traditional heyboards and mice Smart environments, wearable computers and perceptual
user interfaces are considered as the “tourth gencranon” of computing and information

technology [Pentland 2000]
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Sensing technology that allows computers to be used without detailed instructions 1s the

main technology that this new generation of computers should be cquipped with Enough

Figue 11 Humwm Computer Interrcuon aspects




1 2 Visual Sensing

knowledge of people should be provided tor computers to act appropriately with the

minimum of detailed traditional instructions [Pentland 2000]

Many sensing technologies are employed to improve the mtcractions and avoid esplicit
instructions Audio and visual techniques are some of the most common methods Voice and
speech recognition techniques enable computcrs to communicate with people by using

human languages (see Figure 1 2)

)) \ Yoice digitizer

and processor

h —— ]
M
Figuie | 2 A svstem of voice recogitios

Visual sensing 15 another technique, which 1s used by humans as one of the five senscs
Getting a machine to do the visual tashs ot a human 15 the subject ot the current research in
artiticial visual sensing Even tor some simple tashs that 2 human eye can do, large difficulties

in mechansation are involved

12 Visual Sensing
By using visual sensors physical connections lihe wires to transter intormation nto
computers are removed Bar codces are a well-hknown example tor connecting information on

physical packages ot goods to a database Understanding information within an tmage

employs a large number ot algonthms

1 3 Machine Vision

Partially providing the ability of human vision tor computers 15 known as machime vision

[Davies 1997]



1 3 Machine Vision

Machine vision etther trom the engineering and technological or the theoretical point of view
is an important research area By looking at scenes, objects, colours and movements machine
viston provides computers with the ability ot understanding environment The domain of
machine vision mcludes a wide spectrum of science and technology such as computer science
and engineering, signal processing, physics, statistics and applied mathematics, neuroscience

and COgﬂltl\ C sciences

The components of a visual system include image signal processors, colour modelling,
geometrical processors, high-speed computers, artificial intelligence techniques, mathematical

models, programming techniques, etc

131 Machine Vision Aspects
By machine vision we reter to a wide range ot methods trom low-level image processing to

real-time motion analysts and pattern recognition

In low-level 1mage processing some basic operattons on etther binary, grey-scale or colour
images are done tor purposes like noise suppression, edge detection (see [igure 1 3), image
filtering and masking, etc This level of processing also ncludes object locating via edge

detection, binary shape analysis and boundary pattern analysis

Figime | 3 Edge detection

An intermedhate level ot processing mncludes geometercal shape analysis, line and curve

detection, circle and cllipse detection [Shamase 1997) (see [igure 1 4), hole detection, polygon

and corner detection



1 3 Machine Vision

INgwe 1 4 Clhpse detection wd patameter extraction

Many ditferent industrial and medical applications use this level of processing For example,
in industrial and manufacturing environments locating a arcular or eliptical object, which
can be handled by a robot, 1s one of the basic problems Ditterent aspects of this problem are
recognition of an elliptical (or circular) shape, extraction of the ellipse parameters and

location estimation

For the set ot well-known geometrical shapes like lincs and circles, many ditterent techniques
have been proposed in the literature such as Hough Transtorm [lllingworth 1990], adaptive
tuzzy C-Shell clustering (Dave 1992], Fourer Descriptots  [Persoon 1977], polygon

esttimation [Pavlidhs 1977] and numerical optimisations [Shamaie 1999]

The highest level of processing which s called application-level includes abstract pattern
matching, three-dimensional environments, motion analysss, testure analysis and pattern
recognition At this lesd more natural things enter into the processing Natural three-
dimensional objects and environments, motion analysis and matching, and recognition of
natural objects with unknown geometrical shapes are the problems that employ not only

image processing techniques but also artifictal intelhgence methods

132 Human Recogmition

Recognition of ditterent parts ot a human body, analysis and information extraction arc the
tasks at the application-level processing [ace and gesture recognition, 3D person tracking
and behaviour understanding have becn mainly addressed in the literature as the important
problems in looking at people by machine vision systems [Pentland 2000] In this area there
1s no complete analytical models for the parts ot human body This makes 1t difficult to find a

totally analytical algorithm to recogruse the parts and therr features Therefore, many
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statistical algonthms are proposed to deal with this problem In Chapter 2 we will brietly
discuss these methods The main applications of this area are person idenufication via face
rccognitton, hand and body gesture recogmition to interact with computers, and surveillance

and monitoring ot human behaviour tor security reasons [Pentland 2000]

Since the main focus of this thesis 15 on hand gesture recognition, we discuss this problem

morc and for the other problems we reter the readcr to the refcrences

14 Machine Learning and Gesture Recognition

Fland gestures are very common i soctal mteraction People usually use hand gestures to
explain their speech and internal emotions Speech reintorcements, showing directions, and
showing the size ot an object arc usual gestures However, a large community of people uses
hand gestures for very basic communication Deat people use sign language to communicate
with each other Sign languages contain a large number ot hand gestures  These gestures
have a set of defined static shapes and hand movements Thc number of recognisable static
hand shapes 15 imuted to less than 100 So, in each sign language (e g Irish or American Sign
Language), normally, a static hand shape 1s defined for every letter in the alphabet (sce [igure
1'5) However, for the three letters 9, N and 2 movements of hand are defined in Irish Sign
Language Although most of the words n sign languages are dynamic and start with a
defined static shape ot hand and continue as a movement, these static signs are usctul mainly
tor spelling the words not detined 1n a language vocabulary lihe names This s called finger

spelling

Learming the hand shapes and recognising them 1s the first part of the research in this thests
Recognition ot a hand gesture continues by the recognition of hand movements and changes
in the shape of hand For this, a system needs to learn the movements to be able to classity
and recognise them Many machine learning techniques have been proposed tor spatio-

temporal learning and recognition of hand gestures

All these are the pre-rcquisttes to an mmportant problem that has not been yet specifically

worhked on before
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A large group ot movements s called bmanual morements In these movements both hands
move 1n order to do a tash or mply a meaning Clapping, opening a bottle, typing on
heyboard, cating with fork and hnifc, drumming, guiding a pilot driving an aeroplane into

parhing, ctc are some of the usual brmanual movements (see Figute | 6)

Another group of bimanual movements are the movements in sign languages Particularly,
British Sign Language 1s one ot the sign languages in which the two hands arc used tor most

of the gesturcs, even the alphabet (see Figure 1 7)

Learning bimanual movements by a machime 1s ditferent from unimanual movements Due
to the fact that the both hands move simultancously 1n order to do one thing or imply one
meaning, a system should analyse the movement of the hands together in order to
understand the wholc movement In this order, many problems arise but the main s
occlusion Since, n a bimanual movement, one hand may cover the other tor somc moments
recovering the movement ot each hand and analysing 1t 1s ditticult Many problems like
detecting occlusion and traching the hands betore and atter occlusion are the important parts

of this ssue
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, 1 4 Machine Learning and Gesture Recognition

The other problem s to synchronously analyse the movements ot the hands and combine

them in order to understand the whole movement

In this thests, we aim to recognise hand shapes and gestures, and trach the hands in order to
understand bimanual movements We start from the basic problems ot static hand shape
recognition When the static hand shapes are recognised we do temporal recognition ot hand
shapes n order to recognise a hand movement [t we can recognise a single-hand movement,
we can involve the movement ot the other hand For this we first need a method to track the
two hands separately, detect occlusions and resume traching the hands correctly atter
ocdusion Gren that the hands are trached correctly how can we recognise the whole
movement? In other words, how can we combine the individual movements ot the two
hands to recognise the whole movement? What should we do with the parts of the
movement where one hand occludes the other? How can a machine learn to deal with hand
occlusions as well as the other parts of @ movement? We will answer all these questions in
this thesis Techniques, methods and algorithms will be mtroduced for ditterent parts of the
problem ot bimanual movement recognition At cach part we try to mtroduce solutions as
general as possible In other words, we try not to hmit the solutions to a tew number of

restricted cases

In the next chapter we state the man problem of this research and briefly explain about
ditferent proposed methods nvolved directly or indirectly 1n gesture recognition In Chapter
3, some techniques tor static hand shape recogmtion are presented and an application of
these methods 1 a real time mouse stmulator 15 mtroduced In Chapter 4, the problem of
dynamic hand gesture rccognition ts discussed We introduce a new technique tor recognising
dynamic hand gestures Chapter 3 15 dedicated to a dynamic model, which will be used in our
traching algorithm for defection of hand occlusions and traching hands 1 bimanual

movements

In Chapter 6, Hidden Marhov Models and their application in dynamic gesture recognition
are discussed In this chapter we compare our proposed gesture recognition tcchnique with
the Hidden Marhov Models for single-hand gestures and discuss the advantages and
disadvantages ot each technique In Chapter 7, the problem of occlusion detection and hand
traching i bimanual movements 1s discussed We introduce a new algorithm for detecting
ocdlusion, tracking the hands and re-acquiring tham at the end of occlusion parts of a

movement Chapter 8 15 dedicated to a new a technique for combining the movements of the
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two hands and dealing with the occlusion parts of a movement A technique 1s introduced to
segment a bimanual movement A ncw Baycsian network 1s proposed for combining the

hand movements and dealing with occlusion parts simultaneously

At the end ot each chapter we present some esperimental results to demonstrate the
performance ot our proposed techniques and algonthms Conclusions and potential future

work will be presented at the end of the thesis

10



Chapter 2

PROBLEM STATEMENT AND LITERATURE
REVIEW

A visual sensor such as a camera captures what visually 1s observable in a scene The captured
1mages consfituting a sequence represent a temporal event By using a camera connected to a
computer via an intertace an 1mage or a sequence of images are tansferred to the computer
(see Tigure 2 1) lhe intertaces are called frame grabbers This type ot data acquisition 1s
called image acquisition “Imagc acquisition 15 concerned with the tash of mterrogating the
scene under consideration with some encrgy sources, and subsequently sensing the rcturned
energy, which has been modulated by interaction with elements ot the scene” [Flhs 2001]
Usually a visual sensor converts the recetved energy to clectrical signals These signals enter

the digitizer and tramc grabber to be digitised and stored in the memory of the computer
A hand gesture can be captured as a temporal movement in a sequence ot images

In this chapter we statc the man problem to be solved in the thesis A review of the related
worhs 15 presented We survey a wide spectrum of techniques, methods and algorithms
presented 1n the hiterature for static and dynamic pattern recognition Basic staustical pattern

recogntion techniques to advanced temporal pattern matching algorithms  are  briefly

presented i this chapter

g o
and digtizer

Ciguie 21 A visual system

11



2 1 Hand Gestures

2 1 Hand Gestures

A hand gesturc 1s 1 movement ot hand to imply a meaning, represent a word or sentence, or
show an emotion In order to rccognise a hand gesture by a visual system, a sequence of
1mages containing the gesture 15 captured Esery trame of this sequence contains a hand
shape, which s to be analysed However, first, onc should extract the hand from the

bachground ot the image

A very common technique for extraction 1s colour detecton and segmentation A colour
scgmentation procedure should dentity the principal object colour and separate it from the

background Many difterent colour scgmentation algorithms are addressed m the litcrature

[Jain 1989]

We use a simple grey-scale detection algorithm, 1 which cvery pisel above a certain pre-
defined threshold of grey levels v considered as a pomnt on the principal object s
algorithm extracts the hand trom the bachground (see igure 22) Since we arc using a grey-

scale camera our colour detection algorithm s based on the grey levels

Now, tor a sequence of 1mages of an extracted hand the man problem of this research can

be stated as given in the nest section

Figute 22 Colout detection nd segmentation

12



2 2 Main Problem

2 2 Main Problem

/ ~
In this research we are going to solve the following problem

Guven a bimanual movement including hand occliston find a movement tn a gven database of movements that
best miafches nuth if spatially and temporally In other woids recognise the input bimanial movenent gen

thal a set of predefined bimanial mioiements o provided

Stattic hand <hape recognition, dynamic hand gesture recognition, occlusion detection, hand

traching and bimanual movement recognition are the main parts of this problem

2 3 Approaches to Hand Gesture Recognition

A general view ot hand gesture recognition has been presented in [Paviovic 1997) Hand
gesture recognition 1s divided into two parts static hand shape analysis and dynamic gesture

analysts

2 3 1 Stauic Shape Analysis

Static shape analysis has been widely addressed n the literature [Theodoridis 1999] as a
pattern recognition problem Statistical pattern recognition and artificial neural networks are
some well-known approaches In statistical pattern recognition, different tcchniques have
becn discussed for classtfication By classification we mean classifying a shape into one set ot
predefined classes Therefore, every shape must be represented by its teatures thar distinguish

it from the other shapes

By sclecting a sct of featurcs ot the shape, a space s formed in which every asis 15
represented by one of the selected teatures This space 1s called a feature space In image
analysts the teatures are sometimes the pined valucs In the teature space every shape has a

particular position distinguishing it trom the other shapes

e Nearest Neighbour

In order to classity an unknown shape, one can tind the posttion of the shape in the feature
space Then by finding the nearest pomnt in this space representing a predefined class, the
unknown <hape cin be denutied (see Figure 23) This 1s known s the Nerest Netghbour

ﬁlgom:hm

13



2 3 Approaches to Hand Gesture Recognition

Figuie 2 3 Panciple of the Nemest Nesghbour algonthm tor a
two class problem

The predetined classes are represented by a sct ot known shapes, which 15 uscd tor traning

the system This set 15 also known as the traming sct

¢ Bayes’ Theorem
Another important method in statistical pattern recognition 1s Bayes’” deciston theory In this

theory, tor a single feature », the probability of x being in the class C, 1s detined as

P(x|C)P(C,)
P(x)

P(C, | x)= 21

where

p(v) =) p(x[C)P(C,)

Mathematically, the variables arc

P(C,) u proi probability ot class C,,

P(x) probability density for feature x,

P(x|C,) dass conditional probability density tor feature » m class C,, ¢ the
probability that teature v arises for objects hnown to be in class C, |

P(C, | x) thc a postersorn probabihity of class C, when a 15 observed

14



2 3 Approaches to Hand Gesture Recognition

In 2 real-world problem, the number ot teatures 1s usually more than one Bayes’ rule can be

generalised to cover the case that feature space 15 a multidimensional space [Davies 1997)

Now the classitication procedure 1s to compare the values of the probabilities P(C, | x) and

to classity an object as class C, 1t

P(C, | x) > P(C,

X) Vi 22

Bayes rule 15 the base of other tecognition techniques which will be explamned in the next

chapters

® (Cluster Analysis

As the data in the training set 15 located 1 the teature space, many clusters of data are found
based on the stmilaritics among the data In a sct of data, those with the same features are to
be dentified as a single point in the feature space Flowever, small varations 1n the features
make the poimnts very close but separated Theretore, a set of data with almost the same
teatures forms a cluster of pomts in the feature space (scc Iigurc 24) The varianon in the
teatures are normally becausc ol nowse or other sources ot vartations like rotation and

translation

hh'hb
bb b i
ad
d
[
CCC
4 a a tcc
a aa
aaa

Figuie 2 4 Clusters m 4 two dinnensionil teanme spe
For an object with feature » in the space one can find the nearest cluster and classify x as that

dass Identitying the nearest centre ot gravity of cach cluster, 1s one posstble way of finding

the nearest cluster assuming the clusters are roughly spherical

15



2 3 Approaches to Hand Gesture Recognition

¢ Prnncipal Component Analysis

Principal Component Analysis (PCA) 1s usually uscd to reduce the dimensionality ot data
For example, in an tmage of 32\ 32 pinels there are 1024 praels and every prael represents a
teature 1n a 1024 dimensional teature space Working 1n a 1024-dimensional space needs
mtenstve computational power But, usually, a large number of features do not carry usetul
information Therctore, selecting the featurcs contamning the most useful intormation 15 very
important By using PCA, one can extract the teatures with usetul information and eliminate
the rest This technique involves tinding the mean of a cluster of points in teature space, and

then tinding the principal axes of the duster

First an asis 1 found that passes through the mean of data points and which gives the
mastmum vartance when the data are projected onto 1t Then the sccond ats with the same
spectfications 15 found i a direction normal to the first This process continues until N
principal aves are tound The N prinupal ases torm the new featurc space Mathemarically, 1f

a matrix ot observations (imagcs) 15 given by

T
X :{XI,X:, ’xn}

b
where X, 1 the /* image reshaped as an Ma7 vector ot tmage pincls in the sequence and

15 the mcan of the observations, the covariance matrin ot the data can be calculated by
— T
C, = E((x - )x—p1,)") 23

We can estimate C, by the tollowing equations

2 1 ¢ A~
C\=; ]xpr)—,u\uf (2 4)
p=
N 1 &
U, =—=) X, 25
szzl F (j)

where P the length of each vector x
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2 3 Approaches to Hand Gesture Recognition

The eigenvectors ot the covarance matris C torm the ncw featurc space called the
exgenspace  However, the number of aigenvalues and eigenvectors of the matrix C s the
same as the number ot dimensions in the teature space Once should selcct fewer eigent ectors
that represent the best teatures and the most valuable data The ergenvectors corresponding
to the largest eigenvalues show the directions in which the data have the largest variations

Theretore, a tew eigenyectors are selected and a lower dimensional fcature space 1s formed

By projecting a data vector x, onto the teature space, we get

y, =AKX, —u,) (26)

where Ais the matris of the selected eigentectors and 'y, 1s a pont in the coordinate system
detined by the eigenvectors This pomnt 1s the data vector X, 1n a lower dimensional spacc

that contains the most valuable information in X,

In order to reduce the dimensionahty ot our images every image s reshaped to a 10241
vector (see [igure 25) We call this vector x In order to form the covarlance matris many
independent examples of x arc required The covartance maters 1s calculated and  the

eigenvalues and eigens ectors ot the matris arc determined

“
\
5 1024 x 1

: imare vector

32 x 32 image

[igure 2 5 Reshhiping 1 squate to 4 vector
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2 3 Approaches to Hand Gesture Recognition

By selecting a few cigenvectors corresponding to the largest exgenvalues a lower dimenstonal

tcature space ts formed The projection of an image vector into this subspace is a point (see

Figure 2 6)

I'gue 26 A thice dimensional eigensp we nd 1 projected mge

By using PCA 1n a lower dimensional space and cluster analysis one can classity an unknown

shape 1n a set of known clusters

I'he above mentioned techniques are mostly used for the purpose of static shape recognition
But there are other methods lihe 1mage cvss comedation “Cross-correlation 15 a standard

method of estimating the degree to which two series are correlated” [Bourke 1996] Consider

two series X, and ¥, where /=07,2, \N 7 The cross-correlation 7at delay 415 defined as

DX, —p )y i)

i

" \/Z(X' -u\f\/}‘j(y,_‘, -u,)’ 0

where ¢, and f are the means of the corresponding scries It the valuc of 7 1s calculated
tor all the delays ¢=0,7,2, N 7 1t results 1 a cross-correlation series of twice the length of
the series X, and Yy, assuming they arc the samce length For esample, for the two hand
shapes shown n Figure 27 the graphs ot energy level for the pinels ot these shapes are
shown in Figure 28 These picturcs arc n 32432 resolution and 256 grey level Theretore,
each picture has 1024 pinels The graph ot the cross-correlation of these images 1s shown in

Figure 29 It 15 clear that at a little betore #4=0 (zero dclay) the two scries have the highest

cross correlation, and they have the highest similarity
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2 3 Approaches to Hand Gesture Recognition
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Iiguie 27 The two hand shapes m 32132 resclution
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2 3 Approaches to Hand Gesture Recognition

However, our eaperiments show that the cross-corrclation technique 1s an extremely time
consuming process, and we will not use 1t for pattern matching Many other recognition

tcchmiques have been addressed in the hiterature

An error-correcting encoding frameworh tor solving mulu-class pattern recognition problems
has been addressed in [Erenshteyn 1999] Under this tramework they have developed an

algorithm for code generation The algorithm allows generating codes of difterent lengths

A Tierarchical static shape recognition technique has been introduced m [Wu 2002] This
hierarchical approach works by using the 1dea ot “drvide-and-conquer” They divide up the
data sctinto groups ot images, which are similar to each other This 1s done by deliberately
blurring the images so that small differences between similar images wilt be elimmated  Lhus
a group of original images may become reduced to just one image, which represents the
entire group So the total size of the data set will be reduced For esxample, the images
shown n Figure 2 10(a) are the sign "a’ 1n Irish Sign Language at tull resolution, then scaled to
32:32 praels and finally blurred  The images of lugure 210(b) are the sign ‘¢’ at full

resolution, scaled to 3232 and then blurred

(b)

INiguie 2 10 Blutmg imiges to mahe the huetrchucal ditibase The
imges e bluied 1t ditferent levels (trom left to nght) so tht the
{inal blurred uniges look stmim

By blurning the images at a senes of difterent levels and grouping the similar blurred shapes
rogether a hierarchical database ot shapes 1s made Then for an unknown hand shapc it 1s

blurred at the corresponding levels and classified The classification 1 done by recognising
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2 3 Approaches to Hand Gesture Recognition

that the blurred hand shape belong to which group of similar shapes at a level of blurring
Therefore, mstead of searching the whole database of hand shapes that contains thousands
ot images they search the sets of simular shapes and rccognisc the most sumilar set By
reducing the level ot blurring they step-by-step search the smaller sets of shapes to recognise
the hand shape in the tinal stage with zero level ot blurring Theretore, a hand shape can be

estracted trom within the hierarchy contaming thousands of hand shapes in a short time

In (Essenstein 2001] a clustering tcchnique has been presented to detect hand signs They use
K-means and adaptive clustering techniques to recognise static hand shapes using a smart
glove with 22 sensors that pertain to the posttion ot ditterent joints that constitute a hand
Lhe results show that tor [0 ditterent hand shapes performed by 10 people between 55% to
83% accuracy (varies trom person to person) 1s obtained with the K-means algorithm While
the K-means algorithm shows sensitivity to the input data and the order 1t 1s presented to the
algonithm the adaptive algorithm 1s less sensitive with 66% to 77% accuracy They have also
tested the Nearest Neighbour technique and achieved 81% to 88% accuracy Then they
condlude that Nearest Neighbour provides superior performance when 1t s provided with a

large tramning set stzc

An mnteresting model called the Point Distribution Model (PDM) has been mtroduced 1n
[Cootes 1992] for building shape models In this method a shape 1s represented by a set ot

labelled points (see Figure 2 [1), in which variation in shape can be included in the model

6

0

Figme 2 11 Powmt model ot the bouniduy ol 1shape

However, tor diffcrent samples ot a shape the equivalent points must be aligned mn the same
way with respect to a set of ases The required alignment 1s achicved by scaling, rotating and
translating the shapes so that they correspond as closely as possible This 15 done by
minmusing a weighted sum of squares of distances between the equivalent pomnts on

difterent shapes There are other methods for automatic landmark dentification [Hill 2000}
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2.3 Approaches to Hand Gesture Recognition

Others have improved the PDM by making non-linear generalisation either by polynomial
regression [Sozou 1994] or multi-layer perceptron [Sozou 1995]. In [Heap 1997] the principal
limitation of PDM, non-specificity, has been considered, and a two-level hierarchy in shape

space employed to improve efficiency.

Another hierarchical recognition architecture presented in [Heidemann 2000a] consists of an
adaptive feature extraction based on Vector Quantization and local PCA. They first structure
the input data by Vector Quantisation. Therefore, a set of reference vectors is extracted in
this stage. Then, for each reference vector a locally valid Principal Component Analysis is
performed. For classification of the features extracted by the local PCA an expert net of the
local linear map (LLM) type is attached to each reference vector. A neural network is used in

this algorithm to classify features.

Classification and recognition of articulated and occluded objects have also been addressed in
the literature. A hierarchical 3D object representation model [Hauck 1997] has been
introduced in which recognition is done by first estimating the 3D pose of the static
component and afterwards determining the relative 3D pose of the remaining components

recursively. This model can cope with the problem of self-occlusion.

A model-based statistical algorithm has been developed in [Ying 1999] to recognise occluded
objects from noisy features. In this paper, two different statistical occlusion models, an
independent prior model and a Markov Random Field prior model, are examined to measure
their robustness in the presence of occlusion. The first model is based on the assumption
that each feature in an object template can be occluded with a certain probability
independent of whether any other features are occluded. The second model is based on the
assumption that it one feature is occluded the likelihood that the other nearby features are
occluded should increase which shows a spatial correlation to the process of occlusion. Their

results show that the model with spatial correlation is more robust than the one without.

An interesting occlusion recognition algorithm based on a neural network model has been
addressed in [Fukushima 2000]. The authors argue that in the presence of occluding object,
recognition of partially occluded object is easier (see Figure 2.12). When the occluding object
is not visible, distinguishing which features are relevant to the original pattern and which are
newly generated by the occlusion is hard. These irrelevant features will hinder a visual

recognition system from recognising the occluded pattern correctly. A hierarchical neural
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2 3 Approaches to Hand Gesture Recognition

networh has been presented to block the signals tor irrelevant disturbing features to reach

higher stages ot the recognition system

(T

Figute 2 12 Patterns partinlly occluded by mvisible nd visible
mashiug objects

A matching techruque has been presented in [LEdwards 1997] for interpretation of colour
scenes contaming occluded objects This algorithm uses an mteractive, coarse-to-fine
correlation-based method that uses hypothesised ocdluston events to modity the scene-to-
template smilarity measure at run-time  An algorithm has been introduced m [Heidemann
2000Db]) tor supervised learning the segmentation of partially occluded objects The algorithm
worhs bascd on the classitication ot abject windows The object windows are smaller than
the object size but large enough to evaluate the structural object features and colour In every
mput window, teatures are estracted by local PCA and subscquently classified by a neural

network

An unsupervised clustering  technique has been  presented  [Yanez-Suacez 1999 tor
dentification of partially occluded objects  Lhe contour ot each objeet s modelled with an
approsmmating polygon whose edges arc then projected mto the Hough space (tor more
nformation about Hough Space please reter to [Leavers 1992]) A structurally adaptive
neural network generates clusters ot collinear and/or parallel edges, which are used for

identitying the partially occluded objects within each polygonal approsimation

Dealing with occlusion, also, has been addressed in stereo imaging [Intille 1994 Jopc 1999]
In stereo 1imaging, except tor thin objects with large matching dispanty, all stereo scenes obey
the ordersng comstraent 1t object 4 1s to the left ot object b in the left image then a will be to the
lett ot 4 in the nght image In [Intdle 1994] they have developed a dara structure called
diparity space image (DSI) which s used mn a stereo algonthm that finds matches and
ocdlusions simultaneously By incorporating highly-reliable matches or gronnd contro! pornts
(GCPs) the algorithm’s occlusion-cost sensitrvity and algorithmic complenity 15 reduced

significantly
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2 3 Approaches to Hand Gesture Recognition

Many gesturc recognition algorithms use Principal Component Analysis (PCA) tor feature
extraction and representation A standard PCA technique discussed 1n [Jolitte 1986] was
esplained in detail earlier A comparison among PCA and Lznear Duscremnnant Analysis (LDA)
has been presented m [Martinez 2001} Despite some reservations about the supcriority ot
algorithms based on LA versus the algorithms based on PCA it has been shown that this s
not always true Indeed, 1t has been demonstrated that PCA can outperform LDA when the

tratnung data set ts small and, also, that PCA 1s less sensitive to ditterent traiming data sets

Lenear and guadyatic discremunant analyses have been presented in [Friedman 1989 Now bnear
Coniponent Analyses 15 a non-hnear form of PCA [Scholhopt 1996, 1998] It generalises PCA to
the case where the princpal components in input space are not ot interest, but rather in
principal components of varables, or features, which are non-linearly related to the nput

varables

Another approach in Nou hnewr PCA has been studied in [Moghaddam (999] The Linear
PCA manifold, Lincar Independent Component Analysts (ICA) manifold and Non-linear
Principal (NLPCA) manifolds have been compared in his paper lhey are employed to
recognise a large set ot individual taces It has been shown that the PCA and ICA result in
better recognitton rate than the NLPCA The general difficulty ot computing non-linear
manitolds and complesity of cost tunctions niddled with local minima can be the main

reasons tor the poor performance of NLPCA

A probabilistic matching technique has been addressed in [Moghaddam 1998, 1999] for
direct visual matching of taces in a databasc They divide the varanon of facial images into
two classes tia pensonal, which are the vartations in appearance ot the same individual, due
to ditterent expressions or hghting and extra personal which are the vartations in appearance
due to a ditterence i dentity Then a prvbabulstic measire to measure the similarities based on

a Baycsian analysts of images difterences in the mentioned classes has been introduced

Non-linear component analysis as a kernel eigenvalue problem [Scholkopf 1996] and
statistical pattern analysts based on nonlinear Kernel PCA [Ruiz 2001] have been addressed
as a new gencration ot PCA 1n pattern recogmtion A kernel version of Mahalanobis distance

and 2 kernel version of minimum squared error (MSE) have also been introduced [Ruiz

2001)
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2 3 Approaches to Hand Gesture Recognition

PCA has been used to find adaptive bases tor multircsolution [Brennan 2000] An input
image s decomposed into components, which are uncorrelated Then a single layer network
using Generalsed Hebban Algonthn (GHA) with a minor modification 1s used to implement
the multiresolution PCA A method has been mntroduced [Iyons 1999] for automatic
classification ot facial images based on elastic Graph-Matching, a 2D Gabor wavelet
represcntation, and LDA  First, the immages are transtormed using a  multiscale,
multiresolution set of Gabor tilters lhen two type of grnids, rectangular and fiducial, are
registercd with the face The amplitude of the Gabor transform coetticients are sampled on
the grid and combined into a single vector called labelled graph vector or LG vector Then
they use PCA to reduce the dimensionality of input spacc tor the ensemble of LG vectors
from a traming sct ot images The LG-PCA vectors trom the traming set are then analysed

using LD A in order to separate vectors nto ditterent clusters with indi «dual factal attributes

A multi-view dynamic face model has been developed tor the shape and pose five tacial texture
patterns [Lt 200i] Using a hernel tcchnique to perform LDA in ligh-dimensional feature
spacc a Kernel Discriminant Analysis 1s developed to extract the signitficant non-linear
features which masimise the between-class vartance and minimuse the within class variance
They have implemented this technique i the problems of modelling faces across multi-
views, extracting the non-linear discriminant features, and recognising moving taces tn image

sequences

Finally, a general review of statistical pattern recognition has been presented 1n [Jan 2000]

2 3 2 Dynamic Movement Tracking and Recognition

A dynamic gesture 15 a movement and change in the shape ot hand appearing in a sequence
of images In dynamic gesture recognition a scquence of tmages ts analysed to be classitied as
onc of the known dlasses of gestures In every image a hand 1s presented which 1s gradually

moving and changing in the sequence

A prerequisite to rccognition of hand and body movements 1s tracking In a movement
where the hands are moving in order to do something or imply a meaning traching the hands

18 cructal

A 3D model of hand has been presented in [Davis 1999] tor tracking hand movements In

this model, the hand 1§ represented by five cylindrical models, which are fitted, to the third
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2 3 Approaches to Hand Gesture Recognition

phalangeal segments of the fingers (sce Figure 213) S 3D-motion parameters for each
modcl are calculated that correspond to the movament ot the fingertips n the image plane
Then the 3D nature of the hand motion s presented by establishing the trajectorics of the

moving models

In order to track the articulated objects in motion the EgenTrackerg algortthm has been
ntroduced in [Black 1996] Estimating the view and the transtormation that tahes this view
into the 1image are the main problems in pattern matching in eigenspaces For a particular
view of an object they detine a subspace constancy assnmption between the eigenspace and the
mage  Then they do a non-linear optimisation 1in order to recover the vicw and

transformation

la) y ()

