192 research outputs found

    Registro espacial 2D–3D para a inspeção remota de subestações de energia

    Get PDF
    Remote inspection and supervisory control are critical features for smart factories, civilian surveillance, power systems, among other domains. For reducing the time to make decisions, operators must have both a high situation awareness, implying a considerable amount of data to be presented, and minimal sensory load. Recent research suggests the adoption of computer vision techniques for automatic inspection, as well as virtual reality (VR) as an alternative to traditional SCADA interfaces. Nevertheless, although VR may provide a good representation of a substation’s state, it lacks some real-time information, available from online field cameras and microphones. Since these two sources of information (VR and field information) are not integrated into one single solution, we miss the opportunity of using VR as a SCADA-aware remote inspection tool, during operation and disaster-response routines. This work discusses a method to augment virtual environments of power substations with field images, enabling operators to promptly see a virtual representation of the inspected area's surroundings. The resulting environment is integrated with an image-based state inference machine, continuously checking the inferred states against the ones reported by the SCADA database. Whenever a discrepancy is found, an alarm is triggered and the virtual camera can be immediately teleported to the affected region, speeding up system reestablishment. The solution is based on a client-server architecture and allows multiple cameras deployed in multiple substations. Our results concern the quality of the 2D–3D registration and the rendering framerate for a simple scenario. The collected quantitative metrics suggest good camera pose estimations and registrations, as well as an arguably optimal rendering framerate for substations' equipment inspection.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCEMIG - Companhia Energética de Minas GeraisCNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo a Pesquisa do Estado de Minas GeraisTese (Doutorado)A inspeção remota e o controle supervisório são requisitos críticos para fábricas modernas, vigilância de civis, sistemas de energia e outras áreas. Para reduzir o tempo da tomada de decisão, os operadores precisam de uma elevada consciência da situação em campo, o que implica em uma grande quantidade de dados a serem apresentados, mas com menor carga sensorial possível. Estudos recentes sugerem a adoção de técnicas de visão computacional para inspeção automática, e a Realidade Virtual (VR) como uma alternativa às interfaces tradicionais do SCADA. Entretanto, apesar de fornecer uma boa representação do estado da subestação, os ambientes virtuais carecem de algumas informações de campo, provenientes de câmeras e microfones. Como essas duas fontes de dados (VR e dispositivos de captura) não são integrados em uma única solução, perde-se a oportunidade de usar VR como uma ferramenta de inspeção remota conectada ao SCADA, durante a operação e rotinas de respostas a desastres. Este trabalho trata de um método para aumentar ambientes virtuais de subestações com imagens de campo, permitindo aos operadores a rápida visualização de uma representação virtual do entorno da área monitorada. O ambiente resultante é integrado com uma máquina de inferência estados por imagens, comparando continuamente os estados inferidos com aqueles reportados pela base SCADA. Na ocasião de uma discrepância, um alarme é gerado e possibilita que a câmera virtual seja imediatamente teletransportada para a região afetada, acelerando o processo de retomada do sistema. A solução se baseia em uma arquitetura cliente-servidor e permite múltiplas câmeras presentes em múltiplas subestações. Os resultados dizem respeito à qualidade do registro 2D–3D e à taxa de renderização para um cenário simples. As métricas quantitativas coletadas sugerem bons níveis de registro e estimativa de pose de câmera, além de uma taxa ótima de renderização para fins de inspeção de equipamentos em subestações

    Geometry-Aware Network for Non-Rigid Shape Prediction from a Single View

    Get PDF
    We propose a method for predicting the 3D shape of a deformable surface from a single view. By contrast with previous approaches, we do not need a pre-registered template of the surface, and our method is robust to the lack of texture and partial occlusions. At the core of our approach is a {\it geometry-aware} deep architecture that tackles the problem as usually done in analytic solutions: first perform 2D detection of the mesh and then estimate a 3D shape that is geometrically consistent with the image. We train this architecture in an end-to-end manner using a large dataset of synthetic renderings of shapes under different levels of deformation, material properties, textures and lighting conditions. We evaluate our approach on a test split of this dataset and available real benchmarks, consistently improving state-of-the-art solutions with a significantly lower computational time.Comment: Accepted at CVPR 201

