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What is the Best Way for Extracting Meaningful
Attributes from Pictures?

Liangchen Liu, Arnold Wiliem, Shaokang Chen, Brian C. Lovell
The University of Queensland, School of ITEE

QLD 4072, Australia

Abstract

Automatic attribute discovery methods have gained in popularity to extract
sets of visual attributes from images or videos for various tasks. Despite their
good performance in some classification tasks, it is difficult to evaluate whether
the attributes discovered by these methods are meaningful and which methods are
the most appropriate to discover attributes for visual descriptions. In its simplest
form, such an evaluation can be performed by manually verifying whether there
is any consistent identifiable visual concept distinguishing between positive and
negative exemplars labelled by an attribute. This manual checking is tedious, ex-
pensive and labour intensive. In addition, comparisons between different methods
could also be problematic as it is not clear how one could quantitatively decide
which attribute is more meaningful than the others. In this paper, we propose a
novel attribute meaningfulness metric to address this challenging problem. With
this metric, automatic quantitative evaluation can be performed on the attribute
sets; thus, reducing the enormous effort to perform manual evaluation. The pro-
posed metric is applied to some recent automatic attribute discovery and hashing
methods on four attribute-labelled datasets. To further validate the efficacy of
the proposed method, we conducted a user study. In addition, we also compared
our metric with a semi-supervised attribute discover method using the mixture of
probabilistic PCA. In our evaluation, we gleaned several insights that could be
beneficial in developing new automatic attribute discovery methods.

Email addresses: l.liu9@uq.edu.au (Liangchen Liu), a.wiliem@uq.edu.au
(Arnold Wiliem), shaokangchenuq@gmail.com (Shaokang Chen),
lovell@itee.uq.edu.au (Brian C. Lovell)

Preprint submitted to Pattern Recognition November 3, 2016



…

…

25%

50% 75%
80%

Non-meaningful
or Noise
Subspace

Positive

Negative

Method 2

Method 1

Positive

Negative

Positive

Negative

Positive

Negative

Meaningful
Subspace

2D Boxy

3D Boxy

Figure 1: An illustration of the proposed attribute meaningfulness metric. Each individual attribute
is represented as the outcome of the corresponding attribute classifier tested on a set of images.
Inspired by [31] we propose an approach to measure the distance between a set of discovered
attributes and the meaningful subspace. The metric score is derived using a subspace interpolation
between Meaningful Subspace and Non-Meaningful/Noise Subspace. The score indicates how
many meaningful attributes are contained in the set of discovered attributes.

Keywords: Visual Attribute, Meaningfulness Metric, Attribute Discovering,
Semantic Content

1. Introduction

Language is one of the most important factors in communication. We would
not have been able to write this paper if there was not any language! Human lan-
guage has been used for solving computer vision problems such as scene under-
standing [32] and image or video description[24, 34] and image retrieval [27]. The
language model helps us to make an effective transfer of domain expert knowl-
edge into machines. People often say that “a picture is worth a thousand words.”
Turning this around we can also say that “a thousand words/visual attributes are
required to explain a picture.” The latter form can be quite powerful to address
many computer vision problems [11, 20, 12, 8, 29]. For instance the active learn-
ing framework proposed in [19] employs human knowledge to learn better models.
Visual attributes are extremely useful as they are: (1) human understandable; (2)
machine computable and (3) shared across classes. For these reasons, recently
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many attribute discovery methods have been proposed to extract visual/image at-
tributes [3, 33, 18]. Broadly, several more concrete visual attributes such as color
and texture have attracted great attentions [50, 9]. To that end, color saliency anal-
ysis [50] and shearlets-based texture learning [9] are proposed and have achieved
promising performance.

One of the biggest challenges in using attribute descriptors is that an enor-
mous amount of training images with attribute labels is required to train attribute
classifiers. It is extremely tedious, time-consuming and expensive to label each
individual image for every attribute (e.g., if there are 64 attributes, then each im-
age should have at least 64 attribute labels). Furthermore, in some specialized
domains such as Ornithology [45], Entomology [43] and cell pathology [46], the
human labelling task could be immensely expensive as only a few highly trained
experts could conduct such a task.

To reduce the workload, automatic attribute discovery methods have been de-
veloped [3, 33, 37, 46, 48, 49]. The primary aim of these works is to learn a func-
tion that maps the original image feature space into a binary code space wherein
each individual bit represents the presence/absence of a visual attribute. These at-
tribute discovery methods are also closely related to hashing methods [14, 22, 44].
The difference is that unlike automatic attribute discovery approaches, hashing
methods focus more on how to significantly reduce the storage demand and com-
putational complexity whilst maintaining system accuracy.