Figuie 213 3 D cylinducal modd

burthcrmore, an EggenPyrannd 1s detined tor the problems with large transtormation between

model and 1mage

A simple Kalman [filter-based mcthod [Kohler 1997] has been used for remote controlling
devices in a very natural environment without the need of marhcrs attached to the user’s

body

Tracking a moving object by Kalman filtering has been widcly addressed in the literature
[Brown 1997 Chu 1999 Bowden 2000 An algonthm for traching multiple objects i the
presence ot occluded motion has been addressed in [Dockstader 2000] They use dynamic
frame ditterentiating to detect changes between the trames and moton Then by using a
probabihstic mining of coarse motion estimates, change detection intormation, and

unobscrvable prediction the algorithm creates accurate trajectories ot moving objects

In stereo imaging an algorithm has been introduced |Jopc 1999] for traching articulated

structures 1 dense disparity maps  They mtroduce a Bayesian network where tracking s
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2 3 Approaches to Hand Gesture Recognition

addressed as an inference problem in the image formation model  [his model 15 a staustical

model where occlusion has been taken into account

Another tracking algorithm 1s called Conditional Denstty Propagation (CONDENSATION)
[Tsard 1998a] CONDENSATION uses learned dynanmucal modcls, together with visual
obscryation, to propagate a random set over time This random sct represents the probabihity
distribution of possible interpretations, which s used in factored samphng lhe results are
robust but the process 15 time-consuming A smoothing filter has been developed [Isard
1998b] for CONDLNSATION It 1s a statstical techmque of conditioning the state
distrtbution on both past and tuture measurements when tracking s complete However, 1t
has been shown n [Sherrah 2000] that in the case of occlusion a Bayesian network has some

advantages over CONDENSATTON trom the computationally expensive pomnt ot view

In [Gong 2002] an approach has been addressed to learning the semantics ot scene contest n
order to nterpret visual events without object segmentation and motion grouping They have
used adaptive Gaussian Misture models to separately model and recognise slow changes such
as tlummation cycles A Bayesian network has been presented to model the semantics of
human body configuration Then the wvisual tracking problem has been addressed by

reasoning about observations using a semantic-based inference model

Another model has been introduced mn [McAllister 2002) tor hand tracking in smart deshs
and driving In this technique, a ciecle 1s fitted to palm and a line to the torearm in order to
model each hand (see Figure 2 14) Theretore, a top-view camera 1s needed to observe the
hands from the correct angle Also, the palm shape should be so that the algorithm can fit a

arde to that Tt has been shown that tor some shapes of palm the model tails to fit a circle

Figme 2 14 A cucle and 1lme 1s hited 1o the hmds tot nacking

A traching algorithm has been also proposcd [Zicren 2002] tor traching the hands of a uscr in

a frontal camera view They use multiple cues, incorporate tracing and prediction algorithms,
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2 3 Approaches to Hand Gesture Recognition

and apply probabilistic interence to determme the trajectories of the hands cven in the case

ot hand-tace ovcrlap, but not hand-hand overlap

Another approach to the traching problem has been presented in [Staufter 1999] Given that
the traching system 15 unaware ot the identity ot object the identity remains the same for the
entire traching sequence They use Linear Vector Quantisation (LVQ) to develop a code-
book of representations on the entire set of representations acquired by the tracher Lhen
they accumulate joint co-occurrence statistics over the code-book by treating the set of
representations - cach scquence as an equivalency multi-set  Frally, they pertorm

hierarchical classitication using only the accumulated co-occurrence data

After traching the hands m a scquence of images we should recognise the gestures Maay
differcnt approaches to this problem have been addressed in the literature [Pavlovic 1997)
Gesture recogmition via pose classification [Ng 2000} employes a Radial Basts ['unction
(RBI) Neural Network to rccognisc a static hand pose Then the combined outputs trom a
set of recurrent neural networks (RNN) and Hidden Markov Model (HMM) chains have

been used to recognuse gestures trom the temporal sequcnce of pose classifier outputs

In a spatio-temporal approach to the hand gesture recognition [Lin 1998], an RBF network
and Dynamic Time Warping method are used to design a space mvanant and time interval
imvartant system, which can distinguish between various spatio-temporal data representing

hand gestures

A method based on a Hyper wtanguiar Composite: Nemal Netnork (FIRCNN) has been
presented [Su 1998], in which the FIRCNN s trained to generate templates for basic hand

shapes Then by computing accumulative similarities a hand gesture 15 classified

A technique has been developed [Campbell 1995] for representation ot human body
movements based on space curves in subspaces ot a phase space Using thus representation,
they develop a system tor lcarning new body movements trom ground truth data by
searching tor constramnts which are in ettect during the movement to be learned, and not in

ettect during other movements

Dynamic Time Warping and Hidden Markov Models (FIMM) arc two techmiques, which are
used 1n speech {Jelinek 1997] and hand gesture recognition [Schlenzig 1994, Starner 1995a
Huang 2000 Bunke 2001]
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In [Starner 1995a Starner 1995b] HMMs have been mtroduced tor the rccognition of
Amencan Sign Language (AST) They usc colour gloves in order to trach the hand Then by
using Hidden Markov Models they recognise hand gestutes escluding tinger spelling  Lhe
same research group have tested their system [Starncr 1996] using a wearable camera in a cap

worn by the user and have shown that it results in a better recognition rate

Many other approaches have been made based on Hidden Markov Models A parametric
HMM (PHMM) has been introduced n [Wilson 1999] for the recognition of gestures Thetr
approach is to cstend the standard HMM mcthod ot gesture recognition by including a
global parametric variation in the output probabilitics ot the HMM Using a linear model ot
dependence they developed an expectation masimisation (EM) algorithm for training the
paramctric HMM A simular EM algorithm masimises the output lihelihood of the PHMM

for a given scquence during testing

In [Lec 1999), a threshold model based on HMM has been introduced i order to handle the
non-gesture patterns in a hand motion This model calculates the threshold likelihood of an

input pattern Then it approves or rejects the pattern as a gesture

A multi-Principal-Distribution-Model (PDM) has been presented in [Huang 2000] that uses a
PDM model to track the hand shape The training hand shapes are divided into a number of
stmilar groups, with each group tramned for an individual PDM shape model Then the

HMMs are cmployed to determine moddl transition among these PDM shape models

An HMM-based method has becn introduced in [Nam 1996] tor recognising the space-time
hand movement patterns — In this method, an HMM models the spatial variance as well as
time variance 1n the hand movements Then an HMM-based segmentation method has becn
introduced to deal with continuous connected hand gestures  Since the  dimensional
complenaty 1s hugh 1n a 3D space, a plane fitting method 15 used to reduce the dimensionahity

into 2D The 2D data are encoded as the mput to the HIMMs

Brand ct al [Brand 1997] have used a special structure of HMM called Coupled HIMM for
modelling and recognising two interactive temporal sequences lihe the two hands With a
vocabulary ot 3 ["a1 Chi gestures pertormed by onc person 94 2% recognition rate has been

observed using 1 test set thar includes one third of the examples of the training set
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Comparisons ot some MMM-based approaches to gesture recognition have been presented

in [Morguet 1999]

Many other approaches have been made in the literature for gesture recognition A state-
based technique for the summarsation and rccognition of gesturcs has been presented 1n
[Bobich 1995] In this method, a gesture 1s defined to be a sequence of states in a
measurement or configuraton space lhese states, tor a given gesture, are used to capture
both the repeatability and varability evidences in a traming set of example trajectories They
have developed techniques for computing a prototype trajectory of a group of trajectories for
defining configuration states, and rccognising gestures trom an unsegmented, continuous

stream of sensor data

A ncural network model called modified CombNE$-11 has been used [ amar 1999] to do
temporal analysis and to be used in the large set of human movcments recognition systems
They present a teature extraction method based on morphological Principal Component
Analysts that completely describes a hand gesture in a 22-dimensional tume varying vector
Ihen by using a combination of the network and the teature estraction method they have

developed a complete Japanese Kana hand alphabet recognition system

A mulostage hand and face segmentation consists ot colour segmentation, temporal
segmentation, and video objcct plane generation [Habili 2001] In colour segmentation the
shin colour 15 modelled as a normal distetbution for classifying the pinels of an 1mage to be
skin or non-shin In temporal segmentation they localise the moving object in the sequence

ot images [hen the results are analvsed to yield a change detection mash

A tast gesture recognition algorithm detects the number of fingers in an 1mage [MacLean
2001] to recognise a gesture for teleconferencing applications This algorithm works with a
stereo active visual system Another sterco mmaging system for recognition of gestures in real
fime 15 based on 3D prediction ot the hand posc  [Ishibucht 1993] In [McKenna 1998]
gestures are modelled probabiistically as sequence of events Then the events are matched to

the visual input using probabilistic models estimated from the motion feature trajectories

A comparison between the trajectory-based and history-based representation tor recognition
of gestures has been presented in [Morrison 2003] They compare these representatons using
Hidden Marhov Models, moment teatures, and normalised template matching Relative

advantages and disadvantages ot each method have been also presented
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Graph matching-bascd pattern recognition algorithms have been reviewed n [Bunke 2000]
Graph matching and graph theory [Diestel 1997 Karpinsht 1998] are the basis ot current
research in computer vision and artificial intclhigence In [Shamaie 2001] a graph matching

algorithm has been introduced to find the best match among a group ot gestures

Finally, a general review of recognising hand gestures, body motion, and face detection has

been presented in [Pentland 2000}

As there has not been much research on the particular problem ot recognition ot bimanual
movements including occlusion we consider this problem as the mamn problem of this thests
Since the bimanual movements form a large set of movements we investigate this problem,
its ditterent aspects and mtroduce new models, techniques and algorithms We try to propose
general solutions with the least restricions We will compare some of the techniques during

our imestigation and tind the best way through them

Summary and Conclusion

In this chapter we presented thc main problem of this thests A literature review of the
problems, methods, models, and algonthms, which are directly or indirectly related to our
rceognition problem, was presented A wide spectrum of algorithms and methods from static
shape rccognmition to dynamic gesture recognition were reviewed briefly We surveyed the
advantages and disadvantages of some ot the very well-hnown techniques in temporal and

spatial pattern recognition

Details of some of the models and algorithms like Fidden Markoy Models, Bayesian

Networks, Kalman Filtering, Vector Quantization and Graph-Matching will be gven in

sepﬂmtc leptere in tuturc
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Chapter 3

HAND SHAPE RECOGNITION

Recognition of shapes without a particular analytical model 1s more difficult than the
recognition ot regular geometrical shapes Geometrical shapes such as circles and ellipses
obey well-known analytical descriptions  Lhese descriptions arc usually used in pattern
recognition in order to recogmise the gcometrical shapes appearing m an image However,
known analytical and mathematical models cannot describe natural shapes such as the hand
shapes The problem becomes more difficult when we meet non-nigid objects There are
many statistical pattern recognition techniques for the recognition ot non-rigid objects, which

we reviewed 1n the last chapter

In this chapter first we take a look at the basics of image tormation and acquisttion Then the
rccognition of hand shapes s addressed using some statistical pattern recognition methods A
new gesture rccognition algorithm with a real-ume application tor communicating with

computers with no physical contact 1s presented at the end of the chapter

3 1Image Formation and Acquisition

General criteria for characterising an 1mage acquisition system are illumination, focusing,

sensing, and digitisation

3 11 Hluminauon

An object should be properly lighted so as to make 1t vistble to a visual system lihe the human
eye In machine vision, the first step 1s to light the object to mahe it detcctable by the sensor
In an 1mage-capturing system a two-dimensional projection ot a three-dimensional object s
acquired A 2D 1mage has two important attributes contrast and resolutron These attributes are

used as a base for an action or for a decision and must be measurable

Contrast 1s the range ot ditterences between the light and dark parts of an image |Zuech

2000f Ihis value 1s measured between the principal object and the background
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3 1 Image Formation and Acquisition

Resolution 1s a distance measurement associated with the smallest detectable object [Zuech
2000] Based on the arca that a vision system 1s worhing on, the required resolution 1s
obtained [or example, tor locating an object within an arca ot 1x1 inch, the system

resolunion must be less than | inch (see Figure 3 1)

1 inch

.

\\

Y
Object

4—— 1inch —»

Tguie 31 Locwing an object 1 the e ot Ixd inch

Lyghting 15 a dedicated source of dlumination that 15 needed to get rid of other dlumination
sources which usually are the main sourcc ot environment hight and the reflections from the
objcets in the environment These sources of light can result 1n a comple pattern of light

and aftect the recognition of the princpal object

lhe main objectives of lighting are optimising the contrast (grey scale dittcrences),

normalising vanances due to ambient conditions and simphitying image processing [Zuech

2000]

Humination Sensor

© &

Surface of object

INguie 32 Lighung of mn object
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3 1 Image Formation and Acquisition

3 12 Focusing and Image Formaton
In an imaging systcm the points located in the objcct plane are projected into the image plane
as image points where these points are to be sensed by a sensor Like a human eye a sensing

device lihe camera has a lens that translates the object ponts to 1mage points (sce Figure 3 3)

AN
—l_\ —
u £
i K
v
Object Image
plane Lens plane

Figure 33 Trage formiton vsmg 1 thim lens

In this figure
/ focal length of the lens
i distance between the object planes and the lens
v distance between the image planc and the lens

where

L1

\
u v f
IFocusing means changing the distance of the lens and the object planc, #, i order to equate
the »and the physical distance between the lens and the sensor’s surtace The image 1s sharp

in this case Otherwise the image 1s blurred because the image s formed erther in front of or

behind the sensor’s surtace

31 3Sensor

Modcrn camera sensors are made from Charge Coupled Deinces (CCD), which use hght sensitive

materials to convert light photons to electrical charge In a matrin array, thousands of light
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3 1 Image Formation and Acquisition

scnsttive diodes are positioned accurately and shuft registers transfer the charge trom each

pinel to form a vidco signal (see Figure 3 )

v |

e [1-0
Register _D
—_]

T - T

_{:] CCD Cells
|
-

000

Output Hornizontal Shift Register

Figme 34 A CCD sensot system

314 Sampling
lemporal sampling 1s a tunction of the integration ttme period of the sensor In modern
cameras, this mtegration pcriod can be varied, and since 1t cttectively determines the total

number of photons per cell it can be used as an electronic shutter

3 1 5 Dagitisation

In order to generate data suitable for computer analysts the video signal ot the camera must
first be sampled 1t normally necds a tast analogue-to-digital converter Sclecting an
appropriate sampling rate 15 related to the rcsolution The video signals are sampled both
spatially and in amphitude Since most imaging devices generate a vidco signal in which the
piels are extracted sequennally, by sampling the signal at equally-spaced, discrete moments

in time, spatial sampling can be achicved At these discrete moments the amplitude of the

signal 1s mcasured

3 2 Hand Image

Lo capture an 1mage ot a hand, we used a CCD camera model jA1 CV-M40 placed at about
25 meters trom the subjecr’s hand The data sheet of this camera 1s presented in Appendis
A lhis monochrome camcra is able to capture up to 233 partial trames per sccond We sct

the camera to work i 120 tps mode Since a hand gesture normally 1s performed 1n a traction
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3 2 Hand Image

of a sceond, a usual scrial webcam working in 5 tps cannot provide cnough information for
real-time traching and occlusion detection Also, since the training of the algorithms ot
gesture recognition require large amount of information a fast camera can provide thus
inftormation 1n real-tme However, given that the camera s working fast we will show that
the processing times required by the algorithms do not allow the system to work taster than a

regular 30 trames per second camera

Figine 35 A hand mge

An image of a hand (see Figure 3 5) 15 prowcssed in order to estract the hand from the
bachground (sce Figure 3 6) using the grey-level detection A bbb analysis algorithm called
Grassfire [Pitas 1993] 15 used to scarch an timage and find the connected regions with the same
grey values as the hands The algorithm scans an image trom lett to right, top to bottom to
find the pisels of connected regions with values belonging to the range of the hand’s grey
scale For the first prvel found in that range it scarches around the pinel to find other piaels

Theretore, by tinding all the pinels belonging to a connected region the hand 1s extracted

Figme 36 Hand exticuon by prel grey level detection
In this thesis we are, specifically, going to deal with rotation and changes 1n the hand shapes

as well as the movement of the hand Other research projects have already dealt with the

change in the angle and position of arm and hand in the room framc {Starner 1995a] But
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3 2 Hand Image

they have totally ignored changes in the fingers and shape of hand, which 1s used tor hand

gestures, e g finger spelling in sign languages

In order to analysc the extracted shape we have to change the format ot the image to a
standard constant tormat A 32132 image format was selected and all the hand shapes are
mapped onto this format A scaling algorithm 1 used tor mapping process as expluncd n the

nest section

3 21Scaling
In this method first a rectangle around the hand 15 constructed (see Figure 37) Then the
content of the rectangle, the hand, 1s mapped onto a big blank square in which the centre ot

the rectangle 15 positioned at the centre of the square (sce Figure 3 8)

X1 X2
Y1

Figme 37 Accimgle nound the hand 1s considered m wiuch

the \ and_y paranieters ate the coordmates on the houzontal md

vertcal aves of image plne 1epresenting the leftmost, ughtmost
top wd bottom of the hand’s blob m the 1mage

Figuie 38 Mapping an extiacted hand onto 1 blank squite so that
the centre of the 1ectngle 1s posttioned on the cenuic of the blnk
squate
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3 2 Hand Image

Lhe size of this square, which 15 a power of 2, 15 chosen so that the biggest hand shape (the
hand shape that all the fingers arc open showing the number fine) 15 smaller than that This
s17¢ 13 a parameter that determines the scale factor of final shape in a 32132 image  Then the
big square 1s divided to 32332 squares  Fnally cach small square s mappcd to a pomnt in a

32x32 trame (sce lagure 3 9)

Calculating the mcan valuc of all the pivels 1n a small square docs this mapping process
Mathematically, first the N1, N2, Y [ and Y 2 arc estracted (see Figure 37) Then the size ot

big squarc 1s selected to be,

S=aT(max(X2-X1,Y2-Y])) (3 1)

where opcrator T can be defined as
T(a) the first power of 2 which 1s greater than or equal to ¢, and € N 1s the

scaling factor

Figuie 39 Saaling mmige from 1 high resolution 1o 1 32132
prel nnage

However, I must be constant tor all the shapes  \n estimation ot the biggest possible hand

shape can determme 1 Lhe big square 15 divided by 32 <o that cvery small squarc has a size

ot s by s, where

lor cvery small square in the area of (X, X4+ s —=1)and (Y,¥ +5 —1) the mean valuc 1s

calculted as,
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3 2 Hand Image

1 +5—-1 X451}
_22 Zexw (32

w=¥ x=X

where e s the energy level or the pinel value at the position ¥ and Y/

Finally, one can normalise the pisel values to be between zero and one For example, 1t the
imaging system capture pinels within the range ot 0 and 255 grey-level, all the values can be
divided by 255 Although, there are other scaling methods, this simple fast method suttices

our nceds

3 2 2 Statsic Hand Shape Recognition

Now, cvery image has 32x32 (=1024) pinels that consutute a 1024-dimensional teature space
['o reduce the dimensionality of the teaturc space we use Prinupal Component Analysis
(PCA) evplained in the previous chapter By using PCA a new teature space called an
esgenspace 1 tormed where the projection of an image to this space 15 a pomnt Due to the
rotation of hand 1n the 1mages and the prescnce ot noisc ditferent cxamples ot a shape form
a cluster of points 1n the eigenspace (see Figure 3 10) For a number of ditfcrent hand shapes
all the examples of all the shapes can be cmploycd to make a common eigenspace  lhe
projection of examples into this common subspace torms the clusters, each of which

assoutated with a hand shape (see Figure 3 | 1)

. /‘\
eo e
ele
Migue 310 Clostar of pomts w3 dinension ) agenspice for

hnd <hape
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3 2 Hand Image

Figme 3 11 Clustets wepresentmg difterent hand shapes mn the
Qgenspa

For a gnen hand shape, onc can project it into this common space by

y=A'x

wherc A s the matris ot selected cigenvectors and x 1s the image vector of the shape Lhis
grncs a point in the subspace By using cluster analysis and nearcst ncighbour methods, the

ncarcst cluster to the given hand shape can be dentitied (see Figure 3 12)

Cluster 2
L ]
0::"..
Cluster 1 Cluster 3
L N J a *
..... S
* . \..o‘.’
3

Projected image

Fignte 3 12 The projeccd mnge s adennfied s the third hnown
shipe by finding the neuest cluster
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3 2 Hand Image

We developed an algorithm based on this method ot static hand shapc recogmition By this
algorithm wc simulate all the tunctions ot a mouse pointer 1n an MS Windows environment
This enables us to use hand gestures to do regular mouse tashs like, cliching, moving, cutting,

pasting, resizing, ctc

3 3 A Human Computer Natural Interface

In order to interact with a computer without any phystal contact we have developed a
human computer natural intertace This interface 1s based on an algorithm that controls the

mousc cursor, and controls the computcr just by hand gestures

A mouse system has a moving pointer on screen and two buttons The left button s
normally used for selecting and opening 1cons and the right button has ditterent functions
defined in every program For controlling the mouse pointer a camera captures the hand
gestures of a user By moving the hand 1n every 4 directions on a planc the mouse pointer
moves And by changing the shape ot hand the two buttons ot the mouse are simulated For

this purposc three hand shapes were defined as in Figure 313

For cach shape we captured 350 to 450 examples to form the tramning set, and by using the
algorithm described previously three clusters in the eigenspace arc tormed In the training sct

somc rotations, tor every shape are included The three-dimensional eigenspace and the

clusters arc shown in Figure 3 14

A move B left click C nght click
Figuie 3 13 Thiee hand shipes used m the mouse controlling
eyctem
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3 3 A Human Computer Natural Interface

1500 ~
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Isguie 3 14 The clusters of the thiee hand shapes in the
eigenspace

In the recognition phase by projecting an image into this agenspace the hand shape s
dentified  \ state-based modcl 1s constructed tor the mousc functions  [his model contans

tour states and connecting edges (sec tigure 3 15)
Ihe camera captures the hand shape continuously Different cases may happen in every state,

State 1 (default) In this statc the hand 15 1n shape 1 By moving the hand the
mouse pointer moves over the scrcen While we are 1 Stare | three cases may
happen
Case 1 (default) It the hand shapc 1s 4 we remain in State 1, and the system
just responds to the hand moyvements
Case 2 1t the hand shape becomes Bt jumps to State 2 through cdge B,
This edge 1s detined as pressing the left button on mousc
Case 3 It thc hand shape becomes € it jumps to State 3 through cdge Ejy
Lhis edge 15 defined as pressing the right button on mouse
State 2 In this state hand 1s 1n shape B Again three cases may happen
Case 1 [t the hand shipe becomes A1 1t jumps to State | through edge 1 4,
[his edge 1s detined as releasing the left button
Case 2 (default) If the hand <shapc 15 B we remain 1n state 2, and the system
just responds to the movements
Case 3 If the shape becomes C it jumps to state 4 through edge 1., lhis
cdge 18 detined as pressing the nght button on mouse while holding the ot

button This 15 a proper chowce Because during changing the hand from
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3 3 A Human Computer Natural Interface

shape A to shape Cit may pass from near the shapc B Theretore, the system

first goes to state 2, and then moves to state 3

A move

Figme 3 15 A fowr stite model for mouse funcuons

State 3 In this statc hand 15 1n shape C
Case 1 If the shape becomes A4 1t jumps to statc 1 through edge Iy Lhis
edgc 1s defined as relcasing the right button
Case 2 It the shape becomes B it jumps to state 2 through edge E;, This
edge 1s defined as relcasing the night button and pressing the lett button
Case 3 (default) It the hand shape 1s Cwc remain in state 3, and the system
just responds to the hand movements

State 4 In this state hand 15 1n shape C
Case 1 If the shape becomes .4 or B 1t jumps to state 1 through edge I,
This cdge 15 detined as releasing the right button
Case 2 (default) If the shape 1s C we remain in state 4, and the system just

responds to the hand movements
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3 3 A Human Computer Natural Interface

In order to kecp the movement ot mouse pointer smooth, the movement ot the hand 1s
processed i parallel with the shape rccogniion Choosing a point on the hand rectangle,
which 15 mvanant to a change in the hand shape, 1s important Since we have used the pomnt
and thumb fingers tor the dittercnt shapes, the corner of the rectangle opposite to the head
of the point tinger 15 used The position of this point determines the position ot the mouse
pointer on screen  Theretore, by moving the hand on a plane the mouse pointer moves But
changing the shape ot hand for pressing the buttons will not affect the position ot the mouse

pointer (see Figure 3 16)

We implementcd the above algorithm as a real-time intertace  1he algorithm responded in a
high levcl of pertormance Using this application the user 15 able to interact with the
computcr with the hand gestures  The intertace 1s general so that the hand gestures are used
to communicate with cyery program on the computer It translates the hand gestures to the
tunctions detined in every application for the mouse A screen shot of the program 1s

presented in Figure 3 17

Nl

HE>T

lmage Frame Compurer Screen

Ngue 3 16 Moving the hand moves the mouse pomter on scieen

Summary and Conclusion

In this chapter the basics of image formation and acquisition systems werc presented We
explained the ilumination, the visual sensors and the way that 1images are formed on the
sensors We also deseribed the statistical pattern recogmition techniques for hand shape
extraction and scaling Then dimensionality reduction was presented in which the technique
of Principal Component Analysis 1s used By using the methods ot clustering and nearest

ncighbour we dlasstfied the hand shapes and recognised a static hand shape
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Figute 3 17 4 scieen shot ot the gestine tecognition pplic iuon
for mouse contiol

An algonithm was introduced in order to make a human computer natural intcrtace In ths
intertace the tunctions ot a mouse mn a Graphical User Intertace t simulated by the hand
gestures  Using the statistical pattern recognition tcchniques we recognise the hand shapes
and detect the changes A state machine was introduced in which the hand gestutes are
mapped onto the mouse tunctions We developed the intertace as a real-time application and

the ability of the intertace to communicate with avery application on the computer was

demonstratcd As a tuture work we will do some usability testing by ditterent users
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Chapter 4

DYNAMIC HAND GESTURES

A dynamic gesture 15 a movement of the hand in order to show something or imply a
meaning A few gestures from British Sign Language are shown in Figure 4 1 These gestures,

representing numbers, involve hand movements

Using machine vision techniques a dynamic gesture 1s represented by a sequence of images
In this chapter we discuss the recognition ot a dynamic gesture appearing m a sequence of

images tahen by a CCDD camcra

Ce« : "’;’rlﬂf;’ o
o) AR 3

B Twelve B Thiteen | Twenty B Thinty 8 One hundred 1 Thousand

Nigme 4 1 The hand movements to show the mumbers m Briush
Sign Lmguage (soumce A Z Deatblindness website 1t
www deifblind com/signs hrml)

A dynamic gesture can be ot many types 1t can be 2 movement or rotation of the hand or a
change in the hand <shape (sce Thgure 42 (2)) In all casces the projection ot the image
scquence m the teature spacc 1s a trajectory (see Figure 42 (b)) As in Chapters 2 and 3, the
fcature spaces arc the agenspaces formed by the cigenvectors of the covartance matris of the
1tmages using Principal Component Analysis A trajcctory in the eigenspace 1s a set ot points
cach ot which 15 the projection ot an image (trom the image sequence containing the hand

gesture) into the eigenspace

In the next section we study the trajectories ot gestures mn the feature spaces An
unsupervised clustering technique 1s presented for clustering the trajectories ot the gestures
We usc this technique in the following sections to make FHyperClasses of the gestures each of

which icludes a set ot multidimensional gausstan distributions A new  spatio-temporal
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4 1 In Feature Space

gesture matching algonthm 1 introduced that uses the HyperClasses to calculate the
probability that a given unknown gesture matches onc ot the gestures in the vocabulary This
algorithm 1s based on a Graph-Matching techmque We present experimental results at the
end of the chapter and will show that the presented algorithm works very well 1n recognising

the dynamic hand gestures
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T'igute 4 2 (1) Different hand gestuses wppeanng i the sequences
of unages (b) the 11 yjectony of 1 gestine i the featue <pace

4 1In Feature Space

In order to reduce the dimensionality of data and reduce nose we use the trajectories ot
gestures 1 the aigenspaces Ifor this purpose, first an cigenspace’ tor a gesture must be
established Performing a gesturc several imes and capturing (ar least 1024) images provides
the rcquired data tor constructing the (10241024) covariance matrin and calculating the
eigenvalues Another advantage ot capturing many samples 1s the invoh ement of varations
By pcrtorming a gesturc several umes vanations in the hand shapes and movemcents arc
recorded in the sequences This helps us to have a better view of the gesture and its

varations

T As we will sce n Sectton 44 based on an expetiment we construct n eigenspace with 7 dimenstons
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4 1 In Feature Space

By constructing the agenspace and projecting the entire image sequences of the gesture nto
it, the manitold® ot the gesture 18 tormed (see Frgure 43)  Lhe manttold has many pounts,
each of which is related to an image Projection of many examples ot a gesture in the teature
space mahes a large number ot pomnts Working with a large number ot points 1s usually time

consuming  Lherctore, we need a technique to reduce the number ot pornts n a manitold
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[iguie 43 The mamfold of 1 gesture m the eigenspice 1wo
samples of 4 gestuie projected in the eigenspace show vamtions n
the @ ycctones

We can appronvimate a mantfold by a small number ot points each ot which represents a
group ot the orginal points around 1t IHaving a manitold with a small number ot points
needs less memory space and makes the processing faster, while the main attributes of the

origmnal manifold arc presenved

Sinee we do not have any prior information about grouping the points in a mantfold we use
n unsupcrvised custering techmque ehlled Veetor Quantisition for clustering the data

pomnts

4 2 Vector Quantisation

\ cetor Quantization (VQQ) 1s a lossy data compression method It approsimates the data by a

mcthod similar to rounding-oft or the nearest integer  \ one-dimensional A QQ 1s shown n

~

Mgure 44

We use the wotd najecrory for the tyecton of 1 gestute m the fome spie nd the word muold {or the set of
fyectones of all the cxunples of 1 gesture m the tawne space
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4 2 Vector Quantisation

Rt —F+——Q®@—F+—®—
-4 -3 -2 -1 0 T 2 3

Figurc 44 A one dimension i iepresentiion of Vector
Quantization

In this figure, every number less than —2 15 approsimated by =3 Every number between —2
and 0 and between 0 and 215 appronmmated by =1 and 1 respectively Finally, all the numbers

greater than 2 are approsimated by 3

An cxample of a two-dimensional VQQ 15 shown in Figure 45

=3 -

_q/ — L I I 2 —_ .