    Intraoperative Endoscopic Augmented Reality in Third Ventriculostomy

    Get PDF
    In neurosurgery, as a result of the brain-shift, the preoperative patient models used as a intraoperative reference change. A meaningful use of the preoperative virtual models during the operation requires for a model update. The NEAR project, Neuroendoscopy towards Augmented Reality, describes a new camera calibration model for high distorted lenses and introduces the concept of active endoscopes endowed with with navigation, camera calibration, augmented reality and triangulation modules

    MORPH-DSLAM: Model Order Reduction for PHysics-based Deformable SLAM

    Get PDF
    We propose a new methodology to estimate the 3D displacement field of deformable objects from video sequences using standard monocular cameras. We solve in real time the complete (possibly visco-)hyperelasticity problem to properly describe the strain and stress fields that are consistent with the displacements captured by the images, constrained by real physics. We do not impose any ad-hoc prior or energy minimization in the external surface, since the real and complete mechanics problem is solved. This means that we can also estimate the internal state of the objects, even in occluded areas, just by observing the external surface and the knowledge of material properties and geometry. Solving this problem in real time using a realistic constitutive law, usually non-linear, is out of reach for current systems. To overcome this difficulty, we solve off-line a parametrized problem that considers each source of variability in the problem as a new parameter and, consequently, as a new dimension in the formulation. Model Order Reduction methods allow us to reduce the dimensionality of the problem, and therefore, its computational cost, while preserving the visualization of the solution in the high-dimensionality space. This allows an accurate estimation of the object deformations, improving also the robustness in the 3D points estimation

    Map-Based Localization for Unmanned Aerial Vehicle Navigation

    Get PDF
    Unmanned Aerial Vehicles (UAVs) require precise pose estimation when navigating in indoor and GNSS-denied / GNSS-degraded outdoor environments. The possibility of crashing in these environments is high, as spaces are confined, with many moving obstacles. There are many solutions for localization in GNSS-denied environments, and many different technologies are used. Common solutions involve setting up or using existing infrastructure, such as beacons, Wi-Fi, or surveyed targets. These solutions were avoided because the cost should be proportional to the number of users, not the coverage area. Heavy and expensive sensors, for example a high-end IMU, were also avoided. Given these requirements, a camera-based localization solution was selected for the sensor pose estimation. Several camera-based localization approaches were investigated. Map-based localization methods were shown to be the most efficient because they close loops using a pre-existing map, thus the amount of data and the amount of time spent collecting data are reduced as there is no need to re-observe the same areas multiple times. This dissertation proposes a solution to address the task of fully localizing a monocular camera onboard a UAV with respect to a known environment (i.e., it is assumed that a 3D model of the environment is available) for the purpose of navigation for UAVs in structured environments. Incremental map-based localization involves tracking a map through an image sequence. When the map is a 3D model, this task is referred to as model-based tracking. A by-product of the tracker is the relative 3D pose (position and orientation) between the camera and the object being tracked. State-of-the-art solutions advocate that tracking geometry is more robust than tracking image texture because edges are more invariant to changes in object appearance and lighting. However, model-based trackers have been limited to tracking small simple objects in small environments. An assessment was performed in tracking larger, more complex building models, in larger environments. A state-of-the art model-based tracker called ViSP (Visual Servoing Platform) was applied in tracking outdoor and indoor buildings using a UAVs low-cost camera. The assessment revealed weaknesses at large scales. Specifically, ViSP failed when tracking was lost, and needed to be manually re-initialized. Failure occurred when there was a lack of model features in the cameras field of view, and because of rapid camera motion. Experiments revealed that ViSP achieved positional accuracies similar to single point positioning solutions obtained from single-frequency (L1) GPS observations standard deviations around 10 metres. These errors were considered to be large, considering the geometric accuracy of the 3D model used in the experiments was 10 to 40 cm. The first contribution of this dissertation proposes to increase the performance of the localization system by combining ViSP with map-building incremental localization, also referred to as simultaneous localization and mapping (SLAM). Experimental results in both indoor and outdoor environments show sub-metre positional accuracies were achieved, while reducing the number of tracking losses throughout the image sequence. It is shown that by integrating model-based tracking with SLAM, not only does SLAM improve model tracking performance, but the model-based tracker alleviates the computational expense of SLAMs loop closing procedure to improve runtime performance. Experiments also revealed that ViSP was unable to handle occlusions when a complete 3D building model was used, resulting in large errors in its pose estimates. The second contribution of this dissertation is a novel map-based incremental localization algorithm that improves tracking performance, and increases pose estimation accuracies from ViSP. The novelty of this algorithm is the implementation of an efficient matching process that identifies corresponding linear features from the UAVs RGB image data and a large, complex, and untextured 3D model. The proposed model-based tracker improved positional accuracies from 10 m (obtained with ViSP) to 46 cm in outdoor environments, and improved from an unattainable result using VISP to 2 cm positional accuracies in large indoor environments. The main disadvantage of any incremental algorithm is that it requires the camera pose of the first frame. Initialization is often a manual process. The third contribution of this dissertation is a map-based absolute localization algorithm that automatically estimates the camera pose when no prior pose information is available. The method benefits from vertical line matching to accomplish a registration procedure of the reference model views with a set of initial input images via geometric hashing. Results demonstrate that sub-metre positional accuracies were achieved and a proposed enhancement of conventional geometric hashing produced more correct matches - 75% of the correct matches were identified, compared to 11%. Further the number of incorrect matches was reduced by 80%