Despite great strides that have been made in this field, there are still some
important open questions: left unaddressed: 1) Given the set of attributes/binary
codes discovered by a method, are these attributes or binary codes really mean-
ingful? 2) Can we compare these methods by directly observing the discovered
attributes? By exploring these questions, we can begin to glean some insights on
mechanisms required to extract meaningful attributes/binary codes. We note that
the aim of this work is not to propose a new method to discover attributes. Instead,
we propose a novel meaningfulness metric and use this tool to study the existing
methods.

Gauging “how meaningful” for a given attribute can be an ill-posed problem
as there is no obvious yardstick for measuring this. Fortunately, it is pointed
out by Parikh and Grauman that meaningful attributes may have a shared struc-
ture [30, 31]. This means, given the attribute feature space, meaningful attributes
are likely to be close to each other within a subspace. In [25], we further studied
this shared structure and applied our findings to the task of automatic generation
of surveillance video descriptions.

Inspired by these works, we propose a novel meaningfulness metric that could
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become one of the yardsticks to measure attribute meaningfulness. More specif-
ically, we first measure the distance between the discovered attributes and the
meaningful attribute subspace. To this end, an approximate geodesic distance
based on reconstruction error is proposed. As it may be difficult to perform quan-
titatively analysis/study using this distance directly, we then derive the mean-
ingfulness metric based on the distance. In particular, the metric is derived by
first performing a subspace interpolation between meaningful subspace and non-
meaningful subspace lying on the manifold of decision boundaries. The distance
on each interpolated subspace is calculated. These are then used to calibrate the
distance of the discovered attributes to the meaningful subspace. Fig. 1 illustrates
our main idea.

An earlier form of this work has been presented in [20]. In this work, we
extend our earlier work in several aspects. We perform in-depth analysis on the
proposed metric and consider additional dataset. Throughout these experiments
we found that the calibration step heavily depends on the meaningful subspace
spanned by the selected meaningful attributes, denoted the subspace bases. The
space spanned by these bases should be maximized in order to ensure the calibra-
tion is done properly. To remedy this, we present a simple-yet-effective technique
using semantic reasoning and threshold setting.
Contributions — We list our contributions as follows:
• We propose a reconstruction error based approach with two different reg-

ularizations (i.e., `0 and convex hull) to approximate the geodesic distance
between a given attribute set and the meaningful subspace.
• We propose the novel attribute meaningfulness metric that allows us to

quantitatively measure the meaningfulness of a set of automatically discov-
ered attributes. The metric score is related to “the percentage of meaningful
attributes contained in the set of attributes.”
• We propose an improved calibration method to avoid pathological cases

where the calibration could not be performed. This method is developed
based on the in-depth analysis performed in this work.
• We present extensive experiments and analysis on four popular attribute-

labelled datasets to demonstrate that our proposal can really capture at-
tribute meaningfulness. The attribute meaningfulness of some recent auto-
matic attribute discovery methods and various hashing approaches are also
evaluated on these datasets. A user study is conducted to further validate
the effectiveness of the proposed metric. In addition, we compare the pro-
posed metric with a metric adapted from a recent semi-supervised attribute
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discovery method using the Mixture of Probabilistic Principal Component
Analysis (MPPCA) [31, 39].

We continue our paper as follows. Related work is discussed in Section 2.
Then we introduce our approach of evaluating attribute meaningfulness in Sec-
tion 3. Our proposed metric is described in Section 4. Next we discuss the experi-
ments and results in Section 5. Finally the main findings and future directions are
presented in Section 6.

2. Related Work

Evaluation of visual attribute meaningfulness is traditionally conducted by
manually checking the presence/absence of consistent identifiable visual concepts
in a set of given images. This task usually requires a large-scale human labelling
effort. A system such as the Amazon Mechanical Turk (AMT) 1 is able to han-
dle this task for small datasets. However, since this process needs to be repeated
whenever new attributes are discovered or novel methods are proposed, this man-
ual process is ineffective and expensive. In our case, the AMT Human Intelli-
gence Task (HIT) is to evaluate the meaningfulness of attributes by examining
corresponding positive and negative images according to each attribute. The av-
erage time of each worker spent on this typical HIT is 2 minutes [32]. Then an
AMT worker may require 320 minutes to evaluate 32 attributes discovered by 5
different methods (i.e., 32× 5× 2 = 320 minutes). The time spent could increase
significantly if statistically reliable results are desired by increasing the number of
AMT workers.

