14 research outputs found

    What are the limits to time series based recognition of semantic concepts?

    Get PDF
    Most concept recognition in visual multimedia is based on relatively simple concepts, things which are present in the image or video. These usually correspond to objects which can be identified in images or individual frames. Yet there is also a need to recognise semantic con- cepts which have a temporal aspect corresponding to activities or com- plex events. These require some form of time series for recognition and also require some individual concepts to be detected so as to utilise their time-varying features, such as co-occurrence and re-occurrence patterns. While results are reported in the literature of using concept detections which are relatively specific and static, there are research questions which remain unanswered. What concept detection accuracies are satisfactory for time series recognition? Can recognition methods perform equally well across various concept detection performances? What affecting factors need to be taken into account when building concept-based high-level event/activity recognitions? In this paper, we conducted experiments to investigate these questions. Results show that though improving concept detection accuracies can enhance the recognition of time series based concepts, they do not need to be very accurate in order to characterize the dynamic evolution of time series if appropriate methods are used. Experimental results also point out the importance of concept selec- tion for time series recognition, which is usually ignored in the current literature

    Zero-Shot Event Detection by Multimodal Distributional Semantic Embedding of Videos

    Full text link
    We propose a new zero-shot Event Detection method by Multi-modal Distributional Semantic embedding of videos. Our model embeds object and action concepts as well as other available modalities from videos into a distributional semantic space. To our knowledge, this is the first Zero-Shot event detection model that is built on top of distributional semantics and extends it in the following directions: (a) semantic embedding of multimodal information in videos (with focus on the visual modalities), (b) automatically determining relevance of concepts/attributes to a free text query, which could be useful for other applications, and (c) retrieving videos by free text event query (e.g., "changing a vehicle tire") based on their content. We embed videos into a distributional semantic space and then measure the similarity between videos and the event query in a free text form. We validated our method on the large TRECVID MED (Multimedia Event Detection) challenge. Using only the event title as a query, our method outperformed the state-of-the-art that uses big descriptions from 12.6% to 13.5% with MAP metric and 0.73 to 0.83 with ROC-AUC metric. It is also an order of magnitude faster.Comment: To appear in AAAI 201

    Video content analysis and retrieval system using video storytelling and indexing techniques

    Get PDF
    Videos are used often for communicating ideas, concepts, experience, and situations, because of the significant advances made in video communication technology. The social media platforms enhanced the video usage expeditiously. At, present, recognition of a video is done, using the metadata like video title, video descriptions, and video thumbnails. There are situations like video searcher requires only a video clip on a specific topic from a long video. This paper proposes a novel methodology for the analysis of video content and using video storytelling and indexing techniques for the retrieval of the intended video clip from a long duration video. Video storytelling technique is used for video content analysis and to produce a description of the video. The video description thus created is used for preparation of an index using wormhole algorithm, guarantying the search of a keyword of definite length L, within the minimum worst-case time. This video index can be used by video searching algorithm to retrieve the relevant part of the video by virtue of the frequency of the word in the keyword search of the video index. Instead of downloading and transferring a whole video, the user can download or transfer the specifically necessary video clip. The network constraints associated with the transfer of videos are considerably addressed

    Learning from Web Videos for Event Classification

    Get PDF
    International audienceTraditional approaches for classifying event videos rely on a manually curated training dataset. While this paradigm has achieved excellent results on benchmarks such as TrecVid multimedia event detection (MED) challenge datasets, it is restricted by the effort involved in careful annotation. Recent approaches have attempted to address the need for annotation by automatically extracting images from the web, or generating queries to retrieve videos. In the former case, they fail to exploit additional cues provided by video data, while in the latter, they still require some manual annotation to generate relevant queries. We take an alternate approach in this paper, leveraging the synergy between visual video data and the associated textual metadata, to learn event classifiers without manually annotating any videos. Specifically, we first collect a video dataset with queries constructed automatically from textual description of events, prune irrelevant videos with text and video data, and then learn the corresponding event classifiers. We evaluate this approach in the challenging setting where no manually annotated training set is available, i.e., EK0 in the TrecVid challenge, and show state-of-the-art results on MED 2011 and 2013 datasets

    What is the best way for extracting meaningful attributes from pictures?