Nguie 45 A two dunensional Vector Quantizauon

In a two-dimensional VQ every point with two coordinates talling in a partcular region 1
approsmmated by a star assouiated with that region Tn Figure 45 there are 16 regions and 16
stars cach of which can be uniquely represented by 4-bits Therctore, a large number ot
pomnts m this 2-dimensional space can be approsimated by 16 points These potnts (stars in

the figure) arc called codevectors, and the regions detined are called encoding regions The

set ot all codevectors 1s called a codebook

Lhe Vector Quantization problem can be stated as
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4 2 Vector Quantisation

“Given a sct of data and the numbcr ot required codevectors, find a codcbook

b

and a partition, which result in the smallest average distortion”’

First we will give a detinihon ot distortion In lossy data compression, it suftices tor the
decompressed data to have a reasonably close approsimation of the ongmal data A
distortion measure 1s a mathematical entity, which specities how close the approsimation s

For an onginal data a and 1ts approximation v', d(x, x") denotes the amount ot distortion

between v and x* where d(a,1')20
A squared-error onc-dimensional distortion measure s defined as
2
d(x,x)=(x-x") D)

In a tramning set-based Vector Quantization a training  set of M vectors s given by
T ={x,y, .2y} Thr traning set 15 assumed to be sufficiently large so that all the

statistical properties ot the source of data are captured

We assume that the source vectors are A-dimensional

“Tml

2

= ,m=12, M +2)

m

X

ok

Let N be the number ot codevectors and C = {c¢,,¢,, ,cy} represents the codebook Each

codevector 1s A-dimensional

c = ,n=12, N (43)

Let s, be the encoding rcgion assocrated with the codevector ¢, and P ={s.,s,, ,Sy}

denotes the partition ot the space If the source vector X, 1s in the encoding regron s, , then

its approximation (denoted by Q(xy,) ) 1s
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4 2 Vector Quantisation

Q(XHI) = cll If XHI e ‘S” (4 4)

The average distortion 1s given by

1 < 2
Dmg, = X/I——k—m:; “xm - Q(xm )” (4 S)
where ”xm -Q(x,, )” 18 the Luclidean distance between X, and Q(Xm) defined as
[d] = a2 +d2+ +d? whee d=[d, @, o (46)

Now, we find C and P such that D, minumised The following two criterta must be

satisfied 1if the C and Pare a solution

1 Nearest Neighbour condition
2 2
s, ={x “x— Cn‘( < “x—c,, ” , n'=12, N} 47

2  Centroid condition

Zx (=3 X’”

J— 7 n
C =< t— , n

DI

m n

It

L2, ,N )

In the first condition, s, must contain all vectors that are closer to €, than any other

codevector The sccond condition says that the codevector €, should be average ot all the

vectors in the encoding region ,

Lhe Linde, Buzo, Gray (LBG) Vector Quantization algortthm [Linde 1980] s an iterative
algorithm, which solves the above two optmality critcria The algorithm needs an ininal
codebook ( which 1s obtained by a sphtting method In this method first an nutial
codevector 1s found as the average of the entire data in the training set Then 1t 1s split into
two The algonthm continues with these two codevectors as the mitial codebook  Lhe final
two codevectors are sphit into tour and the process 1s repeated until the required number of
codevectors s obtaned A mathematical description of the algorthms s presented

Appendn B
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4 2 Vector Quantisation

By using Vector Quantisation we cluster the manutolds of the gestures in the teature space
(eigenspace) Each cluster 1s represented by a codevector The set of codevectors of a gesture
in the feature space represents the spatio-temporal vanations ot the hand gesturcs Then the
manttolds are approximated by the estracted sets of codevectors lhese codevectors are

represented as small solid crcles in Figure 4 6

By using these codevectors we introduce a new gaussian Graph-Matching algorithm tor the

rceognition of dynamuc hand gesturcs

Figuie 46 A muuldold (the doud) of 1 gesturc in the cigenspace
wd the et cted codevectors (sl solid cucles)
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4 3 A Spatio-temporal Pattern Matching Algorthm

4 3 A Spatio-temporal Pattern Matching Algonithm for Recognition of

Dynamic Hand Gestures

In gesturc recogmition the problem is to find a gesture in a database that best matches a given
gesture Different techniques such as neural networks [Su 1998 Lin 1998], position-based
recognition [Ng 2000], and well-hnown Flidden Markov Models [Starner 1995a, Starner
1995b Lee 1999 Nam 1996 Wilson 1999] have been proposed in the literature tor
modelling and recogmising hand gestures In [Bunke 2000], however, it has been stated that in
computer vision and statistical patrern rccognition there are a number of applications of graph

matibing that deserve attention

We mtroducc an algonithm based on graph matching tor the recognition of dynamic gestures
In this algorithm we construct the multdimensional gaussian distributions representing the
variations ot the gestures Then a given gesture 1s matched with the graphs representing these
distributions n the cigenspaces In Chapter 6, we will compare the proposed algorithm with

the widely used Hidden Markov Models in recognising a database ot gestures

4 3 1 Construcung the Feature Space and the HyperClasses
For each gesture an eigenspace 1s formed using all the examples of the gesture We establish
as many eigenspaces as individual gestures By projecting the examples of cach gesture into

it esgenspace a manitold 1s tormed We call this the man manfold

Three main manitolds in the associated eigenspaces are shown in Figure 4 7 Fach manifold
represents the spatial and temporal variations ot a gesture We divide cach manitold into a set
of classes with multidimensional gausstan distributions  We call the whole set of classes of a

man manttold a HyperClass

Lherefore, cvery gesture 1 represented by a temporal sequence of spatially distributed classcs

An tllustration ot a HyperClass with 2-dimensional gaussian distributions 1s shown in Figure

48
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4 3 A Spatio-temporal Pattern Matching Algorithm

IMguie 47 The mun manfolds of thiee gestures m theu thiee
dumenstonal ergensp wes

Figme 48 Lrerv maifold in the eigenspace is 1epresented by a
sequence of dwses each of which 1s descaabed by v mulu
dimensional gmssin distubution

Fach of the classes i a HyperClass represents a group of points in the eigenspace along the
trajectory of the main manifold of the gesture Io create these classes we must cluster each
manttold 1n order to classity the data points belonging to each distribution We cluster the

main manifolds nto an equal number of clusters in all the eigenspaces

Since we have no prior information about the clustering ot points on cach manifold we
should usc an unsupcrvised clustering technique  Therefore, the Vector Quantisation

algorithm generates the clusters lhe clusters are approsimated by the multi-dimensional
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4 3 A Spatio-temporal Pattern Matching Algorthm

gaussian distribunions A FlyperClass must be traned with data points ot the mam manifold
[vach gaussian distribution mn a HyperClass s fitted to the set ot data points extracted in each
clustecr The HyperClass of cach agenspace 1s treated as a graph Individual distributions are

the vertices ot this graph (see Figure 4 9) We call them the mam graph of each eigenspace

In order to recognise an mput gesture 1t 15 projected into all the eigenspaces A new trajectory

is formed in each eigenspace  Lhese trajectorics should be approsimated by graphs

Duc to the fact that the Vector Quantization algorithm 1 a tume consuming proccss we

cannot use 1t in the recognition phase

Figuie 49 The giaph of 1 HyperClass

Ihe trajectory of the input gesture 1s divided into an equal number ot clusters just based on
the number of data ponts in the trajectory kor every cluster the centre ot gravity s
calculated Thesc central points arc treated as the vertices ot the new graphs (see Figure 4 10)
Lhus 1n each eigenspace two graphs are present The main graph and the graph of the input
gesture. We should find a match between the graphs in ¢very agenspace  Lhe best match

represents the recognised gesture

55



4 3 A Spatio-temporal Pattern Matching Algorithm

1500
'

1000 gV

- 141
500

R
oo £
04 3 . . é

L)

~
500 D’. L‘J‘

-
1000 4
1500 o
0000 ™~

- 1500
1000
0 500
0
1000 500

Figume 4 10 The njectorv of an mput gestuie (dots) 1s divided
wto the clusters The centie ol giavity of the clusters toun thic
gtph of the mput gestwe (tuangles)

4 3 2 Bipartute Graph Matching

“Ihe bipartite graph matching problem s to find a set of pairwise disjoint edges ot a bipartite
graph based on a special characteristic of the edges” {Shamaic 2001] Due to NP-
Completeness ot the problem, finding the optimal solution requires esponential time
However, a suboptimal or approximative solution can be satistactory in some cases with
polynomual processing time [Bunke 2000] lhe algorithm we mtroduce 1s based on the

labelled edges ot a complete bipartite graph

4 3 3 The Graphs

Let the mam graph G, of the / exgenspace be the set of vertices V, and cdges E

{ IR

G, =(V,.E) (+9)

Il

In these graphs no edge connects any pawr of nodes (vertices) lhus, E, =& The graph ot

!

the input gesture in each eigenspace s also represented by a graph G',, G', =(V' ,E' } n

which E' =&
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4 3 A Spatio-temporal Pattern Matching Algorithm

4 3 4 Matchung the Graphs
For the two graphs of G, and G, 1n a subspace (eigenspace) we tind a subgraph H, First,

by using the graphy’ vertices a complete bipartite graph is constructed (sec Figure 4 11)

I'igme 4 11 A complete biputite graph

Ihe edges of this graph are weighted by the probability of each vertes ot the graph G, i

each class in the HyperClass,
eglkgaJ:P(g.ll\!Cl_})’ glrl\eG'l (“' [O)

where ¢1s the agenspace nden, / stands tor the /* class and 4 stands for the £" vertex in the
graph G, The probability of a vertex g 1 a class of dati C, 1s gnen by the Mahalanobis

distance and the gaussian probability density tunction,

m

{(g,-u,,)z}
PglC)=]]——=e" *

1
(411
=l O'[j 21 1)
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4 3 A Spatio-temporal Pattern Matching Algorithm

where 7 15 the number of dimensions of the cigenspace, O, stands tor the standard
deviation ot the distribution on the /" prinapal ass ot the /" class, d, ; 15 the mean of the
distribution on the / principal axis of the /* class and g, stands for thc component ot point

£ projected on the /* principal asis ot the distribution The parameters of the probability

density tunctions ot each distribution are extracted by using Principal Component Analysts

In the second set ot vertices ot the bipartite graph, the set belonging to the graph of the
input gesture, for every vertex we find the inadent edge with highest probability and
ehiminate the other edges At the end of this stage the vertices ot the first set, the set

belonging to the man graph of the aigenspace, with no inudent edge are removed (see

Figure 4 12)

[ D\\Oe

Figuc 4 12 The edges with lughest probabilities e tound The
vettices with no incident edge e temoved

We get two sets of nodes (vertices) V, and I, where I €V, and &, € G, T, 1s a subset
of V, because the number of vertices ot the first set, G, at the end of this stage 1s smaller

than or equal to the order of G, As can be seen in Figure 4 12, a vertes can be adjacent

7 !
with many vertices in graph G,

In the second stage 1n the first set of vertices, for every vertes we tind the incident edge with

highest probability (the probabilities that the vertices are labelled with in the first stage) At

3 The order ot 1 gt iph G 1 detimed 1 the number of vertices m the giph vV = |G|
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4 3 A Spatio-temporal Pattern Matching Algorithm

the end ot this stage the vertices ot G', with no incident edge are removed Therefore, a set

of nodes I, which 1 a subsct of second graph (I, € V') and &', € G', 1s obtaned The

remamnder 15 a bipartite graph, which s a subgraph of the biparute graph at thc begmning

The orders ot €, and €', are equal at the end

The algortthm reduces the number ot nodes (vertices) while 1t 15 tinding the match  lhe
dectsion 15 made based on the order ot the remamned bipartite graph The graph of the
eigenspace with highest order 15 chosen as the best match In other word, we recognise the
mput gesture as the gesture n the vocabulary with the best matched graph (the bipartite

graph with highest order)

The algorithm s summarised as follow

4 3 5 The Complete Algonthm of Gaussian Graph-Matching

In the following algorithm we reter to v, and e, as a vertes and edge of a graph respectriely

1 Tramning Phase
a Scveral examples of a gesture are captured
b Step a 15 repeated tor all gestures (N gestures) i the vocabulary
¢ By using PCA a subspace 1s made for each gesture and each gesture 1s projected into its
own eigenspace to form the mamn manifold,
7, =4 q, =12, ,N
where

’ -
A] 15 the orthogonal matriy whose " column is the £ eigenvector of covariance

:
matris of a sequence of 1mages represented as 4, and g, 1 the projection of image
sequence ¢ 1nto its subspace

d lhe main manifold ot each eigenspace 15 clustered by the Vector Quantization algorithm,

the gaussian distributions are traned and the main graph s extracted
G, =(V,E) =12, N
where

‘/l = vtl’vl2’ Vv

m

v, = thek™ codevector
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4 3 A Spatio-temporal Pattern Matching Algorthm

2 Recognition Phase
a A gesturc /s captured
b 415 projected into all the subspaces
1, =Ab =12, N
whetre

1, 15 the projection of the image sequence b in the 1™ subspace

¢ The graphs of gesture b are constructed 1n every subspace,

G =(V,E) 1=12, N

d The complete bipartite graph 15 formed with the two sets of vertices

K =(V'E"Y 1=12, ,N

where

V=V, OV,

and every edge m £ labled with the probabilities

e Ihesubgraph ot the complete bipartite graph 1s tound,

e 1 Starting from a sct of vertices V', the edge with the largest label ncident with a

[

vertes of the sct V7 is tound

€2 The edge with the largest label 1 kept and the other madent edges tor each

verton are removed

e 3 Step e 21 repeated for all the vertices in the set V'

e 4 The vertices of the set V,with no madent edge are removed and the subset T
I’ V) 1s obtaned

e5 Steps el to e 4 are repeated with the <et of vertices V. ot the main mandfold,

and the subset T (F,’QV,/) 15 obtatned The results are the matched bipartite

subgraph H | tor each subspacc

f Lhc matched subgraph H with the largest number of vertices, between the matched

subgraphs of all the subspaces, represcnts the most similar gesturc in the traming set to

the given gesture

The tollowing likelthood 1s defined,
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4 3 A Spatio-temporal Pattern Matching Algorthm

o (m, +1)

LI
2y

(4 12)
where Y 1s the number of vertices of every mamn graph (usually the main graphs have the

same number of vertices,) i1, denotes the number of vertices of the bipartite subgraph after
the matching process, and m, 1s the mean ot the probabilities of the connected vertices in the

tinal subgraph Ths likelihood gnes us a better measutement to find the best match because
not only the number of matched vertices but also the average probabiity of the vertices s

involved The largest ikelihood can be sclected as the best match

4 4 Experimental Results

Since only a tew eigenvectors and principal components carry actual data and the rest are
notsy we should choose the non-nossy principal components corresponding to the largest

eigenvalucs ot the covariance matres

In order to choose a reasonable number ot eigenvectors to form the eigenspaces we did an
experiment with 10 gestures and a simplified version of the Graph-Matching algorithm  In
this verston of the algorithm the distributions werce replaced by the centre of gravity of each
cluster of pomts and the probabilities by the Euclidean distances on the edges of the bipartite
graph A tew framcs of the 10 gestures are shown in Figure 4 13 Given that the examples ot
the gestures had very little varations (spatually and temporally) the recognition rate ot the
simplitied algorithm s plotted in Figure 4 14 Lhis figure shows the recognition rate of the
stmphitied algorithm versus the number ot principal components In other words, different
numbers ot dimenstons in the eigenspaces results i ditferent recognition rates Trutially as the
numbecr ot princpal components increases better recognition rates are observed The best
recognition rate was obtained with 7 principal components By increasing the number of
principal components further the recognition rate talls This shows that from the seventh
principal component onward the notsy principal components are mnvolved that reduce the
recognition rate of the algorithm Therctore, we use 7-dimensional eigenspaces 1n the rest of
our experiments and throughout the whole thesis In [Shariti 2003], however, 1t has been
shown that thc number ot nowsy eigenvalues and eigenvectors of a covartance matrin 18
independent ot the amount ot nose 1n the data Theretore, by increasing or decreasing notse

i the data the number of non-nossy principal components 1s almost constant
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Figme 4 13 A few finmes of (he 10 gestutes used i rhe fitst
expeiunent

94

92

Recognition Rate

*
*

88 - T T T T T ;
0 2 4 6 8 10 12 14 16

Number of Principal Components

[liguie 4 14 The recogmition rite versus the number of prncipal
components

In the following, we did some experiments with a vocabulary of 100 gesturcs with the
oniginal algorithm, the algonthm with gaussian distributions and the trained HyperClasses
Here we present a couple of experiments to demonstrate the way that Graph-Matching

algorithm works 1n rcal problems
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4 4 Expenmental Results

Figure 4 15 shows a two dimenstonal representation of a 7-dimensional HyperClass ot one ot
the experiments For a given gestute which 1s the same gesture as the gestures used to make

this eigenspace and train this model the results of graph matching is as following,
Order of matihed graph 22
whih 15 a bipartire graph wth 171 nodes on each paitition

The likelrbood of Egnation 412 0 6874

A part of the trajectory of the given gesture 1n this eigenspace 1s shown m Figure 4 16, (the
trajectory has been moved a bit up on the probability axis not to let 1t be hidden under the

meshes) Obviously, the trajectory matches the gaussian distributions along its path

Another gesture 15 projected into this eigenspace and tts trajectory ts shown in Figure 4 17
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Probability

400
w0 &0 First Dimension (1st Principal Component)

Second Dimension (2nd Prnnctpal Component)

Figm 415 The HyperClass of 1 gestute m 1 eigensp e

Probabiity

830

400

Second Dimension (2nd Principal Component) a0 a0 First Dimension (1st Pnncipal Component)

Flgme 416 The 2 dimensional jectory of 1 cotrect gestine 1n
the eigenspace
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Probability

800

400
Second Dimension (2nd Principal Component)

e e First Dimension (1st Pnncipal Component)

Ligume 4 17 T 1 yectory of wmother gesture 1 the CIZOTISP AL
(the tiangles)

In this figure most ot the points (the triangles) arc concentrated n vsmall part ot the spacc
and the other pomnts are placed mostly in the valleys that do not march many ot the gaussian

distributions  1he results of matching this gesture in this eigenspace s as following;

Order of matibed graph 2

nhuh ts a bipartite graph iith 1 nodes on each partition

1 he bk elibhood of Faquation 412 (10625

In a sccond expertment we change the eigenspace to the agenspace of the second gesturc
Lhe trajectories of the first gesture and the sccond gesture in this agenspice are shown 1n
Figurc 418 \s can be seen the trajectory of the second gesture matches more gaussian

distributions than the first onc The results of matching the first gesture 1s as tollowing,
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4 4 Experimental Results
Order of matched graph 8

which iy d bipartute graph nith 4 nodes on edch pariition

1) bkehbood of 1.guation +12 0 25

Probabilty

1500

P
1000

1000
Second Dimension (2nd Principal Component) First Dimension (1st Principal Component)

1500 1500

Figue 4 18 The tivjectoties of the fiist gestuie {cucles) nd the sccond gestme (tinngles) m the second cigenspice
Howener, the sccond gesture in the sceond cigenspace should result in a better match and
hkelthood lhe results are as follows,

Order of matied graph 14
nhuh 1s a bipartite graph nith 7 nodes on each partition

Lhe hikeehrhood of F.guation 4+ 12 04375

Since the number of gaussian distributions mn all the HypcrClasses s the same the
denominator of the liquation 412 gives an equal value for all the [MyperClusses Lhis
denomunator s actually used as a normalising tactor It 15 shown in the experiments that a

better match results in higher order ot matched bipartite graph
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However, in calculating the likelthoods, Equation 412, the mean ot matched vertices
probabilities 1s also involved This parameter 1s usctul when the algorithm results in the same
order of graphs tor more than one HyperClass Therefore, the higher mean of the
probabilitics, the higher likelihood The results of the experiments show that the bettcr match

gives a lngher likclihood

As can be scen the algonthm works very well in recognising the gestures In the next chapters
we measure the recognition rate of the algorithm with a large database of gestures and

compare the results with another algorithm

Summary and Conclusion

In this chapter we investigated the problem of dynamic gesture recognition An unsupervised
clustering technique called Vector Quantisation was presented which 1s used in our algorithm
tor clustering the trajectories and manifolds ot the gestures in the eigenspaces We also use

this techmque in future for the algonthms based on Hidden Markov Models

A ncw spatio-temporal pattern matching algorithm for dynamic gesture recognition was
introduced  In this algorithm tor exvery gesture an eigenspace 1s constructed and a HyperClass
of many multi-dimensional gaussian distributions 15 tormed In order to recognise an
unknown gesture we presented a Graph-Matching technique  1his technique matches the
graph ot a given gesture with the graphs of all the gestures in the vocabulary We showed that
the algorthm works very well i recognising the dynamuc gestures We also presented an

experiment mn which the best number of eigenvectors to form the eigenspaces was ¢stimated

In the nest chapters we look into the problem of dynamic gesture recognition in more detail
with the large vocabulary ot gestures We will compare the recognition rate and processing

speed ot the gaussian Graph-Matching algonithm with another algorithm using Hidden

Markov Models
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Chapter 5

MOTTON TRACKING AND A DYNAMIC MODLEL

In a bimanual movement recognition system when the two hands are moving together an
important problem is to trach the motion ot each hand indnidually Detecting occlusion s
an important problem n hand traching By traching thc hands the system will be able to
detect hand occlusions and get the occlusion parts of a bimanual movement under
control  Otherwise, the occlusions may happen at any time and the system cannot
recognise the occluded hand shapes from non-occluded ones On the other side, a hand
may leave the scene by leaving the image trame or hiding behind a part ot body In that

case, only onc hand shape 1s detected in the images

Lherefore, we need a traching system to hcep eyes on the motions of the hands and
recognise the hand occlusions and the other types ot movements a hand can do  For this

we use an algorithm called Kalman filter and a dynamic model tor motion traching

We use this model in traching single-hand motions Based on this model we are able to
appronimately detect the beginning ot a gesture belonging to the meaningful part ot a
movement In Chapter 7 we employ the dynamuc model to track the movements ot the
two hands and detcet the hand ocdusions for correctly tracking the hands during a

bimanual movement

Larst, the Kalman filtering algorithm 1s presented very briefly  Based on the kanematic
cquations of movement we present the dynamic model tor traching 4 hand movement By
using this model we detect the beginning of a gesture by looking at the vdlocity changes of
the hand We present some experimental results at the end ot chapter to demonstrate the
performance ot the proposed dynamic model in correctly tracking different hand

movements
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51 Kalman Filter

“Kalman filtering 1~ an optimal statc esnmation process apphed to a dynamic system that
imolves random perturbations” [Chur 1999] The Kalman tilter gives a hincar, unbrased,
and minimum error varance recursion algorithm to optimally estimate the unknown state

of a dynamic system trom noisy data taken at discrete real-time

Kalman filter 1s used 1 many areas 1 scence and engineering Real-time traching of a
flying objcct, estimating the planar orbit of a satellite, target tracking [Chur 1999] and

Global Positioning System [Brown 1997] arc well-known applications of Kalman filter

We use Kalman fiter to track the correct position ot the hand in a sequence ot images
Not only the position ot the hand but also the vclocty and acceleration arc the important
parametcrs 1in our hand traching problem  Using the Kalman tilter we track the position,
vclocity and acceleration of a hand m an image sequence in order 1o detect hand pauses,

collisions, occlusions and appearance and disappearance ot the hands

‘The complete description ot the kalman filter algonthm s presented in Appendin C,

Section C 1 "The algonthm is brictly shown in Figure 51

LCater prior cstimation X,

and its error covariance

Computc Kalman gain

K, =P'H (H,PH +R,)"

z, 21 s
Project ahead Updatc estimatc with
—~ _ = C, 4
X, = (])Axk i jlj l\;{f(,f?tl‘lr /kH )
- _ T X, =X Rz, -Hx,
P,=0P® +Q,
Computc error covartance for updated
éstimate
P, =(I-K,H )P, X)X,

Figure 51 Anllustiuon of Kalman fitening algorthm from
[Brown 1997]

69



5 2 Hand Motion Tracking

5 2 Hand Motion Tracking

Researchers have used ditterent methods for traching hands in an 1image sequence Some
ot them model the hands by some geometrical descriptions such as circles and cylinders
[McAllster 2002 Dawis 1999] Others have used other techmques such as Bayesian
Networhs and CONDENSATION to track the hands [Gong 2002 Isard 1998a] Kalman
filtcr, however, has been given great attention of rescarchers for traching objects such as
airplanes, satelites, human, etc  [Brown 1997 Kohler 1997 Chut 1999 Bowden 2000,
Dochstader 2000] Important tactors ot Kalman filter are the tast processing and
fleabihity to accept different dynamic moddds Theretore, we use this techmque tor hand

traching

In order to track the hand we use a model in which the position, velocity and acccleration
ot hand arc modelled by a Kalman filtering process This model 1s based on the kinematic
cquations of motion Chen et al [Chen 2003| and Zieren et al [Zieren 2002| have used
this model to track the fingers and hands in surgical and trontal vicw gesture recognition

applications

Let v, denote the trajcctory ot hand movement where / 15 the time varable This

X 1
function 15 discretised by sampling with f = e h>0 where f1s sampling rat¢, and 4 1s
1

the sample interval  Theretore,

X = v k=01,

A,y can be assumed to have continuous first and second order dervatnes Where the 4,

1s posttion, the first and second dernatives of 1, are the veloaty and acceleration

respectively FFor small valucs of 4 the position and veloaty vectors are calculated by,
E

X =X+ +5/z X, Ry

Vg =Y Ty (52

where
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5 2 Hand Motion Tracking

v, vdocity — the first derivative
v, acceleration — the second dernative
Xi = Yum k=01,

Xo = X k=01,

We define the position of hand by the centre ot the rectangle around it (sce Figure 5 2)
Lhis rectangle represcnts the lettmost, rightmost, top and bottom of the hand’s blob 1n

the image Thercfore, the position 1 denoted by the vector,

G3)

e

Central |
point

Iguie 52 Posiuon ol the hind 1s defined by the centic of the
tectangle

where

h .
X; the horizontal coordinate of the hand centre,

1}
X; the vertical coordinatc ot the hand centre

However, we can only observe the position of the hand in an image while the other
paramctcrs, vclouty and accecleration, are not obscrvable Lheretore, the matrin H in

Equation C 2 (Appendis C) 1s defined as,

H=[I 0 0]

Z, = HX,
Ihe hand-tracking model takes on the tollowing lincar stochastic description,
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5 2 Hand Motion Tracking

X =Px, +w,

(3

z, =HXx, +v,

In this system, the parameters arc given by,

ftoo0o000
1000100

and v, and W, arc mdependent zero-mean Gaussian white nouse sequences with the

tollowing covariances,

. Q, 1=k

Elw,w' ]=
wow, ] 0 £k
R 1=k
E[v,vi1=¢*
v, 1# k
We assume that
B QL 0 B Ri 0

Q

0 Q 0 R

1 White nosse 18 dehined to be 1 stationars 1andom process with constnt spectial density tunction,

SH/HI(—H{H\( (.](U) = A

wheie +1 15 the <pectia] implhitude ot the wlute nosse [Brown 1997)
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5 2 Hand Motion Tracking

Let

I 2 - -
where X, and x; are defined to be the vectors ot the horizontal and vertical attributes of

the hand’s central point with the following detinitions,

h K
X, X
| h 2 _ v
X0 =X, X =%
h v
Xy X ]
1 Mo
wy Yy
W, = 2 1> Vi = 2
Wy ka i

1 2 1 2
where W, Wi v, and Vi are zero-mean Gaussian white nose sequences with the

tollowing covariances,

Q =k - Q' =k
Efw,w,"]=¢ < Elw;w/ =1
¢ 0 1 £k o 0 12k
R =k . 2 -
ElvivT]={ B =
0 1k 0 1 £k
Let,
1 h =h
2 z!
A=10 1 n | z, ="}
00 I &
C=[l 0 0]

Then the system of 5 5 can be decomposed into two subsystems,
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5 2 Hand Motion Tracking

J — J J
Xi, = AX{ +w; =12 (56
Z{ =Cx| +v/

J
where W] and X] are 3-vectors and 7] and v{ arc scalars, Q] 1s a 313 non-ncgative

J
definite symmetric maters and R > 0 15 a scalar

Each subsystem 15 employed to model the hand movement in a direction, horizontal or

vertical Assuming,

d d
x; (1) X,
d d
A (2) =]y

3| |af

wherc d 1 the hortzontal or vertical dicection (d = &, v), tor one of the subsystems the

tracking model 1s described as,

1
XD LA Ehz x (D
X, =10 1  h [|2,@2)|+w,
X (3) 00 1 x (3)
I ) 67)
x (1)
z=[1 0 0] X (2) |+v,
| RAC)

where we have suppresscd the superscript d

If the il condition E(xy) and Varmance(x,) arc given, the Kalman filtering

algorithm for this modcl can be obtained Details ot the calculations arc presented in

Appendix C, Section C 2

Ihe dynamic model presented here 1s used in two forms Here in, we use this model to
trach the movement of 4 hand 1in a sequence of images in order to track the posttion,
velocity and acceleration ot hind In Chapter 7 we use this modcl to track the rectangle
stdes around the hands i order to detect the hand pauses and collisions during hand

occlusions
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5 2 Hand Motion Tracking

By tracking the movement ot a hand we can detcet the moments that the hand has a
pausc in cach ot the hornizontal or vertical directions By detecting the first pause the
beginning of a gesture can be detected First we assume that a hand movement starts from
a ncutral position  Lhis condition can be the hand hanging by the side or the hand on lap
We consider this as the hand out of camcra tramc When a person performs a hand

gesture he/she moves the hand up and starts the gesture (see Figure 5 3)

Betorc the gesture starts the hand should move into the Region of Intercst (ROI) Every
gesture starts with a particular shape ot hand So, normally, trom the neutral position to
the start point of the gesturc the position and the shape ot hand 15 changed rapidly toward
the beginning position and shape of the gesture (sce INigure 5 3) At a moment when the
hand reach the correct position and shape to start the gesture the hand has a short pause
at lcast 1in one ot the directions, horivontal or vertical, but usually in both, and then 1t

mozcs toward the end ot gesture In order to detect the moment that the hand has a short

pausc to start the gesture two difterent ways are mtroduced

Qj\}z‘

() (b) © (d)

Figme 53 (1) Hand m 11est posinion, (b) mosvmg the hind
toward the beginning of the gestute {¢) the begimning of
gestume (d) the end ot gesture

1 lhe distance between the current position of hand, x, (1) n Equation 57 and the

previous posttion, X, (1) gnes a good appronimation of the hand movement In a

rwo-dimensional 1mage frame the Luchdean distance between the previous position

and the consequent one 15 a good approstmation,

d= |3 G-, (58)
0=l

It this distance 1s equal to zero we can conclude that the hand has a pause However, due

to notse and the fact that in the low speed cameras the sampling rate of the camera may

75



5 2 Hand Motion Tracking

prevent the capturing ot two consequent frames with the same position ot hand this way

cannot be robust in real-time applications

2 A better detection tactor 15 the velouty ot the hand When the hand pauses the
vclouty reaches zero However, i tact, a well-chosen small threshold gnes

appropriate detecrion accuracy In a two-dimensional image trame,

v, =1/v,f +v‘3 (59

where,

v, horizontal vclocity

v, verteal veloaty

For a small chosen £€>0 1f v, <& we conclude that the hand has paused In most of

the gestures even a pausc in onc of the dircctions 1s cnough to detect the beginning of a
gesture Because when the hand movces toward the beginning ot the gesture 1t moves
along the shortest diagonal path whilc the hand shape 1s changing to the beginning shape
Theretorc, at the beginning ot the gesture at lcast 1n one of the directions, hortizontal or
vertical, the hand has a pause® [rom the pausc pont the system records the beginning of

the hand gesture

5 3 Experimental Results

In order to investigate the introduced dynamic model some espcrimental results are
presented In these expernments the veloaity and the acecleration ot the hand are ot
intercst We demonstrate the pertormance of the dynamic model 1in waching the velocity

and acceleration ot the hand

In the first example a normal hand movement s performed to detect the hand pauses in
both horizontal and vcrtical directions In the nest example, a circular movement of hand

18 pertormed to investigate the performance of the modcl

Ihe distance of the camera and the hand 1s about 250cm  Lhe camcera s filming a 70-by-

70cm area approntmately The resolution ot the camera ts set to 400-by-200 prels Each

2 Tlis 1s 1 amplitic won assumpuon In many gestwres 1 shott pause happens but this does not mclude all gestures
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5 3 Experimental Results

pined on the vertical asis corresponds to 3 5mm and on horizontal axis to | 75mm

appronimately on the filming area The camcra 1s set to work 1n 30 trames per second

Lhus, the ime unit between two consecutive images 15 33 3 milliseconds,
=333 ms

This means that a veloaty ot | pined per time unit (333 ms) 1s equal to 30 pincls per
second On the vertical axs, 30 pinel per second 1s equal to 105 mm (10 5 ¢m) per sccond

