51,288 research outputs found

    View Selection in Semantic Web Databases

    Get PDF
    We consider the setting of a Semantic Web database, containing both explicit data encoded in RDF triples, and implicit data, implied by the RDF semantics. Based on a query workload, we address the problem of selecting a set of views to be materialized in the database, minimizing a combination of query processing, view storage, and view maintenance costs. Starting from an existing relational view selection method, we devise new algorithms for recommending view sets, and show that they scale significantly beyond the existing relational ones when adapted to the RDF context. To account for implicit triples in query answers, we propose a novel RDF query reformulation algorithm and an innovative way of incorporating it into view selection in order to avoid a combinatorial explosion in the complexity of the selection process. The interest of our techniques is demonstrated through a set of experiments.Comment: VLDB201

    NaviCell: a web-based environment for navigation, curation and maintenance of large molecular interaction maps

    Get PDF
    Molecular biology knowledge can be systematically represented in a computer-readable form as a comprehensive map of molecular interactions. There exist a number of maps of molecular interactions containing detailed description of various cell mechanisms. It is difficult to explore these large maps, to comment their content and to maintain them. Though there exist several tools addressing these problems individually, the scientific community still lacks an environment that combines these three capabilities together. NaviCell is a web-based environment for exploiting large maps of molecular interactions, created in CellDesigner, allowing their easy exploration, curation and maintenance. NaviCell combines three features: (1) efficient map browsing based on Google Maps engine; (2) semantic zooming for viewing different levels of details or of abstraction of the map and (3) integrated web-based blog for collecting the community feedback. NaviCell can be easily used by experts in the field of molecular biology for studying molecular entities of their interest in the context of signaling pathways and cross-talks between pathways within a global signaling network. NaviCell allows both exploration of detailed molecular mechanisms represented on the map and a more abstract view of the map up to a top-level modular representation. NaviCell facilitates curation, maintenance and updating the comprehensive maps of molecular interactions in an interactive fashion due to an imbedded blogging system. NaviCell provides an easy way to explore large-scale maps of molecular interactions, thanks to the Google Maps and WordPress interfaces, already familiar to many users. Semantic zooming used for navigating geographical maps is adopted for molecular maps in NaviCell, making any level of visualization meaningful to the user. In addition, NaviCell provides a framework for community-based map curation.Comment: 20 pages, 5 figures, submitte

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Semantic Description, Publication and Discovery of Workflows in myGrid

    No full text
    The bioinformatics scientific process relies on in silico experiments, which are experiments executed in full in a computational environment. Scientists wish to encode the designs of these experiments as workflows because they provide minimal, declarative descriptions of the designs, overcoming many barriers to the sharing and re-use of these designs between scientists and enable the use of the most appropriate services available at any one time. We anticipate that the number of workflows will increase quickly as more scientists begin to make use of existing workflow construction tools to express their experiment designs. Discovery then becomes an increasingly hard problem, as it becomes more difficult for a scientist to identify the workflows relevant to their particular research goals amongst all those on offer. While many approaches exist for the publishing and discovery of services, there have been few attempts to address where and how authors of experimental designs should advertise the availability of their work or how relevant workflows can be discovered with minimal effort from the user. As the users designing and adapting experiments will not necessarily have a computer science background, we also have to consider how publishing and discovery can be achieved in such a way that they are not required to have detailed technical knowledge of workflow scripting languages. Furthermore, we believe they should be able to make use of others' expert knowledge (the semantics) of the given scientific domain. In this paper, we define the issues related to the semantic description, publishing and discovery of workflows, and demonstrate how the architecture created by the myGrid project aids scientists in this process. We give a walk-through of how users can construct, publish, annotate, discover and enact workflows via the user interfaces of the myGrid architecture; we then describe novel middleware protocols, making use of the Semantic Web technologies RDF and OWL to support workflow publishing and discovery

    Fund Finder: A case study of database-to-ontology mapping

    Get PDF
    The mapping between databases and ontologies is a basic problem when trying to "upgrade" deep web content to the semantic web. Our approach suggests the declarative definition of mappings as a way to achieve domain independency and reusability. A specific language (expressive enough to cover some real world mapping situations like lightly structured databases or not 1st normal form ones) is defined for this purpose. Along with this mapping description language, the ODEMapster processor is in charge of carrying out the effective instance data migration. We illustrate this by testing both the mappings definition and processor on a case study

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion

    RDF Querying

    Get PDF
    Reactive Web systems, Web services, and Web-based publish/ subscribe systems communicate events as XML messages, and in many cases require composite event detection: it is not sufficient to react to single event messages, but events have to be considered in relation to other events that are received over time. Emphasizing language design and formal semantics, we describe the rule-based query language XChangeEQ for detecting composite events. XChangeEQ is designed to completely cover and integrate the four complementary querying dimensions: event data, event composition, temporal relationships, and event accumulation. Semantics are provided as model and fixpoint theories; while this is an established approach for rule languages, it has not been applied for event queries before

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks
    corecore