    Get PDF
    Automatic attribute discovery methods have gained in popularity to extract sets of visual attributes from images or videos for various tasks. Despite their good performance in some classification tasks, it is difficult to evaluate whether the attributes discovered by these methods are meaningful and which methods are the most appropriate to discover attributes for visual descriptions. In its simplest form, such an evaluation can be performed by manually verifying whether there is any consistent identifiable visual concept distinguishing between positive and negative exemplars labelled by an attribute. This manual checking is tedious, expensive and labour intensive. In addition, comparisons between different methods could also be problematic as it is not clear how one could quantitatively decide which attribute is more meaningful than the others. In this paper, we propose a novel attribute meaningfulness metric to address this challenging problem. With this metric, automatic quantitative evaluation can be performed on the attribute sets; thus, reducing the enormous effort to perform manual evaluation. The proposed metric is applied to some recent automatic attribute discovery and hashing methods on four attribute-labelled datasets. To further validate the efficacy of the proposed method, we conducted a user study. In addition, we also compared our metric with a semi-supervised attribute discover method using the mixture of probabilistic PCA. In our evaluation, we gleaned several insights that could be beneficial in developing new automatic attribute discovery methods

    Analyzing Complex Events and Human Actions in "in-the-wild" Videos

    Get PDF
    We are living in a world where it is easy to acquire videos of events ranging from private picnics to public concerts, and to share them publicly via websites such as YouTube. The ability of smart-phones to create these videos and upload them to the internet has led to an explosion of video data, which in turn has led to interesting research directions involving the analysis of ``in-the-wild'' videos. To process these types of videos, various recognition tasks such as pose estimation, action recognition, and event recognition become important in computer vision. This thesis presents various recognition problems and proposes mid-level models to address them. First, a discriminative deformable part model is presented for the recovery of qualitative pose, inferring coarse pose labels (e:g: left, front-right, back), a task more robust to common confounding factors that hinder the inference of exact 2D or 3D joint locations. Our approach automatically selects parts that are predictive of qualitative pose and trains their appearance and deformation costs to best discriminate between qualitative poses. Unlike previous approaches, our parts are both selected and trained to improve qualitative pose discrimination and are shared by all the qualitative pose models. This leads to both increased accuracy and higher efficiency, since fewer parts models are evaluated for each image. In comparisons with two state-of-the-art approaches on a public dataset, our model shows superior performance. Second, the thesis proposes the use of a robust pose feature based on part based human detectors (Poselets) for the task of action recognition in relatively unconstrained videos, i.e., collected from the web. This feature, based on the original poselets activation vector, coarsely models pose and its transitions over time. Our main contributions are that we improve the original feature's compactness and discriminability by greedy set cover over subsets of joint configurations, and incorporate it into a unified video-based action recognition framework. Experiments shows that the pose feature alone is extremely informative, yielding performance that matches most state-of-the-art approaches but only using our proposed improvements to its compactness and discriminability. By combining our pose feature with motion and shape, the proposed method outperforms state-of-the-art approaches on two public datasets. Third, clauselets, sets of concurrent actions and their temporal relationships, are proposed and explored their application to video event analysis. Clauselets are trained in two stages. Initially, clauselet detectors that find a limited set of actions in particular qualitative temporal configurations based on Allen's interval relations is trained. In the second stage, the first level detectors are applied to training videos, and discriminatively learn temporal patterns between activations that involve more actions over longer durations and lead to improved second level clauselet models. The utility of clauselets is demonstrated by applying them to the task of ``in-the-wild'' video event recognition on the TRECVID MED 11 dataset. Not only do clauselets achieve state-of-the-art results on this task, but qualitative results suggest that they may also lead to semantically meaningful descriptions of videos in terms of detected actions and their temporal relationships. Finally, the thesis addresses the task of searching for videos given text queries that are not known at training time, which typically involves zero-shot learning, where detectors for a large set of concepts, attributes, or objects parts are learned under the assumption that, once the search query is known, they can be combined to detect novel complex visual categories. These detectors are typically trained on annotated training data that is time-consuming and expensive to obtain, and a successful system requires many of them to generalize well at test time. In addition, these detectors are so general that they are not well-tuned to the specific query or target data, since neither is known at training. Our approach addresses the annotation problem by searching the web to discover visual examples of short text phrases. Top ranked search results are used to learn general, potentially noisy, visual phrase detectors. Given a search query and a target dataset, the visual phrase detectors are adapted to both the query and unlabeled target data to remove the influence of incorrect training examples or correct examples that are irrelevant to the search query. Our adaptation process exploits the spatio-temporal coocurrence of visual phrases that are found in the target data and which are relevant to the search query by iteratively refining both the visual phrase detectors and spatio-temporally grouped phrase detections (`clauselets'). Our approach is demonstrated on to the challenging TRECVID MED13 EK0 dataset and show that, using visual features alone, our approach outperforms state-of-the-art approaches that use visual, audio, and text (OCR) features
    corecore