On the horizontal axis 30 pivel per sceond 1s equal to 525 mm (5 25 cm) per second

In the following expenments, the mecasurements arc based on the time unit (i) and piael

per nme unit

531 Experiment 1

In this experiment the hand starts trom 1ts position on lap and moves up and docs the

gesture (see Figure 5 4) Figure 5 5 shows the graph of the horizontal velocity of the hand

Figute 54 A fcw Lownes ol the gesture m the Expanment |
In this example the hand moves into the scene hins 1 short
puse at the begmmng ot the gesture ind then moves towrd
the end of gestne
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I'iguie 55 The giaph ot the hotizontal velocty of the hand
duwmg the movaneut of Expetunent |

In this figure, somewhcre between the 10% to 20% time unit (frame) the velouity gocs to
cero tor the tirst time We do not consider the velocity of hand i the first trame because
it always starts tfrom zero lhe intercsting pomnt m this figure 1s the negatne velocity

When the hand moves m the decrcasing direction of the horizontal anss the horizontal

velocity 15 negatine

Lhe graph of the vertical v elocity ot the hand 1s shown in Figure 56 Lhe negatine velocity
at the beginning ot movement 1n this figure shows that, the hand has had 2 movement in

the decreasing direction ot the vertical anis (up direction)
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I'igmie 56 The giiph of the verteal velouty of the hind
dunng rthe movement ot Experiment 1
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5 3 Expenmental Results

Equation 59 finds the exact pont that the velocity of hand in both dircctions, horizontal

and vertical, becomes zero Lhe graph ot this equation 1s shown in Figure 57 This graph
shows that at the 17" time unit (frame) v, becomes almost zero This point 1s detected as

the beginning of the gesture
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Figme 57 The giaph of Equanon 59 for the fust experument

53 2 Experiment 2

In this experiment we demonstrate the pertormance ot the proposed model in tracking

the hand 1elocity and acceleration

First the hand has a urcular movement It arculates for several tmes and then stops and

docs the main gesture [igure 3 8 shows a few trames of this gesture

Figine 58 A few minges of the movement of hind n
cucular fashion
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5 3 Experimental Results

As long as the hand s crculating the horizontal and vertical veloctties arc osullating
Howevcr, at the pause point both become zcro and the algorithm detects the pause
Figure 59 shows the graph of horizontal and vertical velocities tor the hand An accuratc
look at the horizontal and the vertical veloutes shows that because ot the circular
morement of the hand, at the points that the horizontal velocity 15 at one of the minima
or manima the vertical velocity 1s passing through sero and vice versa (sec Figure 5 10)
This 1s a 90-degree phase ditference that causes an oscillation with double trequency of
oscillation in the Equation 59 However, it docs not go to zero during the oscillations In
Figure 5 11 the graph ot Equation 59 1s shetched Lhe double frequency of osallation s

clearly visible in this graph
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In this experiment, the calculated speed in Equation 59 becomes zero at the 236" ume
unit (frame) The accclerations of the hand are plotted i Figure 512 These graphs show

that the model tracks the acceleration of the hand correctly in both directions

We demonstrated that the proposcd model tracks the hand, particularly the velocity and
the acccleration accurately n order to detect the hand pauses m horizontal and/or vertical
direction This model 1s the basis ot a model, which 1s introduced in Chapter 7 for hand

occlusion detection and hand traching in the presence of occlusion

Summary and Conclusion

In this chapter we proposed a dynamic model based on the kinemancs equations of
motion for hand traching Firet we stated the general theory of Kaiman filtering Then the
details ot the proposcd dynamic model were presented Based on this model the position,
velouty and the acceleration ot the hand are trached in the sequences of images

contamning a hand movement

Ustng the model, we are able to detcet the hand pauses i both horizontal and vertical
directions We detect the hand pauses to detect the beginning of a gesture during a hand
movement Some experimental results were presented to demonstrate the effectiveness of

the algorithm 1n correct traching the velocities and accelerations
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5 3 Expernmental Results

In the following chapter, we will use this modcl to detect the beginning of a gesture 1n

order to extract the beginning shapc of the gesture for recognising a large number of

dynamuc hand gestures
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Figuie 5 12 The hourontil and verueal acceler ition of the
«irculnng bond

82



Chapter 6

RECOGNITION OF A LARGE NUMBER OF HAND
GESTURES

Dynamic gesture rccognition as a spatio-temporal pattern recognitton problem was
presented i Chapter 4 An important parameter is the number ot gestures i the
vocabulary A vocabulary contamning a large number ot gestures can cause a long searching
and matching time It 15 crucial to rcduce the processing time of the algorithms while

keeping the recognition rate as high as possible

In this chapter we look into the problem ot recognition ot a large number of hand
gesturcs We introduce two hierarchical algorithms tor the recognition of canonical hand
gesturcs [irst we review some statistical techniques addressed in the literature tor the
problem of recogrution Hidden Markov Models are a very well known statstical
technique tor modelling temporal events We review the theory ot this model Then an
algorithm based on this model 13 presented for the recognition of large number of
canonical gestures We replace the Hidden Markov Models in the algorithm with the
gausstan Graph-Matching techmique of Chapter + and present a new algorithm At the end
of chapter some expertmental results are presented n which the recognition ratc of both
the algorithms are measured and compared We will also compare the relative processing

time ot the algorithms

6 1 Markov Charn

“A Markov chain deals with a group of random processes that incorporate a minimum
amount ot memory without actually being memoryless” [Jelinek 1997] In this thests we
deal with discrete random varrables The values ot these variables are defined in a finite
alphaber H ={1,2, ,M}

The probabihty of observing X, X,, , X, s defined by the Bayes’ rule as,

n
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6 1 Markov Chamn

PX Xy X)=]]PX 1X0Xs LX) ©1)
=1

Howeter, 1if a varable depends only on the value ot the previous step,
P(X1|XI’X2’ ’Xl—l):P(Xl|Xl—l) (62)

the random variables arc said to form a Markov chain Theretore, for a Markov chain,
P(X\. Xy, LX) =[]PX, X)) 63)

Lhis process only has onc step memory A Marhov chain 1s time invariant (stationary) 1f

regardless of the value ot the time index ¢,
P(X =xX"|X_=x)=p(\'|x) forall x,xe H (64
where

Y (|0 =1 p(x'[x)20

xX'e H

p(x"| x) 1 called the fransition tunction

It we think of the values of X as states then the Markov chain s a finite state process
with transiion between states specified by the function p(x’|1) Figure 61 shows a

three-statc Marhov chain In this figure, the arrows show transitions between states and

their probabidities The mussing arrows mply that p(1]2) = p(2]3) =0

P22

PEIY

PO

DP(J [ 3

Figme 6 1 A nansigon dragraun tor 1 Mukov chun
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6 2 Hidden Markov Models

6 2 Hidden Markov Models

A Hidden Markov Model (HMM) 1 a tinite set of states each of which 1s associated with a
probabiity distribution In the other words, a Hidden Marhov Model 15 a tool for
representing probability distributions over a sequence of observations [Ghahramani 2001]

We denote the observation at time 7 by the vartable y, Thus vartable can take values trom

a finite discrete alphabct, set of real values, or any other set as long as we can define a
probability distribution over it In a discrete model the observations are sampled at

discrete, equally spaced time intervals

The term “hidden” m Hidden Markov Moddls reters to this assumption that the
observation at time 7 was gencrated by some process whose state S, 15 hidden trom the

observer [further, we assume that the state of this hidden process satisties the Marhov

propcrty, Equation 6 3

Mathematically, for an  output alphabet y={0,1, M ~1} a state space
S={0,1, N} witha umique starting state s a probability distribution ot transitions
between states p(s”|s) and an output probability distribution p(y|s) associated with

state », the probability of observing an HMM output string y,, v,, , ¥, 1 given by,

A
P(y.ys v = Y [pG s p(y,1s) 65)

vy =l

[he initial probabilities are also involved in calculating the probability ot observations and

will be described later on 1n the description ot the technique

An example of an HMM with N=31s <shown n Figure 6 2
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6 2 Hidden Markov Models

States 1 »( 2

Outputs

Figuie 6 2 A thirec state Iidden Marthov Model Souice
[Ghiaht i 2001

In addition to the previous two assumptions, Markov and stationarity, we assume that

current output (observation) s statistically independent of the previous outputs For a

sequence ot observations Y =y, v,, ¥, the probability of the sequence 1s gnen by,

T
pYIsisys w5 )=T1p Is) (66)
=1

However, this assumption has a very imited validity In some cases this assumption 1s not
tair enough and therefore become a severc weakness of the HMMs We define an HMM

completely by A = (A, B,m) where A = {au } 15 A set of state transition probabilities,

aU:p(SlH:]‘Srzl) lSl?JSN (67>
.

Na, =1 I<I<N

=1

where N 18 the number ot states ot the model and s, denotes the current state,

B= {bJ (k)} 15 the probability distribution 1n each state,

b, (ky=p(y,|s, =) l<k<M ©8)
M

b, (k)20, Y b, (ky=1 1<;<N
k=1

where y, s the £ observation symbol 1n the alphabet 7 ={r,} 1s the mnal state

distribution,
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6 2 Hidden Markov Models

= p(s, =1) I<i<N 69
The three basic problems of HMMs are

1 lhe evaluation problem

Gnen an HMM A and a sequence of observatons Y =y,,¥,, ,y,, what s the

likelthood that Y 16 gencrated by the modd In other words, what 1s the probability ot Y

gnen HMM A,

PY|A)="

Calculation ot this probability requires 2 number of operations at the order of N' "This 1s
a very time consuming process However, there exists a method called the
Forvard/ Backivard algorthm with considerably lower complexity This algorithm gives the
probabilities to all possible state change sequences m an HMM  Regardless ot the most
probable state scquence 1t finds the lihelihood with respect to the probabilities along all
possible paths Based on [Ghahramant 2001], we use this techmique to calculate the
likelihoods that the ditterent HMMs of gestures in our database generatc the given
sequence ot observations without extracting the sequence of state changes A description

of the algorithm 1s presented in Appendis D

2 The decoding problem

Given a model A and a sequence of observations ¥ =y, y,, ,y,, what 1 the most

likcly state sequence in the model that produced Y In other words, find a state scquence

that masimuses the numerator ot the right-hand side of the tollowing equation

P(s,,s,, Sp.¥,Y. ¥ Iso)
Py, yss ¥ sg)

P(s), 80, 58p |YJ’y2’ s ¥1:50) =

The Viterbe algonthm 15 a technique to find the most probable state sequence By this
algorithm we can find the masimum probability state sequence ot an HMM given the

sequence of observations A complete description ot the Viterbt ﬁlgorlthm 1s presented in

Jelinck 1997}
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6 2 Hidden Markov Models

Although, the evaluation and decoding in IMMs can be used interchangeably in many
applications, we only usc the cvaluation problem in order to calculate the lihelihood that a

given HIMM generates a sequence ot observations {Ghahraman 2001]

3 The learning problem

Given a model A and a sequence ot observations ¥ =y, y,, ¥, how should the
model paramcters {A, B,7} be adjusted 1 order to masmise P(Y |A) There are many
techniques proposcd in the literature for estimating the statistical parameters of the
Hidden Marhoy Models [Jchnek 1997] Expectation Masannsation and Maemum Entrgpy are
well-known methods in this case We use an algonthm  based on  Lxpectation

Maximisation called Bawm Welkh Details of this algorithm are presented in Appendis D

The evaluation problem 1s used tor solated recognition in speech and gesture recognition
The decoding problem 1s related to continuous recognition as well as to segmentatton

“Learning’” 15 to adjust the HMM paramcters tor the recognition task

In this thests we only deal with evaluaton and learning problems, which are directly

related to our work

6 3 Algorithms for Recognition of a Large Database of Hand Gestures

As we stated earlier in Chapters 2 and 4, many researchers have used Hidden Marhov
Models (HMM) tor modelling a temporal sequence HMMs are widely used i speesh
recogmtion |Jelinek 1997] as well as gesture recognition [Staencr 19954 Starner 1995b Lee
1999 Nam 1996 Wilson 1999] 1ts wide applications and great pertormance in dcaling
with vanations 1 data encourage us to usc this technique for recognising a large set of

hand gestures

HMMs torm distributions over observations in every state Because of this similarity
between HMMs and the gaussian Graph-Matching algorithm of Chapter 4, we compare

the two techniques 1in this chapter to find the advantages and disadvantages ot each

Asin Chapter 4, by using pinel grey-level detection and scgmentation one can extract the

hand from bachground in an 1mage Hercin, it 1s assumed that 1n the sequence of mnput
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6 3 Algorithms for Recognition of a Large Database of Hand Gestures

images the hand has been segmented trom the bachground lhis leads to the tollowing

definttion of the problem

“ Gwven a hand gesture appearing 1 a sequence of images, find a gesture in a large

database of predefined gesturcs which is the most simular to that”

6 3 1Special Considerations

Since we have a large database the wimilarity between the gestures 1s high "lheretore,
variations 1n the gestures may change the result ot recognition The algorithms should be
able to deal with both similarities and variations together This makes our job more
difficult Also working with a large database of gestures involves extensive computation

and long processing time

We mtroduce a hterarchical algorithm in which the Hidden Markov Models are used to
deal with both vartations and simularities The hierarchical nature of the algorithm makes

the processing time shorter

6 3 2 A Quick Review of the Algonthm

In this algorithm we have a hierarchical recognition process that uses a multilevel tramed
model By using the dynamic modcl and kalman tiltcring of Chapter 5 we are able to
recognise the beginning ot a gesture The first levels of the training and recognition phases
ot the algorithm are based on the beginning hand shape of the gestures At this level,
depending on the begmning shape of an mput gesture a group of gestures within the
database 1s sclected This group 1s forwarded to the second level At the second level, by
using cither Hidden Markov Models or the gaussian Graph-Matching algorithm the best

match between the inpur gesturc and the forwarded gestures 1s found

By this hierarchy we are able to find the best match in a short tme We use Principal
Component Analysis to reducc the dimensionality ot data and get rid of nowse This
reduces the running time too Fidden Markov Modcls are powertul in dealing with large
vocabulartes with great variations Graph-Matching is tast in dealing with small number ot
gestures We compare the advantages and disadvantages ot the two algorithms m the

second level
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6 3 Algorithms for Recognition of a Large Database of Hand Gestures

6 3 3 Traiming Phase

By extracting a few beginming hand shapes of all the gestures a common eigenspace 1s
constructed tor the beginming shapes  lhe projection ot the beginning shapes into this
etgenspace torms clusters of data poimnts Each cluster represents a group ot gestures
starting with stmilar hand shapes Therefore, we get as many clusters as ditterent shapes
It we do not know the beginning shapes ot gesturcs a clustering tcchnique like Vector
Quantisation can cluster the data points But, it we know that each gesture starts with
what hand shape the clustcring 15 straightforward  Figure 6 3 shows clusters of pomnts
corresponding to the hand shapes tor the English letters in the Insh Sign Language We
use each cluster of points to form a multidimensional gaussian distribution The seven-
dimensional data points m the common eigenspace are employed to tramn the gaussian

distributions

In the second level we have two choices, the HMMs and the gaussian Graph-Matching

¢ The Hidden Markov Models

A common eigenspace ts formed by using the full-length image sequences of all the
gestures This eigenspacc 1s constituted by the seven eigenvectors of the covariance matrin
made trom the whole training sct image sequences The projection of each gesture into
this subspace (eigenspacc) forms a trajectory The projection of all the gesturcs into this
subspace looks like a cloud of pomts In order to employ the HMMs we need to allocate
codewords (codevectors) to the groups of pomnts mn this doud Vector Quantisation

algorthm extracts the required codewords
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A well-chosen number of codewords can represent all the points so that the gestures are
exclusnvely recognisable by unique sequences of the codewords However, since the
Vector Quantisation algorithm 1s a time consuming process, espectally in the case of a
very large number ot data points, onc can extract the codewords tor the trajectory of cach
gesture separately as opposcd to treating the whole data at once Then, by combining the
extracted codewords and applying a second stage of Vector Quantisation a reasonable
number of codewords 1s extracted Tigure 64 shows the manitold and the extracted
codewords for a gesture 1n a 3-dimenstonal representation ot the common eigenspace A
Iett-to-right Hidden Markov Model with four states 15 tramed for every gesture (sce Figure
6 5) The number ot states i the HMMs 15 selccted based on the shapes of the manifolds
and the number of gestures Since the number of gestures 15 large the differences between
the gestures should be considered Therefore, for cnample a 2-state HMM cannot
distinguish differcnt mantfolds very well With respect to the shapes ot the manifold (e g
sec Igure 6 4) a 4-states HMM scems suttable to model the gestures 1n this problem As a
tuture work we can vary the number of states and look at the changes m the recognition

ratc ot the algorithm
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Tguie 65 Alelt to nught HMM is trained fot every gestme

This 15 done by extracting the sequence ot the symbols (codewords) constituting the
trajectory of a gesture in the common ergenspace The set of codewords tor all thc HMMs
are the same However, based on the sequences of codewords assoutated with each
gesture i the traming set the HMMs are trained An individual HMM 15 trained by the
sequences extracted for all the examples of a gesture in the raning set Therctore, at the

end wc have a traned HMM for every gesture in the vocabulary

® The Gaussian Graph-Matching Algorithm

An individual eigenspacce 15 constructed for cvery gesture using the esamples of the
gesture By projecting the gestures into their own subspace the main manifolds ot the
subspaces arc formed Then by using the Vector Quantisation and clustering the mamn
manitolds the HyperClass of every eigenspace 11 tormed and traincd The algorithm 1s the

same as the onc in Chapter 4

6 3 4 Recogmiion Phase
In order to recognise an unknown gesture a 2-Jevel hierarchy 1s used At the first level, a

subset ot gestures 1s selected to be passed to the sccond level (see Figure 6 6)
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["iguie 6 6 Hieruchy of selections m the recogmuion phise

Level 1

For an unknown gesture appearing in a scquence of images the hand shapes within the
first tew frames are extracted By using the traching algorithm ot Chapter 5 the beginning
ot a gesture can be detected By estracting a few nitial hand shapes of a gesture and
projecting them into the common eigenspace made in the first level ot the training phase a
few points are formed The centre of gravity ot these pomts 1s calculated The probabidity
that the central point belongs to cach ot the multdimensional gausstan distributions 1

calculated The point belongs to the class of shapes with the highcst probability

However, due to variations and notse this 1s not always the best estimate and one should
consider more classes Theretore, a list of all classes sorted descendingly based on the
probabilities 15 constructed By tahing ¢ classes from the top of the list a group of
gestures starting with the associated hand shapes are torwarded to the sccond level Since
many gestures may start with the same shape of hand, the number of forwarded gestures

1s usually larger than

Level 2

¢ The Algorithm with Hidden Markov Models
By projecting the input gesture mto the common eigenspace tormed i the second level of
the traiming phase a4 sequence of symbols (codewords) s extracted The tramed HMMs of

the forwarded gestures are employed to calculate the hkelthood ot the extracted sequence

93



6 3 Algonthms for Recognition of a Large Database of Hand Gestures

Ihe HIMM that results i the largest likelthood 15 the best match In other words, the

gesturc whose HIMM results in the largest lihelthood 1s the best match to the input gesture

e The Algorithm with Graph-Matching

By projecting the input gesture into the eigenspacc of each of the forwarded gestures,
tormed i the second level of traiming, the trajectory of the gesture in each subspace 1s
ontracted As in Chapter 4 the trajectory 15 divided 1nto an cqual number of clusters and
the graph of the trajectory 1s extracted in the eigenspaces By matching the graphs of the

mnput gesture with the HypcrClass of cach gesture the best match s found

6 4 Exprimental Results

100 gestures were created by a combination ot about 35 hand shapes mostly selected from
the sign language alphabet The gestures start trom a shape and end in another shape In
Figure 6 7 a tew gestures are shown For every gesture 10 examples were captured Half of

the examples (500) were used as training set and the rest as the test set

The gestures start from one of the shapes defined as an English letter in the sign language
For every gesture, the first 5 consccuttve hand shapes were extracted and a common
aigenspace was constructed using all the estracted hand shapes A seven-dimensional
gaussian distribution was assigned to the similar hand shapes and trained 26 distributions
for the set of beginning hand shapcs associated with the 26 english letters were formed

(see Figure 6 8)

In the sccond level ot the traming phase the 500 examples in the traming set were
cmployed to form a common eigenspace By projecting the tramning samples into this
subspace (see I'igure 6 9) and using Vector Quantisation at the first stage 3200 codcwords

were estracted, 32 for each gesture (sce Figure 6 10)
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6 4 Expenmental Results

Figme 67 A few nnages of some of the cieated hand
gestures

ql
15 f !

o

2000

X
1500 h . ¢ 1500
First Dimension (1st Pnacipal Component) 2000 2000 Second Dimension (2nd Pnncipal Component)
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disttibutions ot the begmming hand shapes
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the 1miges of the nammg set gestures

96
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By applying the second stage of Vector Quantisation, 1024 codewords were extracted (see
Figure 6 11) We have chosen this number of codewords based on the variation in the
data appearing in the manifolds ot the gestures and the processing speed’ An esample ot
vartation i the esamples ot a gesture will be presented later Figure 6 12 shows the

trajcctory of a gesture projected into the eigenspace

Although we did not deliberately vary the samples of each gesture, the trajectories of the
gestures show signiticant varrations in the samples of a gesture (sec Figure 6 13) In this
figure, 5 examples of a gesture arc projected into the eigenspace Four different paths

shown i the tigure demonstrate the great varrations in the samples

2000

1000

o
Y2
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2nd Principal Component  -2000 -1000 3rd Principal Component

Figuie 6 11 1024 extiacted codewords tor the projection of
the 1mages of the framng sct the common elgenspiace

! The number of codewords must be luge enough to captine varrton m ditr md simadl enough so that the tyectories
of the gestuics me extircted fist The codewords m speech recogniion me chosen based on the number of
plhonemes However smce 1 canomcal gestuie 5 just 1 conunuous movement ot hand we cawnot mterpret the
todewords 1s meaningful enuucs We have chosen one codeword for pproximatcly 100 data pomts n the trunng
set. Tlus uumber his been selected by tmal and enor In [Shunue 2003] it has been shown that by mcieasing the
number of codewords trom 1024 to 3200 the recogmtion rate of the algorthm mcte wses only 14 whie the processng
tme 1s nealy thiee tunes lougeL By LBG Vector Quantuizatnon 'ﬂgonthm we can extiact powers of-two number of
codewords Thetefore, 1024 15 the netest power of two to the 1/100 of the number of data pouts m the tiumng set
As 1 futiwe work we can find the opumum number of codewords i this problem
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Figutc 6 13 Varnuons m the examples ot 1 gestuie ippeniing
i the tiqjectontes 1 the eigensp ice

By using the extracted scquence of symbols tor the samples of each gesture, a Flidden

Marhov Model was trained tor every gesture Therefore, 100 HMMs were tramned for the

100 gestures each with 5 samples of each gesture in the tramning ser

Also, an individual cigenspace was formed by the 5 samples of each gesture in the training

set In the 100 constructed cigenspaces the HyperClasses were formed and tramed Lhese

eigenspaces and the HyperClasses are used 1n the algorithm with the gaussian Graph-

Matching in the second level
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6 4 Expenmental Results

6 4 1 First Expennments

In order to measure the recognition rate of the two algorithms we used the 500 gestures in
the test set In these experiments we torwarded all the gestures of the vocabulary to the
second level In other words, we bypassed the first level of the algorithm i which the
beginning hand shape of a gesture 1s recognised We are going to estimate the recognition
power of the Fidden Markov Models and the gaussian Graph-Matching algorithm 1n a
large database of gestures and compare them together Using the algorithm with FIMMs
447 out of 500 gesturcs of the test set were recognised correctly In other words, 89 4%

recognition rate was obtaned tor the algorithm with HMMs

Using the algorithm with Graph-Matching, 428 out ot 500 gestures ot the test set were
recognised correctly This means that the Graph-Matching algorithm was able to
recognise 85 6% ot the gestures Also the Graph-Matching algorithm tahes 203 times
longer than the HMM to calculate the best match The graph ot the recognition rates and
the processing times are shown in Figure 6 14 Obviously the Fidden Markov Modcls

work better than the Graph-Matching in the large vocabularies
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Figue 6 14 Compausons of (1) the 1ecogmtion 11te ot the
nlgmnhmc () the processing e ol the gornthms in
recogmsing 1 database of 100 canonteal gestures
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6 4 Expenmental Results

6 4 2 Second Experiments

In this set of expertments we set the & =2 mn the first level of the recognition phase
Therefore, 2 groups each ot which containing 4 gesturcs are forwarded to the second level
of recogmtion In this case, the algorithms have to recogmse the input gesture given 8

torwarded gestures trom the first level

Using the algorithm with HMMs 472 out of 500 gestures i the test set were recognised
cotrectly This 15 equal to 95 4% recognition rate By using the gaussian Graph-Matching
algorithm, 470 out of 500 gestures in the test set were correctly recogmsed In other

words, the Graph-Matching algorithm was able to recognise 95% ot the gestures

Now we should compare the algorithms from computation tme point of view For a
gesture in the test set the algorithm with HMMs takes 6 times longer than the Graph-
Matching In other words, the Graph-Matching algorithm 1s 6 times faster than the

HMMs which s a great advantage Why s this <0?

Stnce in the algorithm with HMMs we have to extract the sequence of codewords tor the
input gesture, the large space ot the codewords constructed tor the 100 gestures have to
be searched This scarching process tahes a long mme But, calculating the HMM
likelthoods 15 not time consuming Howeser, m the case of the gaussian Graph-Matchings
the algorithm has to match the graph of the put gesturc with only a small number of
HyperClasses (8 i thesc cvperimens) Therefore, the matching space s small and the
process runs taster The recogmition rates and comparison of the processing times are

shown in Figure 6 15

As we saw 1n the first set of experiments the Graph-Matching algorithm had to match 100
graphs each ot which was a 32-by-32 bipartite graph This process took twice longer than
the HMMs to tind the best match Although, the reduction of the number ot vertices in
the graphs from 32 to some smaller numbcrs can result i a faster processing, 1t may

atfect the recognition ratc ot rthe algorithm

Given that the Graph-Matching algorithm has a bit lower recognition rate than the
Hidden Markoy Models it finds the best match 1n a fraction of time needcd by the Hidden
Markov Models At the end, we should mention again that all the experiments i this
chapter were based on canonical gestures and they are not induding the gestures

containing concdtenated canonical gestures
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Recognition Rate

HVM Graph Matching

HMM

Graph
Matching

()

INguie 6 15 Compausons of {1) the 1ecogniion 11te of the
algouthms (b) the computon tunes of the dlgotthms m
1ecogustig 1 database of 100 canonical gestures using the fust
level ot abstiaction m the proposed algotithm

Summary and Conclusion

In this chapter we presented the theory of Hidden Markov Modcls In order to fast match
a gesture within a large database ot pre-defined gesturcs we mtroduced two hterarchical
algorithms, one ot them based on the Hidden Markov Models, and the other based on the

multidimensional gaussian HypcrClasses and Graph-Matching algorithm ot Chapter 4

The algorithms, at the first level, use a muludimensional search space ot gaussian
distributions 1n order to recognise the beginning shapes of a gesture An abstracted
number of gestures are forwarded to the second level where the HMMs and/or gaussian
Graph-Matching algorithm are employcd  Using each of the techniques the algorithms

find the best match between the given gesture and the forwarded gestures
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6 4 Expenmental Results

In the experiments we showed that the HMMs have 3 8% better recognition rate than the

Graph-Matching given the whole database of the gestures

By abstracting the search space mn the tirst level of the algorthm we observed higher
rccognition rates tor both the algonthms In this case the difterence between the
recognition rates fell to 04% while the HMMs remained superior However, from the
processing ttme point of vicw the Graph-Matching algonithm showed great supcriority

over the HMMs ot 6 times faster processing

While the algorithms compcte closely i recognising the gestures correctly, the processing

ume ot each algorithm 1s an important parameter

Howexer, since there has been much research on Hidden Markoy Models there are many
moddls where concatenated canomcal gestures are the targets Also the Graph-Matching
algorithm has the restriction of number of nodes mn the graphs The number of nodes
should be large enough to gine distinguishing powcr to the algorithm for a large number
ot gestures Therefore, it probably does not result 1n good recognition rate in the case of
very short gestures (the gestures recorded in a very short time in only a fow images) As a
tuture work we can change the equation of the likelihood so that a larger weight 1s given
to the probabilities than the number ot matched vertices In this casc 1t probably works

better 1n recognising short gestures

Given that the HMM has better recognition rate and less restrictions we will use HMM

throughout the rest of the thests
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Chapter 7

OCCLUSION DETECTION AND HAND TRACKING
IN BIMANUAL MOVEMENTS

Recognition of hand gestures 18 more realistic when both hands are tracked and any
overlapping 15 taken into account In bimanual movements the gestures of both hands
together make a smngle gesture Therefore, one should look at the movement ot the hands
and track them correctly in ordcr to recognise the whole gesture An important problem in
this type of movements 1s occluston Mot cment of one hand in tront of the other 1s the main
source of occluston i bimanual movements In tigure 7 1(a), an esample of a bimanual
movement s shown Also, tor the bimanual movements where there 15 no occlusion in the
essence of the movement, changing the viewpoint can cause one hand to be hidden behind
the other occasionally In Figure 7 I(b) a movement s shown, from the side (scc Frgure
71{(0)), one hand 15 occluded by the other for some moments Detecting occlusion and

traching the hands are the mam problems to be addressed n this chapter
g P p

[irst 2 quick review ot the hand extraction algorithm will be presented Then a dynamic
modcl tor modelling each hand individually 1s introduced Bascd on this model we predict the
motements ot the hands separately By prediction we can forecast the possible occlusion in
the movements We introduce an algorithm for detecting occlusion 1n a sequence of images
Having the occlusions under control we present a hand traching algorithm tor correct
ttaching ot both hands m bimanual movements In this algorithm we aim to reacquire the
hands atter the occlusions The behaviour ot the hands during occlusion 1s the basts of the
process ot traching Based on a physiological or perceptual’ phenomenon the hands in
bimanual movements tend to be synchronised ettortlessly This synchromsation s the basts
of the intelligent tracking algorithm proposed in this chapter We employ a dynamic model to
model the hand movements during occlusion The model uses the synchronisation ot the
hands m order to rccognise the hands’ bchaviour This behaviour forms the basis ot the

tracking algorithm

! Two evplwitions have been proposed tor tus phenomenon A gioup of «cientsts beleve that the bimanual
synchioms ition 15 1 very powettul constiunt mn motor contiol  Another group, however has demonstiated it thus
syncluoms won has 1 perceptunl bisis We present more detul abour tlus syncluoms wwon m the next sections
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7 1 Hand Extraction and Related Work

Figuie 71 (3) \ general bimanual movement (b) 1 bimanual
movement [iom frontl view  {€) fion side view

71 Hand Extraction and Related Work

By using piel grey-level detcction we extract the hands from bachground In an extracted
image only the piacls with a non-zero value could belong to the hands We use the Grassfire
algorithm [Pitas 1993] n ordcr to extract the hands Calling trom Chapter 3, Grassfire 1s a
regzon labelling or biob analysis algorithm Tt finds all the connected regrons and labels them Ths
algorithm scans an image trom left to right, top to bottom to find the piels of connected
regions with values belonging to the range ot hand colour (in grey scale) For the first pixel

tound in thar range 1t turns around the pinel to find other pinels

By considering a square around a pisel (see Figure 7 2) the algorithm scans the square

