5 research outputs found

    PatchMatch Belief Propagation for Correspondence Field Estimation and its Applications

    Get PDF
    Correspondence fields estimation is an important process that lies at the core of many different applications. Is it often seen as an energy minimisation problem, which is usually decomposed into the combined minimisation of two energy terms. The first is the unary energy, or data term, which reflects how well the solution agrees with the data. The second is the pairwise energy, or smoothness term, and ensures that the solution displays a certain level of smoothness, which is crucial for many applications. This thesis explores the possibility of combining two well-established algorithms for correspondence field estimation, PatchMatch and Belief Propagation, in order to benefit from the strengths of both and overcome some of their weaknesses. Belief Propagation is a common algorithm that can be used to optimise energies comprising both unary and pairwise terms. It is however computational expensive and thus not adapted to continuous spaces which are often needed in imaging applications. On the other hand, PatchMatch is a simple, yet very efficient method for optimising the unary energy of such problems on continuous and high dimensional spaces. The algorithm has two main components: the update of the solution space by sampling and the use of the spatial neighbourhood to propagate samples. We show how these components are related to the components of a specific form of Belief Propagation, called Particle Belief Propagation (PBP). PatchMatch however suffers from the lack of an explicit smoothness term. We show that unifying the two approaches yields a new algorithm, PMBP, which has improved performance compared to PatchMatch and is orders of magnitude faster than PBP. We apply our new optimiser to two different applications: stereo matching and optical flow. We validate the benefits of PMBP through series of experiments and show that we consistently obtain lower errors than both PatchMatch and Belief Propagation

    Facial Texture Super-Resolution by Fitting 3D Face Models

    Get PDF
    This book proposes to solve the low-resolution (LR) facial analysis problem with 3D face super-resolution (FSR). A complete processing chain is presented towards effective 3D FSR in real world. To deal with the extreme challenges of incorporating 3D modeling under the ill-posed LR condition, a novel workflow coupling automatic localization of 2D facial feature points and 3D shape reconstruction is developed, leading to a robust pipeline for pose-invariant hallucination of the 3D facial texture

    Model-based Optical Flow: Layers, Learning, and Geometry

    Get PDF
    The estimation of motion in video sequences establishes temporal correspondences between pixels and surfaces and allows reasoning about a scene using multiple frames. Despite being a focus of research for over three decades, computing motion, or optical flow, remains challenging due to a number of difficulties, including the treatment of motion discontinuities and occluded regions, and the integration of information from more than two frames. One reason for these issues is that most optical flow algorithms only reason about the motion of pixels on the image plane, while not taking the image formation pipeline or the 3D structure of the world into account. One approach to address this uses layered models, which represent the occlusion structure of a scene and provide an approximation to the geometry. The goal of this dissertation is to show ways to inject additional knowledge about the scene into layered methods, making them more robust, faster, and more accurate. First, this thesis demonstrates the modeling power of layers using the example of motion blur in videos, which is caused by fast motion relative to the exposure time of the camera. Layers segment the scene into regions that move coherently while preserving their occlusion relationships. The motion of each layer therefore directly determines its motion blur. At the same time, the layered model captures complex blur overlap effects at motion discontinuities. Using layers, we can thus formulate a generative model for blurred video sequences, and use this model to simultaneously deblur a video and compute accurate optical flow for highly dynamic scenes containing motion blur. Next, we consider the representation of the motion within layers. Since, in a layered model, important motion discontinuities are captured by the segmentation into layers, the flow within each layer varies smoothly and can be approximated using a low dimensional subspace. We show how this subspace can be learned from training data using principal component analysis (PCA), and that flow estimation using this subspace is computationally efficient. The combination of the layered model and the low-dimensional subspace gives the best of both worlds, sharp motion discontinuities from the layers and computational efficiency from the subspace. Lastly, we show how layered methods can be dramatically improved using simple semantics. Instead of treating all layers equally, a semantic segmentation divides the scene into its static parts and moving objects. Static parts of the scene constitute a large majority of what is shown in typical video sequences; yet, in such regions optical flow is fully constrained by the depth structure of the scene and the camera motion. After segmenting out moving objects, we consider only static regions, and explicitly reason about the structure of the scene and the camera motion, yielding much better optical flow estimates. Furthermore, computing the structure of the scene allows to better combine information from multiple frames, resulting in high accuracies even in occluded regions. For moving regions, we compute the flow using a generic optical flow method, and combine it with the flow computed for the static regions to obtain a full optical flow field. By combining layered models of the scene with reasoning about the dynamic behavior of the real, three-dimensional world, the methods presented herein push the envelope of optical flow computation in terms of robustness, speed, and accuracy, giving state-of-the-art results on benchmarks and pointing to important future research directions for the estimation of motion in natural scenes
    corecore