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ABSTRACT

Large-Scale Video Event Detection

Guangnan Ye

Because of the rapid growth of large scale video recording and sharing, there is a growing need for

robust and scalable solutions for analyzing video content. The ability to detect and recognize video

events that capture real-world activities is one of the key and complex problems. This thesis aims

at the development of robust and efficient solutions for large scale video event detection systems.

In particular, we investigate the problem in two areas: first, event detection with automatically

discovered event specific concepts with organized ontology, and second, event detection with multi-

modality representations and multi-source fusion.

Existing event detection works use various low-level features with statistical learning models,

and achieve promising performance. However, such approaches lack the capability of interpreting

the abundant semantic content associated with complex video events. Therefore, mid-level seman-

tic concept representation of complex events has emerged as a promising method for understanding

video events. In this area, existing works can be categorized into two groups: those that manually

define a specialized concept set for a specific event, and those that apply a general concept lexicon

directly borrowed from existing object, scene and action concept libraries. The first approach seems

to require tremendous manual efforts, whereas the second approach is often insufficient in capturing

the rich semantics contained in video events. In this work, we propose an automatic event-driven

concept discovery method, and build a large-scale event and concept library with well-organized

ontology, called EventNet. This method is different from past work that applies a generic concept

library independent of the target while not requiring tedious manual annotations. Extensive exper-

iments over the zero-shot event retrieval task when no training samples are available show that the

proposed EventNet library consistently and significantly outperforms the state-of-the-art methods.

Although concept-based event representation can interpret the semantic content of video events,

in order to achieve high accuracy in event detection, we also need to consider and combine vari-



ous features of different modalities and/or across different levels. One one hand, we observe that

joint cross-modality patterns (e.g., audio-visual pattern) often exist in videos and provide strong

multi-modal cues for detecting video events. We propose a joint audio-visual bi-modal codeword

representation, called bi-modal words, to discover cross-modality correlations. On the other hand,

combining features from multiple sources often produces performance gains, especially when the

features complement with each other. Existing multi-source late fusion methods usually apply

direct combination of confidence scores from different sources. This becomes limiting because

heterogeneous results from various sources often produce incomparable confidence scores at dif-

ferent scales. This makes direct late fusion inappropriate, thus posing a great challenge. Based

upon the above considerations, we propose a robust late fusion method with rank minimization,

that not only achieves isotonicity among various scores from different sources, but also recover-

s a robust prediction score for individual test samples. We experimentally show that the proposed

multi-modality representation and multi-source fusion methods achieve promising results compared

with other benchmark baselines.

The main contributions of the thesis include the following.

1. Large scale event and concept ontology: a) propose an automatic framework for discover-

ing event-driven concepts; b) build the largest video event ontology, EventNet, which includes 500

complex events and 4, 490 event-specific concepts; c) build the first interactive system that allows

users to explore high-level events and associated concepts in videos with event browsing, search,

and tagging functions.

2. Event detection with multi-modality representations and multi-source fusion: a) pro-

pose novel bi-modal codeword construction for discovering multi-modality correlations; b) propose

novel robust late fusion with rank minimization method for combining information from multiple

sources.

The two parts of the thesis are complimentary. Concept-based event representation provides

rich semantic information for video events. Cross-modality features also provide complementary

information from multiple sources. The combination of those two parts in a unified framework can

offer great potential for advancing state-of-the-art in large-scale event detection.
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Chapter 1

Introduction

1.1 Motivation

The prevalence of video capture devices and the growing practice of video sharing in social media

have resulted in an enormous explosion of user-generated videos on the Internet. For example, there

are more than 1 billion users on YouTube, and 300 hours of video are uploaded every minute to the

website. Another media sharing website, Facebook, reported recently that the number of videos

posted to the platform per person in the U.S. has increased by 94% over the last year.

There is an emerging need to construct intelligent, robust, and efficient search-and-retrieval sys-

tems to organize and index those videos. However, most current commercial video search engines

rely on textual keyword matching rather than visual content-based indexing. Such keyword-based

search engines often produce unsatisfactory performance because of inaccurate and insufficient tex-

tural information, as well as the well-known issue of semantic gaps that makes the keyword-based

search engines infeasible in real world scenarios. Thanks to recent research in computer vision and

multimedia, researchers have attempted to automatically recognize people, objects, scenes, human

actions, complex events, etc., and index videos based on the learned semantics in order to better un-

derstand and analyze the indexed videos by their semantic meanings. In this thesis, we are especially

interested in analyzing and detecting events in videos. The automatic detection of complex events

in videos can be formally defined as “detecting a complicated human activity interacting with peo-

ple and object in a certain scene” [MED, 2010]. Compared with object, scene, or action detection

and classification, complex event detection is a more challenging task because it is often combined
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Figure 1.1: Event Detection Framework. Improved components in this thesis are marked accord-

ingly.

with complicated interactions among objects, scenes, and human activities. Complex event detec-

tion often provides higher semantic understanding in videos, and thus has great potential for many

applications, such as consumer content management, commercial advertisement recommendation,

surveillance video analysis, and more.

In general, automatic detection systems, such as the one shown in Figure 1.1, contain three basic

components: feature extraction, classifier, and model fusion. Given a set of training videos, state-

of-the-art systems often extract various types of features [Y.-G. Jiang and Chang, 2010]. Those

features can be manually designed low-level features, e.g., SIFT [Lowe, 2004], Mel-Frequency

Cepstral Coefficients (MFCC) [Pols, 1966a], etc., that do not contain any semantic information, or

mid-level feature representation where certain concept categories are defined and the probability

scores from the trained concept classifiers are considered the concept features. After the feature

extraction module, features from multiple modalities are used to train classifiers. Then, fusion

approaches [Guangnan Ye and Chang, 2012; A. Rakotomamonjy and Grandvalet, 2009] are applied

so that scores from multiple sources are combined to generate detection output. In this thesis,

we focus on a few improvements upon this basic framework (e.g., shown as #1, #2, and #3 in
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Figure 1.1). In particular, the two major technical components of this thesis, large-scale events and

concept ontology construction (shown as #2 in Figure 1.1), and event detection with multi-modality

representations (shown as #1 in Figure 1.1) and multi-source fusion (shown as #3 in Figure 1.1), are

summarized below.

1.2 Technical Challenges and Proposed Approaches

1.2.1 Large-scale Event and Concept Ontology

Analysis and detection of complex events in videos require a semantic representation of the video

content. Concept-based feature representation can not only depict a complex event in an inter-

pretable semantic space that performs better zero-shot event retrieval, but also be considered mid-

level features in supervised event modeling. By zero-shot retrieval here, we refer to the scenario

in which the retrieval target is novel and thus there are no training videos available for training a

machine learning classifier for the specific search target. A key research problem of the semantic

representation is how to generate a suitable concept lexicon for events. There are two typical ways

for defining concepts for events. The first is event independent concept lexicon that directly applies

object, scene, and action concepts borrowed from existing libraryies, e.g., ImageNet [J. Deng and

Fei-Fei, 2009], SUN dataset [Patterson and Hays, 2012], UCF 101 [K. Soomro and Shah, 2012],

etc. However, because the borrowed concepts are not specifically defined for target events of inter-

est, they are often insufficient and inaccurate for capturing semantic information in event videos.

Another approach requires users to pre-define a concept lexicon and manually annotate the presence

of those concepts in videos as training samples. This approach seems to involve tremendous manual

effort, and it is infeasible for real-world applications.

In order to address these problems, we propose an automatic semantic concept discovery scheme

that exploits Internet resources without human labeling effort. To distinguish the work that builds

a generic concept library, we propose our approach as an event-driven concept discovery that pro-

vides more relevant concepts for events. In order to manage novel unseen events, we propose the

construction of a large-scale event-driven concept library that covers as many real-world events and

concepts as possible. We resort to the external knowledge base called WikiHow, a collaborative fo-

rum that aims to build the world’s largest manual for human daily life events. We define EventNet,
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which contains 500 representative events from the articles of the WikiHow website [Wik, 2015],

and automatically discover 4, 490 event-specific concepts associated with those events. EventNet

ontology is publicly considered the largest event concept library. We experimentally show dramatic

performance gain in complex event detection, especially for unseen novel events. We also construct

the first interactive system (to the best of our knowledge) that allows users to explore high-level

events and associated concepts with certain event browsing, search, and tagging functions.

1.2.2 Multi-modality Representations and Multi-Source Fusion

Note that the state-of-the-art event detection system [Y.-G. Jiang and Chang, 2010] often extracts

various types of features from multiple modalities, e.g., low-level visual feature, low-level audio

feature, mid-level concept feature, textual feature, etc. In the second part of the thesis, we mainly

explore two problems: 1) whether there is a cross-modal correlation among different modalities,

and 2) whether there is a robust fusion method that combines multiple sources effectively.

Joint audio-visual patterns often exist in videos and provide strong multi-modal cues for detect-

ing events. For example, an “explosion” event is best manifested by the transient burst of sound

along with visible smoke and flame after the incident. Other examples include strong temporal syn-

chronization (e.g., a horse running with audible footsteps) or loose association (e.g., a runner with

cheering sounds in baseball videos). With the assumption that cross-modal correlation tends to be

preserved in certain event videos, we propose a joint audio-visual bi-modal representation, called bi-

modal words. In particular, we build a bipartite graph to model the relationship across the quantized

words extracted from the visual and audio modalities. Partitioning over the bipartite graph is then

applied to construct the bi-modal words that reveal the joint patterns across modalities. Different

pooling strategies are employed to requantize the visual and audio words into the bi-modal words

and form bi-modal Bag-of-Word (BoW) representations fed to subsequent event classifiers. Exten-

sive experiments demonstrate the effectiveness of the multi-modality representation, the bi-modal,

on video event detection tasks.

Feature combinations from multiple sources are often considered, especially when the features

complement each other from heterecious modalities. Here, we focus on the problem of robust late

fusion that aims to combine the confidence scores of the models constructed from multiple sources.

One challenging problem with the late fusion strategy originates from the possible heterogeneity



CHAPTER 1. INTRODUCTION 6

among the confidence scores, which produces incomparable numbers at different numeric scales.

With the motivation to achieve isotonicity (e.g., scale invariance) among the numeric scores of

different sources, while recovering a robust fused prediction score with noise reduction, we propose

a robust late fusion method with rank minimization. In particular, we convert each confidence

score vector obtained from one source into a pairwise relationship matrix in order to address the

scale variance problem. Then we formulate the score fusion problem as seeking a shared rank-two

pairwise relationship matrix based on the original score matrix from the individual model that can

be decomposed into the common rank-two matrix and sparse deviation errors in order to remove

the prediction errors in each source for the individual test sample. We experimentally show that the

proposed method can achieve significant performance gains on video event detection. The proposed

method is also a general framework for multi-source fusion on other applications.

1.3 Thesis Outline

The following indicates the organization of the remainder of the thesis. In Chapter 2, we start with

a brief literature survey on event detection, especially focusing on the benchmark event detection

dataset summary and state-of-the-art system reviews. Part II describes large scale video event and

concept ontology, and it contains Chapters 3,4,5. In Chapter 3, we describe an automatic event

driven semantic concept discovery method. Chapter 4 describes a large scale structured concept

library for complex event detection. In Chapter 5, we describe the EventNet application, where we

build an ontology browsing, searching, and event video tagging online system. Part III describes

event detection with multi-modality representation and multi-source fusion. In particular, in Part

III Chapter 6, we describe the bi-modal codeword construction that discovers joint audio-visual

codewords for video event detection, and, in Part III Chapter 7, we describe the robust late fusion

method with rank minimization for multi-source fusion. Finally, in Part IV Chapter 8, we conclude

the thesis and discuss future work.



CHAPTER 2. LITERATURE SURVEY 7

Chapter 2

Literature Survey

2.1 Introduction

With the fast growth of video sharing in social media, high-level complex event detection has at-

tracted great interests in computer vision and multimedia areas. Over decades, researchers have

made great efforts to collect the large scale event datasets, build up benchmark systems, and pro-

pose novel methodologies for the task of video event detection. In this chapter, we briefly review the

literatures for event detection task. Specifically, we will provide detailed descriptions in two per-

spectives including benchmark video event detection datasets, the state-of-the-art event detection

system.

2.2 Dataset Summary

By the year of 2010, databases for event detection are still quite limited in the community. Most

researchers focus on datasets of human action recognition which captured under constrained en-

vironments such as KTH [C. Schuldt and Caputo, 2004], IXMAS [Weinland D and E, 2006],

Weizmann [M. Blank and Basri, 2005]. Later, several more realistic action datasets under un-

constrained environments were released such as UCF11 [Liu J and M, 2009], UCF Sports [Ro-

driguez MD and M, 2008], UCF50 [ucf, 2015], UCF101 [K. Soomro and Shah, 2012], Hollywood

movie dataset [I. Laptev and Rozenfeld, 2008], and Human Motion Dataset [Kuehne H and T,

2011]. Although those action recognition datasets can not be considered as high-level complex
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Figure 2.1: Examples from Columbia Consumer Video database.

event benchmark datasets, the research on action recognition has made important early efforts and

explorations for the task of event detection. Next, we describe several popular event detection

benchmark datasets.

TRECVID MED dataset [MED, 2010] In order to promote progress in content-based analysis

of and retrieval from digital video via open, metrics-based evaluation, the annual NIST TRECVID

activity defined the most well-known event detection task since the year of 2010, which is called

TRECVID multimedia event detection (MED). The MED data contains user-generated content from

Internet video and is collected and annotated by the Linguistic Data Consortium. Every year a newly

extended event dataset is released for larger scale data evaluations. Over five years’ efforts, signifi-

cant efforts have been made to develop the dataset containing over 200, 000 videos which belong to

48 event categories. Tens of participants attended the evaluation and proposed several novel meth-

ods, and promising results have been achieved by the participating teams. MED is believed to be

the largest public event detection evaluation worldwide. The dataset is also considered as one of the

key benchmark datasets in the following experiments in the later chapters of the thesis.

Columbia Consumer Video (CCV) dataset [Y.-G. Jiang and Loui, 2011] In order to stimulate

innovative research on challenging issues in event detection, CCV dataset was released in 2011.

The dataset contains 9, 317 YouTube videos spanning over 20 semantic categories, which are “E1:
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basketball”, “E2: baseball”, “E3: soccer”, “E4: ice skating”, “E5: skiing”, “E6: swimming”, “E7:

biking”, “E8: cat”, “E9: dog”, “E10: bird”, “E11: graduation”, “E12: birthday”, “E13: wedding

reception”, “E14: wedding ceremony”, “E15: wedding dance”, “E16: music performance”, “E17:

non-music performance”, “E18: parade”, “E19: beach”, “E20: playground”. Figure 2.1 gives

an example for each category. The database was collected with extra care to ensure relevance to

consumer’s interest and originality of video content without post-editing. Class annotations on

video level were carefully performed with Amazon MTurk platform.

Stanford Sports-1M dataset [Karpathy et al., 2014] The Sports-1M dataset consists of 1 mil-

lion YouTube videos annotated with 487 classes. The classes are arranged in a manually-curated

taxonomy that contains internal nodes such as Aquatic Sports, Team Sports, Winter Sports, Ball

Sports, Combat Sports, Sports with Animals, and generally becomes fine-grained by the leaf lev-

el. There are 1000-3000 videos per class and approximately 5% of the videos are annotated with

more than one class. The annotations are produced automatically by analyzing the text metadata

surrounding the videos. Thus, the data is weakly annotated. Compared with the other datasets,

although Sports-1M contains the largest video pool, since the video events are constrained within

sports domain, it is not very popular used in general event detection evaluations.

FCVID: Fudan-Columbia Video dataset [Y.-G. Jiang and Chang, 2015] The newly released

Fudan-Columbia Video Dataset (FCVID) contains 91, 223 Web videos annotated manually accord-

ing to 239 categories. The categories in FCVID cover a wide range of topics like social events

(e.g., “tailgate party”), procedural events (e.g., “making cake”), objects (e.g., “panda”), scenes

(e.g., “beach”), etc. Categories were defined carefully and organized in a hierarchy of 11 high-

level groups. In order to minimize subjectivity, multiple people were involved in both the category

definition and the manual annotation processes.

Columbia EventNet Dataset [Guangnan Ye and Chang, 2015] In order to build a large scale

event specific concept library that covers as many real-world events and their concepts as possible,

EventNet was released recently, which contains 95, 321 videos over 500 events with 4, 490 event

specific concepts attached to those events. They have built the largest event and concept ontology

with well-organized hierarchical structures. Dramatic performance gains were reported by using

this library in complex event detection especially for unseen novel events. Details of EventNet will

be described in Chapter 4.
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2.3 Benchmark Systems

Typical state-of-the-art event detection systems contain three basic module which are feature ex-

traction module, classification module, and fusion module as shown in Figure 1.1. In this section

we will summarize the benchmark systems in these three perspectives.

2.3.1 Feature Representation

Feature representation plays an important role in well performed event detection systems [Natarajan,

2011; Y.-G. Jiang and Chang, 2010]. Usually, top-ranked event detection systems used to combine

various types of features from multiple modalities. For example, in the top-ranked MED 2010 sys-

tem [Y.-G. Jiang and Chang, 2010], they extracted low-level features such as SIFT [Lowe, 2004],

STIP [Laptev and Lindeberg, 2003], MFCC [Pols, 1966a]. In MED 2015 evaluation, more robust

features are extracted, e.g., Opponent SIFT [Baptiste Mazin and Gousseau, 2012], GIST [Bap-

tiste Mazin and Gousseau, 2012], LBP [Baptiste Mazin and Gousseau, 2012], dense trajectories

with HOG, HOF, and MBH [H. Wang and Liu, 2011]. However, those low-level features are inca-

pable of providing any interpretation or understanding of semantics presented in complex events. To

this point, researches started to explore the mid-level semantic concept features. Briefly speaking,

such method first define concept categories related to objects, scenes, actions etc., and train classi-

fiers for each category. Then the confidence score of the presence of a concept can be considered as

the mid-level features in supervised event modeling frameworks. Popular concept libraries include

Classemes [L. Torresani and Fitzgibbon, 2010], ImageNet [J. Deng and Fei-Fei, 2009], Object-

Bank [L.-J. Li and Xing, 2010], ActionBank [Sadanand and Corso, 2012], EventNet [Guangnan Ye

and Chang, 2015](shown in Chapter 3), etc. Features from multiple modalities, e.g., MFCC [Pols,

1966a], ASR, OCR, are also considered for complimentary information. Instead of single modal-

ity feature, there are also a lot of efforts on constructing multi-modal feature representations. For

example, in [W. Jiang and Loui, 2009], the authors proposed a joint audio-visual feature, called

audio-visual atom which indicates an image region trajectory associated with both regional visual

features and audio features. In [G. Ye and Chang, 2012](shown in Chapter 6), the authors proposed

a joint audio-visual bi-modal representation, called bi-modal words, to represent joint audio-visual

patterns in event videos. Except for that, features learned from deep learning models, e.g., the last
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few layers of deep learning models learned over ImageNet 1K or 20K [A. Krizhevsky and Hinton,

2012] are considered as strong features for event detection recently.

2.3.2 Classification Method

Given robust feature representations, event recognition can be achieved by various types of classi-

fiers. For example, event detection can be formulated as a one-versus-all manner based on various

feature representations, where a two-class SVM is typically trained either with linear setting or

kernelized setting (e.g., RBF kernel, Chi-square kernel, etc.). Beyond that, graphical models are

proposed in order to deeply analyze the sequential video frames. For example, in [Natarajan P,

2008], an action is modeled by a transition HMM. Conolly proposed modeling and recognition of

complex events using CRF [CI, 2007]. Recently, some researchers have borrowed the success of

deep learning on the task of large scale image classification [A. Krizhevsky and Hinton, 2012], and

applied CNN directly on the task of event detection and achieved promising results [Florian, 2014].

2.3.3 Fusion Method

With various output from multiple sources, a robust fusion method often produces better perfor-

mance especially when the sources are from heterogenous domain with complimentary informa-

tion [Y.-G. Jiang and Chang, 2010]. A popular feature combination strategy in computer vision is

MKL [Bach et al., 2004], which learns an optimized kernel combination and the associated classifi-

er simultaneously. Varma et al. [Varma and Ray, 2007] used MKL to combine multiple features and

achieved good results on image classification. Different from this line of research, numerous score

late fusion methods in the literature are proposed which work by combining the confidence scores of

the models obtained from different features. For example, Jain et al. [Jain et al., 2005] transformed

the confidence scores of multiple models into a normalized domain, and then combined the scores

through a linear weighted combination. SIFT, STIP, and MFCC features were lately fused by Jiang

et al. [Y.-G. Jiang and Chang, 2010] in their top ranked TRECVID 2010 MED system. In Chapter 7,

we will introduce a novel late fusion method which not only achieves isotonicity but also removes

the predictions errors made by the individual models.



12

Part II

Large Scale Video Event and Concept

Ontology
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Analysis and detection of complex events in videos require a semantic representation of the

video content. Event-specific concepts are the semantic concepts specifically designed for the events

of interest, which can be used as a mid-level representation of complex events in videos. Existing

video semantic representation methods typically require users to pre-define an exhaustive concep-

t lexicon and manually annotate the presence of the concepts in each video, which is infeasible

for real-world video event detection problems. Moreover, such methods that focus only on defin-

ing event-specific concepts for a small number of pre-defined events cannot manage novel unseen

events.

In this part, we first propose an automatic semantic concept discovery scheme by exploiting

Internet images and their associated tags so that users no longer need to annotate the concepts for

each video event (shown in Chapter 3). In particular, given a target event and its textual descriptions,

we crawl a collection of images and their associated tags by performing a text-based image search

using the noun and verb pairs extracted from the event’s textual descriptions. The system first

identifies the candidate concepts for an event by measuring whether a tag is a meaningful word and

visually detectable. Then a concept visual model is built for each candidate concept using an SVM

classifier with probabilistic output. Finally, the concept models are applied to generate concept

based video representations.

In order to manage unseen events, we apply the automatic event-driven semantic concept discov-

ery scheme to construct a large scale event-specific concept library that covers as many real-world

events and their concepts as possible (shown in Chapter 4). In particular, we choose WikiHow, an

online forum that contains a large number of how-to articles on human daily life events. We perform

a coarse-to-fine event discovery process and discover 500 events from WikiHow articles. Then we

use each event name as query to search YouTube and discover event-specific concepts from the tags

of returned videos. After an automatic filter process, we end with 95, 321 videos and 4, 490 con-

cepts. We train a Convolutional Neural Network (CNN) model on the 95, 321 videos over the 500

events, and use the model to extract deep learning features from the video content. With the learned

deep learning feature, we train 4, 490 binary SVM classifiers as the event-specific concept library.