1 ] 1

| 5
0 o

1| N

Figuie 72 The squue wound 4 prvel
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7 1 Hand Extraction and Related Work

Lherefore by finding all the piels belonging to a connected region the whole region 1s
extracted A blank matrin 15 constructed with the same size as the image We call 1t the
shadow matriv For every extracted pinel a numeric label 1s placed at the same position in the
shadow matrin All praels in the same connected region get the same label When a connected
region s totally extracted and labelled in the shadow matris the algorithm searches for other
connected regions Also, tor every connected region its area 1s measured The process repeats
until all the connectcd regions in an image arc extracted and labelled At the cnd of the
algorithm the shadow matrix stores the labels corresponding to all the connected regions n
the 1image (see Figure 73) Due to noise there might be some other spots appearing i an
image with the same grey range as the hands Theretore, we should separate the hands from
the notsy spots We look at the size of the objects The objects with very small areas are

treated as noisy spots and ignored

Now, we have extracted the hands and labelled them separatcly But, in the images where the
hands are in contact the algorithm extracts only one connected region and 1s not able to
separate the hands due to occlusion Theretore, we cannot recognise the hands correctly in

the presence ot hand-hand overlapping
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7 1 Hand Extraction and Related Work

Therc are a number of techniques proposed n the literature tor traching two ovetlapping
objects CONDENSATION 15 the natural ctenston ot Kalman tilter to factored sampling
[Isard 1998a) Mammen et al [Mammen 200!] have employed CONDENSATION
algorithm to track the hands ott-line in video sequences captured at 12 frames-per-second
No pertormance has becn reported regarding the processing speed and the efficiency ot the

algorithm 1n traching a set ot hand motions

Although, by traching the edges ot two objects the CONDENSATION algorithm tracks the
overlapping of objects robustly, 1t 1s a very time consuming process (see Section 2 3 2) which
cannot be used in a real-time system [Sherrah 2000] On the other hand, we do not really
necd that much degree of accuracy 1n tracking the edges of the two hands during occlusion
because the separation of the hands during occlusion does not provide us with significant

useful information about the occluded hand

The other technique for tracking 1s Pomt Distribution Model (PDM) [Cootes 1992], which
was esplained n Chapter 2 But this technique has also some disadvantages that prevent
using 1t as an etticient technique for tracking The model breaks down for complex objects,
and more importantly 1s that 1t needs quadratic optimusation to automaticly dentfy a set of
landmark pomnts, which s not an cfficient way to work n real-tme applications The
analytical models such as [McAllster 2002 Davis 1999] also need to do non-linear

optimisations

Gong et al [Gong 2002] have used a Bayestan network to trach two interacting hands  Therr

proposed algorithm can process 5 trames per second on a Pentium 1T 330 MHz computer

As 1t was mentioned in Chapter 5, a fast and efticient techmque tor traching 1s the Kalman
filter |Brown 1997, Chur 1999} Dockstader et al [Dockstader 2000} have used the Kalman
filter to track human head and body in the presence of occlusion Zieren et al [Zieren 2002]

have used Kalman tilter to track the two hands but not i1 the presence of hand-hand

occlusion

Based on the advantages of Kalman filter we use this technique and a dynamic model to
track the hands in the presence of occlusion lhe first step 1s occlusion detection 1n a

sequence of 1mages
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7 2 Occlusion Detection in Bimanual Movements

7 2 Occlusion Detection in Bimanual Movements

Two types of occlusion are considered here [irst, the case where one hand occludes the
other We call 1t hand-hand occlusion Sccond, the case in which somcthing else occludes a
hand or the hand hides behind something, e g the body, partially or completely When one
hand occludes the other we must detect the exact beginning point ot occlusion By this we
arc able to scparate the hand-hand occlustion trom the other type of occlusion For this we

introduce the following model

As betore, a rectangle s constructed around each hand 1n an 1image Thercfore, by moving a
hand its rectangle moves in the same way By traching these rectangles we detect the start and
end points of occlusion lo detect the beginning point we look at the movement ot the
rectangles If at some stage there 1s any intersection between the rectangles it can be
recognised as occlusion Howvever, in some cases there meght be an intersection with no

occlusion (see Figure 7 4)

Figure 74 An tersection of the rectangles with no occlusion

Also, 1t we suppose that at time 7 there s no intetsection of the rectangles and at time 747
occlusion happens, there 1s only one big blob and one rectangle 15 constructed around it (see
Figurc 75) It happens because the hand shapes are connected together and the Grassfice
algonthm extracts the connected region of the hands as a single object Occlusion 15 not
detectable because this 1s simular to 2 hand’s movement out of camera trame or hiding bchind

a part ot body

To overcome this problem, we use a model to predict the tuture movement of cach hand
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7 2 Qcclusion Detection in Bimanual Movements

/

1+1

[Mguic 75 Ocdusion happens n two consecutive frames

We propose a dynamic model based on Kinematic equations of motion and Kalman tiltering

to trach the movements and predict the future position of the rectangles By this, we can

predict possible intersection of the rectangles a tew steps in advance This gives us an alarm

ot any probable occlusion

Every rectangle 1s modelled by the tollowing cquation,

Xen =Px, +w,

71

where X, 15 the statc vector representing the rectangle at tme £, @ 15 the matens relating the

two consequent posttions ot a rectangle, and W, 1s zero-mean Gausstan white system notse

[Brown 1997] The movement of a rectangle can be modelled by the movement of its sides

(sec Figure 7 6) Theretore, Equation 7 | 1s expanded to,

i
Xkt T
i
'XZ k+1
i
Yiin

!
RETCH

Ay
Xay
Yix
Vi

|

+w,, 1=12

where x;,, X3, , ¥/, and y3, arc the sides of the rectangle 7 at time £

108

(72



7 2 Occlusion Detection in Bimanual Movements

)C| X,

Y

[
X

INguie 76 Lven rectngle s modelled bv its sides In tlus figuie

1 1 1 197 -
[\] Ay Y yz] 1s the tect mgle ot the first hind nd

2 2
n

2 29T
[Xl | SO M o ] i the rectmgle of the second hand

IFor cvery parameter in this model we have the position, velocity and acceeleration  Therefore,

using the dynamic model ot Chapter 5 our model 1s expanded to the Equation 7 3 for /=1, 2

r )
-, |1k - 1— T
X k41 2 X1y
X) s 0 1k Xi4
X a1 00 1 B X g
Lo b
X3 40 0 1 X1
X3 41 _ 0 0 1 X5 W
Vi Lo B | 3
)’1:A+| 0 1 ;21 Yik
y:k+1 0 0 1 y:’A
Yaksl 2 || Yax
Vi Lo h? Yis
_szm_ 0 1 & _y‘u_
| 0 0 1]

where x;, x5, ¥, y, arc assumed to have continuous first and second order dervatives

denoted by one-dot and double-dot variables, and 4>0 s the sampling time [Chut 1999]
The position, velocity and the acceleration of cvery sidc of a rectangle are related based on

the following equation,
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7 2 Occlusion Detection in Bimanual Movements

-
R ot R ol
X, -,x/k+/z,\”+2h X,

=12 j=12 (74

R
'\jAH

" i
X Hha,

where x 15 the position, x the velouty and x the acccleration ot a side As in Chapter 5, only

the position of a rectangle 1s observable Therefore, we define the matris H as tollowing,
H=[1 0 0] (75)

where I 15 the identity matrs and H grves the noiseless connection between the measured

vector z and the statc vector X in,
z; =Hx, +v,, 1=12 (7 6)

where

and V15 the zero-mean Gaussmn white measurement nowse Then the Kalman filtering

model tahcs on the following stochastic description [Chut 1999 for /=1, 2,

{ - { !
Xk+| - (DXA +wl\

77

[ ! i
z, =Hx| +v,

As in Chapter 5, we can decompose the model into 4 submodcls, each of which 1s presented

by,
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7 2 QOcclusion Detection in Bimanual Movements

_ -
X, [1 & 5/12 x, (1)
.2 =10 1 & || x@|+w,
a3 100 1 |[x®3
L . (78)
x (D
o=l 0 o) x,2l+v,
x5 (3)

where v, (D=x,, x,(2)=x, and x,(3)=2, The Kalman filtering equations for this

model are the same as equations statcd in Chapter 5 and Appendis C

In this model the prediction ot the future 15 pertormed by projecting the current state ahead,

FEquaton 79
X =Px; (79)

This equation predicts the next state of the vector X one step in advance In other words, 1t

predict the position of the rectangle 2 one step in advance

We set an accdiston alarm 1t the algorithm predicts an intersection between the rectangles on
the next step {see I'igure 7 6) Having the occlusion alarm set, as soon as the hand shapes join
together we dctect the occlusion Therefore, we are able to capture the hand-hand occlusion

and differcntiate it from the other type ot occluston

¢ preduction 7

Figuie 77 Piediction of mtersection of the rectangles by Kalman
tilter and the dynamic model

The occlusion detection algorithm is summartsed as following,
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7 2 Occlusion Detection in Bimanual Movements

1 By ising Grassfire the handy are extracted and the rectangles are constricted

2 The dynamuc model 15 applied to edach rectangle and the futnre positions are preduted

3 Ifthe preducted rectangles have any intersection the oculusion alarm 1y set

4 Iu the next captured tmage of only one hand iy detected by Grassfire and the owlnsion alarm s already

set the band hand occliseon hay happened Othernise if we see one band i the tmege and the occlinson
alaim 15 not set, the other type of ovclitscon (e g owliszon by a part of body o1 learing the siene) ts
detected

5 Lmage capturing s contenied

6 Lnany step that tio hands are detected tn an tmage while the hand hand occlision 1 arable s set the
end of ovlision 1y detected

By this algorithm we are able to detect the beginning and ¢nd of occlusions very accurately

73 Hand Tracking in Bimanual Movements

A problem with the hand estraction algorithm (Grasstire) 1s that the first shape found in an

mmage 18 labelled as the tirst hand This causes ditficultics in two torms,

I The hands move so that in two consecuttve images the hand shapes are labelled

interchangeably (see Figure 7 8) This happens because of the secarch manner ot the Grassfire

algorithm

! 1

Figime 78 The hands m two consecutive uniges may be lbelled
mterchgeably by the hand exowtion algosithm

Chen et al [Chen 2003] track the centrowds of colour finger gloves to track the fingers in a
surgical operation We use the centroid of the hands to track them in a scquence of images
By tinding the centrowds ot the handa and comparing them 1n two consccutive frames the
problem of muslabelling in the consecutive trames can be recovered (see Figure 79) The
centroids of the hands are the centres of the tracked rectangles in the last time trame and the
hand centres in the current obscrvation The movement of the centroids in the consecutive
mmagcs 15 smooth that enables us to track the correct position of hands even it the Grasstire

algorithm labels them interchangeably
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7 3 Hand Tracking in Bimanual Movements

By using this technique we are able to track the hands correctly even when something else
occludes them For example, 1t one of the hands 1s occluded or totally hidden by the body tor
some moments and then appears, it can be trached correctly by heeping records of its last
position before occlusion and the position of the other hand Lhis 15 expected because when
a hand moves behind somcthing like the body or moves out of the image frame 1t most
probably appears in an area close to the last posttion betore the occlusion Therefore, 1t at
some points there s only one hand i the image the algorithm keeps traching the hands

properly without any contusion
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Figure 79 By compaung the hind cenuoids we can tiach the
hmds concetly in the consecutive images

2 In a bimanual movement, when one hand, completely or partially, covers the othcr hand
the hand extraction algorithm detcets onc big blob 1n the 1mages In this case tracking and

resuming the hands accurately at the end of occlusion 1s crucial

Since we don’t know what exactly happens during occlusion, after the end of occluston, we
have to know which hand m the image 1s the right hand and which hand 1s the left This 1
the important and ditficult problem ot traching in the presence of occlusion We introduce

another algorithm for this problem In order to track the hands we classity the bimanual
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7 3 Hand Tracking in Bimanual Movements

movements based on the path of each hand’s movement The movements are classities as

tollows,

Class 1 The hands move toward each other, one occludes the other for some moments and

passes over it Models ot 2 ¢ 4 and » presented in Figure 7 10 (a), (c), {d), and (h)

Class 2 The hands move toward each other, they collide and return in the opposite

directions Models of 4, g, £ and /shown in Figure 7 10 (b), (g), (b), and (1)

H2 HI1 H2 HI
H1 H2 H2 HI
H2Ht 7 b
2 = P 2
Hi [t ||
2 HI
H ¢ d
H2 HIH2 mn
Hz HUH2 HI
e f
Hi HI1
H1 H2
H2 H2
H2 0 H1 J)
H1 HI Hi
Hi
H2
o} el
H2 H2 ; i ;
HI In
H2 H1
H2 i =tm
M2H2 /
N &N &
m i

Igute 7 10 The path ot the hinds 1n the 14 models of bimanual
movements 111 md 2 tepresent hind number one and hand
numbes (wo The tluch ellipses tepresent the occlusion aeas (@ ¢
de [y wmda) ndthe solid small tect ngles represents
collisson (b, g, k, md )
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7 3 Hand Tracking in Birmanual Movements

Class 3 The hands move, at some point one occludes the other with no collision and they

return to their previous sides Movements of model ¢, 72 and ; shown in Figure 7 10 (), (1),

(1), and ()

Class 4 'The hands move with no hand-hand occlusion Occasionally one of the hands may
be occluded by something else etther partrally or completely Movements of model 7 and #

shown in Figure 7 10 (m) and (n)

In the first class the hands continue their smooth mosements without any collision In the
sccond class they collide and change their path In the third class they do not collide but
change their path And in the tourth class there s no hand-hand occlusion A tracking system

has to be able to rccognise these classes and trach the hands correctly at the end of occlusion

For example, clapping can be represented by model g tying a knot by model /, etc We aim to
reacquire the hands at the end of occlusion periods Therefore, we find the class that a
movement belongs to in order to understand the behaviour of the hands during a hand-hand

occlusion pertod

We approach the problem from a neuroscience pomnt of view, because n this way we can
understand the behaviour of the hands during occlusion periods  First, we review a motor
control phenomenon called Bewannal Coordiniatron and our motvation for using it as the basts
of our traching algorithm Based on this phenomenon we mtroduce a traching algorithm to
capture bimanual coordination and intelligently track and reacquire the hands in bimanual

motements

731 Bimanual Coordinatuon

Neuroscience studies show that in bimanual movements the hands tend to be synchrornsed
cttortlessly [Jackson 2000] This synchronisation appears in both temporal and spatial forms
[Dredrichsen 2001} Temporally, when the two hands reach for different goals they start and
end their movements stmultaneously |Diedrichsen 2001] For example, when people tap with
both hands, the taps are highly synchronised Spatially, we are almost not able to draw a uircle
with one hand while simultaneously drawing a rectangle with the other [Diedrichsen 2001]
“Synchtonmanion of the two hands v in a mucror-lihe tashion {Mcchsner 2002]” Lhis

synchronisation appears in two torms symmetrical and parallel (see Figure 7 11)
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7 3 Hand Tracking in Bimanual Movements

Researchers have presented ditferent esplanations for this phenomenon [Donchin 1998]
Some scientists explain that the tendency to move in symmetry 1s closely related to the
symmetrical structure of the body and the nervous system This can be cwplaned by a
tendency to co-activate anatomically homologous muscle groups Homologous muscles, as
well as bilaterally situated areas in the two brain hemispheres and 1n the spinal cord can be
activated together This 1o because ot therr nterconnection through neurconal pathways

|Mechsner 2002

Howcver, Mcchsner et al [Mechsner 2001] argue that the symmetry in bimanual movements
has a perceptual basts They suggest that spontaneous coordination phenomena of this kind

are purely perceptual in naturc

(a) (b}

iguie 7 11 () Synunetucal movement of fingets (b) Paallel
movement of tingers (Repruted with permission Nature
Publishing Gioup md I’ Mechsner 1ef[Mcchsner 2001])

lemporal coordination implics that the hands velocitics are synchromsed i bimanual
movements  Also the hands pauses happen simultaneously We explott hands temporal

coordination to track the hands in the presence ot occlusion

In order to detect the pauses we monitor the hand velocities A well-known esperiment
shows that the two hand velouties are highly synchromsed in bimanual movements
(Kennerley 2002] ‘Cirdle drawing 15 the tash of drawing crcles by the two hands
stmultancously i a symmetrical fashion [Kennceley 2002]” TFigure 7 12 shows the result of

this experiment on a healthy person |Kennerley 2002]
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In this experiment it 15 shown that the j-veloutics ot the two hands are highly synchronised,
and no phase dittcrence 5 observed  Vdlocity synchronsaton and  concurrent-pauses
dctection in bimanual moy cments are the bases ot an intelligent traching algorithm presented

In the nest section

732 Tracking Algonthm

We mtroduce a technique based on the dynamic model of Section 72 As in that section a
rectangle 15 constructed around each hand s soon as the occlusion 1s detected by the
occlusion-detection algorithm ot Scetion 7 2 a occlusion-rectangle around the big blob s

tormed (vee Ligure 7 13) We call it the awdmon rectungle
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7 3 Hand Tracking in Bimanual Movements

Figuie 7 13 Aun ouclusion rectmgle i formed nound the big blob
ot hands

We use the dynamic modcl to model the occlusion-rectangle  Lherctore, tor every side of the
rectangle the position, X, vclocaity, X, and acceleration, X, arc involved in the model Lhe
horizontal movemcnt ot the hands are modelled by the vertical sides, « and 4 in Figure 7 13,

and the vertical movement by the horizontal sides, @ and 4 For stmpliaty we define the

tollowng austlary ariables,

V, =X, cloaty of side «
v, =X, velocity of side &
V. =X, vdoaty ot side ¢

Vy=X; elocity of side d

Then the tollowing hand pause model 1« dctined to model the velocities of the hands in the

vertical and horizontal dircctions,

[ 2
Vo —\/vak TV,

_ 2 2 (7 10)
Ve TV TV

where the subscript £ indicates the discrete time index

In the moyements where the hands esther collide or pause (Classes 2 and 3) they return to the
samc sides prior to the occlusion period In thesc movements the parallel sides of the
rectangle in erther horizontal or vertical directions pause when the hands pause or collide
For cxample, i the modds of ¢, fand / the hands horizontally pause and return to thesr
previous sides In the models g and / they pause and rcturn in both horizontal and vertical

direcrions The horizontal pauscs of the hands are captured by the pauses ot the vertical sides
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7 3 Hand Tracking in Bimanual Movements

ot the occluston-rectangle and vice versa Due to bimanual coordination the pauses ot the
parallel sides are simultaneous In other words, when the hands pause either honzontally or
vertically the parallel sides associated with the horizontal and vertical movements of hands
pause simultaneously For example, 1n the models ¢ and 4 the horizontal sides ot the
occlusion-rectangle pause simultaneously when the hands pause or collide vertically during

occlusion In this case the velocities ot the horizontal sides of the occlusion-rectangle reach
zero 1his s captured by v, ; mn the hand-pause model In fact, a small threshold € >0 can
provide a safe margin because we are working i discrete time and our images are captured at
discrete ponts in time [f V, ; or V, ¢ talls below the threshold we conclude that the hands

have paused vertically or horizontally By detecting the pauses i the horizontal or vertical
direction we conclude that the hands have paused or collided and returned to the same sides

priot to occluston in that dircction

In the movements where the hands pass each other, no pause or collision 15 detected but a
change in the sign ot the velocities 15 observable Thc sign change 1s due to the fact that when
the hands pass each othcr they push the sides n opposite directions (see Figure 7 14)
Therctore, the sign of the velocitics are changed without passing through zero If no hand

pause 1s detected we conclude that the hands have passed each other

12

@ ®)

[iguie 7 14 The verue d sides of the occlusion-rectangle ne
pushed bick becse hands pass ech other and push the vertical
sides m opposite duection

In a typical movement the hand shapes may change during the occlusion period  For
example, in a movement where the hands move, the fingers may also move concurrently so
that the shape of hand 1s changed In this case the movement of fingers may prevent the

detection ot the simultaneous pauses ot the hands This s also truc when a pair of parallel
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7 3 Hand Tracking in Bimanual Movements

sides of the occlusion-rectangle arc both connected to one hand since the other hand 15 1n 2
small shape In this case, tor example, one of the vertical sides 15 connected to the palm while
the other 1s connected to the fingers Theretore, the change in the hand shapc may prevent

stmultaneous pauses of both the vertical sides

To investigate this problem we did an experiment presented in Appendis F The result shows
that the fingers and the hand are coordinated in the movement of one hand In other words,
the hand and fingers are temporally synchronised Our experiment shows that the velocity of
the hand and the velocity of the fingers are highly synchronised with almost no phase
ditference T'herefore, the pauses ot the hand and the pauses of the fingers that change the
hand shape happen simultaneously This 1s duc to the fact that in motor control the temporal
coupling not only between the Imbs but also within a imb 1s a very powerful constramnt [Ivry
2003] Theretore, the hand-finger coordination guarantees that the velocities ot the parallel
sides ot the rectangle arc synchronised and the pauses happen simultaneously  This

phenomenon makes the algorithm independent ot the changing hand shape

In some ot the models where the hands have purcly horizontal (models # and ) or vertcal
(models ¢, +, and &) movements, an unwanted pause may be detected in the vertical or
horizontal directions For esample, when the hands move only horizontally (see Figure
7 10(d)) a vertical pause may be detected because vertically they have not much movement
and the speed of the vertical sides may reach zero Also, n the models where a pair of parallel
sides of the octluston-rectangle move n the same direction” (e g horizontal sides in models
a, b, and ¢), while no zero velocity (pausc) 15 detected, we may wrongly conclude that the
hands have passed each other in that direction (vertical direction in models @, b, and ¢) These

problems can cause the tracking algorithm to run into trouble

In order to solve these problems we classify the velocty synchronsation of the hands
mentioned i Scetion 73 1hinto two classes, posttive and negative In the moyvements where
the two hands move m opposite dircctions (e g lett and right) the velocities are negatively
synchronised, while in the movements where they move 1n the same direction (e ¢ down) the

velouties are posttively synchronised

Ilere l)) duecton we mem up down left o1 ught
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7 3 Hand Tracking in Bimanual Movements

To distinguish the positive and negative synchronsations we detine the tollowing selouty
symchronesation model, which 1s the standard deviation of the relative velouties of the parallel

sides,

(8]

I < ! ]
Sv.:_- (val—vbi)‘-_z(vul_vb/)
(- N i
\ - | = (7 11)
Sy =7 (V( l—vdl)__z(v(J_vdj)
N /

(O8]

where N 1s the number of images (frames) during the occlusion period, ¢ and ; are the trame

- f_h -
indices, v, ,, v, ;5 V., and v, arc the vclocities of sides @, 4, ¢ and 4 at the £ trame

during occlusion

This model results in small standard deviations in the purely horizontal or purely vertical
movements as well as the moyements where the parallel sides are positively synchronised
For example, in a movement of model ¢, the vertical sides of the occlusion-rectanglc have

almost no movement during the occluston period  Lherefore, s, n the velocity-

synchronisation model (System 7 11) will be small In model ¢, the horizontal sides of the

octlusion-rectangle are positively synchronised s, in this case becomes small However, 1f

the vclouties of the paralle]l sides of the occlusion-rectangle are negatively synchronised (e g
model j) the standard deviations are large Because in this case the velocities of parallel sides

are mn opposite directions with ditferent signs The thresholds for the small s, and s, are

determined by experiment

Before we detect the hand pauses we capture any possible posttve synchronisation of parallel
sides of the ocddusion-rectangle during the occlusion period using the  velocity-
synchronisation model It a positive synchronisation for any pair of parallel sides 15 obsered,

the traching 1s performed based on the pauses of the other sides of the occlusion-rectangle
[For example, 1t 2 small $, 15 observed we base the traching on the pauses of the other sides, ¢

and 4 A small standard deviation i the vclocity-synchrontsation model means that a pair of
parallel sides of the rectangle have been postavely synchronised with quite similar velocihies
durmg occlusion Therefore, we should look at the pauses of the other <ides ot the occlusion-

rectangle during occlusion
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7 3 Hand Tracking in Bimanual Movements

Based on the velocity-synchronisation and hand-pause models the hand tracking algorithm 1s

summarised as tollowing,

1 Ifthe horzontal sides of the 1ectangle are positively synchronsed (small s, ) dureng the occlision period

1A If dwieng owcliseon there is ak such that Vi < E then the hands are

horiontally back to theer onginal position
1B Ebe the bands horzontally passed each other

2 Else if the vertral sudes of the rectangle are posaively symbromsed (small s, ) duseng the ocision
perod

2.4 If dureng owcliseon there 1s a k such that 'V, < E then the bandy are

rerfucally back fo then onginal position
2B Ele the bands vertwally passed each other

o

Else of dureng occlision there s a k sih that v, < E then the bands are honsontally bak to
thew original posttion
4 Ebe of dineng oclseon there is a k sueh that v, < E then the hands are 1ertically buck to then

O11gLndd postiton

\n

Else the hands passed eauh other

The above algorithm tracks the hands smartly during occlusion and makes a decision on the

posttion of the hands at the end ot occlusion
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7 4 Expenmental Results

74 Experimental Results

Before we start the experiments some intormation should be given about the distance of

camera and the hands, and the tilming area

In our cxperiments, the camera 1s placed about 250cm trom the subject filming a 70-by-70cm
area approstmately The resolution of the camera 15 set to 400-by-200 prvels Therefore, each
prel on the vertical asis corresponds to 3 5mm and on horizontal asis to | 75mm
approsimately on the filming area Also based on our ciperiments, that will be presented
later, an 1mage tahes 26 6ms to be processcd by the algorithm In other words, the time unit

between two consecutive tmages 1s 26 6 milliseconds
u=26 6 ms

Theretore, a velouty of | pined per time-unit 18 equal to 131 25mm per second or 13125
cm/s on the veral asis For example, a veloaity of 10 prsels per time-unit 1s equal to |3
meter per second approxmately on the vertical asts Also, a velocity of | pinel per tune-unit
on the horizontal axis 1s equal to 65626 millimetre per second All the units in the tollowing

examples are image pels and the time unut, #

First, we look at the performance ot the dynamic model in predicting the future posttion of
the rectangles The results of employing the dynarmic model i traching and predicting a
vertical side of a rectangle 15 shown in Figure 715 In this figure, the solid dots connected by
lines are the actual position of the side of a rectangle during a hand movement [he small
circles show the result of prediction by the dynamic model A closer look at this graph gives a
better view ot the ettectiveness ot the algorithm in predicting the nest position ot a side ot
the rectangle In kigure 7 16 the part ot the graph ot Figure 7 15 from the [15% to 162™ time
unit 15 magnitied Tt 15 clearly visible that the dynamic model 1s able to predict the tuture
position of the side of the rectangle accurately The graphs of the other sides of the rectangle

in thrs experment are shown in Figure 717
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7 4 Expenmental Results

In the second expermment the complete algorithm ot occlusion detection and traching during
occlusion i1s employed to track the hands in a movement in which the hands pass cach other
(see Figure 7 10 (h)) Some trames of this movement are presented in igure 7 18 In the tifth
to the ninth trame we sec that the algorithm has detected occlusion and the occlusion
rectangle around the both hands 1 formed From the tenth frame 1t 1s visible that the
algorithm has tracked and labelled the hands correctly The hand labels are the small vertical
lines on top of the hand rectangles The hand with one line 15 the right hand and with two

lines 15 the left hand

[gume 7 18 A imanual movement of vpe b The rectangle with
one small veitic 3l Ime on top denotes the ught hnd wd the
rectangle with two small veruc il hnes denote the left hand The
hinds ne tacked conectly 1t the end ot occlusion

To investigate the process of traching wc look at the graph ot the occlusion-rectangle sidcs
The graph of velocities of the horizontal sides of the occlusion-rectangle 15 shown 1n Figure
7 19(a) and tor the vertical sides 1n Figure 7 19(b) Lhese velocities belong to the frames in

Figure 7 18 with hand-hand occlusion

In this experiment, since the hands pass each other 1n oppostte directions (see Figure 7 18)
we observe opposite movements 1 the rectangle-sides velocities These veloctties are
negatively synchronised Large standard deviations in this expertment enable us to detect the
oppostte movements of the hands The values ot velocity-synchronisation model are 18 035
for the hortzontal sides and 8 828 for the vertical sides In the graphs of Figure 719 we can

see that at no pomt the velocity ot the parallel sides reach zero together T'he graphs of the
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7 4 Expernimental Results

hand-pause model (System 7 10) tor the parallel sides of the occlusion-rectangle are plotted in
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(a) (b)
Figuie 720 The giiph of the hand pause model tor (1) the
houzontil sides of the occlusion 1ectangle (on the vertical uis),
(b) the veitical sides of the occlusion 1ectngle (on the houzontal
(VDY)

In Figure 7 19 n all the velocities we obscrie a stgn change at some stage Since the sides of

the rectangle represent the rightmost, lettmost, top and bottom of the big blob during
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7 4 Expenmental Results

occlusion, when one hand passes over the other they push the «ides n the opposite

directions Therefore, a sign change in the velouties 1s observed

In the third example we look at the dynamic model in detecting hand pauses Some 1mages of
an experiment are shown in Iigure 7 21 In this movement (clapping) of type g the hands
collide and return in opposite dircctions In the 11" image (the 7" frame during occlusion)
the grey bov at the left of image shows the detection of hand pause in the horizontal
direction Immediately, in the 12" trame (the 8" frame during occlusion) the algorithm
detects the vertical pausc The grey box on top lett of the 12" frame shows the pause

detcction on the vertical direction

An interesting pont 15 the mndependence of the algorithm trom the hand shapes It 1s shown
in this experiment that during the wholc movement the hand shapcs are changed but the
algorithm keeps tracking and labelling them correctly In this algorithm we do not recognise
the shapes and therctore 1t 15 independent from hand shape which s a great advantage
Processing hand shapes s usually a trme consuming process In a real-time hand tracking

applications time 15 50 precious The less processing the taster running

In order to mvestigate the algorithm i this example the velocities of the parallel side of the

th

occluston-rectangle are plotted 1n Figure 722 In these graphs at the 7% frame during
occluston the velocities ot the vertical sides (on the horizontal ass) reach almost zero (sce
Figure 7 22(a)) 1heretore, the algornthm detects the pause in the horizontal direction The
velocities of the horizontal sides of the rectangle reach zero at the 8" frame during occlusion
(see Figure 722(b)) The graphs of thc hand-pause model are plotted i Iigure 723 These

aphs show that the hand’s horivontal pause was detected at the 7" trame and the vertical
grap P

pause at the 8" frame
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: L]

Figuie 721 A hand movement of type g m whuch the hands

collide nd 1eturn 1 opposite ditection Note the change n the
hand shape before and atter occlusion

Note that the zero threshold for the horizontal axis s twice the zero threshold for the vertical
axis This 1s duc to the fact that the camera s capturing an area of 7070cm m a 4005200
pinels frame Theretore, 1in a diagonal movement where the horizontal and vertical velocities
ot the hand are equal the dynamic model estimate the horizontal velocity as twice as the

vertical velocity
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DNgute 723 Giaph of the hand pause model for (1) the houzontal
sides of the occlusion rectangle (b) the verteal sides of rthe

occlusion-rectangle

Another motement of type g demonstrates synchronisation between the velocities of the

horizontal sides of the occlusion-rectangle For this experiment the graphs of the velocities

are plotted in Figure 724 1t 1s dlear that the horizontal sides are posttively synchronised with

quite stmilar velocities  Lhe velocity-synchromisation model, which s wsed to catch this
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synchronssation, gives the values presented in Table 71 The similarity of the horizontal-sides

movement 1s better presented by a high-low lines graph in Figure 7 25
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Figme 723 Giaph of the velocities ot p i dlel sides ot the

occlusion tectingle m 1 movement of type (1) hourzontil sides
(b) vertieal sides

Table 71 Values of velocity synchronisation model for the parallel sides of the occlusion rectangle