    Geometry-aware network for non-rigid shape prediction from a single view

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksWe propose a method for predicting the 3D shape of a deformable surface from a single view. By contrast with previous approaches, we do not need a pre-registered template of the surface, and our method is robust to the lack of texture and partial occlusions. At the core of our approach is a {it geometry-aware} deep architecture that tackles the problem as usually done in analytic solutions: first perform 2D detection of the mesh and then estimate a 3D shape that is geometrically consistent with the image. We train this architecture in an end-to-end manner using a large dataset of synthetic renderings of shapes under different levels of deformation, material properties, textures and lighting conditions. We evaluate our approach on a test split of this dataset and available real benchmarks, consistently improving state-of-the-art solutions with a significantly lower computational time.Peer ReviewedPostprint (author's final draft

    Deformable and articulated 3D reconstruction from monocular video sequences

    Get PDF
    PhDThis thesis addresses the problem of deformable and articulated structure from motion from monocular uncalibrated video sequences. Structure from motion is defined as the problem of recovering information about the 3D structure of scenes imaged by a camera in a video sequence. Our study aims at the challenging problem of non-rigid shapes (e.g. a beating heart or a smiling face). Non-rigid structures appear constantly in our everyday life, think of a bicep curling, a torso twisting or a smiling face. Our research seeks a general method to perform 3D shape recovery purely from data, without having to rely on a pre-computed model or training data. Open problems in the field are the difficulty of the non-linear estimation, the lack of a real-time system, large amounts of missing data in real-world video sequences, measurement noise and strong deformations. Solving these problems would take us far beyond the current state of the art in non-rigid structure from motion. This dissertation presents our contributions in the field of non-rigid structure from motion, detailing a novel algorithm that enforces the exact metric structure of the problem at each step of the minimisation by projecting the motion matrices onto the correct deformable or articulated metric motion manifolds respectively. An important advantage of this new algorithm is its ability to handle missing data which becomes crucial when dealing with real video sequences. We present a generic bilinear estimation framework, which improves convergence and makes use of the manifold constraints. Finally, we demonstrate a sequential, frame-by-frame estimation algorithm, which provides a 3D model and camera parameters for each video frame, while simultaneously building a model of object deformation

    Accelerated volumetric reconstruction from uncalibrated camera views

    Get PDF
    While both work with images, computer graphics and computer vision are inverse problems. Computer graphics starts traditionally with input geometric models and produces image sequences. Computer vision starts with input image sequences and produces geometric models. In the last few years, there has been a convergence of research to bridge the gap between the two fields. This convergence has produced a new field called Image-based Rendering and Modeling (IBMR). IBMR represents the effort of using the geometric information recovered from real images to generate new images with the hope that the synthesized ones appear photorealistic, as well as reducing the time spent on model creation. In this dissertation, the capturing, geometric and photometric aspects of an IBMR system are studied. A versatile framework was developed that enables the reconstruction of scenes from images acquired with a handheld digital camera. The proposed system targets applications in areas such as Computer Gaming and Virtual Reality, from a lowcost perspective. In the spirit of IBMR, the human operator is allowed to provide the high-level information, while underlying algorithms are used to perform low-level computational work. Conforming to the latest architecture trends, we propose a streaming voxel carving method, allowing a fast GPU-based processing on commodity hardware
    corecore