The concepts and events are further organized in a hierarchical structure defined by WikiHow, and

the resultant concept library is called EventNet. Finally, the EventNet concept library is used to

generate concept based representation of event videos.
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In the last chapter of this part (Chapter 5), we provide some applications for the proposed

large scale video event and concept ontology. In particular, we present several novel functions of

EventNet: 1) interactive ontology browsing, 2) semantic event search, and 3) tagging of user-loaded

videos via open web interfaces. The system is the first (to the best of our knowledge) that allows

users to explore rich hierarchical structures among video events, relationships between concepts and

events, and automatic detection of events and concepts embedded in user-uploaded videos in a live

fashion.
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Chapter 3

Event Driven Semantic Concept

Discovery

3.1 Introduction

Recognizing complex events from unconstrained videos has received increasing interest in multime-

dia information retrieval and computer vision research communities [Y.-G. Jiang and Shah, 2013;

A. Tamrakar and Sawhney, 2012; J. Revaud and Jégou, 2013]. By definition, an event is a complex

activity that involves people interacting with other people and/or objects under certain scene set-

tings. Compared with human action recognition which focuses on simple primitives such as “jump-

ing”, “walking” and “running” [Liu and Shah, 2008; L. Laptev and Rozenfeld, 2008; H. Wang and

Liu, 2011], event detection is more challenging because it has to manage unconstrained videos that

contain various people and/or objects, complicated scenes, and their mutual interaction. For exam-

ple, a video of “birthday party” could contain several atomic components, including objects such as

“cake” and “candle”, actions such as “dancing” and “hugging” as well as scenes such as “garden”

and “living room”.

Existing event detection works have proposed the use of raw audio-visual features fed in-

to different sophisticated statistical learning frameworks, and have achieved satisfactory perfor-

mance [Y.-G. Jiang and Chang, 2010; P. Natarajan and Zhuang, 2012]. However, these works

are incapable of providing any interpretation or understanding of the abundant semantics present

in a complex multimedia event. This hampers high-level event analysis and understanding, es-
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Figure 3.1: The framework of the proposed concept discovery approach. Given a target event

(e.g., “grooming an animal”) and its textual definition, we extract noun and verb keywords from

the textual description of this event and use each combination of a noun and a verb as a textual

query to crawl images and their associated tags from Flickr. We then discover potential concepts

from the tags by considering their semantic meanings and visual detectabilities. Finally, we train a

concept model for each concept based on the Flickr images annotated with the concept. Applying

the concept models on the videos will generate concept-based video representations, which can be

used in supervised event modeling over concept space, zero-shot event retrieval as well as semantic

recounting of video contents.

pecially when the number of training videos is small or non-existent [J. Liu and Sawhney, 2012;

M. Merler and Natsev, 2012]. Therefore, a logical and computationally tractable way is to repre-

sent a video that depicts a complex event in a semantic space that consists of semantic concepts

related to objects, scenes, and actions, where each dimension measures the confidence score of

the presence of a concept in the video. Once we have such concept-based video representation-

s, we can use them as middle-level features in supervised event modeling, or directly use the s-

cores of the semantic concepts to perform zero-shot event retrieval [J. Liu and Sawhney, 2012;

M. Merler and Natsev, 2012].
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One intuitive approach to generate concept-based video representation is to manually define

a suitable concept lexicon for each event, followed by annotating the presence/absence of each

concept in the videos [M. Mazloom and Snoek, 2013; J. Liu and Sawhney, 2012; M. Merler and

Natsev, 2012]. This approach seemingly involves tremendous manual effort, and it is impractical

for real-world event detection problems with regard to a huge number of videos. On the other hand,

the web is a rich source of information with a huge number of images captured for various events

under different conditions, and these images are often annotated with descriptive tags that indicate

the semantics of the visual content. Our intuition is that the tags of Internet images related to a target

event should reveal certain common semantics that appear in the event, and thus suggest the relevant

concepts in the event videos. This stimulates a challenging research problem that has not been well

studied, yet(to the best of our knowledge): given a target event (sometimes associated with a textual

definition of the event, such as the textual event kits in TRECVID Multimedia Event Detection

(MED) task [MED, 2010]), how do we automatically discover the relevant concepts from the tags

of Internet images, and construct corresponding concept detection models specifically optimized for

the target events? Because we focus on discovering concepts for pre-specified events, we term our

approach as Event-Driven Concept Discovery in order to distinguish it from the work that builds

a generic concept library that is independent of the targets [L. Torresani and Fitzgibbon, 2010].

Figure 3.1 illustrates the overall framework of the proposed system.

There are three main challenges in utilizing Internet images and their associated tags to learn

concept models for complex event detection. First, because the tags associated with the Internet

images are provided by general Internet users, there are often tags that are meaningless or irrelevant

to the target event. To ensure the correctness of concept discovery, our method must choose semantic

meaningful tags as the candidate concepts of the target event. To address this task, we perform noisy

tag filtering by matching each tag to synsets in WordNet [Miller, 1995].

Moreover, some tags are abstract and not related to visual contents. For example, images with

the tags ”economy” and ”science” do not show consistent visual patterns that can be effectively

modeled by computer vision techniques. Therefore, we employ a visualness verification procedure

to check whether a tag can be visually detected. Only visually related tags are kept as candidate

concepts.

The last challenge is that the labels of Internet images are often very noisy. Directly adopting
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such images as training samples for a concept can lead to a poor concept model. To solve this

problem, we turn to a confidence ranking strategy. Given an image annotated with a concept, we

first estimate the posterior probability of the concept’s presence based on its visual closeness to other

images annotated with the same concept. Then we rank all images based on the probabilities and

choose the top ranked ones as the positive training samples of the concept. Such confidence ranking

strategy is valuable in reducing the influence of noisy labels because it measures the confidence of

the concept’s presence in an image from its collective coherence with other images.

We demonstrate both qualitatively and quantitatively that the proposed concept discovery ap-

proach can generate accurate concept representations on event videos. By applying the concept

scores as concept representations of videos, our method can achieve significant performance gains

when evaluated over various semantic-based video understanding tasks including supervised event

modeling and zero-shot event retrieval. One major contribution is that the concepts discovered based

on the proposed method achieve significant performance gains (228% in zero-shot event retrieval)

over concept pools constructed using other well known methods, such as Classemes and ImageNet.

We also show that our discovered concepts outperform classic low-level features in supervised event

modeling, and can reveal the semantics in a video over the semantic recounting task.

3.2 Related Work

Complex event detection in videos has been investigated in the literature. Duan et al. [L. Duan

and Luo, 2010] proposed learning cross-domain video event classifiers from the mixture of tar-

get event videos and source web videos crawled from YouTube. Tang et al. [K. Tang and Koller,

2012] developed a large margin framework to exploit the latent temporal structure in event videos,

and achieved good performance on event detection. Natarajan et al. [P. Natarajan and Zhuang,

2012] exploited multimodal feature fusion by combining low-level features and available spoken

and videotext content associated with event videos. Ma et al. [Z. Ma and Hauptmann, 2013a] pro-

posed adapting knowledge from other video resources to overcome the insufficiency of the training

samples in small sample video event detection. However, these works focus on modeling events

into sophisticated statistical models, and cannot reveal rich semantics in videos.

Some works attempted to accomplish event detection with concept based video representation-
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s. Izadinia et al. [Izadinia and Shah, 2012] manually annotated a number of concepts on event

videos, and proposed a discriminative model that treats the concepts as hidden variables and mod-

els the joint relationship among concepts in a concept co-occurrence graph. Liu at al. [J. Liu and

Sawhney, 2012] observed concepts in event videos and defined a concept ontology that falls into

“object”, “scene”, and “action”, through which a number of SVM classifiers are trained as concept

detectors to generate concept scores on videos. However, as mentioned before, all these methods

require significant manual effort, that are inadequate for real-world event detection tasks with sev-

eral videos. In [Z. Ma and Hauptmann, 2013b], Ma et al. leveraged the concepts contained in other

video resources in order to assist detection in event videos, and proposed a joint learning model

to learn concept classifier and event detector simultaneously. Mazloom et al. [M. Mazloom and

Snoek, 2013] first constructed a concept library with 1, 346 concept detectors by mixing 346 man-

ually defined concepts in TRECVID 2011 Semantic Indexing Task [Ayache and Quénot, 2008] and

1, 000 concepts from the ImageNet Large Scale Visual Recognition Challenge 2011 [J. Deng and

Fei-Fei, 2009], and then discovered the optimal concept subset using a cross-entropy optimization.

Nevertheless, the concepts in other video resources might not be relevant to the content of event

videos, and could produce inaccurate semantic descriptions on videos. Yang et al. [Yang and Shah,

2012] adopted deep belief nets to learn cluster centers of video clips and treated them as data-driven

concepts. Such data-driven concepts do not seem to convey any semantic information, and are not

applicable for the semantic representation of videos. Contrary to these methods, we focus on the

automatic discovery of semantic concepts in event videos by exploiting Internet images and their

tags, which uncovers the semantics in videos without any manual labor.

Berg et al. [T. Berg and Shih, 2010] introduced a method for automatically discovering concepts

by mining text and image data sampled from the Internet. A text string is recognized as a concept

only if the visual recognition accuracy on its associated image is relatively high. Nevertheless, the

method merely works on a closed web image set with surrounding text, and cannot be applied in the

concept discovery of event videos, none of which does not contain any textual description. Yanai et

al. [Yanai and Barnard, 2005] adopted a similar idea to discover visual related concepts associated

with Internet images. Our work is also related to analyzing videos by leveraging still images. For

example, Ikizler-Cinbis et al. [N. Ikizler-Cinbis and Sclaroff, 2009] proposed learning actions from

the web, which collected images from the Web in order to learn representations of actions, and used
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this knowledge to automatically annotate actions in videos. In contrast, we focus on automatically

discovering concepts from still images and using them to interpret complex video semantics, which

is more challenging than these prior works.

In terms of building a concept bank library, our work is also related to existing concept libraries,

such as Object Bank [L.-J. Li and Xing, 2010], Classemes [L. Torresani and Fitzgibbon, 2010], and

Action Bank [Sadanand and Corso, 2012]. However, these libraries are designed for generic objects

or actions, and hence are not directly relevant to the target event collection at hand. On the contrary,

our concept library is designed for a set of pre-specified events, that are more relevant to the target

events and could precisely reveal the semantics of the event videos.

3.3 Discovering Candidate Concepts From Tags

In this section, we present a three-step procedure for discovering candidate concepts for each target

event as follows:

Step I: Flickr Image Crawling. Given a target event and its textual event description, we can

use NLTK [Bird, 2006] to extract the nouns and verbs from the event definition sentence. Then

we combine a noun and a verb to form a “noun-verb pair” as a textual query to perform text-based

image searches on Flickr. Finally, we download the retrieved images and associated tags for each

query and combine them together as the concept discovery pool. Notably, the images retrieved this

way have higher relevance to the target event (See Figure 3.6).

Step II. Noisy Concept Filtering. Given a target event, we can crawl a number of images

and associated tags that belong to the same event from Flickr. As mentioned before, the tags are

typically provided by general Internet users, and there are a sufficient amount of meaningless words

that are irrelevant to the target event. To ensure that each tag corresponds to a meaningful concept,

a tag filtering process is performed. In particular, we use WordNet [Miller, 1995] as the concept

lexicon and look up each tag in it. If a tag is matched successfully to a synset in WordNet, it is

regarded as a meaningful concept. Otherwise, it is removed as a noisy word.

Step III. Concept Visualness Verification. After the filtering process, the remaining tags are

meaningful concepts. Nevertheless, we notice that some concepts are not visually related. For ex-

ample, there might be some images associated with concept “economy”, but there are no consistent
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(a) Birthday party (b) Attempting a bike trick

Figure 3.2: Concept clouds discovered for event “birthday party” and “attempting a bike trick”. The

size of each concept indicates its TF-IDF value.

visual patterns within these images because the concept is highly abstract. Involving such concepts

can introduce significant distractions to the video representation and degrade the final performance.

Therefore, we need to verify the visualness of each concept so that only visually related concept-

s are included. To accomplish this, we first treat the images associated with a concept as positive

training samples and simultaneously choose the same number of images from other concepts as neg-

ative training samples. Then we divide all training images into two halves and perform a two-fold

cross-validation.

Performance is measured based on Average Precision(AP). Finally, only concepts with high

cross validation performance are verified as visually related concepts and retained in the concept li-

brary. In order to obtain reliable concept detectors trained with sufficient number of images, we fur-

ther remove the concepts that contain less than 80 training images. We noticed that each discovered

concept is discovered for a specific event, and thus we call the resulting concepts, “event-specific

concepts”.

Based on the above strategy, we obtain the initial candidate concepts for each target event.

Figure 3.2 shows the concept clouds discovered on two exemplary events, where the concept size

indicates its TF-IDF value, and we treat a set of tags in an event as a document.
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3.4 Building Concept Models

3.4.1 Training Image Selection for Each Discovered Concept

In this section, we present how to choose reliable training images for each discovered concept, and

then introduce how to build the corresponding concept model.

To eliminate the noisy and outlier images crawled from the Internet, we use a confidence ranking

method to choose reliable training images. Given a concept c, we can construct the following two

image subsets X+ = {xi}mi=1 and X− = {xi}m+n
i=m+1, where xi ∈ Rd is the feature vector of

the i-th image with d being the feature dimensionality, X+ is a set of m images annotated with

concept c, and X− contains n images annotated without concept c. We adopt a soft neighbor

assignment [J. Goldberger and Salakhutdinov, 2004] in the feature space to estimate the confidence

of assigning the given concept to an image. In particular, each image xi selects another image xj as

its neighbor with probability p(xi,xj) and inherits its label from the image it selects. We define the

probability p(xi,xj) using a softmax operator over the entire image set X = {X+,X−}:

p(xi,xj) =
exp(−‖xi − xj‖2)∑

xk∈X\{xi} exp(−‖xi − xk‖2)
, (3.1)

where ‖ · ‖ denotes the l2 norm of a vector.

Based upon this stochastic selection rule, we can calculate the probability p(xi) of image xi

being classified as positive with respect to the given concept:

p(c|xi) =
∑

xj∈X+

p(xi,xj). (3.2)

In the above equation, the confidence score of a concept’s presence in an image is measured

based on its visual closeness with respect to other images in the same concept category. If an image

has a noisy label, it tends to fall apart from the coherent visual pattern of the concept, leading to a

small confidence value. On the contrary, images with correct labels always comply with the com-

mon visual pattern of the concept, and thus are assigned high confidence values. We use p(c|xi) to

estimate the confidence of image xi belonging to concept c, and select s images with the highest

confidence scores as the positive training images for each concept. In this work, we set s = 2001,

1If the images annotated with a concept are fewer than 200, we directly utilize all images as positive samples for

concept modeling.
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Figure 3.3: The top 5 images ranked by our method for some exemplary concepts.

and choose t = 1, 900 negative images from other concepts as the negative training images. Fig-

ure 3.3 shows the top-5 images ranked by our method for some exemplary concepts. As can be

seen, the selected images are highly relevant to the concepts while maintaining reasonable content

diversity.

3.4.2 Concept Model Training

Given a concept c discovered for an event, suppose we have an Internet image collection I =

{(xi, yi)}s+ti=1, where the label yi ∈ {−1, 1} of each image xi is determined by the confidence score

ranking method described in Section 3.4.1. In this work, we choose a large margin SVM classifier

with RBF kernel as our concept model, where the kernel function is defined asK(xi,xj) = exp
(
−

d2(xi,xj)/σ
2
)
. Here d(xi,xj) denotes the Euclidean distance between xi and xj , and σ is the

mean distance among all images on the training image set. We use the LibSVM library [Chang and

Lin, 2011] as the implementation of our SVM concept model, and the optimal tradeoff parameter

for SVM is determined via cross-validation.

The overall complexity of concept model training consists of two parts: training image selection

and concept model training. In particular, the time complexity for choosing the training images de-
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scribed in Section 3.4.1 is O
(
d(m+ n)2

)
, where m and n are, respectively, the number of positive

and negative images for each concept and d is the feature dimension. In our experiment imple-

mented on a MATLAB platform on an Intel XeonX5660 workstation with 3.2 GHz CPU and 18

GB memory, a total of 13.58 seconds is required to finish the confidence score calculation when

m = 3000, n = 3000, and d = 2, 659. On the other hand, the time complexity for the concept

model training described in Section 3.4.2 is O
(
d(s+ t)2 + (s+ t)3

)
, which includes operations to

compute the kernel and perform matrix inversion [Chang and Lin, 2011]. In our experiment with

s = 200, t = 1, 900 and d = 2, 659, we finish the the training process of a concept model within

2 minutes on average. Considering the efficiency of the concept modeling process, our approach is

applicable for constructing a large-scale concept library that consists of a huge number of concept

models.

3.5 Video Event Detection with Discovered Concepts

After constructing the models for all concepts in an event, we apply them on the videos and adopt

their probabilistic outputs as the concept-based representations, that can be used as an effective

representation for semantic event analysis. In more detail, given a video clip in a target event, we

can first generate the concept based representation on each video frame and then average them as

the final concept representation of the video clip, or we can directly apply the concept models on

the averaged feature of the frames in the video. The second approach significantly reduces the

concept score generation time, and thus it is adopted as the concept-based video representation

generation method in this work. There are typically two use scenarios to apply concept based video

representations for complex event detection, as discussed below:

Scenario I: Supervised Event Modeling Over Concept Space. In this scenario, there is usu-

ally a number of labeled positive and negative training videos associated with a pre-specified event,

and we regard the concept-based video representations as high-level video content descriptors in

the concept space for training a classifier of the target event. Therefore, we expect the concep-

t based video representation to be discriminative in order to easily separate the target event from

other events. Given a pre-specified event detection task that consists of E events, we choose S

concepts with the highest TF-IDF values for each E event from their respective discovered con-
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cepts, and concatenate the concept scores into E × S dimensional feature vector (In this work, we

set E = 20 and S = 100, and generate a 2, 000-dimensional concept-based video representation

for this task). With the concept feature representation as input, we can train any supervised model

as the event classifier. In this work, we choose binary SVM classifier with χ2 kernel as our event

detection model. In the test stage, we adopt SVM probabilistic output as the event detection score

on each test video, through which the video retrieval list can be generated.

Scenario II: Zero-Shot Event Retrieval. In this scenario, we do not have any training videos

of the target event, but only directly use the event name to retrieve relevant videos from the large

video archive. Under this setting, the only available information is the concept scores on the test

videos. We call this task zero-shot event retrieval because the procedure is purely semantic based.

Given that each concept has different levels of semantic relevance with respect to the query event,

we use a weighted summation strategy to calculate the detection score of each test video. Given an

event name e comprised of multiple words, we use WordNet [Miller, 1995], a large lexical database

of English words, to estimate the semantic similarity of two words. The semantic relevance r(e, c)

between event e and concept c is determined as the maximum semantic similarity between concept c

and all words that appear in event name e. We use NLTK [Bird, 2006], a Python API for WordNet,

to calculate the Wu-Palmer Similarity [Wu and Palmer, 1994] of two words. For an event and a

test video with concept representation {s1, . . . , sT }, where each concept score si corresponds to

the event-specific concept ci, the detection score of this video with respect to the target event can

be estimated as
∑T

i=1 r(e, ci)si. Finally, the event retrieval result can be generated by ranking the

videos with these weighted summation scores.

3.6 Experiment

Our experiment aims to verify the effectiveness of our discovered concepts over the complex video

event detection dataset. We begin with a description of the dataset, and then perform experiments

that evaluate different aspects of our method.
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3.6.1 Dataset and Feature Extraction

Event Video Set. The TRECVID MED 2013 pre-specified task consists of a collection of Internet

videos collected by Linguistic Data Consortium from various Internet video hosting sites [MED,

2010]. The dataset contains 32, 744 videos that fall into 20 event categories and the background

category. The names of these pre-specified 20 events are respectively “E1: birthday party”, “E2:

changing a vehicle tire”, “E3: flash mob gathering”, “E4: getting a vehicle unstuck”, “E5: grooming

an animal”, “E6: making a sandwich”, “E7: parade”, “E8: parkour”, “E9: repair an appliance”,

“E10: working on a sewing project”, “E11: attempting a bike trick”, “E12: cleaning an appliance”,

“E13: dog show”, “E14: giving directions to a location”, “E15: marriage proposal”, “E16: reno-

vating a home”, “E17: rock climbing”, “E18: town hall meeting”, “E19: winning a race without a

vehicle”, and “E20: working on a metal crafts project”. On this pre-specified event detection task

in TRECVID MED 2013, each event is associated with a textual event kit that specifies the key

concepts and detailed process of this event.

Internet Image Set. To collect Internet images, we utilize query words related to each event

in order to perform image search on Flickr. For each event, we extract the keywords in the event

textual kit, and then attempt different combinations of any two keywords (typically, one noun and

one verb) to perform keyword-based image searches on Flickr.com, where we combine all images

from different queries as the Internet images for this event. This way, we download 20, 000 images

and their associated tags as the pool for concept discovery in each event. In particular, we perform

the candidate concept discovery described in Section 3.3, and choose 100 potential concepts from

the crawled image set for each event.

Feature Extraction. We extract the 2, 659-dimensional Classemes feature [L. Torresani and

Fitzgibbon, 2010] as the feature representation of both Internet images and video frames. Given a

video clip, we simply aggregate all frames of the Classemes feature as the video-level feature rep-

resentation. Other codebook based features, such as SIFT BoW, can also be used as the alternatives

in our work.

3.6.2 Supervised Event Modeling Over Concept Space

In this task, we treat the concept-based video representations as feature descriptors for supervised

event modeling. We follow the pre-defined training (7, 787 videos) and test (24, 957 videos) data
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Figure 3.4: Performance of different methods on supervised event modeling task. CC: Classemes,

CIN: ImageNet, CRI: proposed method without training image selection, CSI: proposed method

with image selection. This figure is best viewed in color.

divided in the pre-specified EK100 task in TRECVID MED 2013 [MED, 2010] in our experiment.

There are 100 positive training videos and approximately 50 negative training videos in each event

category. Moreover, both training and test sets contain a significant number of background videos

that do not belong to any target category, thus making the detection task very challenging. On each

event, AP, which approximates the area under the precision/recall curve, is adopted as evaluation

metric for event detection. Finally, we further calculate mean Average Precision (mAP) across all

20 events as the overall evaluation metric on the entire dataset.