Rectangle Sides Standard Deviation ot the Relative

Velocities
Horizontal sides S, =149
Vertical sides S,=2013

the positively synchronised movement of the horizontal stdes 1s caught by the model and the

deciston 1« made based on the pauses of the vertical sides

The negative synchronisation of the vertical sides of the rectangle 1s observable in Figure

724(0) In this figure, the rectangles sides have pretty similar velocities but in opposite

directtons
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From ligurc 7 24(b) 1t seems that at the 6" frame the vclocities of the vertical sides reach
cero but the algorithm keeps tracking correctly  Although, 1n this example the algorithm
trached the hands correctly, there arc some cases occastonally n which the algorithm makes

wrong decisions We will measurc the pertormance ot the algornthm later
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Figuie 725 The velocities of the parallel sides ol the occlusion
1ectingle e positvely synchionised wath 1 smulu movement
which is ¢ aught by the velocity synchionis iwon model

The fitth experiment 1s presented to demonstrate the independence ot the traching algorithm
trom the camcra’s angle ot view and the type of movement In this experiment, a bimanual
movement 15 pertormed twice In the tirst time, the camera 15 placed on the side looking at
the hands horizontally (see Figure 7 26(a)) In the second example we changed the position
of camera to look at the scene trom a top-corner view (see Figure 726(b)) The selected
movement 15 so that from the side view the hands pass each other but from the top-corner
view they pause and return to their previous sides The results of traching are presented in
Figure 727 In 7 27(a) the movement 1s shown from the side view In 7 27(b) the movement
1s shown from the top-corner view As can bc seen the algorithm tracks the hands correctly

in both examples

() ®
Figure 726 The two angle of vicws (a) side view, (b) top-corner
1iew
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(b)
Figme 727 A bimnuil movement seen iom two angle of views,
(1) trom the side view  (b) troni the top coruer view
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In order to evaluate the algorithm 3500 experiments assoctated with ditterent models were
petrformed with many difterent hand shapes The results of the experiments are presented in
Lable 72 It 1s shown that the algorithm 1y able to track the hands correctly in almost 90% ot

times

Table 7 2 Performance of the traching algonithm using the dynamic model

# Movements # Errors Frror Rate Tracking Rate
(events) (Ya) (%)
3500 35] 1003 89 97

An important factor 1n the bimanual movements 1s the speed of movement A movement
can be pertormed slowly, moderately, or tast In our experiments we tried to include all
classes of speeds Therefore, in some of the movements where the period of occlusion 1s
short, e ¢ movement of type b, the camera speed brings some restriction to the algorithm In
this case the number ot 1mages taken during occlusion should be large enough so that the
algorithm can detcer hand collisions, ¢ g the movements ot type 4, or hand pauses, e g the
movements ot type ¢ Particularly, when a movement 1s performed fast very few images are
captured during occlusion The Kalman filtering process 1s based on the Kinematic equations
ot motion Theretore, 1n a fast movement the sides of the occlusion-rectangle have the
potentral to move further rather than to stop quickly In other words, a large ditterence
between the posttion of a rectangle side in two consccutive 1mages causes the algorithm to
esttimate a hugh veloaity for the side Theretore, it will be hard to detect the quich stop of

hands 1n a few consecutive images contaning a fast movement

In order to overcome this problem we changed the mechamism ot pause detection of the
algorithm Tn this case, the pattern of the sclouty changes ot the rectangle sides during the
occlusion pertod 1 determined to match one ot the previously tramed patterns for hand-
pausc ot hand-pass The new algorithm has demonstrated a good performance The details

ot the changes are presented in Appendis E

The other important parameter 1s the processing speed We did many esperiments in order to
measure the processing speced ot the algorithm With a fast camera worhing in 120 trames per
second on a Pentum II, | GHz the algorithm s able to process 37 5 framcs per sccond in
average It means that every image tahes 26 6 mulliseconds to be processed by the algorithm

on this machine
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Although some other groups have done some work on hand tracking in the presence of
occlusion, none of them has considered the problem ot traching the hands in bimanual
movements so widely  The CONDENSATION algorithm [Isard 1998a] has been
implemented by Gong et al [Gong 2002} works at a low speed able to process an image n 27
seconds on a Pentum 11, 330 MHz Gong et al have also a Bayesian Network-based
technique for modelling the semantics of interactive behaviors able to process 5 frames per
second on a Pentum 11, 330 MHz [Gong 2002] Lherr result of 13% error 1s based on the
number ot images 1n the database and not the number of events In our expeniments of
Table 7 2 the traching results are event-based 1 which each event (movement) may constst
dozens of images If we present our measurement in this way, assuming that on average the
number of 1mages beforc the occlusion period and atter the occluston period are almost
equal 1n a movement, thc performance ot the algorithm increascs to approsimately 95%
I'his ts due to the fact that betore the occlusion period the hands are correctly trached and

the number ot fals corresponds to the images atter the occlusion pertods

All the experiments and results presented here demonstrate that the hands have quite similar
veloctties 1n the same or opposite directions in bimanual movements In other words, they
are etther positively or negatively synchronused This reconfirms the coordination i bimanual

motements

Summary and Conclusion

A dynamic model based on the Kinematic equations of motion was presented to trach the
hands in bimanual movements A procedure tor predicting the future movement ot the
hands in order to detect possible hand-hand occlusions was introduced Therefore, we were

able to dctect the exact moment that occluston happens and cnds 1n a bimanual movement

We mtroduced a novel intclligent algorithm based on the dynamic model to track and
rcacquire the hands m a movement where hand-hand occlusion exists Based on the
bimanual coordination phcnomenon we presented a modcl to capture the coordination in the
bimanual movements in order to detect the positine or negatne synchronisation of the
hands  Also, the concurrent hand pauscs were detected 1in a modcl to track the hands in

ditterent types of bimanual movements presented i this chapter

We presented some esperimental results in which the proposed traching algorithm was

cvamuned under difterent types of movements We also demonstrated that the algorithm 1s
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independent from the type of movement, changing hand shapes, and the angle of view In
this order, it was shown that given that the hand shapes are changed in the movement the
algonithm tracks the hands correctly Also, we changed the cametda’s angle of view and tested
a motement in which from a view direction 1t belongs to a type of movement while from

another view 1t belongs to another type

We will use this algorithm in the next chapter tor traching and movement segmentation 1n

order to recognise bimanual movements
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Chapter &

RECOGNITION OF BIMANUAL MOVEMENTS

In the last chapter we introduced an ntelligent traching algorithm for traching the hands in
bimanual movemcnts in which the hands are partially or completely occluded tor some

moments Now, we move forward to rccognise bimanual movements

-’

By using the traching algorithm we can separate the hands from cach other and looh at the
moyement of each hand mdividually in order to understand the whole bimanual movement
The meaning ot cach hand movement must be combined so that the bimanual movement s
recognised as a single entity We ntroduce a Bayesian network tor the recogmtion of
bimanual movements irst, a quich review of Bayesian networhks and the beliet propagation
algorithm 1s presented Then the Bayesian network tor recognition 1s described 1n detad In
this networh Hidden Marhov Models are employed to recognse the partial movements of
the hands Partially rccognised movements arc fused at difterent levels of the network to
form the whole bimanual movement The movement 1s recognised at the top node ot the

network as a single movement constituted from the partially recognised movements

For another set of movements called concatenated periodic bimanual movements we change
the belief propagation algorithm to stabilise the belief of the nctwork 1n these movements A

short-term memory 1s applied to the network for the stabilisation of the beliet

A Bayesian networkh containing a single loop s also ntroduced for the recognition process
We dceply esplore some of the problems involved in the loopy nctworks The rcasons for
the consergence of the loopy network tor the recognitton of bimanual movements are
presented W also explorc the parameters nvolved in the convergence rate ot the loopy
networhs A ncw analytical tramework s presented to tormalise the conditions where the
loopy networhs converge rapidly We assess the presented networks on the two sets ot test
data, and show that all the proposed networks recognise the single bimanual movements very
accurately In the casc of concatenated periodic movements the networhs demonstrate

ditferent recognition rates which are reported at the end of this chapter
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8 1 Bayesian Networks

8 1 Bayesian Networks

“A Baesan netyork 15 a graphical model that cncodes probabilistic relationships among
variables of interest” |Hecherman 1996] Over the last decade, Bayesian networks have been
used for probabilistic reasoming in 2 wide range of applications trom medical to forensic
mvestigation Particularly, Bayesian networks are employed to combine a sct ot diagnostic
data 1n order to make a decision Lherc are other similar methods such as Dempster-Shafer
[Pearl 1998] or Fuzzy Logic [Zadeh 1992), which arc used in the hiterature for data fusion
Although, thesc methods are 1n many ways sumilar to each other, each application needs
particular models based on the type of application and the required result We will discuss
our application and the reasons about choosing Bayestan networks instead of e g Dempster-

Shater later on 1n this chapter

The heart of Bayesian networks hes in Bayes’ rule,

p(H |e) = M (8 1)
ple)

where H 1s the hypothesis and ¢ 1s the evidence This formula states that the beliet that H s
true upon obtaining cvidence ¢ can be computed by multiplying our previous belief p(H) by
the ikelihood p(e | H) that e will be matertalised 1t H is true The tcrm p(e) 1s the denominator

that 1s used tor normalisation

Carsal frees are Bayesian networks in which cvery new piece of evidence ¢ propagates through

via message-passing In causal trees cach node has at most one parent (sec Figure 8 )

Figute 8 1 A causal trce

Another type ot Bayesian nctwork s the camal polytree In this type of network each node may

have more than one patent (see Figure 8 2) Therc are other types of Bayestan networhs
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8 1 Bayestan Networks

which can be found in the literature [Pearl 1988], [Neapolitan 1990], | Cowell 1999] A set ot
nctworks are the causal polytrees containing loops Regular rules ot causal trees and polytrees
do not hold for this type of Bayesian network We will discuss thesc networks turther in the

next scctions

"iguie 8 2 A cusal polyuec

811 Behef Propagation in Causal Trees

Pearl has proposed a message-passing technique [Pearl 1988] 1n which the local belief at each
node of a causal tree 1s updated by the message recerved from the neighbouring nodes  Lhese
local belicf propagation rules are guaranteed to comerge to the optmal beliet for gy
connected netorks A singly connected network 1s a network 1in which no more than one path

enists between any pair of nodes Causal trecs are singly connected

Suppose that we have a trec depicted in Figure 8 3

Figuie 83 A putof acaunil tiee
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8 1 Bayesian Networks

A message which s communicated by a child to 1ts parent 1 expressed as A The messages
that s sent by a parent to 1ts children 1s expressed as 7 Assuming a typical node X has
cluldren, Y,Y,, .Y, and a parent U the belief propagation rules are summarised as

following,

¢ Belef updaung

Mo =]Tx, (82)
a(x)=n (U) M,, (83)
BEL(x) = oA( )n(x) 84

where A, (1) stands for thc message communicated trom the /* child ot
Y, & J

node X, which 1s the current strength of the diagnostic support,
nt, (U) stands for the message communicated trom Xs parent which 1s the

current strength of the causal support,
O 15 a normalising constant,
M, 15 the conditional probability matris, in which the (x, #) entry 1s given
by

M,, =Px|uy=P(X =x|U =u)
where 1t the varables at the nodcs ot the trce are mult-valucd with
XXy, X, and U 1,5, U

**n m

p('xl |ul) p(x’l | ul) p(xn Iul)
plx, Juy)  plx, |uy) p(x, |u,) ]
M., = ] [ (85)
p("] | llm ) p('x‘_’ le ) p(X” ‘ um )
¢ Bottom-up propagation
A(w)=M,, Mx) 806)
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where & (u) 1s the message calculated at node X, using the & messages

recetved, to be sent to ity parent U

¢ Top-down propagation

m, (0= on()][]r, W) 87

h#y
where A, (x) are the messages calculated at node X to be sent to each of its
j

children

In Equations 8 2 to 8 7 the parameters have the following probabilistic meanings,

Ay (U) = Pl | ) 88
m, (x)=P(x|el) 89
BEL(x) = P(x|e) (8 10)

where e stands for the total evidence available, e 1s the evidence contained i the tree

rooted at X, and €7 stands for the evidence contained m the rest of the network

812 Causal Polytrees

In causal polytrees the beliet propagation 1s summarised as following,

e Combine all messages coming into X cxcept for that coming from Y mnto a
vector V by multiplying all the message vectors element by element

e  Multiply v by the matrin: M, corresponding to the ink from X to Y
e Normalse the product M, v 1he normalised vector s sent to Y

e The behef vector of node X 1« obtaned by combining all incoming messages to

X and normalising

Details of the propagation rulcs for singly connected networhs can be found in [Pearl 1988,

[Neapolitan 1990], [Weiss 2000]

Pearl in [Pearl 1988] discusses that the absence of loops i the network permits us to develop

a local updating scheme simular to that used for causal trees Local belief propagation rules
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8 1 Bayesian Networks

proposcd by Pcarl are guarantced to converge to optimal beliefs in singly connected

networks

8 2 Recognition of Bimanual Movements

Recognition of bimanual movements can be accurately achieved by recognising the gesture

ot cach hand separately

[first, 1n a sequence of images, we have to separate the hands from each other Then for each
hand we must recognise the gesture At the end the recognition of the whole bimanual

gesture can be achieved by tusing the results of cach individually recognised hand gesture

8 21 Hand Tracking and Separation

In order to separate the hands wc use the traching algonthm ot Chapter 7 By this algorithm
we trach the hands individually n a scquence of images  Therefore, we are able to separate
the movement ot each hand while no hand occlusion exists However, when we have
occlusion the hands are not scparately recogmsable Thus, we cannot separate the

moyements of the hands

There can be two solutions tor this problem We can ignore the parts of the movement with
hand occlusion and just recognise what we see in the whole movement excluding occlusion
parts However, in many gestures such as time signs 1n British dign Language the important

part of the gesture 1s when the hands are seen connected together (see Figure 8 )

v
/

S
\
LN
/Alomh ™~

Figuie 8 4 Signs lo1 week two weehs and month in Brtish Sign
Linguage

Theretore, we cannot ignore the occluston parts of a movement The second solution s to

tahc the occlusion parts info account and recognise 1t separately Then, the recognised
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8 2 Recognition of Bimanual Movements

indiidual movements ot hands and the occlusion parts must be fused in order to understand

the wholc bimanual movement

Each hand s tracked and separately projected into a blank sequence ot images (see Figure
85) In order to preserve the movement of the hands with respect to the image frame, the
direction ot movement of cach hand s recorded For this we divide the 2-dimensional space

ot the tmage framc into 8§ equal regions [Wu 2002) as m Figure 8 6

\

e

[iguie 85 The hmds movements ne scpaited and projected mto
the blank sequences ol mmnges

Mgue 8 6 The mage trame 1s divided mito 8 equal tegons
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8 2 Recognition of Bimanual Movements

We call this the regonal-map The index ot each region represents the direction of movement

in that region  Index of zero represents immovability

By tracking the movement of the centre ot cach hand a vector representing the movement s
extracted for every single tframe Lhis vector represents the moyement from the last image to
the present one (see Figurc 8 7) The angle ot the vector with respect to the horizontal axs
determines the region in the regional-map i which the vector maps onto The region indes
15 recorded tor the movement at each time 7 Even tor a partial sequence including hand
occluston the direction vector fot the movement of the big blob (s extracted and the region

index 15 recorded

- ¥

/ (+7

INguie 8 7 The exuacted vector for 1 movement

822 Movement Segmentation

A bimanual movement 15 constituted from two groups of parts, the occlusion parts m which
one hand 1s occluded and the other parts, we call them non-occlusion, where the hands are
recognisable separately Since a bimanual movement can be a periodic movement lihe
clapping we separate ditfercnt parts, which we call segments Four segments arc obtaned as

tollowing,

A The begmning segment, trom the beginning ot a gesture to the first occlusion
part

B The occlusion segments, where one hand 1s occluded

C The muddle segments, a part of the gesturc between two consecutive occluston
segments

D The ending segment, from the last occlusion segment to the end of gesture

An example of a scgmented bimanual movement s illustrated over the time asts in Figure

88 Although we have assumed in this figure that the movement starts and ends in non-
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8 2 Recognition of Bimanual Movements

occluston segments, extending the algorithm to the other cases 1s straight-forward and makes
no ditterence mn the essence of the algonthm Also for the gestures in which no occlusion

segment 15 observed the process s the same with only one segment for the whole gesture

A matris representing the hand scgments 1s created tor a gesture We call it the segments-
matris In this matris, cvery row 15 associated with a single tframe in the captured image
sequence Lhe first column of the matris represents the segment indes, 1 for A, 2 for B, 3 toc

Cand 4 tor D

A B C B C B D
¥ \ ) \ [} \

S ] | U | | VR | ) V.
——left hand
= = = =right hand

time

Figuie 8 8 Segmenration ot 4 bimanual gestute over 1 period of
time The separite limes it segments A C, and D show the
sepuated hnds T segiments B the overlaped lines show

occlusion

The sceond column 1s the region index of the movement of the hand number 1 (normally the
right hand) "lhe third column represents the region indes ot the movement of the hand

number 2

IFor the segments ot occlusion the second column s the region index ot the movement of
the big blob and the third column 1s set to zcro An cxample of the segments-matris 1

presented in the Figure 8 9,
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[1 0 0]
B 1 3 7
cgiimng segmeunt |4 8
17 3
2 0 0
Occluston segment 5 10
Middle segment 3o
37 3
2 0 0
Occlusion segmeut 5 0 o
35 1
Middle segment 3501
30 5
2 5 0
Occlusion segment 5 s o
4 5 1
Ending segment 4 0 0
i 0 o)

Figuie 89 The segients matun 1s used to 1ecotd the segments

mdex and the motion vector of erch hind m animage The first

column 1s the segment mdey, the second and thud columuns ate
the monon vectors of the fnst mnd second hinds

For each hand a separate image sequence 1» recorded Also, a sequence ot images 1s recorded
for the occlusion segments Therefore, for a bimanual movement three files of images are
recorded, one tor each hand separately and one tor the occlusion parts In order to
synchronise the segments-matrin with the recorded 1mage sequences we create another
matrix called synchronsation matris In this matrers, every row represents a segment Lhe first
column of this matrix 15 the number of 1mages 1 a segment and the sccond column s the
segment mndcy [or example, tor the above scgments-matris the synchronisation matris 1s

extracted as tollowing,

Beginnng scgment f————[ 4 1]
2 2 Occlusion segment
Middle segment 2 3
2 2 |————{ Occlusion segment
Middle segment 3 3
2 2 Occlusion segment
Ending segment f———— L3 4J

By using the synchronisation matris we can extract the partial sequence ot images of each
segment trom the recorded tiles In the above esample, the tiest 4 1mages of the sequences of
the hands belong to the beginning segment of the gesture The first two 1images ot the bl of

occlusion are the first occlusion segment and so on
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8 2 Recognition of Bimanual Movements

823 Bayesian Fusion of Partial Discrete Hidden Markov Models

In a bimanual movement there can be several occlusion and muddle segments 1 or example
in [igure 8 8 there arc 3 occlusion and 2 middle scgments Thus, a data fusion structure must
be able to deal with multiple occlusion and muddle segments as well as the beginning and the

ending segments 1n order to understand the whole bimanual movement

As 1t was mentioned earlier, there are ditterent methods for data tusion The well-known
methods of data fusion are Bayesian networhks, Dempster-Shafer theory, Fuzzy Logic, and
Neural Networks [Pearl 1988 Petrou 2001 Zadch 1992 Theodoridis 1999] Each of these
methods can be used to combine the information of the partial hand movements within

difterent segments of a bimanual movement

The movement of a hand within a segment (or the two hands 1n an occlusion segment) can
be treated as a single movement appearing in the sequence ot 1mages of the segment These
partial movements can be modelled and recognised by Hidden Markov Modecls as explained
in Chapter 6 Therefore, for a bimanual movement we get a set of recognised partial
movements of the two hands and the occlusion parts We must combimne this intormation to

1
rccognise the bimanual movement

Dempster-Shater theory 1s a mcthod tor data fusion [Pear] 1988] When we have a synthesis
task where the constrants are imposcd esternally, our concerns centres on issues of
possibility and necessity In this case, the Dempster-Shafer theory seems more suttable for
anticipated queries On the other hand, the Bayesian networks are morce suttable for the tashs
of analysis (cg diagnosis) to piece togethcr a model of physical reahty [Pearl 1988]
Therefore, 1t we consider the partial movements of hands as the preces constituting a
bimanual movement, Bayesian networks seems more suttable to be employed for our data
tusion problem As a tuture work, however, we can use Dempster-Shater theory, Fuzzy
Logic and Neural Networks for the fusion tash and compare them with the Bayesian

networhs m bimanual movement recognition

An alternative to all the above techniques s the Coupled Hidden Markov Models [Brand
1997] Although this model has been used to model interactive hands [Brand 1997], a major

wedhkness s that this model 1s unable to dcal with occlusion In this model the two hands

! Thete ue thiee types of fusion teported m the Iiteratme [Petion 2001], dar level fusion, teamie level fusion and decision
level mision Ow appro«ch to recogmse the puual hind movements by Ihdden Muhoy Models and combine them by
each of the datr fusion methods 1s 1 exunple ot deusion level tusion
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8 2 Recognition of Bimanual Movements

must be separately recognisable throughout the whole image sequence lheretore, no
occlusion (including hand-hand occlusion) can be dealt with using Coupled HMM  Since
occlusion may happen i most bimanual movements we cannot ignore this part as we
mentioned earlier and a solution must be able to deal with it On the other hand, in some of
the movements one hand may be occluded by something clsc (e g the body) or leave the
scene m a segment other than occlusion segment A general solution must deal with this type
of occlusion too Thus, we must recognise the movement of the hands separately so that we
can deal with the segments contamning two hands or one hand as well as (hand-hand)

occlusion segments

We mtroduce a Bayesian network in which the whole gesture 1s divided into the movements
of the two hands The movement of each hand 1 also divided into the tour segments (see
Iigure 8 10) In this figure, the BEG, MID, OCC, and END are the evidence nodes The
occluded part of a gesture 15 a common part for the both hands  Lherefore, a single shared
node 15 considercd According to the number ot cases 1t can accept, each node 1n this tree
represents a multi-valued variable Thus, for a vocabulary contaning ¢ bimanual gestures
every node 15 a vector with length ¢ Lhe three top nodes of Bimannal Gesture, Left Hand
Gestnre, and  Right Hand - Gestmre are non-evidence nodes updated by the messages
communicated by the cvidence nodes The evidence nodes are ted by the partial Discrete

Hidden Marhov Models of difterent segments separately

Due to the fact that the beginning, middle, and ending segments of a gesture have no time
overlapping, and assuming that thc segments are of equal weight, the causal tree can be
abstracted to the tree depicted in Figure 8 11 Lhe NS nodes represent the evidences of the
beginning, middle, and ending segments at ditterent times for each hand These evidences are
the normahised vectors of lhhkelihoods provided by the partial Discrete Hidden Marhov
Models at the lowest level of the network These values represent the likelthoods that a given
parttal gesture 1 each of the gestures in the vocabulary in the corresponding scgment

How do the partial Discrete Hidden Markov Modcls work and calculate the likelihoods? We

discuss this in the next section
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Bunanual
Cesture

Rught
Hand
Gestuce

Figine 8 10 A Bavesim network tor fusing putinl Discrete
Hidden Mathov Modcls Lor the recogmtion of bunanual

novements

Figue 8 11 1he abstiicted Bavesnin nerwork tor the recogrution
Ol lmnﬁmml motcments
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824 Parual Discrete Hidden Markov Models for Partial Gesture Recognition

In order to recognise the whole movement we rccognisc the partial gestures of each segment
scparately  For this, we construct an eigenspace tor each hand based on the results ot
Chapter 6 A separate eigenspace s created, also, for the occlusion segments These
eigenspaces are made by the movements in the traiming set As i Chapter 6, by projecting all
the 1mages of one hand mto its own eigenspace a cloud ot pomnts s created A set of
codewords 1s extracted tor each eigenspace using Vector Quantisation Therefore, by
projecting a scgment of a gesture nto the corresponding eigenspace a sequence of
codewords 15 extracted For each hand in a non-occlusion segment a 2-state left-to-nght
Discrete Hidden Markov Model (see Figure 8 12) 15 constructed Due to the fact that a partal
movement of 4 hand 1 a segment 1s normally a short movement a 2-state DHMM s suitable
to capture the beginning and end of the movement  Every segment of a gesture has its
individual DHMMs Thus, for cvery gesture in the vocabulary ot bimanual movements seven
DHMMSs are constructed, two for the beginning segments tor the two hands, one for the
occlusion segments, two tor the muddle segments, and two for the ending segments By using
the cntracted sequence of codewords the DHMM of each hand 1n ditterent segments s
tramncd  Lhe DHMMs of the occlusion segments are trained by the estracted sequence of

codewords ot the projected images into the corresponding cigenspace

DNgne 8 12 A 2 state lett to ught Fidden Muhov Model 1s used
lov the putial gestutes

For example, for a vocabulary of 10 bimanual movements 70 DHMMs are created and
tframed In the recognition phase the same procedurc 1s done A given gesturc 1s scgmented
Images of each segment arc projected into the corresponding cigenspace and the sequence ot
codewords 1y extracted By employing the tramed DHMMs the partial gesture of each hand
presented in a segment can be recognised However, we use the DHMMSs to calculate the
likelthoods that a grven partral gesturc 1s cach of the corresponding partial gestures m the
vocabulary A normalised vector of the likelthoods for a given partial gesture in a segment 1s
passcd to one of the evidence nodes 1n the Bayesian network ot Figure 8 11 For enample,

the second scilar in the NS vector of the left hand s the likelthood that
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® Ina beginning segment the given partial gesture 1s the gesture number 2 in the
vocabulary, calculated by the partial DHMM of the beginning segment of the lett

hand ot this gesturc

® In a middle segment the given partial gesture 15 the gesture number 2 1n the
vocabulary, calculated by the partial DHMM of the middle segment of the left

hand of this gesture

and so on

The occlusion vector, which s ted by the likelthoods of the DFMMs of the occlusion
segments, 15 a shared message communicated to the 11T and RH nodes as evidences for the

two hands

The network looks /gpy (containing a loop) The nodcs of BG, LH, OS, and RH form a loop
Theretore, the network does not seem to be singly connected and a message may circulate
indetinitcly However, the node OS 1 an cvidence node Referring to the propagation rules
the evidence nodes do not recetve messages and they always transmit the same vector
Therctore, the NS and O nodes are not updated by the messages ot the LH and RH nodes In
fact, the LH and RH nodes do not send messages to the evidence nodes Theretore, although
the network looks like a loopy network, the occlusion node of OS cuts the loop and no
message can circulatc in the loop "Fhis cnables us to use the beliet propagation rules of singly
connected networhs in this network In the nest sections, however, we change the structure

ot the network to a loopy one and will assess 1t in recognising the gestures

The procedure of recognising partial gestures and tusing the results by the proposed Bayesian
networh n order to recognise a bimanual movement 1s summarsed i the following

algorithm,
The Algorithm for Bimanual Movement Recognition

1 A bimanual gestie is segmented by the tacking algorithm

2 The begruning segment
21 For every hand the beginung segment 1s projected tntg the eigenspace of the corvesponding hand
2 2 The sequence of codenords 15 extracted for each band

23 By employing the DIHMMs of the beqinmng segment of each hand the vetor of lbkelihoods s
calinlated and normalised
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24 The 1ectors of bikelthoods are passed into the worresponding NS nodes white the vector of occlitsion
node is set to a vector of all 1
25 The nodes’ belefs are updared

An occlnsion segment

31 The tmage sequence of the segment s projected tnto the ewgenspace of the oclitsion segments
32 A sequence of codenoids iy extracted

3 3 The wector of likelihoods o calitlated and normalised by wsing the corvesponding DHMMs
34 The wector s passed wnto the O node

35 The nodes’ belefs are npdated

A mddle segment

+ 1 For crery band the corresponding image sequence i piojected thto the ol responding ewgenspuce
4 2 The sequences of codenords are extiated

4 3 The veutors of lkelhoods are calenlated and normalised by 1sing the corresponding DHMM
44 The vectors of bikelhoods are passed 1o the corresponding NS nodes

4.5 The nodes’ belief are npdated

W hile there are more oudiston and muddle segments the parts 3 and 4 of the algorithm are repealed

The endrng segmient

6 1 For every hand the image seqience is projected iiito the comesponding eigenspace

6 2 The sequence of codewords are extraeted

6 3 The wectors of bkelihoods are cabulated and noimatised by nsing the DHMMy of the ending
SELIIENLS

64 The vectors are passed to the corpesponding NS nodes

65 The nodes” beliefs are updated

7 The gesture with the hughest probabulity i the local belief of the root node s the best match

825 Expenimental Results

15 bimanual movements were created as it the hands were doing regular dailly movements

like clapping, signing Wednesday m the British Sign Language, knotting a string, turning over

the Jeaves of a book, and some movements trom sign language A tew sample frames of each

mo\ ement are shown in Figure 8 13
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Figwe 8 13 Four sample fiames of each bimanual moyement
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Tigure 8 13 (contd ) Foutr <amiple fiames of each bimanunl
moyenment

For every movement we captured 10 samplcs Half of the samples (75) were treated as the
training set and the rest as the test set By using Principal Component Analysts the
eigenspaces were formed By applying Vector Quantisation 128 codewords for each
eigenspace were extracted By this number, each codeword represents approximately 100

data pomnts 1n the training set’ A two states lett-to-right Discrete Hidden Markov Model was

- In Chapter 6 1t hs been shown that bised on the vinnon m data, simiariies and processing speed this 1te 15 a proper
chiowe
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created for the segments of the hand gestures The DHMM of every segment of a gesture

was tramed by the 5 samples in the training set

In the recognition phase the samples ot the test set were used Here we present the results ot
some experiments on the gestures in the test set The beliet changes of the LH, RH, and BG
nodes of the nctwork for a clapping gesture are shown in Figure 8 14 In this figure, the thin
lines represent the valuc of the behet vector corresponding to the correct gesture The other
lines, which appcar as thick solid hnes represent the other elements of the belief vector At
the beginning the network 1s inttialised Due to the tact that all the gestures in the vocabulary
are assumed to have equal prior probabiities the prior probability ot the root node 1s
assumed to be a 15-vector with equal values which are 00667 Also the initialisation of the

nctwork 15 done by setting all the evidences to | The transition matrices were sct to,

08 1=
m, =
710014286 1 #

The behef of the nodes starts from the mitral equilibrium This titial point 1s presented as the
initral segment 1n the graphs ot Figure 8 14 By processing the beginning segment of the
gesture the beliets of the nodes are updated and presented as the second segment in the
graphs The graphs show that the gesturc has becn recognised rapidly in the beginning

segments and this result has been preserved throughout the rest of gesture

The network was employed to recognise all the movements in the test set By this algorithm
74 out of 75 movements 1n the test set were recognised correctly The graphs ot the belief
change ot the only gesture that was not recognised correctly are shetched in Figure 8 15 At
the beginning the gesture was correctly recognised From one point onward the belets are
changed so that the gesture was recognised differently Our investigation shows that trom
this pomnt the DHMMSs have resulted i different likelthoods and this result has been
preserved throughout the rest of the movement Although, in the mis-recognised part of the
mozement the belicts are not as confident as the correctly recognised part, recognition 1s
performed based on the highest probability Therefore, 1t 1s concluded that the recognsed

gesture 15 the gesture with highest probability in the local beliet ot the root node
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8 3 Recognition of Concatenated Periodic Bimanual Movements