To evaluate the effectiveness of our discovered concept features in supervised event modeling,
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Figure 3.5: Performance of different concept-based classifiers for zero-shot event detection task.

This figure is best viewed in color.

we compare the following middle or low level feature representations: (1) SIFT [Lowe, 2004] BoW,

(2) GIST [Oliva and Torralba, 2001] BoW, (3) Gabor [D. Field, 1987] BoW, (4) LBP [T. Ojala

and Maenpaa, 2002] BoW, and (5) Transformed Color Distribution [K. Van De Sande and Snoek,

2010] BoW. All the above five descriptors are densely extracted on grids of 20 × 20 pixels with

50% overlap from images. For each type of extracted descriptor, we train a codebook with 400

codewords, and partition each image into 1 × 1 and 2 × 2 blocks for spatial pyramid matching

[S. Lazebnik and Ponce, 2006]. Finally, we adopt soft quantization [J. van Gemert and Geusebroek,

2010] to represent each image as a 2, 000-dimensional histogram, with the same dimension as our

concept-based video representation to ensure a fair comparison. (6) Concepts learned from Random
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Images (CRI). Concept models are learned using a randomly chosen subset of images associated

with the concept tag directly without content consistency filtering, as described in Section 3.4.1. (7)

Our proposed 2, 000 Concepts learned from Selected Images (CSI). We use our method to select

reliable training images for concept modeling.

Figure 3.4 illustrates the performance of all the methods on this task quantitatively. From the

results, we obtain the following observations: (1) the concepts generated by our CSI method con-

sistently ourperform the other methods by a large margin, which demonstrates its effectiveness in

concept-based video representation. On some events where our method is inferior to other base-

lines, we observe significant domain difference between Flickr images and MED videos. We will

address this issue by exploring cross domain adaptation methods in our future work. (2) The CSI

method outperforms the five types of low-level features, which implies that our discovered concepts

can not only reveal the semantic concepts, but also be utilized as an effective feature description for

event discrimination. (3) The CSI method performs significantly better than the CRI method. This

is because the former leverages more reliable training images than the random images utilized in

the latter. This verifies the soundness of our confidence ranking method in selecting clean training

images for concept modeling. Figure 3.4(b) shows the mAP comparisons at varied returned depth-

s (i.e., the number of top ranked test videos included in the result evaluation). From the results,

we can see that our method achieves significant and consistent mAP improvements over the other

methods at varied returned depths.

3.6.3 Zero-Shot Event Retrieval

In this task, we directly apply the concept scores to rank the videos in the archive without leveraging

any training video samples. Similar to Section 3.6.2, we adopt AP and mAP as our evaluation

metrics. The focus of this experiment is to reveal the effectiveness of the discovered semantic

concepts compared with those discovered from other methods. To this end, the following concepts

generated from different methods are compared: (1) Classemes Concepts (CC). We extract the

2, 659-dimensional CC feature from the videos. Given each event name, we use the WordNet Wu-

Palmer semantic similarity between event and concept names (see Section 3.5) in Classemes to find

the 100 most relevant CC for this event. (2) Concepts discovered from ImageNet (CIN) [J. Deng and

Fei-Fei, 2009]. In this method, we want to discover concepts for each event from all the concepts
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 “vehicle” in event “getting a vehicle unstuck” “dog” in event “dog show” 

CC 
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 “groom” in “grooming an animal” “ring” in “marriage proposal” 
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Figure 3.6: Concept training images for different concept generation methods. Note that the training

images utilized in our method (CSI) not only contain the concept but also convey context informa-

tion about the event.

in ImageNet. For each event name, we also adopt WordNet to calculate the semantic similarity

between its event and concept names in ImageNet, and choose the same number of concepts (100

for each event) from ImageNet . For each concept, we choose 200 images from its ImageNet synset

as the positive training images, and 1, 900 images from other discovered ImageNet concepts as the

negative training images. These images are then fed into an SVM classifier as the concept model.

(3) Concepts learned from Random Images (CRI), where we randomly select the same number of

images as were used in our method for training images for concept modeling. (4) Our proposed

Concepts learned from Selected Images (CSI).

Figure 3.5(a) shows the per-event performance of all methods. In Figure 3.5(b), we further plot

mAP at different returned depths for different comparison methods. From the results, we obtain

the following observations: (1) our CSI method achieves the best performance (with a relative

performance gain as high as 228%). over most events. Becuase the task is purely semantic-based,

the results clearly verify that the concepts discovered by our method are applicable to semantic-

based event retrieval. (2) The zero-shot event retrieval performance is worse than the supervised

event modeling. This is because the latter uses training videos to obtain a more sophisticated event
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E4 Getting A Vehicle Unstuck: blizzard, snow, road, stuck, truck  

E6 Making A Sandwich: recipe, cheese, bread, baking, chocolate 

E8 Parkour: jump, slacklining, free run, acrobatic, gap  

E11 Attempting A Bike Trick: boy, park, BMX, ride, trick 

E19 Wining A Race Without A Vehicle: speed, hurdle, athlete, track, stadium 

Figure 3.7: Semantic recounting examples on videos from some exemplary events in TRECVID

MED 2013: each of the 5 rows shows evenly subsampled frames of an example video and the top 5

relevant concepts detected in the video.
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model, whereas the former is merely based on concept score aggregation. (3) Our CSI method

performs much better than Classemes, becuase most concepts in Classemes are irrelevant to the

events. (4) The CSI method clearly outperforms the CIN method. This shows that our concept

discovery method can obtain more accurate concept representations for the events than the concept

representations discovered from other lexicon such as ImageNet. The reason might be two-fold:

first, the concepts discovered from Flickr images are more relevant to real-world events than the

general concepts in ImageNet. In fact, our discovered concepts are the most semantically relevant

to the events compared with the concepts discovered from Classemes and ImageNet, as indicated

in Table 3.1. Second, the Flickr images used to train our concept model contain visual clues of the

event, whereas the images in ImageNet usually contain clean objects without event backgrounds.

Figure 3.6 illustrates the training images from Flickr and ImageNet for some concepts. We can

see that for the concept “groom” in event “grooming an animal”, because of the ambiguity of the

word “groom”, the training images from CC and CIN generally refer to “bridegroom” whereas our

concept refers to the action of “grooming an animal”. Another example is the concept “ring” in

event “marriage proposal”, where the training images from CC and CIN are general “ring” with

simple backgrounds and do not contain any context information about marriage proposals.

3.6.4 Human Evaluation

In addition to the performance comparison described in the previous sections, we also design an ex-

periment to ask human judges to evaluate the quality of concepts discovered from different sources

including Classemes, ImageNet and Flickr. The details of the experiment are illustrated in Fig-

ure 3.8.

First, we randomly select one event from the 20 pre-specified events in TRECVID MED 2013,

and generate 100 concepts from each of the three sources (Flickr, ImageNet, Classemes) using

the approach described in Section 3.6.3. In this step, we rank the 100 concepts from each source

in descending order based on the WordNet semantic similarity between concept and event name.

Second, from each of the three ranked concept lists, we randomly choose five concepts at the same

rank positions, and form three concept subgroups, each of which contains the sampled five concepts.

Third, we randomly select two concept subgroups from the three, and obtain a pairwise concept

component that is, sent to a user in order to determine which five concepts are more relevant to the
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Figure 3.8: Human Evaluation on Concept Relevance.

Event Name

CC air transportation vehicle, all terrain vehicle, amphibious vehicle, armed person, armored fighting vehicle, armored recovery vehicle,
armored vehicle, armored vehicle heavy, armored vehicle light, command vehicle

CIN vehicle, bumper car, craft, military vehicle, rocket, skibob, sled, steamroller, wheeled vehicle, conveyance
CSI tire, car, snow, stick, stuck, winter, vehicle, truck, night, blizzard

CC adult animal, animal, animal activity, animal blo, animal body part, animal body region, animal cage, animal container, animal pen,
animal shelter

CIN groom, animal, invertebrate, homeotherm, work animal, darter, range animal, creepy-crawly, domestic animal, molter
CSI dog, pet, grooming, cat, animal, bath, cute, canine, puppy, water

CC baking dish, cafe place, classroom setting, collection display setting,  cutting device, dish drying rack, food utensil, hair cutting razor,
hdtv set, hole making tool

CIN sandwich, open-face sandwich, butty, reuben, ham sandwich, gyro, chicken sandwich, hotdog, club sandwich, wrap
CSI sandwich, food, bread, cooking, cheese, spice, baking, pan, kitchen, breakfast

CC clothes iron, landing craft, laundry room, living room, missile armed craft, multi room unit, work environment, work station, steel
mill worker, carpentry tool

CIN sport, outdoor game, rowing, funambulism, judo, blood sport, gymnastics, water sport, track and field, outdoor sport
CSI sewing, handmade, embroidery, craft, quilt, fabric, hand, sewing machine, textile, thread

CC action on object, animal container, armed person, art object, back yard, bag, bilateral object, box the container, butcher shop, capsule
container

CIN appliance, gadgetry, gimbal, injector, mod con, device, musical instrument, acoustic device, adapter, afterburn
CSI kitchen, furniture, washing, bed, sink, divan, spring bed, cleaning, stove, dishwasher

CC astronomical observatory building, attached body part, auto part, bar building, body movement event, body of water, building,
building cluster, building security system, cavity with walls

CIN rock, uphill, outcrop, whinstone, xenolith, tor, slope, ptyalith, kidney stone, urolith
CSI climbing, rock climbing, bouldering, mountain, sport, hiking, climber, landscape, peak, rope

rock climbing

Concepts Discovered via Different Methods

getting a
vehicle unstuck

grooming an
animal

making a
sandwich

working on a
sewing project

cleaning an
appliance

Table 3.1: Top concepts for different concept discovery methods.

test event name.

The above procedure is repeated 1, 000 times, through which we obtain the following statistics

about concept quality. (1) Flickr is better than others with 81.29% probability. (2) ImageNet is

better than others with 34.19% probability. (3) Classemes is better than others with a 32.46%

probability. From these results, we can see that our discovered concepts from Flickr comply with

human knowledge, which further verifies the effectiveness of our concept discovery method.
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3.6.5 Video Semantic Recounting

For each video of a target event, we rank all the concepts discovered for the event based on their

confidence scores, and treat the top-ranked concepts as the semantic description of the video content.

Such a procedure can reveal the semantic information contained in a video, and it is thus called video

semantic recounting. Figure 3.7 shows the recounting results on videos from some exemplary events

in TRECVID MED 2013, where the top-5 ranked concepts generated by our method are selected

as concepts for each video. As can be seen, these concepts reveal the semantics contained in the

videos, which verifies the effectiveness of our discovered concepts in representing video semantics.

3.7 Summary and Discussion

In this chapter, we introduced an automatic event driven concept discovery method for semantic

based video event detection. Given a target event, we crawl a collection of Flickr images and their

associated tags related to this event as the concept discovery knowledge pool. Our method first

estimates the candidate concepts present in the event by measuring the visualness of each concept

and its semantic meaning. Then a concept model is constructed for each candidate concept based

on a large margin SVM classifier. Finally, the individual concept models are applied on the event

videos to generate concept-based video representations. We tested our discovered concepts over two

video event detection tasks including supervised event modeling over concept space and zero-shot

event retrieval, and the promising experiment results demonstrated the effectiveness of the proposed

event-driven concept discovery method.

Although the proposed event-driven concept discovery method achieved good performance, it

can only manage a small number of target events whose definitions are known in advance. When a

novel unseen event emerges, it is no longer applicable because of the lack of relevant concepts for

the unseen event. In the next chapter, we apply a similar event-driven concept discovery method

and target to manage novel unseen events. We build a large scale event specific concept library that

covers as many real-world events and their concepts as possible, and call it EventNet. Then, when

novel unseen events occur, we can predict them with sufficient event-driven concepts properly.
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Chapter 4

Large-Scale Structured Concept Library

for Complex Event Detection in Video

4.1 Introduction

In the previous chapter, we introduced an automatic event driven concept discovery method for

semantic based video event detection. Although the proposed approach achieves promising perfor-

mance, as mentioned previously, the method can only manage a small number of target events whose

definitions are known in advance. When a novel unseen event emerges, it is no longer applicable

because of the lack of relevant concepts for the unseen event.

To address this problem, this chapter proposes the construction of a large-scale event-driven

concept library that covers as many real-world events and concepts as possible. Figure 4.1 illus-

trates the overall framework of the proposed method, where we highlight the two main challenges

addressed in this thesis. The first is how to define events and their relevant concepts in order to con-

struct a comprehensive concept library. To achieve this goal, we resort to the external knowledge

base called WikiHow [Wik, 2015], a collaborative forum that aims to build the world’s largest man-

ual for human daily life events. We define 500 events from the articles of the WikiHow website. For

each event, we use its name as query keywords to perform text-based video search on YouTube, and

apply our automatic concept discovery method to discover event-specific concepts from the tags of

the returned videos. Then we crawl videos associated with each discovered concept as the training

videos to learn deep learning video features using CNN and event-specific concept models. This
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Event
Query to
Concept
Matching

concept
based
search

Figure 4.1: Concept based event retrieval by the proposed large scale structured concept library

EventNet. We propose two unique contributions: (1) A large scale structural event ontology. (2)

Effective event-to-concept mapping via the ontology.

leads to an event-specific concept library composed of 4, 490 concept models trained over 95, 321

YouTube videos. We further organize all events and their associated event-specific concepts into a

hierarchical structure defined by WikiHow, and call the resulting concept library EventNet.

The second challenge is how to find semantically relevant concepts from EventNet that can be

used to search video corpus to answer a new event query. The existing methods address this by

calculating the semantic similarity between the event query and candidate concepts, and then select

the top ranked concepts with the highest similarities [J. Chen and Chang, 2014; Y. Cui and Chang,

2014; S. Wu and Natarajan, 2014]. However, considering that our concepts are event-specific, each

concept is associated with a specific event that can be used as contextual information in measuring

the similarity between the query event and the concept. Moreover, because of the short text of event



CHAPTER 4. LARGE-SCALE STRUCTURED CONCEPT LIBRARY FOR COMPLEX EVENT
DETECTION IN VIDEO 37

names that contain only very few text words, direct measurement of semantic similarity might not be

able to accurately estimate semantic relevance, and the concept matching results could become quite

unsatisfactory even when EventNet library does contain relevant events and concepts. To solve these

issues, we propose a cascaded concept matching method that first matches relevant events and then

finds relevant concepts specific to the matched events. For the queries that cannot be well answered

by automatic semantic similarity calculation, we propose to leverage the hierarchical structure of

EventNet and allow users to manually specify the appropriate high-level category1 in the EventNet

tree structure, and then only perform concept matching under the specified category (cf. Section 4.7)

We demonstrate that the proposed EventNet concept library leads to dramatic performance gains

in concept-based event detection over various benchmark video event datasets. In particular, it

outperforms the 20K concepts generated from the state-of-the-art deep learning system trained on

ImageNet [A. Krizhevsky and Hinton, 2012] by 207% in zero-shot event retrieval. We also show

that EventNet can detect and recount the semantic cues that indicate the occurrence of an event

video. Finally, the video corpus in EventNet can be used as a comprehensive benchmark video event

dataset. The browser of the EventNet ontology and the downloading information of the models and

video data can be found at http://eventnet.ee.columbia.edu.

We summarize our major contributions as follows: (1) a systematic framework for discovering

several events related to human events (Section 4.3). (2) Construction of the largest ontology, in-

cluding 500 complex events and 4, 490 event-specific concepts (Section 4.4 and 4.6). (3) Rigorous

analysis of the properties of the constructed ontology (Section 4.5). (4) Dramatic performance gains

in complex event detection especially for unseen novel events (Task I in Section 4.8). (5) The ben-

efit of the proposed ontology structure in semantic recounting (Task II in Section 4.8) and concept

matching (Task III in Section 4.8). (6) A benchmark event video dataset for advancing large scale

event detection (Task IV in Section 4.8).

1As shown in Figure 4.1, the category nodes in EventNet are high-level categories in WikiHow used to organize

articles into a hierarchy, such as “pets and animals”, “sports and fitness”, and more.

http://eventnet.ee.columbia.edu
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4.2 Related Work

There are some recent works that focus on detecting video events using concept-based representa-

tions. For example, Wu et al. [S. Wu and Natarajan, 2014] mined concepts from the free-form text

descriptions of TRECVID research video set, and applied them as weak concepts of the events in

TRECVID MED task. As mentioned earlier, these concepts are not specifically designed for events,

and may not capture well the semantics of event videos.

Recent research also attempted to define event-driven concepts for event detection. Liu et

al. [J. Liu and Sawhney, 2012] proposed to manually annotate related concepts in event videos,

and build concept models with the annotated video frames. Chen et al. [J. Chen and Chang, 2014]

proposed discovering event-driven concepts from the tags of Flickr images crawled using keywords

of the events of interest. This method can find relevant concepts for each event and achieves good

performance in various event detection tasks. Despite such promising properties, it relies heavily on

prior knowledge about the target events, and therefore cannot manage novel unknown events that

might emerge at a later time. Our EventNet library attempts to address this deficiency by exploring a

large number of events and their related concepts from external knowledge resources, WikiHow and

YouTube. A related prior work [Y. Cui and Chang, 2014] tried to define several events and discover

concepts using the tags of Flickr images. However, as our later experiment shows, concept models

trained with Flickr images cannot generalize well to event videos because of the well-known cross-

domain data variation [K. Saenko and Darrell, 2010]. In contrast, our method discovers concepts

and trains models based on YouTube videos, which more accurately capture the semantic concepts

that underlie the content of user generated videos.

The proposed EventNet also introduces a benchmark video dataset for large scale video event

detection. Current event detection benchmarks typically contain only a small number of events.

For example, in the well known TRECVID MED task [MED, 2010], significant effort has been

made to develop an event video dataset that contains 48 events. Columbia Consumer Video (C-

CV) dataset [Y.-G. Jiang and Loui, 2011] contains 9, 317 videos of 20 events. Such event categories

might also suffer from data bias, and thus fail to provide general models applicable to unconstrained

real-world events. In contrast, EventNet contains 500 event categories and 95K videos, which cov-

ers different aspects of human daily life and is believed to be the largest event dataset currently.

Another recent effort also attempts to build a large scale structured event video dataset that con-
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Dataset EM PM RE NM Total Class #

MED 10-14 [MED, 2010] 16 17 15 0 48

CCV [Y.-G. Jiang and Loui, 2011] 6 5 8 1 20

Hollywood [L. Laptev and Rozenfeld, 2008] 6 0 1 0 7

KTH [Laptev and Lindeberg, 2003] 4 1 1 0 6

UCF101 [K. Soomro and Shah, 2012] 58 11 20 12 101

Matched Class # 90 34 45 13 182

Table 4.1: The matching results between WikiHow articles and event classes in the popular event

video datasets, where “EM” denotes “Exact Match”, “PM” denotes “Partial Match”, “RE” denotes

“Relevant” and “NM” denotes “No Match”.

tains 239 events [Y.-G. Jiang and Chang, 2015]. However, it does not provide semantic concepts

associated with specific events, such as those defined in EventNet.

4.3 Choosing WikiHow as EventNet Ontology

A key issue in constructing a large-scale event-driven concept library is to define an ontology that

covers as many real-world events as possible. For this, we resort to the Internet knowledge bases

constructed from crowd intelligence as our ontology definition resources. In particular, WikiHow

is an online forum that contains several how-to manuals on every aspect of human daily life events,

where a user can submit an article that describes how to accomplish given tasks such as “how to

bake sweet potatoes”, “how to remove tree stumps”, and more. We choose WikiHow as our event

ontology definition resource for the following reasons:

Coverage of WikiHow Articles. WikiHow has a good coverage over different aspects of hu-

man daily life events. As of February 2015, it included over 300K how-to articles [Wik, 2015],

among which some are well-defined video events2 that can be detected by computer vision tech-

niques, whereas others such as “how to think” or “how to apply for a passport”, do not have suitable

corresponding video events. We expect a comprehensive coverage of video events from such a

2We define an event as a video event when it satisfies the event definition in NIST TRECVID MED evaluation, i.e., a

complicated human activity that interacts with people/object in a certain scene.
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Figure 4.2: The hierarchial structure of WikiHow.

massive number of articles created by the crowdsourcing knowledge from Internet users.

To verify that WikiHow articles have a good coverage of video events, we conduct a study to

test whether WikiHow articles contain events in the existing popular event video datasets in the

computer vision and multimedia fields. To this end, we choose the event classes in the following

datasets: TRECVID MED 2010-2014 (48 classes) [MED, 2010], CCV (20 classes) [Y.-G. Jiang

and Loui, 2011], UCF 101 (101 classes) [K. Soomro and Shah, 2012], Hollywood movies (7 class-

es) [L. Laptev and Rozenfeld, 2008], KTH (6 classes) [Laptev and Lindeberg, 2003]. Then, we use

each event class name as a text query to search WikiHow and examine the top-10 returned articles,

from which we manually select the most relevant article title as the matching result. We define four

matching levels to measure the matching quality. The first is exact matching, where the matched

article title and event query are exactly matched (e.g., “clap hands” as a matched result to the query

“hand clapping”). The second is partial match, where the matched article discusses a certain aspect
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of the query (e.g., “make a chocolate cake” as a result to the query “make a cake”). The third case

is relevant, where the matched article is semantically relevant to the query (e.g., “get your car out of

the snow” as a result to the query “getting a vehicle unstuck”). The fourth case is no match, where

we cannot find any relevant articles about the query. The matching statistics are listed in Table 4.1.

If we count the first three types of matching as successful cases, the coverage rate of WikiHow over

these event classes is as high as 169/182 = 93%, which confirms the potential of discovering video

events from WikiHow articles.

Example 
Images of 
Concepts

Figure 4.3: Event and concept browser for the proposed EventNet ontology. The hierarchical struc-

ture is shown on the left and the example videos and relevant concepts of each specific event are

shown to the right.

Hierarchical Structure of WikiHow. WikiHow categorizes all its articles into 2, 803 cate-

gories and further organizes all categories into a hierarchical tree structure. Each category contains

a number of articles that discuss different aspects of the category, and is associated with a node in the

WikiHow hierarchy. As shown in Figure 4.2 of the WikiHow hierarchy, the first layer contains 19

high-level nodes that range from “arts and entertainment”, “sports and fitness” to “pets and animal”.

Each node is further divided into a number of children nodes that are subclasses or facets of the

parent node, with the deepest path from the root to the leaf node containing seven levels. Although

such a hierarchy is not based on lexical knowledge, it summarizes humans’ common practice of or-

ganizing daily life events. Typically, a parent category node includes articles that are more generic

than those in its children nodes. Therefore, the events that reside along similar path in the WikiHow

tree hierarchy are highly relevant (cf. Section 4.4). Such hierarchical structure helps users quickly

localize the potential search area in the hierarchy for a specific query in which he/she is interest-
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ed, and thus improves concept matching accuracy (cf. Section 4.7). In addition, such hierarchical

structure also enhances event detection performance by leveraging the detection result of an event

in a parent node to boost detection of the events in its children nodes, and vice versa. Finally, such

hierarchical structure also allows us to develop an intuitive browsing interface for event navigation

and event detection result visualization [H. Xu and Chang, 2015], as shown in Figure 4.3.

4.4 Constructing EventNet

In this section, we describe the procedure used to construct EventNet, including how to define video

events from WikiHow articles and discover event specific concepts for each event from the tags of

YouTube videos.

4.4.1 Discovering Events

First we aim to discover potential video events from WikiHow articles. Intuitively, this can be done

by crawling videos using each article title and then applying the automatic verification technique

proposed in [T. Berg and Shih, 2010; J. Chen and Chang, 2014] to determine whether an article

corresponds to a video event. However, considering that there are 300K articles on WikiHow, this

requires a massive amount of data crawling and video processing, thus making it computationally

infeasible. For this, we propose a coarse-to-fine event selection approach. The basic idea is to first

prune WikiHow categories that do not correspond to video events, and then select one representative

event from the article titles within each of the remaining categories. In the following, we describe

the event selection procedure in detail.

Step I: WikiHow Category Pruning. Recall that WikiHow contains 2, 803 categories, each

of which contains a number of articles about the category. We observe that many of the categories

refer to personal experiences and suggestions, that do not correspond to video events. For example,

the articles in the category “Living Overseas” refer to how to improve the living experience in a

foreign country, and do not satisfy the definition of video event. Therefore, we want to find such

event irrelevant categories and directly filter their articles, in order to significantly prune the number

of articles to be verified in the next stage. To this end, we analyze 2, 803 WikiHow categories

and manually remove those that are irrelevant to video events. A category is deemed as event



CHAPTER 4. LARGE-SCALE STRUCTURED CONCEPT LIBRARY FOR COMPLEX EVENT
DETECTION IN VIDEO 43

irrelevant when it cannot be visually described by a video, and none of its articles contain any video

events. For example, “Living Overseas” is an event-irrelevant category because “Living Overseas”

is not visually observable in videos and none of its articles are events. On the other hand, although

the category “Science” cannot be visually described in a video because of its abstract meaning, it

contains some instructional articles that correspond to video events, such as “Make Hot Ice”, and

“Use a Microscope”. As a result, in our manual pruning procedure, we first find a to-be-pruned

category name and then carefully review their articles before deciding to remove the category.

Step II: Category-based Event Selection. After category pruning, only event relevant cat-

egories and their articles remain. Under each category, there are still several articles that do not

correspond to events. Our final goal is to find all video events from these articles and include them

into our event collection, which is a long-term goal of the EventNet project. In the current version,

EventNet only includes one representative video event from each category of WikiHow ontology.

An article title is considered to be a video event when it satisfies the following four conditions: (1)

it defines an event that involves a human activity interacting with people/objects in a certain scene.

(2) It has concrete non-subjective meanings. For example, “decorating a romantic bedroom” is too

subjective because different users have a different interpretation of “romantic”. (3) It has consistent

observable visual characteristics. For example, a simple method is to use the candidate event name

to search YouTube and check whether there are consistent visual tags found in the top returned

videos. Tags may be approximately considered visual if they can be found in existing image on-

tology, such as ImageNet. (4) It is generic, not too detailed. If many article titles under a category

share the same verb and direct object, they can be formed to a generic event name. After this, we

end with 500 event categories as the current event collection in EventNet.

4.4.2 Mining Event Specific Concepts

We apply the concept discovery method developed in our prior work [J. Chen and Chang, 2014] to

discover event-driven concepts from the tags of YouTube videos. For each of the 500 events, we

use the event name as query keywords to search YouTube. We check the top 1, 000 returned videos

and collect the ten most frequent words that appear in the titles or tags of these videos. Then we

further filter the 1, 000 videos to only include those videos that contain at least three of the frequent

words. This step helps us remove many irrelevant videos from the searching results. Using this
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Figure 4.4: A snapshot of EventNet constructed from WikiHow.

approach, we crawl approximately 190 videos and their tag lists as concept discovery resource for

each event, ending with 95, 321 videos for 500 events. We discover event-specific concepts from

the tags of the crawled videos. To ensure the visual detectability of the discovered concepts, we

match each tag to the classes of the existing object (ImageNet [J. Deng and Fei-Fei, 2009]), scene

(SUN [Patterson and Hays, 2012]) and action (Action Bank [Sadanand and Corso, 2012]) libraries,

and only keep the matched words as the candidate concepts. After going through the process, we

end with approximately nine concepts per event, and a total of 4, 490 concepts for the entire set

of 500 events. Finally, we adopt the hierarchical structure of WikiHow categories and attach each

discovered event and its concepts to the corresponding category node. The final event concept

ontology is called EventNet, as illustrated in Figure 4.4.

One could argue that the construction of EventNet ontology depends heavily on subjective eval-

uation. In fact, we can replace such subjective evaluation with automatic methods from computer

vision and natural language processing techniques. For example, we can use concept visual verifi-

cation to measure the visual detectability of concepts [J. Chen and Chang, 2014], and use text based

event extraction to determine whether each article title is an event [A. Ritter and Clark, 2012]. How-

ever, as the accuracy of such automatic methods is still being improved, currently we focus on the

design of principled criteria for event discovery and defer the incorporation of automatic discovery
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Figure 4.5: Event distribution over the top-19 categories of EventNet, where C1 to C19 are “arts

and entertainment”, “cars and other vehicles”, “computers and electronics”, “education and com-

munications”, “family life”, “finance and business”, “food and entertaining”, “health”, “hobbies

and crafts”, “holidays and traditions”, “home and garden”, “personal care and style”, “pets and ani-

mals”, “philosophy and religion”, “relationships”, “sports and fitness”, “travel”, “work world”, and

“youth”.

processes until future improvement.

4.5 Properties of EventNet

In this section, we provide a detailed analysis on the properties of EventNet ontology, including

basic statistics about the ontology, event distribution over coarse categories, and event redundancy.

EventNet Statistics. EventNet ontology contains 682 WikiHow category nodes, 500 event

nodes and 4, 490 concept nodes organized in a tree structure, where the deepest depth from the root

node to the leaf node (the event node) is eight. Each non-leaf category node has four child category

nodes on average. Regarding the video statistics in EventNet, the average number of videos per

event is 190, and the number of videos per concept is 21. EventNet has 95, 321 videos with an

average duration of approximately 277 seconds (7, 334 hours in total).
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Event Distribution. We show the percentage of the number of events distributed over the top-

19 category nodes of EventNet, and the results are shown in Figure 4.5. As can be seen, the top

four popular categories that include the most number of events are “sports and fitness”, “hobbies

and craft”, “food and entertainment”, and “home and garden”, whereas the least four populated

categories are “ work world”, “relationships”, “philosophy and religion” and “youth”, which are

abstract and cannot be described in videos. A further glimpse of the event distributions tells us

that the most popular categories reflects the users’ common interests in video content creation. For

example, most event videos captured in human daily life refer to their life styles reflected in food,

fitness, and hobbies. Therefore, we believe that the events included in EventNet have the potential

to be used as an event concept library to detect popular events in human daily life.

Event Redundancy. We also conduct an analysis on the redundancy among the 500 events

in EventNet. To this end, we use each event name as a text query, and find its most semantically

similar events from other events located at different branches from the query event. In particular,

given a query event eq, we first localize its category node Cq in the EventNet tree structure, and then

exclude all events attached under the parent and children nodes of node Cq. The events attached to

other nodes are treated as the search base to find similar events of the query based on the semantic

similarity described in Section 4.7. The reason for excluding events in the same branch of the query

event is that those events that reside in the parent and children category nodes manifest hierarchical

relationships such as “cook meat” and “cook poultry”. We treat such hierarchical event pairs as

a desired property of the EventNet library, and therefore do not involve them into the redundancy

analysis. From the top-5 ranked events for a given query, we ask human annotators to determine

whether there is a redundant event that refers to the same event as the query. After applying all 500

events as queries, we find zero redundancy among query event and all other events that reside in

different branches of the EventNet structure.

4.6 Learning Concept Models from Deep Learning Video Features

In this section, we introduce the procedure for learning concept classifiers for the EventNet concept

library. Our learning framework leverages the recent powerful CNN model to extract deep learn-

ing features from the video content, while employing one-vs-all linear SVM trained on top of the
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Event Query without EventNet structure with EventNet structure

landing a fish
landing a plane fishing

cook fish hunt an animal

wedding shower
wedding ceremony wedding ceremony

take a shower make a wedding veil

woodworking project
working out using a rowing machine make wood projects

running make a crochet project

Table 4.2: Top-2 matched events of some event queries without (2nd column) and with (3rd column)

leveraging EventNet structure.

features as concept models.

4.6.1 Deep Feature Learning with CNN

We adopt the CNN architecture in [A. Krizhevsky and Hinton, 2012] as the deep learning model

to perform deep feature learning from video content. The network takes the RGB video frame as

input and outputs the score distribution over the 500 events in EventNet. The network has five

successive convolutional layers followed by two fully connected layers. Detailed information about

the network architecture can be found in [A. Krizhevsky and Hinton, 2012]. In this work, we apply

Caffe [Jia, 2013] as the implementation of the CNN model described by [A. Krizhevsky and Hinton,

2012].

For training of the EventNet CNN model, we evenly sample 40 frames from each video, and

end with 4 million frames over all 500 events as the training set. For each of the 500 events, we

treat the frames sampled from its videos as the positive training samples of this event. We define the

set of 500 events as E = {0, 1, ..., 499}. Then the prediction probability of the k-th event for input

sample n is defined as:

pnk =
exp(xnk)∑

k′∈E exp(xnk′)
, (4.1)

where xnk is the k-th node’s output of the n-th input sample from CNN’s last layer. The loss function

L is defined as a multinomial logistic loss of the softmax which is L = −1
N

∑N
n=1 log(pn,ln), where

ln ∈ E indicates the correct class label for input sample n, and N is the total number of inputs. Our
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CNN model is trained on NVIDIA Tesla K20 GPU, and it requires approximately 7 days to finish

450K iterations of training. After CNN training, we extract the 4, 096-dimensional feature vector

from the second to the last layer of the CNN architecture, and further perform `2 normalization on

the feature vector as the deep learning feature descriptor of each video frame.

4.6.2 Concept Model Training

Given a concept discovered for an event, we treat the videos associated with this concept as positive

training data, and randomly sample the same number of videos from concepts in other events as

negative training data. This obviously has the risk of generating false negatives (videos without a

certain concept label does not necessarily mean it is negative for the concept). However, in view of

the prohibitive cost of annotating all videos over all concepts, we follow this common practice used

in other image ontologies such as ImageNet [J. Deng and Fei-Fei, 2009]. We directly treat frames in

positive videos as positive and frames in negative videos as negative to train a linear SVM classifier

as the concept model. This is a simplified approach and there are emerging works [K.-T. Lai and

Chang, 2014] for selecting more precise temporal segments or frames in videos as positive samples.

To generate concept scores on a given video, we first uniformly sample frames from it and

extract the 4, 096-dimensional CNN features from each frame. Then we apply the 4, 490 concept

models on each frame, and use all 4, 490 concept scores as the concept representation of this frame.

Finally, we average the score vectors across all frames and adopt the average score vector as the

video level concept representation.

4.7 Leveraging EventNet Structure for Concept Matching

In concept-based event detection, the first step is to find some semantically relevant concepts that

are applicable for detecting videos with respect to the event query. This procedure is called concept

matching in the literature [J. Chen and Chang, 2014; S. Wu and Natarajan, 2014]. To accomplish this

task, the existing approaches typically calculate the semantic similarity between the query event and

each concept in the library based on external semantic knowledge bases such as WordNet [Miller,

1995] or ConceptNet [Liu and Singh, 2004], and then select the top ranked concepts as the relevant

concepts for event detection. However, these approaches might not be applicable to our EventNet
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concept library because the involved concepts are event-specific and depend on their associative

events. For example, the concept “dog” under “feed a dog” and “groom a dog” are treated as two

different concepts because of the different event context. Therefore, concept matching in EventNet

needs to consider event contextual information.

To this end, we propose a multi-step concept matching approach that first finds relevant events

and then chooses those from the concepts associated with the matched events. In particular, given an

event query eq and an event e in the EventNet library, we use the textual phrase similarity calculation

function developed in [L. Han and Weese, 2013] to estimate their semantic similarity. The reason

for adopting such semantic similarity function is that both event query and candidate events in the

EventNet library are textual phrases, that need a sophisticated phrase level similarity calculation

that supports the word sequence alignment and strong generalization ability achieved by machine

learning. However, these properties cannot be achieved using the standard similarity computation

methods based on WordNet or ConceptNet alone. Our empirical studies confirm that the phrase

based semantic similarity can obtain better event matching results.

However, because of word sense ambiguity and the limited amount of text information in event

names, the phrase similarity-based matching approach can also generate wrong matching results.

For example, given the query “wedding shower ”, the event “take a shower” in EventNet receives a

high similarity value because “shower” has an ambiguous meaning, and it is mistakenly matched as

a relevant event. Likewise, the best matching results for the query “landing a fish” are “landing an

airplane” and “cook fish” rather than “fishing” which is the most relevant. To address these prob-

lems, we propose exploiting the structure of the EventNet ontology to find relevant events for such

difficult query events. In particular, given the query event, users can manually specify the suitable

categories in the top level of the EventNet structure. For instance, users can easily specify that the

suitable categories for the event “wedding shower” is “Family Life”, while choosing “Sports and

Fitness” and “Hobbies and Crafts” as suitable categories for “landing a fish”. After the user’s spec-

ification, subsequent event matching only needs to be conducted over the events under the specified

high-level categories. This way, the hierarchical structure of EventNet ontology is helpful in re-

lieving the limitations of short text based semantic matching, and helps improve concept-matching

accuracy. Table 4.2 lists some difficult events from TRECVID MED and their top matched events

with and without leveraging the EventNet structure. As can be seen, our method can achieve more
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relevant matching results than using phrase-based semantic similarity alone. After we obtain the

top matched events, we can further choose concepts based on their semantic similarity to the query

event. Quantitative evaluations between the matching methods can be found in Section 4.8.4.

4.8 Experiments

In this section, we evaluate the effectiveness of the EventNet concept library in concept-based event

detection. We first introduce the dataset and experiment setup, and then report the performance of

different methods in the context of various event detection tasks, including zero-shot event retrieval

and semantic recounting. After this, we study the efforts of leveraging the EventNet structure for

matching concepts in zero-shot event retrieval. Finally, we will treat the 95K videos over 500

events in EventNet as a video event benchmark and report the baseline performance of using the

CNN model in event detection.

4.8.1 Dataset and Experiment Setup

Dataset. We use two benchmark video event datasets as the test sets of our experiments to verify

the effectiveness of the EventNet concept library. (1) TRECVID 2013 MED dataset [MED, 2010]. It

contains 32, 744 videos that span over 20 event classes and the distracting background, whose names

are “E1: birthday party”, “E2: changing a vehicle tire”, “E3: flash mob gathering”, “E4: getting

a vehicle unstuck”, “E5: grooming an animal”, “E6: making a sandwich”, “E7: parade”, “E8:

parkour”, “E9: repairing an appliance”, “E10: working on a sewing project”, “E11: attempting a

bike trick”, “E12: cleaning an appliance”, “E13: dog show”, “E14: giving directions to a location”,

“E15: marriage proposal”, “E16: renovating a home”, “E17: rock climbing”, “E18: town hall

meeting”, “E19: winning a race without a vehicle”, and “E20: working on a metal crafts project”.

We follow the original partition of this dataset in TRECVID MED evaluation, which partitions

the dataset into a training set with 7, 787 videos and a test set with 24, 957 videos. (2) Columbia

Consumer Video (CCV) dataset [Y.-G. Jiang and Loui, 2011]. It contains 9, 317 videos that span

over 20 classes, which are “E1: basketball”, “E2: baseball”, “E3: soccer”, “E4: ice skating”, “E5:

skiing”, “E6: swimming”, “E7: biking”, “E8: cat”, “E9: dog”, “E10: bird”, “E11: graduation”,

“E12: birthday”, “E13: wedding reception”, “E14: wedding ceremony”, “E15: wedding dance”,
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“E16: music performance”, “E17: non-music performance”, “E18: parade”, “E19: beach”, and

“E20: playground”. The dataset is further divided into 4, 659 training videos and 4, 658 test videos.

Because we focus on zero-shot event detection, we do not use the training videos in these two

datasets, but only test the performance on the test set. For supervised visual recognition, features

from deep learning models, e.g., the last few layers of deep learning models learned over ImageNet

1K or 20K) can be directly used to detect events [M. Jain and Snoek, 2014]. However, the focus

of this paper is on the semantic description power of the event-specific concepts, especially in

recounting the semantic concepts in event detection, and finding relevant concepts for retrieving

events not been seen before (zero-shot retrieval).

Feature Extraction. On the two evaluation event video datasets, we extract the same features we

did on EventNet videos. In particular, we sample one frame every 2 seconds from a video, and

extract the 4, 096-dimensional deep learning features from the CNN model trained on EventNet

video frames. Then we run SVM-based concept models over each frame, and aggregate the score

vectors in a video as the semantic concept feature of the video.

Comparison Methods and Evaluation Metric. We compare different concept based video repre-

sentations produced by the following methods. (1) Classemes [L. Torresani and Fitzgibbon, 2010].

It is a 2, 659-dimensional concept representation whose concepts are defined based on LSCOM

concept ontology. We directly extract Classemes on each frame and then average them across the

video as video-level concept representation. (2) Flickr Concept Representation (FCR) [Y. Cui and

Chang, 2014]. For each event, the concepts are automatically discovered from the tags of Flickr

images in the search results of event query and organized based on WikiHow ontology. The con-

cept detection models are based on the binary multiple kernel linear SVM classifiers trained with

the Flickr images associated with each concept. Five types of low-level features are adopted to

represent Flickr images and event video frames. (3) ImageNet-1K CNN Concept Representation

(ICR-1K). In this method, we directly apply the network architecture in [A. Krizhevsky and Hinton,

2012] to train a CNN model over 1.2 million high-resolution images in the ImageNet LSVRC-2010

contest that covers 1, 000 different classes [J. Deng and Fei-Fei, 2009]. After model training, we

apply the CNN model on the frames from both TRECVID MED and CCV datasets. Concept s-

cores of the individual frames in a video are averaged to form the concept scores of the video. We

treat the 1, 000 output scores as the concept based video representation from ImageNet-1K. (4)
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ImageNet-20K CNN Concept Representation (ICR-20K). We apply the same network architecture

as ICR-1K to train a CNN model using over 20 million images that span over 20, 574 classes from

the latest release of ImageNet [J. Deng and Fei-Fei, 2009]. We treat the 20, 574 concept scores

output from the CNN model as the concept representation. Notably, ICR-1K and ICR-20K repre-

sent the most successful visual recognition achievements in the computer vision area, which can

be applied to justify the superiority of our EventNet concept library over the state-of-the-art. (5)

Our proposed EventNet-CNN Concept Representation (ECR), where we use our EventNet concept

library to generate concept based video representations. (6) Some state-of-the-art results reported

in the literature. Regarding the evaluation metric, we adopt AP, which approximates the area under

precision/recall curve, to measure the performance on each event in our evaluation datasets. Finally,

we calculate mAP over all event classes as the overall evaluation metric.

4.8.2 Task I: Zero-Shot Event Retrieval

Our first experiment evaluates the performance of zero-shot event retrieval, where we do not use any

training videos, but completely depend on the concept scores on test videos. To this end, we use each

event name in the two video datasets as a query to match the two most relevant events, and choose

the 15 most relevant EventNet concepts based on semantic similarity, and then average the scores of

these 15 concepts as the zero-shot event detection score of the video, through which a video ranking

list can be generated. Notably, the two most relevant events mentioned above are automatically

selected based on the semantic similarity matching method described in Section 4.7. For Classemes

and FCR, we follow the setting in [Y. Cui and Chang, 2014] to choose 100 relevant concepts based

on semantic similarity using ConceptNet and the concept matching method described in [Y. Cui and

Chang, 2014]. For ICR-1K and ICR-20K, we choose 15 concepts using the same concept matching

method.

Figure 4.6 shows the performance of different methods on two datasets, respectively. From the

results, we obtain the following observations: (1) event specific concept representations, including

FCR and ECR outperform the event independent concept representation Classemes. This is because

the former not only discovers semantically relevant concepts of the event, but also leverages the

contextual information about the event in the training samples of each concept. In contrast, the

latter only borrows concepts that are not specifically designed for events, and the training images
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Figure 4.6: Performance comparisons on zero-shot event retrieval task (left: MED; right: CCV).

This figure is best viewed in color.
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Figure 4.7: Zero-shot event retrieval performance with different number of concepts (left: MED;

right: CCV). The results of Classemes and FCR are from literature, in which the results when

concept number is 1 are not reported.
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for concept classifiers do not contain the event-related contextual information. (2) Concept rep-

resentations trained with deep CNN features, including ICR-20K and ECR, produce much higher

performance than the concept representations learned from low-level features including Classemes

and FCR for most of the events. This is reasonable because the CNN model can extract learning

based features that have been shown to achieve strong performance. (3) Although all are trained

with deep learning features, ECR generated by our proposed EventNet concept library perform-

s significantly better than ICR-1K and ICR-20K, which are generated by deep learning models

trained on ImageNet images. The reason is that concepts in EventNet are more relevant to events

than the concepts in ImageNet which are mostly objects independent of events. From this result, we

can see that our EventNet concepts even outperformed the concepts from the state-of-the-art visual

recognition system, and it is believed to be a powerful concept library for the task of zero-shot event

retrieval.

Notably, our ECR achieves significant performance gains over the best baseline ICR-20K, where

the mAP on TRECVID MED increases from 2.89% to 8.86% with 207% relative improvemen-

t. Similarly, the mAP on CCV increases from 30.82% to 35.58% (15.4% relative improvement).