83 Recogmition of Concatenated Periodic Bimanual Movements
Many bimanual movements can be periodic 1n cssence Clapping and drummung are somc
examples In the environments where the bimanual movements arc used as a communication

mcthod, ¢ g Virtual Reality, recognising concatenated periodic movements 1s crucial '

We use the Bayesian network of the last section in order to recogruse this type of movement
The important pomts m such a process are correct recognition ot the movements over the
whole repetiion periods and exact detection of gesture changes when difterent movements

are concatenated We use the trained models ot the last section

831 Recogmtion by the Onginal Bayesian Network

Using the proposed Bayesian network, we did many experiments on concatenated periodic

movements The results of onc ot them are presented herc

Three bimanual gestures were pertormed consecutively, each of which was repeated dozens
of imes From the 15 movements, first gesture number 3 was repeated 5 times It was
followed by gesture number 2 repeated 30 times and followed by gesture number 5 repeated
41 times Therefore, the first gesture 15 divided into 11 segments, the second gesture into 61
segments, and the last one into 83 segments Given the fact that the first segment m the
graph of local beliefs represents the belief of initralisation, the first gesture transition should
appear m the 13" segment and the second transition 1n the 74” segment  The local beliet of
the root node 1s plotted in Figure 8 16 The gestures are correctly recognised most of the
time Also, the gesturc transitions are detected properly However, it can be seen, particularly
in the graph ot the second gesturc, that the belief 1s not very stable and 1t varies such that at

some pomnts 1t Flls below the graph ot other gestures This happens when the partial gestures

of one or two hands are recognised wrongly

Although the contustons can be treated as temporary spihes, we may come to a conclusion
that the gesture has changed at some points In tact the belief 1n other gestures 1s higher than

the second gesture at those pomts that supports the transition hypothests

P Aany Vieud Realuy |pphmuom have been mtioduced in mdustry wheie bimanual movements me the man souce of
communiation Some mtetesing Apphcitions e demonstated by 4 Canadian compay called Vivid Group at
WY \1\J(lmoup com In these ipplicanons wsers do some basic peuodic bimanual gestwies 1y ouder o conuol
spacc(.mll shoot the encmy tloops etc
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832 A Modified Belief Propagauon
In order to avoid these contusing spihes we make a shight change in the beliet propagation
algorithm It the beliet of the root node 1s somehow memorised so that the temporary

contusing evidence cannot change the belict easily the contusing spihes are eliminated

For this, we add a memory to the root node of the network This 1s done by replacing the
prior probability of the root node with the current local beliet of the node In other words,
the current belief of the root node 1s treated as the prior probability of the node in the next
step When a hypothesis (that one of the gestures i the vocabulary is the correct gesture) 1s
strengthened multiple times by the messages recerved from the DHMMs, many strong preces

of evidence are needed to change this beliet

Although, by applying this modification the local behets are no longer representing the
correct posterior marginals, the result would be usetul for recognition Figure 8 17 shows the
result ot this modification on the movement mentioned in the last subsection Obviously, the
contusing spihes arc ciminated and the gestures arc recognised correctly However, replacing
the prior probability of the root node with the node beliet can cause numerical underflows’
while a gesturc 15 repeated several tmes  Lhis will result in extreme delays in detecting gesture

transitions (see Figure 8 17)

3 By numerieal undertlow we men both the ICLE defimition of numencal undatlow and extiemely small numbers
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8 3 Recognition of Concatenated Perodic Bmanual Movements

In this figure, the first gesture transition point 1s detected after the 20" segment while the
actual transition point 13 1n the 135 scgment The second transition 1 detected a little after the

120" scgment but the actual transition point s in the 74" segment
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INguie 8 17 Local beliet of the toot node for the network with
mewmowy for the 3 concatenated mosements

o

To avoid the numerical underflows and contusing spikes we restrict the memory By this
restriction the prior probabilities ot the root node cannot fall below a certain imut The
results of the network with short-term memory with the limut ot 107 are presented in Figure

818
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Figuie 8 18 The beliet ot the 1oot node for the network with
shoit tetm memory tor the 3 concatenated motements

In this figure the contusing spihes are avorded while delays in detceting the transition points
have reduced to a few units (scgments) The first and second transitions were detected one

segment and two scgments respectively atter the actual transihon points
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8 4 A Loopy Network for Recognition

84 A Loopy Network for Recognition

In Section 8 2 4 we mentioned that the network can contain a loop it the node of OS 1s not

an evidence node Pearl in [Pearl 1988] states that

“When loops are present, the network 1s no longer singly connected and local

propagation schemes will invariably run mto trouble  If we ignore the

existence of loops and permut the nodes to continue communicating with each

other as it the nctwork were singly connected, messages may circulate

indetimitely around the loops and the process may not converge to a stable

equilibrium
Murphy et al [Murphy 1999] have empirically shown that Pearl’s beliet propagation
algorithm works as an approsimate inference scheme m a wide range of medical applications
conftamning non-singly connected networks or the networks with loop In this section we
investigate a loopy network to see whether it converges to approxtmate probabilities in our
problem, and under what circumstances a loopy network converges rapidly so that we can
expect little errors in the probabiliies Also, we test the loopy network to see if it has any

advantage over the singly connected network trom a recognition rate point ot view

8§41 Behef Propagation in the Loopy Network
We change the structure of the onginal Bayesian network of Figure 8 11 so that the node OS

15 replaced by a sub-tree ot two nodes rooted at a non-evidence node making the network

loopy (see Figure 8§ 19)

Figuie 8 19 The Bayesin netwotk cont unmg 1 loop
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8 4 A Loopy Network for Recognition

In this network, the OS 15 an evidence node while ON 1s not The local beliet of ON s
updated by the messages recerved trom OS, LH, and RH Messages can circulate in this loopy
network indefinitely While the messages are arculating the local belief of every node 1s

updated regularly

We employed this network to recognise the bimanual gestures in the test set It was observed
that the algorithm converges to approsimatc posterior marginals on the correct side ot the
decision hine Tigure 8 20 shows the result of the same clapping gesture as Figure 8 14 using

the loopy network
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Figme 8 20 The local beliet of the (3) LH (b)) RH d () BG

node of the loopv netwotk tor the clippig gesture

In order to investigate the beliet convergence of the algorithm we heep traching the belief
changes of the nodes in the networh As an example the belief change of the root node for
the above clapping gesture 1s plotted in Iigure 8 21 In Figure 8 21(a) the beliet convergence

of the root node as a function ot tteration for the beginning segment ot the gesture 1s shown
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8 4 A Loopy Network for Recognition

In this expermment the convergence imit has been sct to 10 ™ which means that the network
stop propagating messages when the total change of the belet vector of root node 1s less
than the hmit We have chosen this value in this examplc to better show the consergence ot
the algorithm Normally, a limit of 10° suffices Figures 8 21 (b) to (d) are the convergence of
the root node beliet tor an occlusion, a middle and the ending segments respectively As it s

shown 1n thesc graphs, the algorithm converges rapidly in all the scgments of the gesture
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Figme 8 21 Beliet convergence of the 100t node mn the loopv
network at the (1) begmnmg (b) occlusion (€) nuddle and (d)
endig scgments {or the clippmg gestue

In order to show the convergence ratc ot the algorithm the /g plots ot the belief changes are

plotted in Figure 8 22
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The fgg-plots show that the error rate decreases geometrically as the tteration increases The
hinear relation and the number of iterations in the /Jgplots demonstrate the rapid
convergence of the algorithm as 15 depicted in Figure 8 21 Thus rapid convergence, then, can

predict that although the calculated beliets are not correct posterior marginals the error will

be small

842 Why Does the Loopy Propagation Converge 1int our Network

Pcarl [Pearl 1988] has stated that in order for a message passing scheme to be successful
doible conntzng must be avoided In a singly connected nctworh double counting s avoided by
the consentional beliet propagation algorithm But in the loopy networks double counting
cannot be avorded as the messages are circulating around the network Then why should the

loopy propagation ever converge? Wetss in [Weiss 1997] states that
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8.4 A Loopy Network for Recognition

. although the evidence is double counted, all evidences are double counted
in equal amounts.”

The double counting in our loopy network can be formalised by an unwrapping technique
[Weiss 1999], [Weiss 2000]. In order to unwrap the network first we should convert the
Bayesian network to a pairwise Markov net. For any node that has multiple parents a
compound node is created into which the common parents are clustered. Then the sub-tree
rooted at the original node is replaced by a sub-tree rooted at the compound node with the
original node as its child. The pairwise Markov net for the Bayesian network of Figure 8.19 is
shown in Figure 8.23. In order to keep the probability distributions identical to the original
network the pairwise potentials of the Markov net are the conditional probabilities of
children given parents, except for the potentials between the compound node and its parents.
These potentials are the identity matrix, which elements are set to one if the node has a
consistent estimate of the parent node and zero otherwise [Weiss 2000]. The unwrapping of

the Markov net can be done as following.

For the node BG in our loopy network at iteration time t we construct an unwrapped tree by

setting BG to be the root node and repeating the following routine t times [Weiss 2000],

e Find all leafs ol the tree (nodes without any children)

 For each leaf, find k nodes in the loopy graph that neighbour the node

corresponding to this leaf

e Add k-\ nodes as children to each leaf, corresponding to all neighbours except
the parent node
The transition matrices are identical to those in the loopy network. For our loopy Markov net

the unwrapped tree is shown in Figure 8.24 for three iterations.

The unwrapped network is constructed so that the messages received at node BG after t
iterations are identical to those that would be received at the loopy network. The unwrapped
network is singly connected. Therefore, it is guaranteed that the belief propagation algorithm
gives correct beliefs at time t But every iteration of the loopy propagation gives the correct
belief for a different problem. Then, why should this scheme ever converge? The answer is
that the unwrapped network at time /+/ is the unwrapped network at time t plus an
additional hnite number of nodes at the boundary. Therefore, the loopy propagation will
converge when adding boundary nodes does not change the posterior probability of the BG

node in the centre of the unwrapped network.

165



8.4 A Loopy Network for Recognition

An important point is how fast the loopy propagation converges. In the subsequent section
we formalise the circumstances that the algorithm converges rapidly in the loopy network for

bimanual gesture recognition.

Figure 8.23. The pairwise Markov net of the loopy Bayesian
network

Figure 8.24. The unwrapped network of the loopy Markov net
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8.4 A Loopy Network for Recognition

8.4.3 Convergence Speed in the Loopy Network
In order to hnd the general principles for the convergence speed of the algorithm we

consider a loopy network with N wunobserved (hidden) nodes U, , £ / N and N

observed (evidence) nodes O , e a ¢ h of which associated with a hidden node

depicted in Figure 8.25.

Figure 8.25. A single loop network with N unobserved nodes and
N observed (evidence) nodes each of which associated with an
unobserved node

Here, we use the same notation as [Weiss 2000] for the mathematical expressions. Based on

the basic rules of message passing in the singly connected networks, the message node UN

sends to £/, is given by,

VN, aMu,ut(voluN® "uN,uN) (8-11)

where z = x 9y <> z(i) =x(i)y(i), ~ isthe message the observable node 0 Nsends to
UN, “uNxiN is the message node UN xsends to UNi ”u Nii the transition  matrix

corresponding to the link from UN to Ux and a is the normalisingfactor.

Similarly the message that node UN x sendsto UNis
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) 6.2)

Continuing around the loop, we return to U1 by,

(8.13)

Thus, the message UN sends to Ux depends on the messages UN sends to Ux at N steps

before,

(8.14)

where the matrix CN] is defined as following,

(8.15)

and the matrix Di is defines as a diagonal matrix whose elements are the constant message
sent from observed node O, to Ui. Using the matrix CN], Weiss [Weiss 2000] has proven

that in a single loop network,

1 VuNit converges to the principal eigenvector of CNX

2. Vuai{ converges to the principal eigenvector of D,
3. The convergence rate of the messages is governed by the ratio of the largest

eigenvalue of CN] to the second-largest eigenvalue

He states that when the ratio between the second-largest eigenvalue and the largest one is
small, loopy belief propagation converges rapidly and furthermore the approximation error in

calculating the correct posterior marginals is small i.e.,

(8.16)

Now we formalise the circumstances for which the above unequality holds.

Obviously the second-largest to largest eigenvalue (SLLE) ratio is related to the evidences

and the transition matrices. We assume that each node in the network represents a”-valued
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8.4 A Loopy Network for Recognition

variable. Therefore, each message is a vector with length p and M UU is a pxp matrix. We

define vi to be the sum of the elements on the /hrow of CN excluding the diagonal

element,

(8.17)

Il
—_—

[S——

The Z1Gerschgorin disk is defined as the set of points on the imaginary-real plane whose
distances to cu are at most r{. In other wbrds, G{ is the set of all complex numbers £ such

that,

r

G = ze Z:\z Li=Sk (8.18)

jr

Based on the Gerschgorin theorem [Hager 1988] every eigenvalue A of CNX

AeQ G, (8.19)
=]

Also, if m Gerschgorin disks form a connected region of R disconnected from the other

disks, then there are exactly m eigenvalues in the region. In order to find the relationship

between the eigenvalues of CNK and the evidences, we first assume that M Ul is a stochastic

matrix close to the identity matrix. By closeness we mean that the diagonal elements of
matrix M are much larger than the off-diagonal elements. In this case, by multiplying M by
the evidence matrix D, the diagonal elements of the product have approximately the same
values as the evidence D, while the off-diagonal terms are kept small, given D is normalised.

Specifically,
M : L (8.20)

where £ is a small value, then
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Q=M D
41 % dij
¢ g 1 (8.21)

The Equations 8.20 do not necessarily mean that all the diagonal or off-diagonal elements of

M should be equal.

The eigenvalues ofQ are inside the Gerschgorin disks with as the centre, and the sum of

off-diagonal elements of row]j as the radius. Due to the fact that the off-diagonal elements
are very small, the radius of the Gerschgorin disks will be small too. Therefore, the
eigenvalues are mainly positioned by the disk centres. Furthermore, the disk centres are
strongly under the influence of evidence matrix D. We can conclude that the eigenvalues of

Q are strongly related to the diagonal matrix D whose elements are the evidence vector E,
A E (8.22)

where A is the set of eigenvalues.

(8.23)
A’max emax
where A¥C and esc stand for the second largest eigenvalue and the second largest evidence

respectively. Therefore, if the ratio of the second-largest value to the largest value of evidence

E is small the SLLE ratio will be small too.

In matrix CN if all the transition matrices along the loop from Ul to UN are close to the

identity matrix, the ratio of the eigenvalues of CN is related to the evidences E{to EN,

X.. » €
sec Jgp (824)
Amax eﬂgg)
where el™p and are the second largest and the largest elements in the product of all the

evidence vectors along the loop.
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Therefore, 1t the final value of the term on the night side of Relation 8 24 15 very small the
beliet propagation algorithm converges rapidly In other words, 1f the product of all the
evidences along the loop support one of the hypotheses strongly, the loopy belief

propagation converges tast

However, 1t the diagonal clements ot the transition matrices around the loop are not much
larger than the ott-diagonal elements, then Relation 8 24 no longer holds In fact the ratio ot
the agenvalues ot Cy; s dommated by the ratno of the egenvalues of the transition
matrices [Lssentially, the ratio of the second-largest to the largest eigentalue of a stochastic
matris with equal elements tends to zero Theretore, the closer the transition matrices are to
such a matrrs, the taster the loopy propagation algorithm converges In other words, the

higher the uncertainty, in the transition matrices the taster the algorithm converges to some

uncertain results

844 Simulation Results
In Section 84 1 we showed that the loopy propagation converges rapidly fot recognition of
bimanual gestures In order to investigate the convergence speed of a loopy network we have

done some stmulations Some results are presented in the following

A networh same as the one tor bimanual recognition 15 shown in Figure 8 26

Figute 8 26 A loopy netwotk tor simulwions to measwe rhe
convergence 1tc
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The node A has no evidence node connected to 1t and equal prior probabilities have been
assigned Nodes B, C, and D receive evidences All the nodes represent 15-valued vartables

We present 3 sets ot evidences and transition matrices with convergence limit equal to 10 te

1 Small evidence ratio

m, =095 1=
m, =0 00357 N

loop

= 200209

loop
mix

The behet propagation algorithm converges in 9 tterations In other words, the beliet change
of the root node 15 less than 10" after 9 tterations Given the small evidence ratio the rapid

convergence of the network was expected

The graphs of product of the cvidenccs (the evidences-product vector) and the final belief at
the root node are plotted in Figure 8 27 lhe contergence rate as a function of tteration s

plotted 1n Figure 8 28
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Figuie 8 27 (1) The noimalised product ot 1ll the evidences long
the loop and (b) the tmal beliet at the oot node when the belief
propagation Algouthm converge
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Fguie 8 28 The beliet propagition igorithim converges m 9
iterauons 1n this example (1) The graph of total change m the
locl bebiet of the oot node while the algonthm converges, (b) the
ing-plot of the rotal change m the local belief ol the root node

2 Large evtdence ratio

m, = 095
m, = 0 00357

Lloop

SLC

loup
mix

= 09940

1=
1% j

Figure 8 29 shows the graphs ot the product of all the cvidences along the loop (normalised)

and the final beliet at the root node In this example, the process converges very slowly n 95

tterations This was espected due to the fact that in this example the SLLE ratio 1s large lhe

graphs of the convergence rate as a function of tteration arc shown in Figure 8 30
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the total change

In the third set ot data the transition matrices are not close to the identity mateix as opposed
to the Examples I and 2 Wc use the second set of evidences with which the belief
propagation algorithm converged slowly mn 95 itcrations m Esample 2 However, with the

ncw transttion matres the process converges yery rapidly

3 Transition matrix not close to identity matrnix

m, =01 1=
m, =0064286 1%

lovp

== 09940

” loup
mix

The belef propagation algorithm converges in 3 iterations The graph ot the local beliet of
the root node at convergence ts shown in Figure 8 31 The graph of the convergence rate as a
function of iteration 1s plotted in Figure 8 32 As can be scen, the spced of convergence s

tast but the values ot the local belief at the end are not very confident
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8 5 Recognition Results of the Proposed Networks

85 Recogmtion Results of the Proposed Networks

In this section we employ the three proposed Bayesian networhks to recognise the single

bimanual movements and the concatenated periodic bimanual movements

8 5 1 Recogmition of Single Bimanual Movements

Thc original Bayesian nctwork, the network with short-term memory, and the loopy network
were tested with the 75 bimanual movements ot the test set All of them recognised the same
74 out ot 75 gestures correctly (see Table 8 1) The loopy network converged rapidly in all the
esperiments  The results show that the loopy network can recogmise single bimanual
movements as well as a singly connected network In other words, despite the conventional
beliet that the loopy network may run into trouble, 1t can recognise the single bimanual

movements well

In [Brand 1997] the Coupled HMM has resulted n 94 2% recognition rate with a vocabulary
of 3 T’ar Chr gestures (with no occluston) and a small test set induding one third of the
examples i the tramnmg set As shown m Lable 8 1, the proposed algorithm 1s superior to the
Coupled HMMs with higher recognition rate and a larger number of gestures i the
vocabulary As it was mentioned earlier the Coupled HMMs cannot deal with occlusion

which 1s a considerable weakncss

Table 8 I Recognition results for the single bimanual

movements
Bayesian # # Correctly | Recognition # # Correctly Recognition
Networh Gestures | Recognised | Rate based on | Segments | Recognised Rate based on
gestuies # pestures Scgments # Segments

Ongmnil 75 74 98 6% 1035 1022 98 74%
Network

Netwoth with 75 74 98 6% 1035 1030 99 5%

Short-term
Memorv
Loopy 75 74 98 (% 1035 1021 98 64

Network
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8 5 2 Recogmition of Concatenated Periodic Movements
Many concatenated periodic bimanual movements were also tested by the three proposed

networhs The results of recognition tor the example ot Scction 8 3 tor the three networhks

are presented in Figure 8 33
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8 5 Recognition Results of the Proposed Networks

Obviously, the network with short-term memory recognises the movements better than the

others 1he loopy network recognises almost the same as the original network

In order to measure the recognition ratc of each network in the concatenated periodic
bimanual movements we tested the networks on all the concatenated pertodic bimanual

gostures we have m our test set The results are presented in Lable 8 2

Table 8 2 Recogmtion rate of the networks for concatenated periodic movements with total number of segments equal to
398

Bayestan Network Number ot correctly Recognition rate

recognised segments

Original Network 336 84 4 %

Network with Short- 348 874 %
term Memory

Loopy Network 332 83 4 %

All the networhs recognise the concatenated periodic movements very well While the
original and the loopy networks have quite the same recognition rate the network with short-

term memory has resulted in a few percent better recognition rate

The main sources of evidences are the Discrete Hidden Markov Models, which produce the
same set ot evidences tor all types ot the networks we proposed here The better recognition
ratc of the network with short-term memory 1s due to its robustness in detecting the correct
gesture transitions As we said earlier, strong evidences are needed to change the beliet of the
root node n the network with short-term memory Therefore, the occastonal misrecognised
partial gestures by the DHIMMSs cannot casily change the belief of the network A hypothesis
that the gesture ts changed should be repeated at least twice so that the network believes 1t In
other words, the nctwork with short-term memory tends to heep a hypothests unchanged
rather than changing 1t quickly Therefore, 1t works more robust than the other networks 1n

the cases where the gCSthC\ have more repetltlons than trans1ions

We should not forget that although the DHMMs arce the source ot evidences to the Bayesian
networks, thc bimanual gestures are trached and segmented by the traching algorithm of
Chaptet 7 Lhcretore, the presented recognition rates summarise the recognition rate of the

traching algorithm, the partial Discrete Flidden Markov Models, and the presented Bayesian
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8 5 Recognition Results of the Proposed Networks

networks together In other words, the error rates prescnted here include the error rates ot

the tracking algorithm, DHMWMs, and the Bayesian networhs

Summary and Conclusion

A novel technique for recognition of bimanual movements was introduced A bimanual
gesture 15 trached and segmented by the mtelligent traching algorithm of the last chapter
Then partial Discrete Hidden Markov Models are employed to recognise the partial
mos ements of the hands in every segment A Bayesian network was introduced 1n order to
tusc the likelihoods of the DHMMs ot the hands to recognise the whole bimanual
movement Qur experimental results showed that the proposed network recognises the

Bimanual movements very accurately

In order to recognise a sct of concatenated periodic bimanual movements we changed the
conventional beliet propagation algorithm Since we need to stabilise the belief of the root
node during the periodic movements we replaced the prior probability of the root node with
the current local belief Based on this 1dea we demonstrated that the network’s local belief at

the root node 15 stabtlised while the correct gesture transition ponts were almost preserved

Furthermore, a loopy Bayestan network was introduced and the loopy belict propagation was
employed to recognise the segmented gestures It was shown that the loopy beliet
propagation algorithm converges to approstmate posterior marginals on the correct side of
decision hne We formalised the circumstances where the loopy propagation algorithm
converges rapidly We showed that there 15 a relationship between the evidences provided to

the network and the convergence rate of the network

We employed the three proposed nctworks to recognise the two sets of test data The
recognition rate of the three proposed Baycsian networks were cstimated 1n recognising the
single bimanual movements All the proposed networks resulted in very accurate results 1n

recognising the single bimanual movements

The sccond set of results demonstrated that the three networks recognise the concatenated
pertodic bimanual movements well But the network with short-teem memory resulted i a

better recognition rate than the other networhs due to its robustness aganst temporary

contusing information
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8 5 Recognition Results of the Proposed Networks

In comparison with Coupled HMM, the proposed Bayesian networhs can deal with hand-
hand occlusion as well as the other type ot occlusion Even when something else occludes
one of the hands or the hand leaves the scene the proposcd Bayesian networks can deal with
it because the movement of the two hands are separately rccognised (as opposed to Coupled
HMM) and the rcsults are combined Therefore, even it one ot the hands 1s not visible 1n a
segment (other than hand-hand occlusion segment) the movement of the other hand s
recognised and passed into the Bayesian network using the corresponding partial DFMMs
Also for hand-hand occlusion we considered an individual recognition component Thus, the
proposed Bayesian networks have great advantages over the Coupled HMM with respect to

these problems

As a future work, we must consider other techniques tor recognising bimanual movements
and comparc them with the proposed Bayestan networks For example, Fuzzy Logic and
Neural Networks are two well-hknown inference schemes We may use these techniques as
well as different structures of Hidden Markov Models to deal with occlusion and recognise

bimanual movements
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Chapter 9

SUMMARY, CONCLUSION, AND FUTURE WORK

Human Computer Interaction has engaged a variety of rescarch topics m computer science
and engineering Computer Vision as a substantial 1ssue in Machine Learning 1s considerably
mvolved in Humwn Computcr Interaction Hand and body motvement understanding has

been given great attention by rescarchers around the world

In this dissertation we aimed to understand bimanual movements, a problem that has not yet
been addressed 1n the literature using computer vision, machine learning, arnificial intelligence

and cognitive techniques

Recognition of bimanual movements, as a large set of movements people do 1n their daily lite
and the basts ot some ot the sign languages around the world, requires 4 widc range ot
techmques including single-hand shape recognition, dynamic gesture recognition, hand

traching, and recognition of synchronously performed hand movements

9 1 Summary and Conclusion

We started by reviewing the methods and algorithms associated with static shape recognition
tor the recognition of non-ngid objects, partially occluded shape tccognition, motion
tracking, stereo imaging for occludcd moving objcct tracking and spatio-temporal recognition
of hand and body gestures Then, we took a look at the basic attributes of a visual system
We briefly explained llumination, tmage tormation, Charge Coupled Devices (CCD) sensors,

sampling and digitisation to represent an image i a digital format

As the prelimmary part of the project we investigated a statistical method called Principal
Component Analysis This mcthod was esploited to reduce the dimenstonality ot the data,
which are the hand 1mages Using the dimensionality-abstracted data we investigated some
techniques in statistical pattern recognition to tdentify a hand shape appearing in an image

tiken by a CCD camera
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9 1 Summary and Conclusion

A hand-computer interaction algorithm was introduced tor controlling a mouse pomnter 1n a
Graphical User Interface We used the Principal Component Analysts and nearest neighbour
methods to recognise the static hand shapes A state machine was introduced as a graphical
entity in which the edges arc detined to be events like pushing or rclcasing a button and

moving the pointer

Once, we had identified a hand shape we were able to take a step turther to analyse a

dynamuc hand gesture

We esplored decply the projections ot the hand gestures into the teature space, or
eigenspace, constructed by Principal Component Analysis The trajectory ot a gesture in the

eigenspace was used as the identifier of a gesture

An unsupervised clustering tcchnique called Vector Quantisation was described i detail,
which was used in many parts of the disscrtation We introduced a new spatio-temporal
pattern matching technique for the recognition of dynamic hand gestures Based on this
model, the gesturcs in a vocabulary are modelled by multdimensional gaussian distributions
torming a graph A new unhnown gesture 1s also modelled by a graph lhen a Graph-
Matching algorithm tinds the best match between the gestures in the vocabulary and the
input gesturc We saw that the proposed algorithm can recognise the dynamic hand gestures

very wcll

For the recognition ot bimanual gestures we had to track the hand motions We proposed a
dynamic model for motion traching Ihis model, which was based on the Rinematic
equations ot motion, 1s a stochastic model which s used in 2 Kalman filtering process to
track the position, velocity, and acceleration of a hand in a sequence of images In the
esperiments 1t was shown that the proposed modcl 1s able to trach the hand motion
corrcetly  Particularly, the estimated velocity and the acceleration of the hand m both
horizontal and vertical directions werc shown to perfectly match the movement ot the hand
in difterent types of movements It was also shown that the model 15 able to detect hand

pauses in order to detect the beginning ot a gesture

Beftore we enter the bimanual traching problem we explored a statistical technique called
Hidden Markov Models (HMM) which has been widely uscd 1n speech and gesture

recognifion
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9 1 Summary and Conclusion

We proposed a hierarchical algonthm based on the beginning hand shape of a gesture
detected by the dynamic model and the Fidden Markov Models Another version ot the

algorithm with the HMMs replaced by the gaussian Graph-Matching was also proposed

Ihe two algorithms were cmployed to recognise a large database ot gestures One hundred
canontcal hand gestures were created Ten examples of cach gesture and a total ot one
thousand examples were recorded for the training and the test set 500 recorded videos were

used to tramn the algorithm and the rest were treated as the test set

In the first experiment we tested the Hidden Markov Models by bypassing the first stage of
the algorithm that recognises the beginning hand shape ot the gesture 1t was obscrved that
the algorithm was able to recognise 89 4 % ot the gestures correctly The second verston of
the algorithm with the gaussian Graph-Matching was employed to recogntse the same test

set We observed that the algorithm recogmised 85 6% of the gestures

In the second experiment we employed the complete hierarchical algorithms to recognise the
gestures 1n the test set Given that the first stage of the algorithm forwarded two groups each
contamning tour ditterent gestures starting with the same hand shape, the two versions of the
algorithm competed closely 1in recognising the gestures The algorithm using HMMs
recogniscd 95 4% of the gestures and the algorithm using gaussian Graph-Matching resulted
in 95% recognition rate In this expatment the algonthm with gaussian Graph-Matching
showed great superiority in specd However, despite the tast processing speed of the gaussian
Graph-Matching algorithm 1t had some restrictions on the number of nodcs i the graphs

Theretore, we deuded to use the Fidden Markov Models in the rest of the dissertation

Once we had a good single-hand gesture recogmiion technique m hand we took one step

turthcr to hand traching in bimanual movements

In bimanual movements hands tnd to be synchronised effortlessly We explored the
phenomenon of bimanual coordination from a cognitive and ncuroscience point of view
Because ot this phcnomenon, temporally, when the two hands reach for difterent goals they
start and end their movement simultaneously Spatially, we are almost unable to draw a circle

with one hand and a rectangle with the other at the same timc

We exploited the temporal coordination to detect posttively synchronised hand movements

and concurcent hand pauses i order to distinguish the hands’ collisions and pauses from the
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9 1 Summary and Conclusion

hands’ passcs during an occlusion period A new model was mtroduced based on the
proposed dynamic model to model cach hand individually and also the blob of the hands

during occlusion

Ustng the individual hand modcls we introduced a procedure to predict hand occlusions 1n
order to detect the enact starting point of occlusion Having a predictable occlusion period
we used the model of occlusion to detect hand collision and pauses by montitoring the points
at which hands veloaties went to zero Based on this model we are able to track the hands
correctly when the occlusion period 1s tinished In other words, at the cnd ot the occlusion
period the algorithm 1s able to recognise which hand 1s the lett hand and which one 1s the

right hand

We presented some expertmental results to demonstrate the effectiveness and robustness of
the algorithm m diffcrent types ot movemcents \We also prescnted an example in which the
independence ot the tracking algorithm from the camera’s angle of view and the type of
movement were demonstrated Using the presented algorithm we tested the eight types ot
movements The algonithm was able to correctly track the hands in almost 90% ot the

moy ements

We also proposed a gaussian model i order to recogmse the velocity changes ot the hands
durning occlusion, (Appendis E) Based on this model the patterns of velocity changes during
occlusion were classified and recognised by patterns of gaussian distributions  In the
experiments we demonstrated the patterns of veloaty changes in the two classes of
movements the hand passes and the hand collisions or pauses Our experiments demonstrate
a good performance for the moditied tracking algorithm Since the proposed algorithm was
independent trom the background ind the actual hands velocities, we tested the algorithm in
active vision applications It was demonstrated that the algorithm tracks the hands properly

in these applications

In the nest step, we segmented a bimanual movement mto four segments using the
presented tracking algorithm Izach segment 1s associated with the movement of hands at

ditterent stages ot a bimanual movement

A new Bayesian network tor tusing the partiall Discrete Hidden Markov Models was
introduced for the recognition of bimanual movements In this network a bimanual

movement 1s divided into the movements of the left hand and the right hand The movement
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9 1 Summary and Conclusion

of each hand 1s divided mnto the occluded and non-occluded segments The cvidence nodes
ot the network are fed by the partial Discrete Hidden Markov Models The HMMs are
classified into seven classcs, each of which 15 associated with a segment 1n the segmented

bimanual movements

Using the conventional belief propagation rules we tested the algorithm on 15 difterent

bimanual movements like clapping, knotting, and some gestures trom the sign language