Moreover, our ECR achieves the best performance on most event categories on each dataset. For

instance, on the event “E02: changing a vehicle tire” from the TRECVID MED dataset, our method

outperforms the best baseline ICR-20K by 246% relative improvement. On the TRECVID MED

dataset, the reason for the large improvement on “E13: dog show” is that the matched events con-

tain exactly the same event “dog show” as the event query. The performance on E10 and E11 is not

so good because the automatic event matching method matched them to wrong events. When we

use the EventNet structure to correct the matching errors as described in Section 4.8.4, we achieve

higher performance on these events.

In Figure 4.7, we show the impact on zero-shot event retrieval performance when the number

of concepts changes using the concept matching method described in Section 4.7, i.e., we first find

the matched events, and then select the top-ranked concepts that belong to these events. We select

the number of events until the desired number of concepts is reached. On TRECVID MED, we

can see consistent and significant performance gains for our proposed ECR method over others.

However, on the CCV dataset, ICR-20K achieves similar or even better performance when several

concepts are adopted. We conjecture that this occurs because the CCV dataset contains a number
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Figure 4.8: Event video recounting results: each row shows evenly subsampled frames of a video

and the top 5 concepts detected in the video.

of object categories, such as “E8: cat” and “E9: dog”, which might be better described by the

visual objects contained in the ImageNet dataset. Alternatively, all the events in TRECVID MED

are highly complicated, and they might be better described by EventNet. It is worth mentioning that

mAP first increases and then decreases as we choose more concepts from EventNet. This is because

our concept matching method always ranks the most relevant concepts on top of the concept list.

Therefore, involving many less relevant concepts ranked at lower positions (after the 10th position

in this experiment) in the concept list might decrease performance. In Table 4.3, we compare our

results with the state-of-the-art results reported on the TRECVID MED 2013 test set with the same

experiment setting. We can see that our ECR method outperforms these results by a large margin.
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Method mAP (%)

Selective concept [A. Habibian and Snoek, 2014; M. Mazloom and Snoek, 2013] 4.39

Bi-concept [A. Habibian and Snoek, 2014; M. Rastegari and Farhadi, 2013] 3.45

Composite concept [A. Habibian and Snoek, 2014] 5.97

Weak concept [S. Wu and Natarajan, 2014] 3.48

Annotated concept [J. Liu and Friedland, 2013] 6.50

Our EventNet concept 8.86

Table 4.3: Comparisons between our ECR with other state-of-the-art concept based video repre-

sentation methods built on visual content. All results are obtained in the task of zero-shot event

retrieval on TRECVID MED 2013 test set.

4.8.3 Task II: Semantic Recounting in Videos

Given a video, semantic recounting aims to annotate the video with the semantic concepts detected

in the video. Because we have the concept-based representation generated for the videos using the

concept classifiers described earlier, we can directly use it to produce recounting. In particular, we

rank the 4, 490 event-specific concept scores on a given video in descending order, and then choose

the top-ranked ones as the most salient concepts that occur in the video. Figure 4.8 shows the

recounting results for some sample videos from the TRECVID MED and CCV datasets. As can be

seen, the concepts generated by our method precisely reveal the semantics presented in the videos.

It is worth noting that the EventNet ontology also provides great benefits for developing a real-

time semantic recounting system that requires high efficiency and accuracy. Compared with other

concept libraries that use generic concepts, EventNet allows selected execution of a small set of

concepts specific to an event. Given a video to be recounted, it first predicts the most relevant

events, and then applies only those concepts that are specific to these events. This unique two-step

approach can greatly improve the efficiency and accuracy of multimedia event recounting because

only a small number of event-specific concept classifiers need to be started after event detection.
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4.8.4 Task III: Effects of EventNet Structure for Concept Matching

As discussed in Section 4.7, because of the limitations of text based similarity matching, the match-

ing result of an event query might not be relevant. In this case, the EventNet structure can help users

find relevant events and their associated concepts from the EventNet concept library. Here we first

perform quantitative empirical studies to verify this. In particular, for each event query, we manu-

ally specify two suitable categories from the top 19 nodes of the EventNet tree structure, and then

match events under these categories based on semantic similarity. We compare the results obtained

by matching all events in EventNet (i.e., without leveraging the EventNet structure) with the results

obtained by the method we described above (i.e., with leveraging the EventNet structure). For each

query, we apply each method to select 15 concepts from the EventNet library, and then use them to

perform zero-shot event retrieval.

Method (mAP %) MED CCV

Without Leveraging EventNet Structure 8.86 35.58

With Leveraging EventNet Structure 8.99 36.07

Table 4.4: Comparison of zero-shot event retrieval using the concepts matched without leveraging

EventNet structure (top row) and with leveraging EventNet structure (bottom row).

Table 4.4 shows the performance comparison between the two methods. From the results, we

can see that event retrieval performance can be improved if we apply the concepts matched with

the help of EventNet structure, which proves the usefulness of EventNet structure for the task of

concept matching.

4.8.5 Task IV: Multi-Class Event Classification

The 95, 321 videos over 500 event categories in EventNet can also be seen as a benchmark video

dataset to study large-scale event detection. To facilitate direct comparison, we provide standard

data partitions and some baseline results over these partitions. It is worth noting that one important

purpose of designing the EventNet video dataset is to use it as a testbed for large scale event detec-

tion models, such as deep convolutional Neutral Network. Therefore, in the following, we summa-

rize a baseline implementation using the state-of-the-art CNN models, as was done in [J. Deng and
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Figure 4.9: Top-1 and top-5 event classification accuracies over 19 high-level event categories of

EventNet structure, in which the average top-1 and top-5 accuracy are 38.91% and 57.67%.

Fei-Fei, 2009].

Data Division. Recall that each of the 500 events in EventNet has approximately 190 videos.

In our experiment, we divide the videos and adopt 70% of the videos as the training set, 10% as

validation set, and 20% as the test set. In all, there are approximately 70K (2.8 million frames), 10K

(0.4 million frames), and 20K (0.8 million frames) training, validation, and test videos, respectively.

Deep Learning Model. We adopt the same network architecture and learning setting of the

CNN model described in Section 4.6.1 as our multi-class event classification model. In the training

process, for each event, we treat the frames sampled from the training videos of an event as positive

training samples and feed them into the CNN model for model training. Seven days are required

to finish 450K iterations of training. In the test stage, to produce predictions for a test video, we

take the average of the frame-level probabilities over sampled frames in a video and use it as the

video-level prediction result.

Evaluation Metric. Regarding evaluation metric, we adopt the most popular top-1 and top-5

accuracy commonly used in large scale visual recognition, where the top-1 (top-5) accuracy is a
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cut a cake
make bouquets
make Chinese dumplings
decorate a hat
wear a yukata

cut hair
take exam in classroom
do fitness
tattooing
exercise in gym

diving
boating
catch a crab
feed fish
landing aircraft

exercise in gym
plop hair
push ups
wash face
do massage

Figure 4.10: Event detection results of some sample videos. The 5 events with the highest detection

scores are shown in the descending order. The bar length indicates the score of each event. Event

with the red bar is the ground truth.

fraction of the test videos for which the correct label is among the top-1 (5) labels predicted to be

most probable by the model.

Results. We report the multi-class classification performance by 19 high-level categories of

events in the top layer of the EventNet ontology. To achieve this, we collect all events under each

of the 19 high-level categories in EventNet (e.g., 68 events under “home and garden”), calculate

the accuracy of each event and then calculate their mean value over the events within this high-

level category. As seen in Figure 4.9, most high-level categories show impressive classification

performance. To illustrate the results, we choose four event video frames and show their top-5

prediction results in Figure 4.10.

4.9 Summary and Discussion

We introduced EventNet, a large scale structured event-driven concept library, for representing com-

plex events in video. The library contains 500 events mined from WikiHow and 4, 490 event-specific

concepts discovered from YouTube video tags, for which large margin classifiers are trained with

deep learning features over 95,321 YouTube videos. The events and concepts are further organized

into a tree structure based on the WikiHow ontology. Extensive experiments on two benchmark

event datasets showed major performance improvement of the proposed concept library over zero-
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shot event retrieval task. We also showed that the tree structure of EventNet helps match the event

queries to semantically relevant concepts. For future work, we will continue to expand EventNet

by continuously discovering more events from WikiHow, YouTube, and other knowledge resources.

We will also pursue tree structured event modeling that incorporates the hierarchical relationship of

events in EventNet.
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Chapter 5

Large Scale Video Event and Concept

Ontology Applications

5.1 Introduction

In this chapter, we present several applications using our large-scale video event and concept ontolo-

gy. In particular, the novel functions of our EventNet system include: interactive browser, semantic

search, and live tagging of user-uploaded videos. In each of the modules, we emphasize the unique

ontological structure embedded in EventNet and utilize it to achieve a novel experience. For exam-

ple, the event browser leverages the hierarchical event structure discovered from the crowdsource

forum WikiHow to facilitate intuitive exploration of events, the search engine focuses on retrieval

of hierarchical paths that contain events of interest rather than events as independent entities, and

finally the live detection module applies the event models and associated concept models to explain

why a specific event is detected in an uploaded video. To the best of our knowledge, this is the first

interactive system that allows users to explore high level events and associated concepts in videos

in a systematic structured manner.

5.2 Application I: Event Ontology Browser

Our system supports users to browse the EventNet tree ontology in an interactive and intuitive

manner. When a user clicks a non-leaf category node, the child category nodes are expanded along
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Figure 5.1: Visualization interface for event ontology browsing. Example videos and related con-

cepts of the selected event are shown.

with any event attached to this category (the event node is filled in red, whereas the category node

is in green). When the user clicks an event, the exemplary videos for this event is shown with

a dynamic GIF animation of the keyframes extracted from a sample video. Concepts specific to

the event are also shown with representative keyframes of the concept. We specifically adopt the

expandable, rotatable tree as the visualization tool (as shown in Figure 5.1) because it maintains a

nice balance between the depth and breadth of the scope when the user navigates through layers and

siblings in the tree.

5.3 Application II: Semantic Search of Events in the Ontology

We adopt a unique search interface that is different from the conventional ones by allowing users

to find hierarchical paths that match user interest, instead of treating events as independent units.

This design is important for fully leveraging the ontology structure information in EventNet. For

each event in EventNet, we generate its text representation by combining all words of the category
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Figure 5.2: Interface for searching events embedded in the EventNet ontology.

names from the root node to the current category that contains the event, plus the name of the event.

Such texts are used to set up search indexes in Java Lucene [Luc, 2015]. When the user searches for

keywords, the system returns all the paths in the index that contain the query keywords. If the query

contains more than one word, the path with the more matched keywords is ranked higher in the

search result. After the search, the users can click each returned event, and our system dynamically

expands the corresponding path of this event, and visualizes it using the tree browser described in

the previous section. This not only helps users quickly find target events, but also helps suggest

additional events to the user by showing events that could exist in the sibling categories in the

EventNet hierarchy. Figure 5.2 shows the interface of the search function.

5.4 Application III: Automatic Video Tagging

EventNet includes an upload function that allows users to upload any video and use pre-trained

detection models to predict the events and concepts present in the video. For each uploaded video,

EventNet extracts one frame every 10 seconds. Each frame is then resized to 256 by 256 pixels and
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Figure 5.3: Interface of automatic tagging of user uploaded videos.

fed to the deep learning model described earlier. We average the 500-dimensional detection scores

across all extracted frames, and use the average score vector as the event detection scores of the

video. To present the final detection result, we only show the top event with highest score as the

event prediction of the video. For concept detection, we use the feature in the second last layer of

the deep learning model computed over each frame, and then apply the binary SVM classifiers to

compute the concept scores on each frame. We show the top-ranked predicted concepts under each

sampled frame of the uploaded video. Figure 5.3 shows the tagging results of the event and concept

for an uploaded video, indicating the high accuracy of the tagging result. It is worth mentioning that

our tagging system is very fast and satisfies real-time requirements. For example, when we upload

a 10 MB video, the tagging system can generate tagging results in 5 seconds on a single regular

workstation, demonstrating the high efficiency of the system.
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5.5 Summary and Discussion

In this chapter, we demonstrated novel applications on EventNet, the largest event ontology exist-

ing today (to the best of our knowledge) with a hierarchical structure extracted from the popular

crowdsource forum WikiHow. The system provides efficient event browsing and search interfaces,

and supports live video tagging with high accuracy. It also provides a flexible framework for future

scaling up by allowing users to add new event nodes to the ontology structure.

In the future, we will continue to expand EventNet with more daily events. In order to precisely

detect the event specific concepts, we will focus on the research of event and concept spatial and

temporal localizations.
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Part III

Event Detection with Multi-Modality

Representations and Multi-Source

Fusion
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Detecting complex events in videos is intrinsically a multi-modality and multi-source fusion

problem. On one hand, because joint cross-modality patterns (e.g., audio-visual pattern) often exist

in videos, we tend to propose a novel joint multi-modality representation to discover the intrinsic

correlations among modalities that help detect video event. On the other hand, because combining

features from multiple sources often produces performance gains reported in literatures [Y.-G. Jiang

and Chang, 2010; Bach et al., 2004], we further propose a robust late fusion method for video event

detection with effective multiple source fusion.

We first propose a new multi-modality representation, called bi-modal words, to explore rep-

resentative joint audio–visual patterns. In particular, we build a bipartite graph to model the rela-

tionship across the quantized words extracted from the visual and audio modalities. Partitioning

over the bipartite graph is then applied to produce the bi-modal words that reveal the joint pattern-

s across modalities. Different pooling strategies are then employed to re-quantize the visual and

audio words into the bi-modal words and form bi-modal BoW representations. Because it is dif-

ficult to predict the suitable number of bi-modal words, we generate bi-modal words at different

levels (i.e., codebooks with different sizes), and use Multiple Kernel Learning(MKL) to combine

the resulting multiple representations during event classifier learning. Experimental results on three

popular datasets show that the proposed method achieves statistically significant performance gain-

s over methods using individual visual and audio feature alone and existing popular multi-modal

fusion methods.We also find that average pooling is particularly suitable for bi-modal representa-

tion, and using multiple kernel learning (MKL) to combine multi-modal representations at various

granularities is helpful.

Next, we propose a rank minimization method to fuse the predicted confidence scores from

multiple sources, each of which is obtained based on a certain type of feature. In particular, we

convert each confidence score vector obtained from one model into a pairwise relationship matrix,

where each entry characterizes the comparative relationship of scores of two test samples. Our

hypothesis is that the relative score relationships are consistent among component models up to

certain sparse deviations, despite the large variations that can exist in the absolute values of the raw

scores. Then we formulate the score fusion problem as seeking a shared rank-2 pairwise relationship

matrix based on the original score matrix from individual models that can be decomposed into the

common rank-2 matrix and sparse deviation errors. A robust score vector is then extracted to fit
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the recovered low-rank score relationship matrix. We formulate the problem as a nuclear norm and

`1 norm optimization objective function, and employ the Augmented Lagrange Multiplier (ALM)

method for the optimization. Our method is isotonic (i.e., scale invariant) to the numeric scales of

the scores that originate from different models. We experimentally show that the proposed method

achieves significant performance gains on video event detection.
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Chapter 6

Discovering Joint Audio-Visual

Representation for Video Event

Detection

6.1 Introduction

Automatically detecting complex events in diverse Internet videos is a topic that is receiving in-

creasing research attention in computer vision and multimedia. Currently, a large portion of Inter-

net videos is captured by amateur consumers without professional post-editing. This makes the task

of event recognition extremely challenging, because such videos contain large variations in light-

ing, viewpoint, camera motion, etc. Fig. 6.1 shows sample frames from six videos that contain the

event “Feeding an animal”. In addition to the variations mentioned above, the “high-level” nature

of the event categories (e.g., different types of animals in this event) sets a big challenge in event

recognition.

Fortunately, besides the visual frames shown in Fig. 6.1, videos also contain audio information

that provides an additional useful clue for event detection. In other words, the events captured in the

videos are multimodal and videos of the same event typically show consistent audio–visual pattern-

s. For example, an “explosion” event is best manifested by the transient burst of sound along with

visible smoke and flame after the incident. Other examples include strong temporal synchroniza-
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Figure 6.1: Example video frames of event “feeding an animal” defined in TRECVID Multimedia

Event Detection Task 2011. As can be seen, event detection in such unconstrained videos is a highly

challenging task since the content is extremely diverse.

tion (e.g., horse running with audible footsteps) or loose association (e.g., people feeding an animal

while talking about the feeding action). Therefore, we believe that successful event detection solu-

tions should effectively harness both audio and visual modalities.

Most existing works fused multimodal features in a superficial fashion, such as early fusion that

concatenates feature vectors before classification, or late fusion that combines prediction scores af-

ter classification. To better characterize the relationship between audio–visual modalities in videos,

we propose an audio–visual bi-modal BoW representation. First, we apply the typical BoW repre-

sentation to build audio and visual BoW representations, where the codebooks are generated using

standard k-means clustering separately. Subsequently, a bipartite graph is constructed to capture

joint co-occurrence statistics between the quantized audio and visual words. A bi-modal codebook

is then generated by spectral clustering, which partitions the graph into a set of visual/audio word

groups, and each group is treated as a joint bi-modal word. Finally, the original individual feature

in each modality (audio or visual) is re-quantized based on the bi-modal codewords, using popular

feature pooling methods. In addition, as given that it is difficult (if not impossible) to predict a

suitable number of bi-modal words, we generate bi-modal codebooks of different sizes and employ

MKL to combine their respective representations for event model learning. The flowchart for our

approach is illustrated in Fig. 6.2.
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The main contributions are summarized as follows:

• We propose an audio–visual bi-modal BoW representation, that effectively explores the un-

derlying structure of the joint audio–visual feature space of complex unconstrained videos.

Our representation is very easy to implement because only the classical bipartite graph parti-

tion technique is used to generate the bi-modal words. Compared with the original audio or

visual BoW representations, the joint bi-modal BoW not only outperforms simple early/late

fusion, but also greatly reduces the dimensionality of the final video representation.

• Other than fixing the number of codewords as most existing works on visual/audio word-

based representations do, we propose generating bi-modal codewords at different granularities

(multiple codebooks of different sizes) and adopt MKL [Jhuo and Lee, 2010; A. Kembhavi

and Davis, 2009; A. Vedaldi and Zisserman, 2009] to incorporate multiple bi-modal BoW

representations for event detection, which further improves the detection accuracy.

The rest of the chapter is organized as follows. We first review related works in Sect. 6.2.

Section 6.3 discusses typical representations of audio and visual features. Section 6.4 introduces

our proposed audio–visual bi-modal BoW representation. Extensive experimental evaluations on

three popular datasets will be given in Sect. 6.5. Finally, we conclude this work in Sect. 6.6.

6.2 Related Works

Fusing complementary audio and visual information is important in video content analysis, and

has been attempted in many prior works. For example, Jiang et al. [Y.-G. Jiang and Chang, 2010]

adopted average late fusion, which uses the average prediction scores of multiple independently

trained classifiers. On the contrary, the work in [L. Bao, 2011] averaged the kernel matrices obtained

from audio and visual features before classification, and it is known as the early fusion method.

Unlike these superficial fusion methods, our bi-modal BoW representation characterizes the joint

patterns across the two modalities, which can uncover their underlying relationships rather than

simple combination.

There are also several interesting works on joint audio–visual analysis, especially for object

tracking and detection. For instance, Beal et al. [M. Beal and Attias, 2003] developed a joint
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Figure 6.2: The framework of our proposed joint bi-modal word representation. We first extract

audio and visual features from the videos and then quantize them into audio and visual BoW his-

tograms respectively. After that, a bipartite graph is constructed to model the relations across the

quantized words extracted from both modalities, in which each node denotes a visual or an audio

word and edges between two nodes encode their correlations. By partitioning the bipartite graph

into a number of clusters, we obtain several bi-modal words that reveal the joint audio-visual pat-

terns. With the bi-modal words, the audio and visual features in the original BoW representations

are re-quantized into a bi-modal BoW representation. Finally, bi-modal codebooks of various sizes

are combined in a multiple kernel learning framework for event model learning.

probability model of audio and visual cues for object tracking. Cristani et al. [M. Cristani and

Murino, 2007] attempted to synchronize foreground objects and audio sounds in the task of object

detection. One limitation of these methods is that they only considered videos in a fully controlled

environment, which is much easier than the unconstrained videos managed in this work.

More recently, Jiang et al. [W. Jiang and Loui, 2009] proposed Short-Time Audio–Visual Atom

as the joint audio–visual feature for video concept classification. First, visual regions are tracked

within short-term video slices to generate visual atoms, and audio energy onsets are located to

generate audio atoms. Then the regional visual features extracted from the visual atoms and the

spectrogram features extracted from the audio atoms are concatenated to form an audio–visual

atom feature representation. Finally, a discriminative joint audio–visual codebook is constructed
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on the audio–visual atoms using multiple instance learning, and finally the codebook-based BoW

features are generated for semantic concept detection. As an extension of this work, in [Jiang and

Loui, 2011], the authors further proposed Audio–Visual Grouplets by exploring temporal audio–

visual interactions, where an audio–visual grouplet is defined as a set of audio and visual code-

words grouped based on their strong temporal correlations in videos. In particular, the authors

conducted foreground/background separation in both audio and visual channels, and then formed

four types of audio–visual grouplets by exploring the mixed-and-matched temporal audio–visual

correlations, which provide discriminative audio–visual patterns for classifying semantic concepts.

Despite the close relatedness with our work, the above two methods require performing object or

region tracking, which is extremely difficult and computationally expensive, particularly for uncon-

strained Internet videos. Several other works demonstrated the success of utilizing audio and vi-

sual information for recognition [Y.-G. Jiang and Shah, 2013; G. Potamianos and Matthews, 2004;

J.-C. Wang and Wang, 2012], but they are restricted to videos that contain emotional music or talk-

ing faces. On the contrary, our method is proposed for more general situations and avoids using

expensive and unreliable region segmentation and tracking.

Methodologically, our work uses the bipartite graph partitioning technique [Dhillon, 2001] to

obtain the bi-modal codebooks. Bipartite graph partitioning has been widely adopted in many ap-

plications. For example, Liu et al. [J. Liu and Savarese, 2011] used a bipartite graph to model

the co-occurrence of two related views based on visual vocabularies, and the graph partitioning

algorithm was applied to find visual word co-clusters. The generated co-clusters not only trans-

fer knowledge across different views, but also allow cross-view action recognition. To model the

co-occurrence relations between words from different domains, Pan et al. [Dhillon, 2001] adopt-

ed a bipartite graph and spectral clustering to discover cross-domain word clusters. This way, the

clusters can reduce the gap between different domains, and achieve good performance in cross-

domain sentiment classification. In contrast to these applications that focus on cross-domain/view

learning, we propose using a bipartite graph to discover the correlations between audio and visual

words. Another algorithm used in our approach is MKL [A. Rakotomamonjy and Grandvalet, 2009;

A. Vedaldi and Zisserman, 2009], which has been frequently adopted in many computer vision and

multimedia tasks.
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6.3 Unimodal Feature Representations

Before introducing the bi-modal BoW representation, let us briefly describe the popular unimodal

BoW feature representations, that are the basis of our approach. Typical audio/visual BoW rep-

resentation involves three steps: first, a set of descriptors (visual/audio) is extracted from a video

corpus. Then the descriptors are used to generate visual/audio codebooks using k-means cluster-

ing. Each cluster describes a common pattern of the descriptors, and it is usually referred to as a

codeword. With the codebook, feature pooling is performed to aggregate all the descriptors in each

video1 to form a single fixed dimensional feature vector.

We describe the visual/audio descriptors applied in this work as follows:

• Static Sparse SIFT Appearance Feature. The effectiveness of SIFT descriptors [Lowe,

2004] has been proven in numerous object and scene recognition tasks. It is therefore adopted

to characterize the static visual information in video frames. Following the work of [Y.-

G. Jiang and Chang, 2010], we adopt two versions of sparse keypoint detectors: Difference

of Gaussians [Lowe, 2004] and Hessian Affine [Mikolajczyk and Schmid, 2004], to find local

keypoints in the frames. Each keypoint descriptor is described by a 128-dimensional SIFT

vector. To reduce computational costs, we sample one frame every 2 seconds. Finally, the

SIFT features within a frame are further quantized using a SIFT codebook and form a 5, 000-

dimensional BoW histogram.

• Motion-based STIP Feature. Motion information is always an important clue for video

content recognition. For this, we adopt the commonly used Spatial–Temporal Interest Points

(STIP) [L. Laptev and Rozenfeld, 2008]. STIP extracts space–time local volumes with signif-

icant variations in both space and time. We apply Laptev’s algorithm [Laptev and Lindeberg,

2003] to locate the volumes and compute the corresponding descriptors. In particular, a local

volume is described by the concatenation of Histogram Of Gradients (HOG) and Histogram

of Optical Flow (HOF). This leads to a 144-dimensional vector for each volume, which is

then quantized with a codebook to produce a 5, 000- dimensional BoW histogram.

1Normally, event detection is performed at the video level, i.e., to detect whether a video contains an event of interest.

Therefore, we represent each video by a feature vector.
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• Acoustic MFCC Feature. In addition to the aforementioned visual features, audio informa-

tion provides another important clue for video event detection [J.-C. Wang and Wang, 2012].

To utilize this, we adopt the popular MFCC [Pols, 1966a] and compute a 60-dimensional M-

FCC feature for every temporal window of 32ms. The features are densely computed with

nearby windows that have 50% overlap. Finally, the MFCC features are quantized into a

4, 000 -dimensional BoW histogram, in the same way as we quantize the visual features.

With these unimodal features, for each video clip, we have a 10, 000-dimensional visual BoW

representation by concatenating the BoW histograms generated from SIFT and STIP (5, 000 +

5, 000), and a 4, 000 dimensional audio BoW representation. These are used to compute the bi-

modal representation discussed in the next section.

6.4 Joint Audio-Visual Bi-Modal Words

We now introduce the audio–visual bi-modal representation in detail. We first introduce the con-

struction of the bipartite graph based on the audio BoW and visual BoW representation, and the

way of generating the bi-modal codewords. Then we describe three pooling strategies used for re-

quantizing the original visual/audio BoW into the joint audio–visual bi-modal BoW representation.

Finally, we discuss integrating the bi-modal BoW representations generated at different granularities

using MKL.

6.4.1 Audio-Visual Bipartite Graph Construction

Let D = {di}ni=1 be a training collection with n videos. Denote the audio BoW feature of video di

as hai and its visual BoW feature as hvi , i.e., di = {hai ,hvi }, where hai is 4, 000-dimensional and hvi

is 10, 000-dimensional. These features are `1 normalized such that the sum of its entries equals to

1. In addition, we useWa = {wa1 , . . . , wama} andWv = {wv1 , . . . , wvmv} to denote the sets of audio

and visual words respectively, where wai ∈ Wa represents an audio word and wvi ∈ Wv indicates a

visual word, and ma and mv denote the number of audio and visual words, respectively. The total

number of audio and visual words is m = ma +mv.

We further define an undirected graph G = (V,E) between the audio and visual words, where

V and E denote the set of vertices and edges, respectively. Let V be a finite set of vertices V =



CHAPTER 6. DISCOVERING JOINT AUDIO-VISUAL REPRESENTATION FOR VIDEO EVENT
DETECTION 77

Bi‐partite graph grouping
Group 1 G KG 2

Audio 
words

Group 1 Group K Group 2

Cutt
edg

Cutt
edge

Visual 
words

.  .  . 

ting‐
eting‐
ewords

Figure 6.3: An illustration of the bipartite graph constructed between audio and visual words, where

the upper vertices denote the audio words and the lower vertices denote the visual words. Each

edge connects one audio word and one visual word, which is weighted by the correlation measure

calculated based on Eq. (6.1). In this figure, the thickness of the edge reflects the value of the weight.

V a
⋃
V v, where each vertex in V a corresponds to an audio word in Wa and each vertex in V v

corresponds to a visual word inWv. An edge in E connects two vertices in V a and V v, and there is

no intra-set edge that connects the two vertices in V a or V v, respectively. This graph G = (V,E),

where V = V a
⋃
V v, is commonly called a bipartite graph. To measure the correlation between

an audio wak ∈ Wa and visual wvl ∈ Wv word, we assign a non-negative weight skl to any edge

ekl ∈ E, which is defined as follows,

skl =

∑n
i=1 h

a
i (k)hvi (l)∑n

i=1 h
a
i (k)

∑n
i=1 h

v
i (l)

, (6.1)

where hai (k) denotes the entry of hai that corresponds to the kth audio word wak and hvi (l) denotes

the entry of hvi that corresponds to the lth visual word wvl .

In Eq. (6.1), the numerator measures the summation of the joint probability of the audio wak

and visual wvl words, where the summation is calculated over the entire video collection. This value

essentially reveals the correlation of the audio and visual words. On the other hand, the denominator

acts as a normalization term, that penalizes the audio and/or visual words that appear frequently in

the video collection. It is also worth noting that the choice of the correlation measure in Eq. (6.1)
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is flexible. We can also estimate the weight skl by applying other methods, such as Pointwise

Mutual Information (PMI) [J. Liu and Savarese, 2011]. Figure 6.3 gives a conceptual illustration of

a bipartite graph constructed from the joint statistics of the audio and visual words.

6.4.2 Discovering Bi-Modal Words

We adopt the standard bipartite graph partitioning method to discover audio–visual bi-modal words.

Following [Dhillon, 2001], we begin with a bipartitioning method over the bipartite graph, and then

extend it into the multipartitioning scenario.

Recall that we have a bipartite graph G = (V,E) between the audio and visual words. Given a

partitioning of the vertex set V into two subsets V1 and V2, the cut between them can be defined as

the sum of all edge weights that connect the vertices from the two subsets,

cut(V1, V2) =
∑

k∈V1,l∈V2

skl. (6.2)

The bipartite partition problem over the bipartite graph is to find the vertex subsets V ∗1 and

V ∗2 such that cut(V ∗1 , V
∗
2 ) = minV1,V2 cut(V1, V2). To this end, we define the Laplacian matrix

L ∈ Rm×m associated with the bipartite graph G as,

Lkl =


∑

l skl, k = l,

−skl, k 6= l and ekl ∈ E,

0, otherwise.

(6.3)

Given a bipartitioning of V into V1 and V2, we further define a partition vector p ∈ Rm that

characterizes this division, where the ith entry describes the partitioning state of i ∈ V ,

pi =

 +1, i ∈ V1,

−1, i ∈ V2.
(6.4)

With the above definitions, it can be proven that the graph cut can be equally written in the

following form,

cut(V1, V2) =
1

4
p>Lp =

1

4

∑
(i,j)∈E

sij(pi − pj)2. (6.5)

However, it can be easily seen from Eq. (6.5) that the cut is minimized by a trivial solution when

all pi’s are either +1 or −1. To avoid this problem, a new objective function is used to achieve not
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only the minimized cut, but also a balanced partition. Formally, the objective function is defined as

follows,

Q(V1, V2) =
cut(V1, V2)

weight(V1)
+

cut(V1, V2)

weight(V2)
, (6.6)

where weight(Vi) =
∑

k,l∈Vi skl, i = 1, 2. Then it can be proven that the eigenvector that corre-

sponds to the second smallest eigenvalue of the generalized eigenvalue problem Lz = λDz (where

D is a diagonal matrix with D(k, k) =
∑

l skl) provides a real relaxed solution of the discrete opti-

mization problem in Eq. (6.6) [Lutkepohl, 1997]. To obtain the eigenvector that corresponds to the

second smallest eigenvalue, [Dhillon, 2001] proposed a computationally efficient solution through

Singular Value Decomposition (SVD). In particular, for the given bipartite graph G, we have

L =

 D1 −S

−S> D2

 , and D =

 D1 0

0 D2

 , (6.7)

where S = [skl], D1 and D2 are diagonal matrices such that D1(k, k) =
∑

l skl and D2(l, l) =∑
k skl. Let the normalized matrix Ŝ = D

−1/2
1 SD

−1/2
2 , it can be proven that the eigenvector that

corresponds to the second smallest eigenvalue of L can be expressed in terms of the left and right

singular vectors that corresponds to the second largest singular value of Ŝ as follows,

z2 =

 D
−1/2
1 u2

D
−1/2
2 v2

 , (6.8)

where z2 is the eigenvector that corresponds to the second smallest eigenvalue of L, u2 and v2 are,

respectively, the left and right singular vectors that corresponds to the second largest singular value

of Ŝ.

Finally, we need to use z2 to find the approximated optimal bipartitioning by assigning each

z2(i) to the clusters Cj (j = 1, 2) such that the following sum-of-squares criterion is minimized,

2∑
j=1

∑
z2(i)∈Cj

(z2(i)−mj)
2, (6.9)

where mj is the cluster center of Cj (j = 1, 2).

The above objective function can be practically minimized by directly applying the k-means

clustering method on the 1-dimensional entries of z2. The bipartitioning method can be easily

extended to a general case of finding K audio-visual clusters [Dhillon, 2001]. Suppose we have l =
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dlog2Ke singular vectors u2,u3, . . . ,ul+1, and v2,v3, . . . ,vl+1, then we can form the following

matrix with l columns,

Z =

 D
−1/2
1 U

D
−1/2
2 V

 , (6.10)

where U = [u2, . . . ,ul+1] and V = [v2, . . . ,vl+1]. Based on the obtained matrix Z, we further

run k-means method on it to obtain K clusters of audio–visual words, which can be represented as

follows,

B = {B1, . . . , BK}, (6.11)

where each Bi consists of the audio word subset Wa
i and the visual word subset Wv

i falls in the

same bi-modal cluster. Note that eitherWa
i orWv

i can be empty, indicating that only one modality

forms a consistent pattern within the bi-modal word Bi (e.g., visual words that corresponds to the

background scene).

The above graph partition method needs to compute eigenvectors of the Laplacian matrix, and

thus has a computational complexity of O(m3) in general, where m is the total number of audio

and visual words. We implement the method using MATLAB with a Six-Core Intel Xeon Processor

X5660 (2.8 GHz) and 32 GB memory. A total of 32 minutes is required to group 14, 000 audio and

visual words into 2, 000 bi-modal words in the experiment on the CCV dataset (cf. Sect. 6.5.1).

6.4.3 Bi-Modal BoW Generation

After generating the bi-modal codewords, we need to map the original visual and audio descriptors

to the new codebook. The main purpose here is to fuse the original two visual and audio repre-

sentations into one joint representation to be used for event classification. For this, we adopt three

different quantization strategies. Given a video di = (hai ,h
v
i ), the audio–visual bi-modal BoW

representations generated by average pooling, max pooling, and hybrid pooling are described as

follows.

Average Pooling Average pooling treats the audio and visual words as equally important. For-

mally, the bi-modal BoW generation strategy is described as follows,

havg
i (k) =

∑
wap∈Wa

k ,w
v
q∈Wv

k
(hai (p) + hvi (q))

|Wa
k |+ |Wv

k |
, (6.12)
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Algorithm 1 Audio-Visual Bi-Modal BoW Representation Generation Procedure
1: Input: Training video collection D = {di} where each di is represented as a multi-modality

representation d = {hai ,hvi }; Size of the audio-visual bi-modal codebook K.

2: Create the correlation matrix S between the audio and visual words by calculating the co-

occurrence probability over D by Eq. (6.1).

3: Calculate matrix D1, D2 and Ŝ respectively.

4: Apply SVD on Ŝ and select l = dlog2Ke of its left and right singular vectors U =

[u2, . . . ,ul+1] and V = [v2, . . . ,vl+1].

5: Calculate Z = (D
−1/2
1 U,D

−1/2
2 V)>.

6: Apply k-means clustering algorithm on Z to obtain K clusters, which form the audio-visual

words B = {B1, . . . , BK}.

7: Apply a suitable pooling strategy to re-quantize each video into the audio-visual bi-modal BoW

representation.

8: Output: Audio-visual BoW representation.

where wap means the pth audio word, wvq represents the qth visual word, and havg
i (k) denotes the

entry in the bi-modal BoW havg that corresponds to a given audio–visual bi-modal word Bk =

(Wa
k ,Wv

k ). |Wa
k | and |Wv

k | denote the cardinalities of Wa
k and Wv

k respectively. As we can see

in Eq.(6.12), the measure of the entry in the bi-modal representation is the average value of the

entries of the audio and visual words in the original BoW representations. We call such bi-modal

BoW generation strategy average pooling because of its relatedness with regard to the pooling

strategy in sparse coding [Y.-L. Boureau and Lecun, 2010].

Max Pooling Max pooling selects the maximum summation in the original audio or visual

words as the quantization value of the given audio–visual bi-modal word, formally defined as fol-

lows,

hmax
i (k) = max

( ∑
wap∈Wa

k

hai (p),
∑

wvq∈Wv
k

hvi (q)
)
. (6.13)

Hybrid Pooling We also propose a hybrid pooling strategy that integrates average and max

pooling. Intuitively, the visual features from the visual scene in the video tend to persist over a

certain interval when the camera does not move too fast. Therefore, we use average pooling to

aggregate information in the interval. Max pooling is employed for the audio information because
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audio features tend to be transient in time. Formally, the hybrid pooling strategy can be defined as

follows,

hhyb
i (k) =

1

2

(
max
wap∈Wa

k

hai (p) +

∑
wvq∈Wv

k
hvi (q)

|Wv
k |

)
, (6.14)

where the average pooling aggregates the two entries of the audio and visual words obtained from

max and average pooling, respectively.

Algorithm 1 provides the detailed flow of the generation procedure of the bi-modal BoW repre-

sentation.

6.4.4 Combining Multiple Joint Bi-Modal Representations

As is true for any BoW-based representation, it is extremely difficult (if not impossible) to identify

a suitable number of codewords. Existing works mostly set a fixed number (a few thousand) code-

words, that have been empirically observed to work well in practice. Because our bi-modal words

are generated on top of the audio and visual words, the problem becomes more complicated given

that there is no (even empirical) evidence of a suitable word number for the joint codebook. Using

a small bi-modal codebook can result in ambiguous audio–visual patterns within a bi-modal word.

On the other hand, the joint audio–visual patterns can be separated immensely if the codebook size

is too large.

To alleviate the effect of codebook size, we propose generating the bi-modal BoW represen-

tation at different granularities, i.e., with different codebook sizes. The representations are then

combined through the well-known MKL framework. In particular, suppose we have the joint bi-

modal BoW representations generated from T bipartite graph partitioning with different resolutions

(i.e., cluster number), and denote the kernel matrix that corresponds to the histogram generated at

the tth resolution as Kt(h, h
′). MKL seeks an optimal combination K(h, h′) =

∑T
t=1 dtKt(h, h

′)

with the constraints dt ≥ 0, ∀t and
∑T

t=1 dt = 1. By using this K(h, h′) for event classification,

performance can usually be boosted compared with using a single kernel. Many MKL framework-

s [Jhuo and Lee, 2010; A. Kembhavi and Davis, 2009; A. Vedaldi and Zisserman, 2009] have been

proposed and demonstrated for visual classification. We adopt the widely used simpleMKL frame-

work [A. Rakotomamonjy and Grandvalet, 2009] because of its sound performance and efficiency.

In this MKL framework, each kernel Kt, is associated with a Reproducing Kernel Hilbert Space

(RKHS) Ht, and the decision function is in the form f(h) + b =
∑

t ft(h) + b where each ft is
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associated withHt. The objective of simpleMKL is as follows:

min
ft,b,ξ,d

1

2

∑
t

1

d
‖ft‖2Ht + C

∑
i

ξi

s.t. yi
∑
i

ft(xi) + yib ≥ 1− ξi, ∀i

ξi ≥ 0, ∀i (6.15)∑
t

dt = 1, dt >= 0, ∀t,

To solve the above objective, we use the simpleMKL solver [A. Rakotomamonjy and Grandvalet,

2009].

6.5 Experiments

In this section, we evaluate our proposed audio–visual bi-modal representation for video event de-

tection using three datasets: TRECVID MED 2011 dataset, a large dataset that consists of both

TRECVID MED 2010 and TRECVID MED 2011, and CCV dataset.

6.5.1 Datasets

TRECVID MED 2011 Dataset. TRECVID MED [Nis, 2011] is a challenging task for the detection

of complicated high-level events in unconstrained Internet videos. Our first dataset is the MED

2011 development set, which includes five events “Attempting a board trick”, “Feeding an animal”,

“Landing a fish”, “Wedding ceremony”, and “Working on a woodworking project”. This dataset

consists of 10, 804 videos from 17, 566 minutes of web videos, and it is partitioned into training

(8, 783 videos) and test (2, 021 videos) sets. The training set contains approximately 100 positive

videos for each event (most videos in the training set are background videos that do not contain any

of the five events). Within each class, there exist complicated content variations, thus making the

task extremely challenging.

TRECVID MED 2010+2011 Dataset. We also consider the earlier MED 2010 dataset [Nis, 2010].

Because the MED 2010 dataset is too small (fewer than 2,000 videos), we combine TRECVID MED

2010 with MED 2011 [Nis, 2010; Nis, 2011] to form a larger and more challenging event detection

dataset. MED 2010 has three events “Assembling a shelter”, “Batting a run in”, and “Making a
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cake”, each with 50 positive videos for training and 50 for testing. This combined dataset consists

of 14, 272 videos that fall into 8 event categories, and it is partitioned into training (10, 527 videos)

and test (3, 745 videos) sets. Note that the combination also provides another opportunity for re-

examining the performance of the five MED 2011 events when more background videos are added

(i.e., the MED 2010 videos).

CCV Dataset. This dataset [Y.-G. Jiang and Loui, 2011] contains 9, 317 YouTube videos annotated

over 20 semantic categories, where 4, 659 videos are used for training and the remaining 4, 658 are

used for testing. Most of the 20 categories are events, with a few categories that belong to objects

or scenes. To facilitate benchmark comparison, we report the performance of all 20 categories.

6.5.2 Experiment Setup

As discussed earlier, we adopt the SIFT BoW (5,000 dimensions) and STIP BoW (5,000 dimen-

sions) representations as the visual features while using the MFCC BoW (4,000 dimensions) as

the audio representation. One-vs-all SVM is used to train a classifier for each evaluated even-

t. To obatain the optimal SVM trade-off parameter for each method, we partition the training

set into 10 subsets and then perform 10-fold cross validation. Moreover, we adopt the χ2 kernel

because of its outstanding performance in many BoW-based applications, which is calculated as

k(x, y) = exp(−
dχ2(x,y)

σ ), where σ follows the previous work [G. Ye and Chang, 2012], dχ2(x,y)

is defined as dχ2(x,y) =
∑

i=1
(x(i)−y(i))2
x(i)+y(i) , and σ is by default set as the mean value of all pairwise

distances in the training set.

For performance evaluation, we follow previous works [Y.-G. Jiang and Loui, 2011; Natarajan,

2011] and use AP, which approximates the area under a precision–recall curve. We calculate AP

for each event, and then use mAP across all event categories in each dataset as the final evaluation

metric.

In the following experiments, we systematically evaluate the performance of the following meth-

ods:

1. Single Feature (SF). We only report the best performance achieved by one of the three au-

dio/visual features.

2. Early Fusion (EF). We concatenate the three types of BoW features into a long vector with
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14, 000 dimensions.

3. Late Fusion (LF). We use each feature to train an independent classifier and then average the

output scores of the three classifiers as the final fusion score for event detection.

4. Average Pooling based Bi-Modal BoW (BMBoW-AP), where the average pooling is em-

ployed to generate the bi-modal BoW.

5. Max Pooling based Bi-Modal BoW (BMBoW-MP), where we use max pooling to generate

the bi-modal BoW.

6. Hybrid Pooling based Bi-Modal BoW (BMBoW-HP), which applies the hybrid pooling to

generate the bi-modal BoW.

7. MKL based Bi-Modal BoW (BMBoW-MKL), which uses MKL to combine multiple bi-

modal BoW representations. We use all the codebook sizes as shown in Figure 6.4.

6.5.3 Effect of Codebook Size and Pooling Strategies

We first experimentally evaluate the performance of different codebook sizes and pooling strategies.

Because the sizes of audio and visual modalities are 4,000 and 10,000, respectively, we expect each

bipartite partitioning to provide a high correlation between audio and visual modalities. Therefore,

we increase the size of the bi-modal codebook from 2,000 to 12,000 and discuss the mAP perfor-

mance with different pooling strategies in Fig. 6.4. We can see that average pooling tends to show

better stability than max and hybrid pooling when the codebook size varies, which demonstrates

that average pooling is more suitable for the bi-modal BoW quantization. This could be because

average pooling captures joint audio–visual patterns, whereas hybrid/max pooling incurs significant

information loss caused by considering only the maximum response of audio/visual information.