Gnen a tfest set including 75 examples of bimanual movements the Bayestan network

demonstrated a pertormance of 74 out ot 75 correct recognition

We discussed the application of the bimanual movements in diftcrent areas such as Virtual
Reality In these applications the bimanual movements are usually used in a pertodic manner

while a number ot them are concatenated in order to do the tashs
We employcd our Baycsian network to recognise the concatenated periodic movements

[n order to get a stable beliet at the root node of the Bayesian network during the periodic
movements we changed the belief propagation algorithm by replacing the prior probability
by the beliet of the root node of the presious step The network resulted in a very stable
conditton However, duc to the numcrical undertlows the netwotk’s responsc to the gesture

changes was delayed severcly

Thereforc, we constramed the prior probability of the root node not to tall below a certain
level ot beliet Using this new algorithm the network’s performance improved dramatically in
recognising the concatenated periodic bimanual movements We called this network the

Baycsian network with short-tcrm memory

Lhe proposed rules were able not only to stabilise the belief of the nctwork but also to detect

the movement changes quitc accurately

We also tested a third version of the Bayestan nctwork called the loopy network Despite the
conventional beliet that the loopy Bayesian network (the nctworks including loops) may not
converge to a stable equilibrium we changed the structure ot the oniginal network so that it
mcluded a loop Tt was demonstrated that the algorithm converges to approsimate posterior

marginals on the correct side of the decision line
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9 1 Summary and Conclusion

We also presented the reasons tor the convergence ot the algorithm by an unwrapping
method In this method a pairwise Markos net models the Bayesian network An unwrapping
technique unwraps the Mackov net i ditterent stages corresponding to different turns that
the messages circulate in the loopy nctwork  Since the unwrapped network 15 singly

connected 1ts convergence to the correct posterior marginals 1s guaranteed

An important parametcr in the loopy networks 15 the convergence rate of the belief
propagation algorithm We proposed a new analysis in which we showed the convergence
rate of the algorithm 1s related to the evidences provided to the network We tormalised the
conditions where the loopy propagation converges rapidly under different circumstances A
set of simulation results was presented regarding the analysts of the loopy network

convergence rate

We cmployed the three proposed Bayesian networks, the onginal network, the network with
the short-term memory, and the loopy nctwork to recognise the bimanual gestures 1n the test
set All the networks showed the high performance of 74/75 recognition rate While the
nctwork with short-term memory was proven to result in more stable beliefs the loopy

network represented overly confident results in recognising the gestures

We also, employed the three networks to recognise a set of concatenated periodic bimanual
movements The orginal network and the loopy network resulted mn quite the same
recognition rate ot 84 4% and 83 4% recognition rates respectively The network with short-
term memory, however, demonstrated a supertor recognition rate of 87 4% Since the beliefs
in the networh with short-term memory are stabilised 1t 1s more robust than the other

networks in recognising the periodic bimanual gestures

The results show that the techniques and the algorithms we presented tor tracking the hands
and recognising the bimanual movements work robustly and eftectively in the real
applications We believe that this project as the first project ever in traching and recognising
bimanual movements 15 a big step toward a complere movement recognition system  We

tried to introduce general solutions with the least restrictions 1n every step of the project

The traching algorithm as an esample works independent of the hand shapes or the position
of the camera lherefore, in applications where the camera can be positoned at different

places (e g surveilllance applicanons) the proposed algorithm can trach the hand motions
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9 1 Summary and Conclusion

accurately Since the algonthm does not work bascd on the hand shapes or the type of

movement 1t correctly trachs the hands from any angle ot view

Also the proposed Bayesian networks for data tusion and recognition ot bimanual
movements work independent ot the type ot movements Therctore, if the parttal Hidden
Markov Models are trained so as they arc able to recognise the partial gestures appearing in a
segmented movement from any angle ot view the Bayesian networhks can fuse the partially

rccognised gestures to recognise the whole movement

In the next scction we propose some further possible work in order to improve the proposed

system to cover more gencral problems
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9 2 Future Work

We must compare the proposed Baycsian networks for recognition of bimanual movements
with other techniques Fuzzy Logic, Neural Networks, and Dempster-Shater theory are the

alternatives to the proposed Bayesian networhs that must be considered and compared

The techmiques for rccogmition ot hand shapes trom diftcrent angle of views can be
employed in order to recognise a partial gesture even 1t the system 1s not traned to do so
This 1dea can provide the movement recogmtion systems with a recognition power to
undcrstand the movements of people trom any angle, which can be very usetul in the Virtual

Reality and surveillance systems

Ihe recogmtion ot movements from any angle of view requires the recognition ot occasional
partially hidden gestures For example, in a movement where one or both hands are hidden
behind the body tor some moments, the rccognition of the whole movement cannot be

completc without recognising the hidden part

A solution to this problem 1s to rccognise the hidden part based on the previously seen
scquence of the movements A techmique called Prmbabilistic Suffis. Autormata (PSA) has been
proposed n the literature [Ron 1996] with application in different areas including natural

language processing

This model 15 a varant of order L. Markov chains in which the order (or the memory) 1s
variable When PSA gencrates a scquence, the probability distribution on the nest generated
element 15 completcly defined given the previously gencrated scquence Theretore, 1n a
scquence of hand shapes the hidden part can be predicted based on the previously observed
sequence of hand shapes lhis estimation can be improved by a smoothing tilter given the

obserycd sequence of the hand shapes atter the hidden part

In the bimanual movements where the canonical gestures are closely concatenated to imply a
mcaning, e ¢ the Brifish Sign Language, the rccognition of a partial gesture in a segmented
movement may entail the recognition ot many canonical gestures appearing in the segment

In this case each of the canonical gestures must be recognised separately

An approach to this problem can be the Hicrarchical Hidden Markov Models (HFIMMs)
[Fine 1998] In these models, unlike the conventional Hidden Marhov Models, every state s a

HHMM as well Therefore, the states output sequences rather than 1 single symbol These
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sequences are produced by activating the submodels each of which with a difterent length
Given that a segment i a scgmented bimanual movement s modelled by a HHMM the

canonical gestures of ditterent length can be recognised by the sub-HHMMs

Ihe bimanual movement recognition can be a part of larger research in order to understand
All human movements Still the recognition of human movements particularly in the prescnce

of occlusion i low-resolution 1mages ts an open research area

An enormous number of apphcations in Virtual Reality (VR) are waiting tor the new models
and algonthms ot hand and body gesture recognition to realise the wish for human-computer
natural intertacing Freedom ot movement in Virtual Reality environments 1s a wish that
when 1t comes true, thousands of VR systems around the world have been waiting to utilise

1t

Recognition of speech, hand gestures, tacial expressions and body movements should be
combined so that a person in a short time-period s totally understood by a machine Gren a
traned model ot hand movements and body expressions a robotic system can imitate the

human behaviour

The proposed bimanual recognition system can be used to train the models of human
behaviour tor hand movements An example 1s the recognition of the hands’ movements in
cifferent moods of a person An angry person normally moves his/her hands faster with
more stress on the meanmgful parts of the movements Instead, a tired person moves the

hands slowly with less stress on the hand pauscs in difterent gestures

In the same way we can understand the mood ot a person, a machine can too When the
machines learn how to bchave as humans they will be moved trom deshs and 1solated rooms

to the world outside

By traching people and recogmising their movements they can find their position i the daily

litc of communitics in order to help people improve the quality of lifc
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APPENDIX B

A MATHEMATICAL DESCRIP I'TON OF VECTOR QUANTISATION

Let T be a traming set ot M vectors given by T ={x,,x,, ,x, | where each vector 1s -

dimensional,
('Xm 1
xm 2
X, = ym=12, M

Lxm A

Let N be the number of codevectors and C ={c|,c,, .¢,} represcnts the codebook Each

codevector 1s £-dimensional,

Let 5, be the encoding rcgion associated with the codevector ¢, and P ={s,,s,,

denotes the partition of the space
Then the Vector Quantisation algorithm 1s as tollowing,

I GnenT Frn €>0 to be a small number

2 Let N=17and

x 1
o =%, © 1)

Calculate
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|’ B2

Sphtting For (=7, 2 N, set

C,(O) — (l + 8)C,*,

m

B 3)
0 _ . (
Cne = (l - 8)(:1
Sct N=2N
0 _ -
[teration Let D,,‘,g = Dm& Set the teration indes /=0
I Forw=12 , M, find the minimum valuc of
P
e’} B4

overall #=1 2, N Let #" be the index which achieves the

minimum Set
. — -
Q('Xm) - C”[* (B 3)

Il Foru=1,2, , N, update thc codevector

X
= ZQ(Ym)EC,‘,” "

n z 1 (‘B 6)
Q( rIPI )e CI(II )

1T Set;=,+ 1

1V Calculate

2 B7)

1 M
D(<I:) = - Hl_ (‘IH)
i Sl -ow)
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D(I*l) _ D(!)

- ave g
7 -
vV It NG

g

> €, go back to Step (I)

- * o * _ () -
VI Sct Da‘,q =D For n=1, 2, N, set ¢, =C,, as the final codevectors

ay i

Repeat Steps 3 and 4 until the desired number of codevectors 1 obtained
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APPENDIX C

KALMAN FILTERING PROCESS AND THE TRACKING MODEL OF
CHAPTER 5

C 1 Kalman Filter

To explain this filter we assumc the process to be estimated can be moddlled in the form

[Brown 1997],
Xpo = O X + W, €n

At discrete points in time the measurement ot the process occurs with the following linear

relattonship,
z, =H x, +v, (C2

where
X, the state vector of process at time

®, amatris relating x, to X,

W, awhite nowse sequence with known covariance structure

Z, measurcment vector at ime f,

H, matris ginng the nosseless connection between the measurement
and the state vector at time £,

vV, mcasurement error — assumed to be a white notse sequence with

known covariance structure

I'he covariance matrices for the w, and v, arc given by,

E[WAVT] =0 forall k and 1

194



s 24

APPENDIX C Kalman Filtering Process and the Tracking Model

The third equation abose shows that the measurement error v, and the system error W, are

not correlated  Lhe state-vector X, represents an mutial estimate of the process at time f;

This estimate 15 based on all our knowledge about the process prior to ¢, Theretore, the

esttmation error 1s given by,
e, =X, —X,
with the covariance matris,

P, =Eleje; 1= E[(x, - X )(x, =%;)"] (C3)

To improve the prior estimate X,; a hincar equation 15 chosen with a misture of noisy

measurement and the prior estimate
x, =x, +K, (z, —H,x,) C-h

where

X the updated estimate
K, afactor to be determmed

K, should be determined so as the update estimate 1s optimal Lhe crror covariance mateis

assoctated with the updated estimate 1s,

P = E[eke[] = E[(x;, =X, )(x, —X, )T] C5)

By substituting C 2 into Equation C4 and then into C5 the error covariance matris s

obtamned as,
PL:(I_KJ\HL)P/\_(I_KAHA)T+KkRI\KZ Co)

I'he individual terms along the major diagonal ot P, represent the cstimation error variance

tor the elements ot the state-vector being estimated Lheretore, K, should be determined
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50 as these terms are munimised  The optimisation problem can be done in ditterent ways

addressed 1n the itcrature [Brown 1997]

The optimal K | s calculated as,

K, =PA_H/T(HKPK,HZ +Rf\)71 (o)

which 1s known as the Kalsan gaen By substituting the optimal K, in Tiquation 5 6 the error

covartance matris for updated estimate will be,

P, =(I_KAHA)PA_ €9

The updated estimate X, 15 projected ahead by the transition matrn,

C9)
By calculating the error covariance maters for X, and substituting n Equation C 4,

P = (I)I\qu)z + Qk

(C 10)
Equations C5,C7,C8,C 9 and C 10 form the Kalman filtering algorithm
C 2 Dynamic Model’s Kalman Filter Equations
Given the tollowing stochastic description ot the traching model,
- .
a7 U R M)
X, (2)[=]0 1 h | x(2) [+w,
X, (3) 0 0 1 [[x@3)
L C 11
x, (1)
z,=0 0 0]x2)|+v,
| X, (3)
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If the initial condition E(xo) and Varzan,ce(xo) are given, the Kalman filtering algorithm

tor this model 15 obtamed as tollows [Chut 1999]

with Py =Variance(x,), the kalman gain,

PO
P (1,2) (C 12)
PO (1,3)

A

) PO(LD+ R (1,D

The updated estimate with measurement 7,

) 2 :

ek ma-K0) Ta-xaan|

%) 2 vk | M| | KD

Q) |=| -K (2) 1-hK(2) h-—= | x|+ K,(2) |z,

x, (3) 2 x, 3| KO3
“K,(3) —hK,(3) 1—@ ‘ ‘

(C13)
with X, = E[x,]

The error covariance tor updated estimatc 1s given by,

| P P (LLP(1L,2) P (LDHP (1,3)
P =p - - - -2 - _
, =P, PO+ R (LD PA—(l,I) H_(l,2) _PA (1,_2) P, (1,_23 P (1,3)
P(LDP (L3 P(L2)F (1,3) P 7(1,3)

(C 14y

and the prior error covartance,
- T
P, =0P @ +Q,

with
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r 1
1 A l h?
2
O=]0 1 h
0 0 1
L |

15 caleulated as tollowing,

4
P (L1) = P.(L1)+2hP (1,2) + h* P, (1,3) + h*P,(2,2)+ ' P, (2,3) +% P.3,3)+0, (LD

2 3
P (1,2)=P(,2)+hP (1,3)+hP, (2,2)+§Z—PL(2,3)+%P&(3,3)+QA (1,2)

P (2,1 =P, (2,1)

P (2,2)=P(2,2)+2hP(2.3)+ h* P (3,3)+ 0, (2,2)
} I’
P, (1,3)= P (1,3)+ hP,(2,3) + ’7 P.(3,3)+Q,(1,3)

PGB D =P (L3)
Pa(2,3)= P (2,3)+hP (3,3)+ 0, (2,3)
PaG.2)=F,(23)

PI\;I (3’3) = IDA (39 3) + QL (33 3)

I'he prediction step 1s caleulated by,

. I’

)CH] (1) 1 h -2_ -)E/\ (D

£a@(=10 1 &1 ||x) €15
.Gy 10 0 1|53

198



APPENDIX C Kalman Filtering Process and the Tracking Mode!

In these equations X, (1) denotes the position, X, (2) denotes the velocity and X, (3) 1s the

acceleration ot the hand central point at time £,
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APPENDIX D

HIDDEN MARKOV MODELS EVALUATION AND LEARNING
PROBLEMS

D 1 Forward Backward Algorithm
In this algonthm the probability of the partial observation sequence y.,y,, ,y, 18

calculated by,
a, (1) = p(¥.Ysr Y8, =1) D1)
where ¢, 15 a recursively caleulated ausihary varable Then with boundary conditions,
a()=n,b,(y) I<J<N (D 2

the following recursive rclationship holds,
N
(N =b,(y.)X aWa,, 1<7SN IS1<T-1 (D 3)
=1
Using this recursion we can caleulate @ (1), 1<1 <N Lhe required probability 1 given by,
N
p(Yy=Y o (1) O 4
=]
I'his method has a complexity proportional to N*T  In a stmilar way the backward variable

B, (1) 15 calculated as the probability of partial obscrvation sequence V,,,, V,,5s > Yy given

the current statc 7,
B{(I)zp(yl+l’y/+2’ ’yTl‘slzl) (DS)

Agamn a recursive relationship holds to caleulate B, (1) efficiently,
N
B,y=Y B(Nab,(v,), 1SISN, 1<1<T 1 D 6)
4=1
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where
Br=1 1<j<N
Wc can see that [Warahagoda 1996],
o, @y=pl,s, =1y 1<1<N, 1<t<T (D7)

Theretore, by using both forward and backward variables,
N N
P(Y)= 2 p(Y,s, =1 = 20{, 0B, ) (D 8)
=] =1

Full description and expanston of the equations of the Forward/Backward algorithm has

been presented i [Warahagoda 199¢]

D 2 Learning Problem

The learning problem s to adjust the HMM parameters so that the given observations in the
traming set are represented with masimum probability by the model lhere are different

methods tor learming We describe a method based on Masimum Likehihood (ML)

In Maximum Likelthood the probability of a given sequence ot observations Y belonging to a
given class ¢ given the HMM for this class, 18 to be masimused This probability s the total

itkelthood ot obscrvations,
me/ = p(Y | )Lz ) (D 9)
where A, denotes the HMM of class ¢

Since we consider only one class at a time we drop the subscript ¢ There s no known way to

analytically solve for the model A = (A, B,7) which masimise the L But an iterattve

toral

method can be used so that the parameters arc maxumused locally

Bz Welh Algorithm

By defining a new vatiable as the probability ot being in state 7 at time /and i statc y at 47,

we have,
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(L, )=pGs, =18, =]]vA) (D 10)

p(s, =15, =1,y|A)

p(s, =15, = )| v.A)=

p(Y [A)
Thereforc,
&= T ) O 1)
By substituting the Liquations D3 and D 6 into D 11 we get,
£ () = 0;, Ma, B, Wb, (y,.,) 012

> e, (a, B0 ()b, (3,)

=1 =l

Also we define a second varmable as the probability of being in state z at time  grven the

observation sequence Y’
v,()=ps, =1|Y.A) (D 13)
By substituting the torward and backward vartables,

y () =B -

Y o, (08, ()

and the following relationship holds,

yr(1)=i§,(l,]), 11N, 121 M (D 15)

1=l

Assuming an snitial model A = (A, B,7) the forward variable &'s and the backward varable
B's arc calculated by Equations D 3 and D 6 respectively €s and ¥'s are calculated using

D 12 and D 15 Then the parameters of the model arc updated by the re-estmation formulas,
T, =y,G), 1<i<N D)
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a, = 1<i<N, 1< <N (D 16)

b(ky=t— 1< J<SN, 1Sk<M D 17)

I'he X 1n the above cquations stand tor re-estimation ot a variable x

In practice, for long sequences both @, and B, become small as the recursion progresscs

Theretore, usually they are re-normalised to sum to one at each step of the recursions Thus
mahes thc computation of the relevant espectations much more aumcrically well-behaved,
and has the nice sidc-ettect that the sum of the log normalisations in the forward pass 1s the

log likelihood of the observation sequence [Ghahramani 2001]
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APPENDIX E

LATEST DEVELOPMENTS IN THE HAND TRACKING
ALGORITHM

During occlusion the number of images should be large enough so that the velocities
comerge to zero in the cases ot hand collisions and pauses The Kalman filtering process
proposed i Chapter 7 15 based on the Kinematic equations of motion Therefore, in a fast
motement the sides of the occlusion-rectangle have the potential to move further rather than
to stop quickly The algorithm should have enough time and mages so that the rectangle

stdes’ veloctties reach zero in the cases that a collision or pause 1s detected

If the speed of movement mcreases the estimated speeds of the rectangle sides may not
onactly reach zero This problem becomes more ditficult 1t the camera s working in a low
speed (low frame rate) Theretore, the algorithm may not detect the collision and pauses
accurately and may run into trouble Also i <ome applicattons where the visual system
moves (e g active vision) the veloctties may not exactly reach zcro Therefore, we need a

technique to make the algorithm independent trom the actual velocities

To deal with these problems we mvestigate the specd changes of the occlusion-rectangle

sides

When a pause occurs the estimated velocity tends to zero Assume that the hands are moving
toward each other with almost constant velocities Lhe acceleration 15 zero When a pause
oceurs the acceleration increases in the negative direction in order to push the velouty to
zero The graph of acceleration looks approximately like a negative quadratic polynomual (see

Figure E 1) The velocity 1s the integral of the acceleration,
y, = J' a, dr (E 1)

Theretore, the graph of the velouity obeys a polynomial ot power 3 (see Iligure I 2)
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acceleration

time

Figuie E | Acceleration changes i 1 movement wheie pause 1s
detected (1pproxumte graph)

velocity

time

Figuie E 2 The giaph of the velouty chnges 1 movement
wheie a pause 1s detected (from the beginung of occlusion to the
pse point)

, Atter the pause the rectangle sides move in opposite directions The velocity changes in the
samc fashion but in the negative direction Theretore, the graph ot the velouty during the

occlusion period looks like Figure E 3

We may approsimate this graph by a polynomial ot powcr three or a logarithmic function

ke negative arc tangent hyperbolic,

f=ax’
7= ln(l+x);ln(l~x)

—~
0
N

~——z
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velocity
o

! ! L It L

time

INgute 3 The graph of velocity changes m 1 movement where 1
pwse 1s detected m the whole petiod of occlusion

Also, in the cases where hands pass each other the velocity of a rectangle side looks like
Figure £ 4 The rapid sign change in the graph is duc to the fact that when one hand passes
the other, 1t pushes the rectanglc sides in opposite direction This graph looks like a logistic

function,

I
o= 1+ (E3)
Onc may condude that by appromating the velocity changes with the aboyve equations we
can make a decision on hand pauses A velocity change that better matches the negative arc
tangent hyperbolic 15 more probable to be a hand pausc And a velocity change that better

matches the logistic tunction 1s more probable to be a hand pass
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velocity
o

1 ' It 1 —1 L 1 L

time

Figute E 4 The velocy chinges m 1 movement where hands pass
each other

Although this seems truc thcorcticaly, our esperiments did not demonstrate a good
performance for the algorithm This 1s due to velocity vartations in ditferent problems and

speed of movement that prevents using a constant analytic model

According to a neuroscience theory [Harris 1998], therc extsts nowse in the motor commands
In the presence ot such nosse the intended motor commands will generate a probability

distribution over the hand positions and velocities if repeated several times [Wolpert 2001]

In accordance with this theory, we model the veloaty changes by gaussian distributions In
this model the graphs of the velouty changes are approsimated by a scquence of gaussian

distributions for the two main categories hand-pause and hand-pass

As in Chapter 4, 2-dimensional gaussian distributions are constructed by a set ot training

data The training datt set 1s the veloutty changes of the occlusion-rectangle sides

The following tunction 15 defined in order to represent a pair of parallel sides ot the

occlusion-rectangle,
v(t) =v, (1) = v, (1) (k. 4)

where v (1) and v, (1) are the vclouties ot two parallel sides at time 7 When the hands are

ncgatively synchronised, this tunction results in a velouty equal to the sum of the indrvidual

absolute velocttics An mmportant teature of this function s that 1t makes the algorithm
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independent ot the actual velocities Lhercfore, in some applications (e g active vision) the

eftect of a constant value added to the both velocitics 15 elminated

In the movements where a pair ot parallel sides are positincly synchronised the velocity-
synchronisation model (System 7 11) captures the synchronisation lLhe gaussian models of
velouty changes of Function I 4 are shown in Figure E5 Figure E 5 (a) shows the pattern
ot Function L 4 for a pair of parallel sides 1n the movements where a pause 1s detected
Figure E5 (b) shows this pattern for the movements where the hands pass each other In
these tigures, each ellipse shows a 2-dimensional gaussian distribution  lhese models
approsimate a given sequence of veloaty changes A decision on whether the hands have
passed each other or pauscd and returned 1s made based on the probabilitics that the pattern

of Function I 4 matches each of these patterns

=90

(. %
@ (1)
Figute £5 The scquences of gaussin distrtbutions to model the

occlusion rectangle velocities during the two man ctegovies (2

lumd pause (b) hind pass

L0

P(v,

H)= HmAax(P(v({ |H)) (E 5)
]

A t -
where v, 15 the observed velocty at time 7 during occlusion, H' 1s the £" dass of gaussian

distribution 1n the HyperClass H, , and P(v]

H') s calculated using the probability

density tunction of Equation 4 18

In order to tran the distnbutions we must classify the data points tor each gaussian

distribution H* 1n the pattern H, Vector Quantisation (VQ) as an unsupervised clustering

technique can duster the data ponts By applying VQ to a set of training velocity data points
m each pattern the data points of each distribution are classified 1hen by using Principal

Component Analysts the paramcters ot the gaussian distiibutions are determined
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Using this pattern matching technique, we can rehably detect the hand pauses even 1t the

veloctties do not reach zero

Experimental Results

We use the proposed model in order to trach all types ot the movements Figure E 6 shows
the vclocity changes ot a large set of moderate and tast movements In Figures E 6 (a) and
(b) the hands tace cither collisions or pauses In Figures E 6 (c) and (d) the hands pass cach
other In order to get a better view how the graphs differ from each other the graphs of the
horizontal pause (sec Iigure F 6 (a)) and the horizontal pass (sce Figure E 6 (c)) arc plotted

together in Figure I 7

Using four traning sets each of which contained thousands ot data points tahen in fast,
moderate and slow movements, four models were constructed Fach of the models includes
eight gausstan distributions We employed the Vector Quantisation algorithm to cluster the

data points to make 8 clusters in cach casc

1 Performance

Using the traned model we pertormed two hundred ovperiments for each type of
movement, one hundred in the class of moderate/fast movements and one hundred in the
class of slow/moderate movemcnts The measured pertormances of the algorithm are

presented in Tables E 1

In both classes of speed the proposed algorithm works very well with 12% and 5% etror rate
which 1s a good performance given that the algorithm s independent of the camera view
direction, changing hand shapes, and the type of movements This 1 an improvement to the
algorithm of Chapter 7 because 1t has a better pertormance and a wider range ot applications

due to the independence of the algorithm from the actual velocities

In the next section we present two sets of caperiments to demonstrate the independence ot
the algorithm from the camera view direction and tits application n active vision such as

mobile robots
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Table E 1 Pertormance ot the tracking algonthm in the two classes of speeds

speed class # movements # fals % correct
traching
slow/moderate 800 39 9513
moderate/tast 800 95 8813

2 An Untrained View Direction

‘The traching algonthm was developed as a direction-independent algorithm  In this
experiment, we change the camera view direction trom the side-frontal view to a top-corner
view as m Figure 7 26 of Chaptcr 7 The algorithm has been only tramed in the original view
direction Given that we defined the movement models to cover almost every angle of view,

we test the traching algonthm from the direction in which the algorithm s not tramned tor

As an example a movement similar to the example in Chapter 7, Section 74 1s pertormed
twice in which from the original view 1t 15 represented by the modcl ¢ and from top-corner
view by the modcl ; of Figure 710 Some images of the two experiments are presented in

I'gure I'8 Dcspite the new untramncd view direction, the algonthm tracks the hands

properly in thc both experiments

)
Figme E8 A bimanual movement in which (a) the hands pass
each other 1n the veitical diection from 4 side view, model ¢, (b)
the hauds do not pass bur terurn to their previous ades from 2
top cowner view model
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3 Active Viston Applications

In active vision, where the position of the camera changes, the view direction, the
background, and dlumination are changed In this case, the traching algorithms that assume
these parameters constant cannot cope with the changes and may fail to trach the hands

correctly

We did not make any assumption regarding the constant background In the active vision
applications, where the visual system moves, 4 constant value ts added to the velocities of the
pairs of parallel sides of the occlusion-rectangle at each tme unit However, the Function E 4
makhes the constant added v alues mctfectne Also, we considered the cases that the velocities
do not reach sero in the movements that hands pause or collide All these enable us to use

the proposed traching algorithm in active vision applications

If we assume that the speed ot the moving visual system 1s constant the proposed models
can be applied to the hands movements with a constant posttive or negative added value
which 1s the speed of the visual system However, this can be a very restrictive assumption as
in the real-world applications (¢ g mobile robots) the speed of the visual system cannot be
Kept always constant Therefore, we have to assume that the visual system speed 1s lower
than the speed of hands movements In other words, the speed of visual system should not
be almost equal to the speed of hands, because 1t the hands and the visual system have quite
the same speed, a little variation in the speed ot visual system can cause a wrong model to be
matched with the behaviour ot the hands during the occlusion period This happens when
the vartation 1n the speed ot moving camcra causes the occlusion detection subroutine to

bounce between occlusion and non-occlusion

Ihree experiments are presented n order to demonstrate the ability of the traching algorithm
in tracking the hands 1 active vision In Iigure E 9, the path of the moving visual system
(thc camera) with respect to the room and the subject 1s shown from a top-view and a sidc

view In these movements the camera moves horizontally

The three experiments are as tollows,

1 A movement of typc g (without collision), the camera moves trom the point « to point &

2 A movement of type 4, the camera moves from the pomnt 4 to point &
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3 A movement of types / and 4, the camcra moves from the pont # to pomnt & and returns to

pomnt

Some images of the three experiments are shown in Figure E 10

b b

I'guie L9 The path of c umerr movng houzontally fiom 1 top
view ad 1 side view

Figme 10 Traching i 1mobtle camera applicaons (1) A
movement ot type ¢ (b) 1 movement of type 5, and (c) 2
movement of types 4 nd
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In some of the images (e g the 8th image ot Figure E 10(a) and 5th and 6th images in Figure
E 10(b)) the extracted hands blobs are connected to some objects n the background Due to
the tact that we have used a monochrome camera the connected regions ot hands and the
bachground objects are extracted as the hands' blobs However, the mus-extraction of hands'

blobs has no negative cffect on the traching algorithm as the hands are correctly trached and

reacquired all over the movements

In all the movements one of the hands moves partially or completely out of image frame In
Figurc B 10(c), in the 8th trame the right hand s totally out ot trame and there 15 only one
hand visible in the image When the hand returns to the scene the algorithm labels 1t correctly

and heeps traching both hands through the rest of movement

Figurc EF 10(c) shows a natural movement of the visual system and the hands, which 1s an

example of the rehability of the algorithm in tracking the hands in a natural environment
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UNIMANUAL COORDINATION

In this cperiment the hand moves 1in a arcular fashion (see Figure F 1) While 1t 1s
crculating the fingers are opening and closing A tew 1mages of the experiment are shown in

Figure F 2

Figute ' I Lhe path ot the hand duning cnculit movement

INgme F2 The cuculu movement of the hand nd the movement
of the fmgers

By constructing a rectangle around the hand (see Figure F 3) we monitor the vertical sides of
this rectangle, X1 and X2 The vertical sides show the horizontal positions of the palm and
the tingers The velouty of the tirst verucal side, N1, 15 the horizontal velouty of the palm,
and the velocity of the second vertical side, N2, 1s the horizontal velocity of the palm plus the

velocity of the fingers

The results of this experiment shows that the velocities are highly synchronised (see Figure

F4)
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X1 X2

Figmc 1 3 Vrecrgle s constructed mound the hnd
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Figuic F 4 The veloaty of palm wd fingers dunng 1 cuculn
movement

A doser view of this graph s shown in Figure F5 As can be seen in this figuec the positive

and negatine peaks ot the velocity ot the fingers matches accuratcly the corresponding peaks

ot the velouty ot the palm
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figmet 5 The velounes of palm wnd tinges movarcula
mos ement

Lhis synchronwation enables us to track the hands in bimanual movement using the
proposcd algorithm of Chapter 7 even 1n the cases that the hand shape s changing during the
moivement In other words, the change of the hand shape and the movement ot hand are
synchronised In some ot the bimanual movements where both the horizontal or vertical
sides of the rectangle during occlusion arc connected to one hand (see Figure F 6) the

ummanual synchronisation results 1in concurrent pauses in both the parallel rectangle sides

Figute I 6 The vertical sides of the rectangle ne both connected

to the lett hand The vrum nual coordination gunntees that the

pauses m the verreal sides of the tectingle occt simuleancously
cven when the hand shipe is changing
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