For codebook size, 4,000 seems a good number for MED datasets, but for CCV, large codebooks

with 6,000–10,000 bi-modal words seem to be more effective. Note that for such a large bi-modal

codebook, there are codewords that contain only word from the audio or visual channel. It makes

sense to have such words because, although we would like to discover the correlations between

the two modalities, not all words are correlated. Therefore it is good to leave some audio/visual
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Figure 6.4: Performance with different bi-modal codebook size and pooling strategies.

words independent in the bi-modal representation. This inconsistent observation also confirms the

usefulness of aggregating multiple bi-modal codebooks, which is evaluated later.

We also show the density of audio and visual words within each bi-modal word in Fig. 6.5.

Here, each grid in the map denotes the frequency of bi-modal words composed of certain numbers

of audio (vertical coordinate) and visual (horizontal coordinate) words. The portion of words in

the entire bi-modal codebook that contain both visual and audio information is estimated, and it

is found to be approximately 47% for the TRECVID MED 2011 dataset, 39% on the combined

TRECVID MED 2010 and 2011 dataset, and 36% for the CCV dataset, respectively. This confirms

the significant effect of the audio–visual correlations in the joint bi-modal representation. Therefore,
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Figure 6.5: The density of audio and visual words in the bi-modal words.

the bi-modal word is also an important component of a large event detection system that achieves

the best performance [Natarajan, 2011] in TRECVID MED 2011. We observe that several bi-modal

words contain more visual than audio words, or the opposite of having more audio than visual words

(i.e., the bins close to the x or y axis in Fig. 6.5). This could be because some large visual or audio

patterns are only correlated to a small clue in the other modality. For instance, a birthday scene with

many visual characteristics might be only highly correlated to cheering sounds.

6.5.4 Performance Comparison on TRECVID MED 2011 Dataset

Let us now evaluate the seven methods listed in Sect.6.5.2. Figure 6.7 shows the results on the

MED 2011 dataset. We fix the size of the bi-modal codebook to be 4,000 with the exception of the
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Figure 6.6: An example of audio-visual correlations in the event “Landing a fish” from the

TRECVID MED 2011 dataset. We see that there are clear audio patterns correlating with the begin-

ning and the end (fish successfully landed) of the event.

BMBoW-MKL method, which combines multiple codebook sizes as shown in Fig. 6.4. In addition,

we adopt average pooling in BMBoW-MKL, because—as is shown—it outperforms max pooling

and hybrid pooling. Based on the results, we obtain the following findings:

1. Our proposed bi-modal word representation outperforms all other baseline methods in terms

of mAP, which proves the effectiveness of this approach. In particular, it outperforms the most

popularly used early fusion and late fusion methods by a large margin. This is because that

the bi-modal words not only capture the correlation between audio and visual information,

but also aggregate their mutual dependence.

2. As an important but quite obvious conclusion, the bi-modal word representation performs

significantly better than all the single features, which verifies the merits of considering multi-
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Figure 6.7: Per-event performance on TRECVID MED 2011 dataset. This figure is best viewed in

color.

modality in the task of video event detection.

3. As indicated in the introduction, visual and audio information of the same event category often

present consistent joint patterns. This not only holds for events with intuitive audio–visual

correlations, such as “Batting a run in”, but it is also true for events that contain fewer audio

clues. Fig. 6.6 shows an example. In the event “Landing a fish”, although the soundtrack is

mostly quite silent, at the start and after the fish is successfully landed, there are some clear

audio patterns. Our method can capture such local correlations, which is the main reason that

it performs better than the simple fusion strategies.

4. BMBoW-AP tends to provide better results that BMBoW-MP, which could be because the

former captures joint audio–visual patterns, whereas the latter incurs significant information
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Figure 6.8: Per-event performance comparison on TRECVID MED 2010+2011 dataset, which in-

cludes eight events. This figure is best viewed in color.

loss caused by selecting only the maximum contribution between two modalities.

5. BMBoW-HP outperforms BMBoW-MP, because it utilizes perhaps the more suitable pooling

strategies for different modalities (i.e., max pooling for the transient audio signal and average

pooling for the persistent visual signal). For some events, BMBoW-HP even achieves better

results than BMBoW-AP, indicating that selecting the maximum response of audio signals

could help reveal the semantic clue of the videos. However, in general, BMBoW-AP is the

best among the three pooling strategies.

6. BMBoW-MKL shows better results than all the methods based on a single bi-modal code-

book, confirming the fact that using multiple codebooks is helpful.

6.5.5 Performance Comparison on TRECVID MED 2010+2011 Dataset

Figure 6.8 shows the per-event performance for all the methods on this combined dataset. From

the results, we can see that the MKL-based bi-modal representation, i.e., BMBoW-MKL, achieves

the best performance. In particular, it outperforms BMBoW-AP, BMBoW-MP, and BMBoW-HP

by 0.96%, 5.53%, and 1.96% respectively in terms of mAP. Among the three pooling methods,
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average pooling offers the best result. In addition, comparing the results of the five 2011 events on

this combined dataset with those of MED 2011, we also observe that the performances of early and

late fusion are not as stable as that of the bi-modal representations when more background videos

are added. For example, late fusion performs quite badly for the “Attempting board trick” event on

MED 2011, but it is very good on the combined dataset.

6.5.6 Performance Discussion on CCV Dataset

Figure 6.9 further shows the per-category performance comparison on the CCV dataset, where the

bi-modal codebook size is set at 6, 000, with the exception of the BMBoW-MKL method. Again,

the results show that BMBoW-MKL achieves the best performance in terms of mAP. It outperforms

BMBoW-AP, BMBoW-MP, and BMBoW-HP by 1.16%, 2.26%, and 7.36%, respectively. More-

over, BMBoW-MKL also achieves the best performance on most event categories. For instance, on

event “graduation”, it outperforms the best baseline method SF by 15.05%. In addition, compared

with the best baseline EF, our method achieves the highest relative performance gain on categories

“birds ” and “Wedding ceremony”. This could be because these two categories contain more sig-

nificant audio–visual correlations than the other categories. For example, the appearance of birds

is often accompanied with a singing sound. Meanwhile, people’s actions in a wedding ceremony

are always accompanied by background music. In general, we expect high impact of the proposed

bi-modal features on other events that share strong audio–visual correlations, such as the ones men-

tioned above.

6.5.7 Statistical Significance Testing

We also measure the statistical significance between the best baseline and BMBoW-MKL on the

three datasets. We use a popular measure for statistical significance testing, the p-value, which is

the probability of obtaining a test statistic at least as extreme as the one that was observed, assuming

that the null hypothesis is true [Pte, 2015]. We can reject the null hypothesis when the p-value is

less than the significance level, which is often set at 0.05. When the null hypothesis is rejected, the

result is said to be statistically significant. To obtain the p-value, we sample 50% of the test set from

each dataset and repeat the experiment 1000 times. For each round, we compute the paired mAP

differences Di = MAPBMBoW−MKL(i) −MAPBaseline(i), where i = 1, 2, . . . , 1000. Then we
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Figure 6.9: Per-category performance comparison on CCV dataset. This figure is best viewed in

color.

make the assumption that the null hypothesis is Di < 0, i = 1, 2, . . . , 1000, based on which, the

p-value can be defined as the percentage of Di that is below 0. We find that the p-values obtained

on the MED 2011, MED 2010+2011, and CCV datasets are 0.015, 0.018, and 0.022, respectively,

which are well below 0.05 and show that the null hypothesis can be rejected. Therefore, we can

conclude that our method has achieved statistically significant improvements over the best baseline

on the three datasets.

6.6 Summary

In this chapter, we introduced a bi-modal representation to better explore the power of multi-

modality representation in video event detection. The proposed method uses a bipartite graph to

model the relationship between visual and audio words and partitions the graph to generate audio–

visual bi-modal words. Several popular pooling methods were evaluated to generate BoW repre-

sentation using bi-modal words, and average pooling was found to be the best performer. Extensive

experiments on three datasets consistently showed that the proposed bi-modal representation sig-

nificantly outperforms early and late fusion, which are currently the most widely used multimodal

fusion methods. In addition, because there is no single codebook size that is suitable in all cases,
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we proposed using multiple bi-modal codebooks and MKL to combine BoW representations based

on different codebooks. The results showed that using MKL and multiple bi-modal codebooks is

always helpful. With these findings, we conclude that many state-of-the-art video event detection

systems might have overlooked the importance of joint audio–visual modeling. We would also like

to underline that—although some promising results from the perspective of bi-modal words’ were

shown in this chapter—advanced joint audio-visual representations continues to be a topic that de-

serves more in-depth studies in the future. It is also interesting and important to construct a larger

dataset for evaluating these new representations.
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Chapter 7

Robust Multi-Source Fusion with Rank

Minimization

7.1 Introduction

Multiple features are often considered in video event detection because a single feature cannot

provide sufficient information. Systems that combine multiple features have also been proven to

improve the classification performance in various visual classification tasks [Bach et al., 2004;

Gehler and Nowozin, 2009; Y.-G. Jiang and Chang, 2010].

There are two popular strategies for fusing features: early fusion and late fusion. Early fusion,

also known as feature level fusion, has been widely used in the computer vision and multimedia

communities [Bach et al., 2004; Gehler and Nowozin, 2009; Y.-G. Jiang and Chang, 2010]. One

characteristic method is to represent the features as multiple kernel matrices, and then combine them

in the kernel space. One of the most successful feature fusion methods is MKL [Bach et al., 2004],

which learns a linear or non-linear kernel combination and the associated classifier simultaneously.

However, MKL might not produce better performance in real-world applications. In [Gehler and

Nowozin, 2009], the authors prove that even simple feature combination strategies that are much

faster than MKL, can achieve highly comparable results with MKL.

The other strategy is late fusion. It aims at combining the confidence scores of the models con-

structed from different features, where each confidence score measures the possibility of classifying

a test sample into the positive class by one specific model. Compared with early fusion, late fusion
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is easier to implement and often shows to be effective in practice. However, one problem with this

strategy comes from the possible heterogeneity among the confidence scores provided by different

models. In practice, such heterogeneity results from the variation of the discriminative capability

of each model in a certain feature space, thus producing incomparable confidence scores at differ-

ent numeric scales. This makes the direct combination of confidence scores from different models

inappropriate, posing a great challenge to the late fusion task.

Existing solutions to this problem typically assume that the confidence scores of the individual

models are the posterior probabilities of the samples belonging to the positive class. Because this as-

sumption is not generally true, a normalization step is required to normalize the scores to a common

scale such that the combination can be performed [Jain et al., 2005]. However, the main issues with

these existing methods are two-fold. First, the choice of normalization schemes is data-dependent

and requires extensive efforts in empirical validation [Jain et al., 2005]. Second, they blindly com-

bine all confidence scores, including considerable noise caused by the incorrect predictions made

by the models, which could deteriorate fusion performance.

In this chapter, we propose a robust late fusion method, that not only achieves isotonicity (i.e.,

scale invariance) among the numeric scores of different models, but also recovers a robust prediction

score for the individual test sample via removing the prediction error. Given a confidence score

vector s = [s1, s2, . . . , sm] of a model, where each si denotes the score of the ith test sample, and

m is the sample number. We first convert s into a pairwise relationship matrix T such that Tjk = 1

if sj > sk, Tjk = −1 if sj < sk, Tjk = 0 if sj = sk. The matrix T is a skew-symmetric matrix that

encodes the comparative relationship of every two test samples under the given model. We apply

the above conversion on the score vector of each model, and obtain multiple relationship matrices.

This way, the real-valued confidence scores are converted into the integer-valued isotonic pairwise

relationships, that address the scale variance problem. Moreover, although the ideal score fusion

vector ŝ = [ŝ1, . . . , ŝm] is unknown, suppose we have a real-valued matrix T̂ where T̂jk = ŝj − ŝk,

we can find a rank-2 factorization of T̂ such that T̂ = ŝe> − eŝ>. By doing so, we can recover the

unknown score fusion vector.

Based on the above assumptions, our late fusion method attempts to find a rank-2 relationship

matrix from the multiple pairwise relationship matrices. In particular, it infers a common low-rank

pairwise relationship matrix by novel joint decompositions of the original pairwise relationship
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Figure 7.1: An illustration of our proposed method. Given n confidence score vectors s1, s2, . . . , sn

obtained from n models, we convert each si into a comparative relationship matrix Ti that encodes

the pairwise comparative relation of scores of every two testing images under the ith model. Then

we seek a shared rank-2 matrix T̂ , through which each original matrix Ti can be reconstructed by an

additive sparse residue matrix Ei. Finally, we recover from the matrix T̂ a confidence score vector

ŝ that can more precisely perform the final prediction.
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matrices into combinations of the shared rank-2 and sparse matrices. We hypothesize that such

common rank-2 matrix can robustly recover the true comparative relationships among the test sam-

ples. The joint decomposition process is valuable because each pairwise comparative relationship

in the original matrix might be incorrect, yet the joint relationships from multiple matrices might be

complementary and could be used to collectively refine the results. Moreover, the individual sparse

residue essentially contains the prediction errors for each pair of test samples made by one model.

The fusion procedure is formulated as a constrained nuclear norm and `1 norm minimization

problem, that is convex and can be solved efficiently with the ALM [Lin et al., 2009] method. In

addition, we also develop a Graph Laplacian regularized robust late fusion method that incorporates

the information from different types of low-level features, which further enhances the performance.

Figure 7.1 illustrates the framework of our proposed method. Extensive experiments confirm the

effectiveness of the proposed method, achieving a relative performance gain over the state-of-the-art

visual tasks. We also show that the proposed multi-source fusion method provides a robust fusion

scheme for complex video event detection.

7.2 Related Work

Combining multiple diverse and complementary features is a recent trend in visual classification. A

popular feature combination strategy in computer vision is MKL [Bach et al., 2004], which learns

an optimized kernel combination and the associated classifier simultaneously. Varma et al. [Varma

and Ray, 2007] used MKL to combine multiple features and achieved good results on image classi-

fication. A recent work in [Gehler and Nowozin, 2009] fully investigated the performance of MKL

and proved that MKL might not be more effective than the average kernel combination. Unlike

this line of research, we focus on late fusion that works by combining the confidence scores of the

models obtained from different features.

There are numerous score late fusion methods in the literature. For example, Jain et al. [Jain

et al., 2005] transformed the confidence scores of multiple models into a normalized domain, and

then combined the scores through a linear weighted combination. In [Nandakumar et al., 2008],

the authors used the Gaussian mixture model to estimate the distributions of the confidence s-

cores, and then fused the scores based on the likelihood ratio test. The discriminative model fu-
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sion method [Smith et al., 2003] treated the confidence scores from multiple models as a feature

vector and then constructed a classifier for different classes. Terrades et al. [Terrades et al., 2009]

formulated the late fusion as a supervised linear combination problem that minimized the misclas-

sification rates under the `1 constraint on the combination weights. In contrast, we focus on a novel

late fusion method that not only achieves isotonicity but also removes the prediction errors made by

individual models.

Methodologically, our work is motivated by recent advances in low rank matrix recovery [Gleich

and Lim, 2011; Wright et al., 2009]. One representative is Robust PCA introduced in [Wright et

al., 2009], which decomposed a corrupted matrix into low-rank and sparse components. On the

contrary, our work attempts to discover a shared low rank matrix from the joint decomposition of

multiple matrices into combinations of the shared low rank and sparse components. In [Gleich and

Lim, 2011], the authors used a rank minimization method to complete the missing values of the

user-item matrix, and then used these values to extract the rank for each item. This is essentially

different from our work, which considers multiple complete score matrices for the purpose of robust

late fusion.

7.3 Robust Late Fusion with Rank Minimization

In this section, we introduce our Robust Late Fusion (RLF) method. We first explain how to con-

struct the relationship matrix, and then describe the problem formulation.

7.3.1 Pairwise Relationship Matrix Construction

Given the confidence score vector of a model s = [s1, s2, . . . , sm], where each si denotes the

confidence score of the ith test sample and m is the number of test samples, we can construct a

m×m pairwise comparative relationship matrix T where the (j, k)th entry is defined as

Tjk = sign(sj − sk), (7.1)

Obviously, the obtained matrix T encodes the comparative relationship of every two test samples

under the given model. In particular, Tjk = 1 denotes that the jth test sample is more confident to be

classified as positive than the kth test sample, whereas Tjk = −1 denotes the opposite comparative
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relationship. Meanwhile, when Tjk = 0 , we believe that the jth and kth samples have the same

confidence to be positive.

Compared with confidence scores, the pairwise comparative relationship matrix is a relative

measurement that quantizes the real-valued scores into three integers. By converting the absolute

values of the raw scores into the pairwise comparative relationships, we naturally arrive at an iso-

tonic data representation that can be used as the input for our late fusion method.

Here, we also consider the reverse problem: given a relative score relationship matrix T , how do

we reconstruct the original ranks or scores? If T is consistent, namely all the transitive relationships

are satisfied (if si > sj and sj > sk, then si > sk), a compatible rank list can be derived easily. If

T is continuous valued (as is the case of the recovered matrix T̂ described in the next section), we

assume that there exist compatible score vectors ŝ that can be used to explain the relations encoded

in T̂ , i.e., T̂ = ŝe> − eŝ>. This formulation naturally leads to a nice property rank(T̂ ) = 2,

which provides a strong rationale to justify using the low-rank optimization method in discovering

a common robust T̂ when fusing scores from multiple models.

7.3.2 Problem Formulation

Suppose we have a pairwise comparative relationship matrix T constructed from the confidence

score vector produced by a model. The entries in T summarize the prediction ability of the given

model, where some entries correctly characterize the comparative relationships of the test samples,

whereas other entries are incorrect because of the wrong prediction made by the model. Intuitively,

the correct entries in T are consistent among the test sample pairs, and hence tend to form a global

structure. Moreover, the incorrect entries in T often appear irregularly within the matrix, which can

be seen as the sparse errors.

To capture the underlying structure information of the correct entries while removing the er-

ror entries that degrade prediction performance, we consider a matrix decomposition problem as

follows:
min
T̂ ,E
‖E‖1,

s.t. T = T̂ + E, T̂ = −T̂>, rank(T̂ ) = 2,

(7.2)

where rank(T̂ ) denotes the rank of matrix T̂ and ‖E‖1 is the `1 norm of a matrix. By minimizing

the objective function, we actually decompose the original matrix T into a rank-2 component T̂ and
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a sparse component E, which not only recovers the true rank relationships among the test samples,

but also removes the incorrect predictions as noises. Finally, the skew-symmetric constraint T̂ =

−T̂>enforces the decomposed T̂ to continue to be a pairwise comparative matrix.

The above optimization problem is difficult to solve because of the discrete nature of the rank

function. Instead, we consider a tractable convex optimization that provides a good surrogate for

the problem:

min
T̂ ,E
‖T̂‖∗ + λ‖E‖1,

s.t. T = T̂ + E, T̂ = −T̂>,
(7.3)

where ‖ · ‖∗ denotes the nuclear norm of a matrix, i.e., the sum of the singular values of the matrix,

and λ is a positive tradeoff parameter. Because our implementation for nuclear norm minimization

is based on Singular Value Thresholding (SVT), we can continue to truncate the singular values until

the rank-2 constraint is satisfied (See section 7.4). Therefore, we can still obtain an exact rank-2 T̂

based on the above objective function.

Until now, our formulation considers only one pairwise comparative relationship matrix, and

hence cannot be used for the fusion purpose. Suppose we have a set of n pairwise comparative

relationship matrices T1, . . . , Tn, where each Ti is constructed from the score vector si of the ith

model. Our robust late fusion is formulated as follows:

min
T̂ ,Ei

‖T̂‖∗ + λ
n∑
i=1

‖Ei‖1,

s.t. Ti = T̂ + Ei, i = 1, . . . , n,

T̂ = −T̂>.

(7.4)

Compared with the single matrix decomposition in Eq. (7.3), the above objective function at-

tempts to find a shared low-rank pairwise comparative relationship matrix through the joint decom-

positions of multiple pairwise matrices into pairs of low-rank and sparse matrices. As a result, the T̂

matrix recovers the true consistent comparative relationships across multiple relationship matrices.

Moreover, each Ei encodes the prediction errors made by one specific model. With the proposed

framework, we can robustly recover the comparative relationships among test samples.
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7.4 Optimization and Score Recovery

Low-rank matrix recovery is well studied in the literature [Cai et al., 2008; Wright et al., 2009].

However, our optimization problem differs from these existing methods in that we have a skew-

symmetric constraint. Fortunately, the following theorem shows that if SVT is used as the solver

for rank minimization, this additional constraint can be neglected [Gleich and Lim, 2011].

Theorem 1. Given a set of n skew-symmetric matrices Ti, the solution for the problem in Eq. (7.4)

from the SVT solver (shown in Algorithm 2) is a skew-symmetric matrix T̂ if the spectrums between

the dominant singular values are separated.

The theorem can be proven based on the SVD property of a skew-symmetric matrix, which can

be found in the supplementary material. Therefore, we can directly employ the existing SVT-based

rank minimization methods to solve our problem. It is well known that ALM uses SVT for rank

minimization, and shows excellent performance in terms of both speed and accuracy. Therefore,

we choose the ALM method for the optimization. We first convert Eq. (7.4) into the following

equivalent problem:

min
T̂ ,Ei

‖T̂‖∗ + λ

n∑
i=1

‖Ei‖1 +

n∑
i=1

〈Yi, Ti − T̂ − Ei〉

+
µ

2

n∑
i=1

‖Ti − T̂ − Ei‖2F ,
(7.5)

where Yi are Lagrange multipliers for the constraints Ti = T̂+Ei , µ > 0 is a penalty parameter and

〈·, ·〉 denotes the inner-product operator. Then the optimization problem can be solved by the inexact

ALM algorithm as shown in Algorithm 2. Step 4 is solved via the SVT operator [Cai et al., 2008],

whereas step 5 is solved via the solution in [Hale et al., 2008]. Note that after the singular value

truncating in step 4, even the number of singular values is truncated (see the proof of Theorem 1),

and thus the rank of T̂ is reduced. During the iterations, we repeat the above truncating operation

until the rank-2 constraint in step 8 is satisfied. (i.e., only two non-zero singular values are retained

after the progressive truncating). This way, we obtain a rank-2 skew-symmetric matrix.

We implement Algorithm 2 on the 64-bit MATLAB platform of an Intel XeonX5660 worksta-

tion with 2.8 GHz CPU and 8 GB memory, and observe that the iterative optimization converges
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Algorithm 2 Solving Problem of Eq. (7.4) by Inexact ALM
1: Input: Comparative relationship matrix Ti, i = 1, 2, . . . , n, parameter λ, number of samples

m.

2: Initialize: T̂ = 0, Ei = 0, Yi = 0, i = 1, . . . , n, µ = 10−6, maxµ = 1010, ρ = 1.1, ε = 10−8.

3: repeat

4: Fix the other term and update T̂ by

(U,Λ, V ) = SV D( 1
nµ

∑n
i=1 Yi + 1

n

∑n
i=1 Ti −

1
n

∑n
i=1Ei)), T̂ = US 1

µ
[Λ]V >, where S is

a shrinkage operator for singular value truncating defined as:

Sε[x] =


x− ε, if x > ε,

x+ ε, if x < −ε,

0, otherwise.

5: Fix the other term and update Ei by Ei = Sλ
µ

[Ti + Yi
µ − T̂ ].

6: Update the multipliers Yi = Yi + µ(Ti − T̂ − Ei).

7: Update the parameter µ by µ = min(ρµ,maxµ).

8: until maxi ‖Ti − T̂ − Ei‖∞ < ε and rank(T̂ ) = 2.

9: Output: T̂ .
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fast. For example, in the Oxford Flower 17 classification experiment (see section 7.6.1), one iter-

ation between step 4 and step 7 in Algorithm 2 can be finished within 0.8 seconds. Furthermore,

because each optimization sub-problem in Algorithm 2 monotonically decreases the objective func-

tion, the algorithm converges.

After obtaining the optimized matrix T̂ , we want to recover an m-dimensional confidence score

vector ŝ that can better estimate the prediction results. Based on our rank-2 assumption mentioned

before, we expect that T̂ is generated from ŝ as T̂ = ŝe> − eŝ>. The authors in [Jiang et al., 2010]

proved that (1/m)T̂e can provide the best least-square approximation of ŝ which can be formally

described as follows:

(1/m)T̂e = arg min
ŝ
‖T̂> − (ŝe> − eŝ>)‖2F . (7.6)

Therefore, we can treat (1/m)T̂e as the recovered ŝ after late fusion. Note that vector ŝ is no

longer the original confidence score vector generated by the model, but instead is the true consistent

confident patterns across different models.

7.5 Extension with Graph Laplacian

Thus far, the proposed late fusion relies only on the confidence scores of multiple models with-

out utilizing any low-level feature information. In this section, we show that our RLF method can

be easily extended to incorporate the information of multiple low-level features, which further im-

proves fusion performance.

Suppose we have n types of low-level features associated with m test samples. For the ith fea-

ture type, i ∈ {1, 2, ...n}, the graph Laplacian regularizer Ψi(T̂ ) can be defined as follows [Chung,

1997]:

Ψi(T̂ ) =
1

2

m∑
j,k=1

P ijk‖t̂j − t̂k‖22 = tr(T̂>LiT̂ ), (7.7)

where P i = (Qi)−
1
2W i(Qi)−

1
2 is a normalized weight matrix of W i. W i denotes the pairwise

similarity between the test samples calculated based on the ith feature. Qi is a diagonal matrix

whose (l, l)-entry is the sum of the lth row ofW i. Li = I−P i is the graph Laplacian matrix with I

denoting an identity matrix. t̂j and t̂k denote the jth and kth rows of the low-rank matrix T̂ , each of

which actually measures the pairwise comparative relationships of the given test sample with regard

to the other test samples.
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The intuition behind the graph regularizer is that highly similar test samples in the feature space

should have similar comparative relationships with regard to the other test samples (and hence

similar prediction scores). Such a regularizer is helpful for robust learning, and allows our model to

not only inherit the discriminative capability from each model, but also utilize the complementary

information of multiple features.

In this work, we choose the nearest neighbor graph for the multi-feature graph regularizer. Given

m test samples represented as the ith feature type {xi1, xi2, ...xim} . For each test sample xij , we find

its K nearest neighbors and place an edge between xij and its neighbors. The entry W i
jk in the

weight matrix W i associated with the graph is defined as

W i
jk =

 exp(−dχ2 (x
i
j ,x

i
k)

σ ), if j ∈ NK(k) or k ∈ NK(j),

0, otherwise,
(7.8)

where NK(j) denotes the index set for the K-nearest neighbors of sample xij (we set K = 6 in

this work), dχ2(xij , x
i
k) is the χ2 distance between two samples, and σ is the radius parameter of the

Gaussian function, which is set at the mean value of all pairwise χ2 distances between the samples.

Based on the above definition, we arrive at the following objective function with a multi-feature

graph Laplacian regularizer (λ and γ are two positive tradeoff parameters):

min
T̂ ,Ei

‖T̂‖∗ + λ
n∑
i=1

‖Ei‖1 + γ
n∑
i=1

Ψi(T̂ ),

s.t. Ti = T̂ + Ei, i = 1, . . . , n,

T̂ = −T̂>,

(7.9)

Because the multi-feature graph Laplacian regularizer is a differentiable function of T̂ , the above

objective can be easily solved by the ALM method. This can be realized by replacing the updating

of T̂ in step 4 of Algorithm 2 with the following updating rule.

(U,Λ, V )

= SV D
(
(nI +

2γ

µ

n∑
i=1

Li)−1(
1

µ

n∑
i=1

Ui +
n∑
i=1

Ti −
n∑
i=1

Ei)
)
,

T̂ = US 1
µ

[Λ]V >, T̂ = (T̂ − T̂>)/2,

(7.10)

where I is an identity matrix. Because the input matrix for SVD is no longer skew-symmetric, in

order to ensure the skew-symmetric constraint, we use T̂ = (T̂ − T̂>)/2 to project T̂ into a skew-
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Figure 7.2: Visualization of the low rank and sparse matrices obtained by our RLF method from

seven different confidence score vectors of Oxford Flower 17 dataset, each of which is generated

by training a binary classifier based on one feature. To ease visualization, we sample a 30 × 30

sub-matrix from each 340 × 340 matrix. Blue cells denote the values above 0, purple cells denote

the values below 0, and white cells denote 0 values. The obtained matrix T̂ is skew-symmetric. This

figure is best viewed in color.

symmetric matrix [Gleich and Lim, 2011]. After obtaining the optimized T̂ , we can recover a score

vector ŝ by Eq. (7.6) which can be used for the final prediction.

7.6 Experiment

In this section, we first evaluate our proposed method on a general visual classification task, e.g.,

Oxford Flower 17 classification task, to prove that the proposed method is a general robust multi-

source fusion framework for visual classification. Then, we further show the promising results

achieved by the proposed method over video event detection tasks, where 8% relative performance

gain over the state-of-the-art is achieved. The following early and late fusion methods are com-

pared in our experiments: (1) Kernel Average. This method is in fact an early fusion method, that

averages multiple kernel matrices into a single kernel matrix for model learning. (2) MKL. We use

Simple MKL [A. Rakotomamonjy and Grandvalet, 2009] to train the SVM classifier and determine

the optimal weight for each kernel matrix simultaneously. (3) Average Late Fusion. After obtaining

the normalized confidence score from each model, we average them as the fusion score for classi-

fication. (4) Our proposed Robust Late Fusion (RLF) method. (5) Our proposed Graph-regularized

Robust Late Fusion (GRLF) method.

Without loss of generality, we use the one-vs-all SVM as the model for generating confidence
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scores. Because the one-vs-all SVM is a binary classifier that works on unbalanced numbers of

positive and negative training samples, we employ the AP that is popularly applied in the binary

visual classification task as the evaluation metric. Then we calculate the mAP across all categories

of the dataset as the final evaluation metric.

We use cross validation to determine the appropriate parameter values for each method. In

particular, we vary the values of the regularization parameters λ and γ in our method on the grid

for {10−3, 10−2, ..., 103}, and then choose the best values based on validation performance. With

regard to the parameter setting for MKL, we follow the parameter setting strategies suggested

in [Gehler and Nowozin, 2009]. For the SVM classifier, we apply χ2 kernel as the kernel ma-

trix for each method, which is calculated as exp (− 1
σdχ2(x, y)), where σ is set as the mean value

of all pairwise distances on the training set. The tradeoff parameter C of SVM is selected from

{10−1, 100, ..., 103} through cross validation.

7.6.1 Experiment on Oxford Flower 17

In this section, we present the results for the Oxford Flower 17 dataset [Nilsback and Zisserman,

2006]. This dataset contains flower images of 17 categories with 80 samples per category. The

dataset has three predefined separations with 680 (17×40), 340 (17×20), and 340 (17×20) training,

test, and validation images, respectively. The author of [Nilsback and Zisserman, 2008] provides

the pre-computed distance matrices for the three separations. We directly apply these matrices in

our experiment. The matrices are computed from seven different types of features including color,

shape, texture, HOG, clustered HSV values, SIFT feature [Lowe, 2004] on the foreground internal

region (SIFTint), and SIFT feature, on the foreground boundary (SIFTbdy). The details of the

features can be found in [Nilsback and Zisserman, 2008]. For each method, the best parameter is

selected via cross validation on the validation set.

Table 7.1 lists the performance of different methods in comparison, where we also list the best

individual features (SIFTint). From the results, we can see that: (1) all fusion methods generate

better results than SIFTint, which clearly verifies the advantages of multi-model fusion. (2) Our

proposed RLF method clearly outperforms the other baseline methods, because it seeks a robust

scale-invariant low-rank fusion matrix from the outputs of multiple classifiers; (3) Our proposed

GRLF method outperforms the RLF method, thus demonstrating that involving multiple features
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further improves performance. In Figure 7.2, we visualize the low-rank and sparse matrices obtained

by applying our method on one category of the Oxford Flower 17 dataset. As can be seen, our

proposed method tends to find a shared structure while removing the noise information as sparse

matrices. Note that the obtained matrix T̂ is skew-symmetric, which well verifies the conclusion

in theorem 1, i.e., when the input matrices are skew-symmetric, even without the skew-symmetric

constraint, our algorithm naturally produces a skew-symmetric matrix.

Method MAP

SIFTint 0.749± 0.013

Kernel Average 0.860± 0.017

MKL 0.863± 0.021

Average Late Fusion 0.869± 0.021

Our RLF Method 0.898± 0.019

Our GRLF Method 0.917± 0.017

Table 7.1: MAP comparison on Oxford Flower 17 dataset.
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Figure 7.3: MAP comparison at variant depths on CCV dataset.
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Figure 7.4: AP comparison of different methods on CCV dataset. This figure is best viewed in color.

7.6.2 Experiment on CCV

For the second dataset of the experiments, we use the large scale CCV [Y.-G. Jiang and Loui,

2011]. This dataset contains 9, 317 web videos over 20 semantic categories, where 4, 659 are used

for training and the remaining 4, 658 videos are used for testing. In our experiment, we use the

three types of the features provided by the dataset [Y.-G. Jiang and Loui, 2011], which includes

5, 000-dimensional SIFT, 5, 000-dimensional spatial-temporal interest points (STIP) [Laptev and

Lindeberg, 2003], and 4, 000-dimensional MFCC [Pols, 1966b] BoW features.

To obtain the optimal parameter for each method, we partition the training set into three subsets,

and then perform three-fold cross-validation. Figure 7.3 shows the mAP performance at different re-

turned depths (the number of top ranking test samples to be included in the result evaluation). From

the results, we can see that our method achieves significant and consistent mAP improvement over

the other baseline methods at variant returned depths. Figure 7.4 shows the per-category AP per-

formance comparisons of all methods. As shown, the performances of all the baseline methods are

quite similar to each other, which is consistent with the results in section 7.6.1. The proposed GRLF

method shows the best performance on most events. In particular, in terms of mAP it outperforms

the Kernel Average, MKL and Average Late Fusion methods by 7.2%, 6.6% and 7.6%, relatively.

Here, the Average Late Fusion result is directly quoted from [Y.-G. Jiang and Loui, 2011], which

clearly demonstrates that our method is superior over the state-of-the-art method in the literature.
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7.6.3 Experiment on TRECVID MED 2011

TRECVID MED is a challenging task for the detection of complicated high-level events. We test

our proposed method on the TRECVID MED 2011 development dataset [web, 2011], that includes

five events “Attempting board trick”, “Feeding an animal”, “Landing a fish”, “Wedding ceremony”,

and “Wood working”. The training and test sets consist of 8, 783 and 2, 021 video shots respectively.

For low-level features, we extract 5, 000-dimensional SIFT, 5, 000-dimensional STIP, and 4, 000-

dimensional MFCC BoW features. Again, one-versus-all SVM with χ2 kernel is used to train the

model. Three-fold cross-validation on the training set is used for parameter tuning.

Figure 7.5 shows the per-event performance for all the methods in comparison. From the results,

we obtain the following observations: (1) our proposed RLF method produces better results than

all baseline methods in terms of mAP. (2) The GRLF method further outperforms the RLF method

and achieves better performance on four out of five events, which well verifies the advantages of

bringing the low-level features into the late fusion task. (3) mAP for our proposed GRLF method

is 0.509, which is relatively 10.4% higher than the best baseline performance (Average Late Fusion

method with mAP: 0.461). This confirms the superiority of our method. Figure 7.6 shows the mAP

at different returned depths for all methods.

7.6.4 Discussion

Consistency of the recovered matrix. Given a real-valued rank-2 skew-symmetric matrix T̂ , the

score vector ŝ can be recovered from T̂ = ŝe> − eŝ>. Based on the analysis in [Jiang et al.,

2010], even if we have inconsistent entries in T̂ , optimization results of Eq. (7.6) can still provide

the best approximation of ŝ, thus overcoming any remaining inconsistency issues. This has also

been verified by our experiment results, where there is no inconsistency in the final score vectors

recovered from the rank-2 matrices obtained by our method over the three datasets.

Tradeoff between low-rankness and sparsity. Notably, our method can achieve a good trade-

off between low-rankness and sparsity. If there are many classification errors associated with the

ith model, the decomposed additive term Ei is dense with many non-zero entries. This can be illus-

trated in Figure 7.2, where the denser the matrix Ei, the worse is the performance obtained by the

corresponding component model. For example, the classification performance of the HSV feature

is the worst among the seven features, and thus its additive noise matrix is the densest. This further
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Figure 7.5: AP comparison on TRECVID MED 2011 development dataset. The five events from left

to right are “Attempting board trick”, “Feeding an animal”, “Landing a fish”, “Wedding ceremony”,

and “Wood working”. This figure is best viewed in color.
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Figure 7.6: MAP comparison of different methods at variant depths on TRECVID MED 2011

development dataset.

verifies the advantage of our method to obtain balanced tradeoff between low-rankness of the score

relationships and the sparsity of the score errors.

Out-of-sample extension. We can adopt a simple nearest-neighbor method to manage the out-

of-sample problem for our robust late fusion model. When a new test sample xm+1 represented with

n feature types {x1
m+1, . . . ,x

n
m+1} comes, we can find its nearest neighbors {x1, . . . ,xn} where

each xi is the nearest neighbor of xim+1 in terms of the ith feature type. Then the fusion score can

be obtained by ŝ(xm+1) =
∑n

i=1
W (tim+1,x

i)∑n
i=1W (tim+1,x

i)
ŝ(xi), where W (tim+1,x

i) denotes the feature

similarity based on the ith feature type, ŝ(xi) is the fusion score of sample xi.

7.7 Summary

We introduced a robust rank minimization method for multi-source fusion. We first convert each

confidence score vector of a model into a pairwise comparative relationship matrix, so that the

confidence scores of different models can be manipulated in an isotonic manner. Then the late
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fusion is formulated as a matrix decomposition problem where a shared matrix is inferred from

the joint decomposition of multiple pairwise relationship matrices into pairs of low-rank and sparse

components. Extensive experiments on various visual classification tasks showed that our method

outperforms the state-of-the-art early and late fusion methods. In the future, we will investigate the

fusion of more complex models to consider multi-class or multi-label problems in computer vision

and multimedia applications.
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Chapter 8

Conclusions

8.1 Contribution Summarization

This thesis was dedicated to developing robust and efficient solutions for large-scale video event

detection systems. We focused on two techniques: large-scale video and concept ontology con-

struction and large-scale video event detection with multi-modality representations and multi-source

fusion. The first part focused on developing automatic methodologies for large-scale event and con-

cept ontology discovery and design so that video events can be represented by the detection of

mid-level concept features. The second part focused on pursuing cross-modality cross-source cor-

relation discovery so that video event can be predicted by a multi-modal representation based model

and robust fusion across different sources.

The main contributions of the thesis are as follows:

1. Large-scale event and concept ontology construction: we proposed an automatic frame-

work for discovering event-driven concepts. By leveraging the external knowledge bases, we built

the largest video event ontology (to the best of our knowledge), EventNet, that includes 500 complex

events and discovered 4, 490 event-specific concepts. Dramatic performance gains were achieved

especially for unseen novel event detections with EventNet ontology. Based on the proposed Event-

Net framework, we constructed the first interactive system (to the best of our knowledge) that allows

users to explore high level events and associated concepts in videos in a systematic structured man-

ner. Several useful applications for the EventNet system were shown, e.g., interactive browser,

semantic search, live tagging of user-uploaded videos, etc.
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2. Event detection with multi-modality representations and multi-source fusion: in order

to discover joint patterns among multiple modalities, we proposed multi-modality representation,

called bi-modal word, that discovers the joint audio-visual patterns in videos by the bipartite graph

partitioning. We experimentally showed that the bi-modal representations provide promising results

over state-of-the-art features, and thus they can be used for robust multi-modality feature representa-

tions. In order to incorporate the heterogeneous complimentary information from multiple sources,

we further proposed a robust rank minimization based fusion method for fusing the confidence s-

cores of multiple models. Extensive experiment results showed that the proposed robust late fusion

method can not only be considered a robust fusion method for video detection task, but it can also

be considered a general fusion framework for various visual classification tasks.

8.2 Open Issues and Future Direction

Although the proposed methods achieved promising results, there are many open issues remaining.

Here, we list a few topics for future research.

1. EventNet expansion: although we proposed an automatic methodology to discover event-

driven concepts, the recent construction of EventNet ontology still depends heavily on subjective

evaluation with manual selections and clarifications of the chosen events. In order to continuous-

ly expand EventNet ontology in the future, we need to further explore a systematic method for

discovering events either of WikiHow articles, or with help from crowdsourcing in the public do-

main. Once the novel events and event-driven concepts are discovered, we need to find the most

appropriate node to be attached to the EventNet ontology in an incremental manner.

2. Event and concept spatial and temporal localizations: the recent EventNet system can

only detect events and concepts at the video level. Some advanced methodologies applied in the

recent THUMOS challenge [THU, 2015] provide some potential solutions for localizing event and

concept in certain regions of specific video frames. In the future, we will further explore the spatial

temporal event and concept localization problem so that more precise and accurate detections are

accomplished.

3. Cross-modality representation from multiple modalities: for the current bi-modal word

representation, only joint audio-visual patterns from two modalities are analyzed. In the future, we
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will explore cross-modality patterns over more diverse modalities, e.g., text, static image, motion,

audio, speech, music, etc.

4. Adaptive robust late fusion: the proposed robust late fusion with rank minimization is

promising when the test data arrives in as a batch mode. When the test data arrives as a sequen-

tial mode, the optimization problem needs to be incrementally making the current fusion method

infeasible. In the future, we will further explore an adaptive robust refinement method so that the

algorithm can be applied efficiently in sequential mode.
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Appendix A

Low Rank Theorem

Theorem 2. Given a set of n skew-symmetric matrices Ti, Algorithm 1 produces a skew-symmetry

matrix T̂ if the spectrums between the dominant singular values are separated.

Proof. To prove the above theorem, we first introduce some properties of skew-symmetric matrices.

Assuming T is a skew-symmetric matrix with the property T = −T>, then the eigenvalues of

T are pure-imaginary and come in complex-conjugate pairs while the rank of T is even. Then

the following lemma characterizes the Singular Value Decomposition (SVD) of a skew-symmetric

matrix.

Lemma 1. If T is an n × n skew-symmetric matrix (T = −T>) with eigenvalues iλ1, −iλ1,iλ2,

−iλ2,...,iλj ,−iλj where λp > 0, j = b(n/2)c, and i denotes the imaginary unit. Then the SVD of

T is given by T = UDV > where

D =



λ1

λ1

λ2

λ2

.

.

.

λj

λj
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Proof. Real-valued matrix T can be decomposed as a real-valued orthogonal matrix X and a real-

valued block-upper-triangular matrix Z, with 2-by-2 blocks along the diagonal by Murnaghan-

Wintner form:

T = XZX>. (A.1)

Since T is skew-symmetric, the decomposed component Z is also skew-symmetric. Then Z has a

block-diagonal form:

Z =



0 λ1

−λ1 0

0 λ2

−λ2 0

.

.

.

0 λj

−λj 0


Furthermore, the SVD of the matrix

(
0 λ1
−λ1 0

)
is given by 0 λ1

−λ1 0

 =

0 1

1 0

×
λ1 0

0 λ1

×
−1 0

0 1

.

Assume matrix A and matrix B are defined as follows:

A =



0 1

1 0

0 1

1 0

.

.

.

0 1

1 0
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B =



−1 0

0 1

−1 0

0 1

.

.

.

−1 0

0 1


Then, the real-valued matrix T has the following decomposition form: T = XADBX>. We

construct U and V such that U = XA and V = BX>, which are real and orthogonal. We thus

complete the theorem which constructs the SVD of T .

Next, we use the following lemma to illustrate that the best rank-k approximation to a skew-

symmetric matrix T is also skew-symmetric.

Lemma 2. Assuming T is an n × n skew-symmetric matrix (T = −T>) with eigenvalues iλ1,

−iλ1,iλ2, −iλ2,...,iλj ,−iλj ,...,iλn/2,−iλn/2 where λp > 0, the top-k magnitude of the singular

value pairs are given by λ1 ≥ λ2 ≥ ... ≥ λj , k = 2j, then the best rank-k approximation of T in

an orthogonally invariant norm is also skew-symmetric.

Proof. Because the best rank-k approximation of T in an orthogonally invariant norm is given by

the k largest singular values and vectors, there is a gap in the spectrum between the kth and (k+1)th

singular value. Then in the SVD form from Lemma 1, if we truncate the singular values into the k

largest ones, it also produces a skew-symmetric matrix.

Finally, we use the above lemma to prove that given a set of n skew-symmetric observation

matrices Ti, our ALM-based algorithm produces a skew-symmetry matrix T̂ if the target rank is

even and the dominant singular values are separated.

Clearly, from Algorithm 1, T̂ (0) is skew-symmetric. In each iteration, we compute SVD of a

skew-symmetric matrix and truncate the singular values below the threshold, then T̂ (i+1), which is
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the approximation of the skew-symmetric matrix T̂ (i) is also skew-symmetric. Finally, the algorithm

converges to a skew-symmetric matrix T̂ .
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