Unequivocally, it is more desirable to develop an automatic approach, which
is more cost-effective, less labor intensive and time consuming to evaluate the
meaningfulness of the set of discovered attributes. The task of measuring the
attribute meaningfulness of discovered attributes is similar to the task presented in
the Turing Test [40]. In this task, we would like to measure how much a machine
could provide responses like a human being. If a machine could respond like a
human being, it means that the results produced must have significant meaning.
Unfortunately, the Turing Test still requires a human judge who actively engages
with the machine.

To that end, several works [1, 35, 40] aim to devise an automated Turing Test
that follows the framework of this famous test but replaces the human judge by

1www.mturk.com
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another machine. A notable example is CAPTCHA [42] which is very prevalent in
web security applications. This technique basically lets a machine be the judge is-
suing the test to determine whether the subject is a human. Generally, CAPTCHA
provides a challenge in the form of an image containing numbers or characters
which are difficult to be identified by current machines. The main assumption in
CAPTCHA is that machine recognition will not be as good as human.

Our work can be interpreted as an instance of the automated Turing Test as
follows. We are testing a set of automatic attribute discovery techniques by giving
challenges in the form of images. These techniques are then giving us a set of at-
tributes. We will automatically verify the meaningfulness through the positive and
negative images generated from each attribute classifier. Note that if we have hu-
man observers performing the verification instead of machines, then this becomes
an instance of the standard Turing Test. To perform the automated Turing Test,
there has to be a measurement to determine which automatic attribute discovery
technique is ‘good’ and which one is ‘not that good’.

Some unsupervised semantic visual representation learning works [17, 16, 33,
46] have indicated that it is possible to discover the meaningful concepts unsuper-
visedly from data itself with or without side information. Such as Chen et al. [17]
introduce a simple yet powerful unsupervised approach to learn and predict visual
attributes directly from data. With the help of deep Convolutional Neural Net-
works (CNNs), they train to output a set of discriminative, binary attributes often
with semantic meanings. Hong et al. [16] propose a novel algorithm to cluster
and annotate a set of input images with semantic concepts jointly. They employ
non-negative matrix factorization with sparsity and orthogonality constraints to
learn the label-based representations with the side information (a labeled refer-
ence image database) obtaining promising results.

All of these works imply there may be some potential relations between mean-
ingful concepts. Fortunately, the shared structure assumption among meaningful
attributes proposed in [31] can serve as the foundation of the automatic measure-
ment. Based on this assumption, Parikh and Grauman et al. proposed an active
learning approach that uses Mixtures of Probabilistic Principal Component Anal-
ysers (MPPCA) [39] to predict how likely an attribute is nameable. Nevertheless,
their work only focuses on deciding whether an attribute is nameable or not. Their
work does not tackle the problem of quantitatively measuring the attribute mean-
ingfulness. In addition, this approach requires human interaction to populate the
nameability space. Thus, their method is not suitable for addressing our goal (i.e.,
to automatically evaluate the meaningfulness of attribute sets).

In our previous work, the shared structure assumption is utilized [25]. In
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particular, the work in [25] proposed a selection approach of attribute discovery
methods to assist attribute-based keywords generation for video description from
surveillance systems. However, the work did not consider quantitative analysis of
the meaningfulness of the discovered attributes (e.g., how much meaningful con-
tent is contained in a set of automatically discovered attributes). In addition, the
characteristics of the meaningfulness of attributes may vary to some extent.

3. Measuring Attribute Set Meaningfulness

We begin by describing the manifold of decision boundaries and the mean-
ingful attribute subspace. Then, we define the distance between the automatically
discovered attributes and the meaningful attribute set in the manifold space to
measure the attribute meaningfulness.

3.1. Manifold of decision boundaries
Supposed there is a set of exemplars X = {xi}Ni=1, an attribute can be consid-

ered as a decision boundary which partitions the set into two subsets X+ ∪X− =
X . Here X+ represents the set where the attribute is present and X− represents
the set where the attribute is absent. Therefore, all the attributes are lying on a
manifold formed by decision boundaries [31].

In this case, an attribute can also be viewed as anN -dimensional binary vector
whose element represents the classification output of all exemplars xi classified
by the corresponding attribute binary classifier φ(·) ∈ R. The sign of the classifier
output on xi indicates whether the exemplar belongs to the positive or negative set
(i.e., X+ or X−). As such, an attribute can be represented as z[X ] ∈ {−1,+1}N
whose i-th element is z[X ]

(i) = sign(φ(xi)) ∈ {−1,+1}. For the sake of simplicity,
we drop the symbol [X ] from z[X ] whenever the context is clear. Thus, the mani-
fold of decision boundaries w.r.t. X can be defined asM[X ] ∈ {−1,+1}N which
is embedded in a N -dimensional binary space. Again, we also writeM[X ] asM.

As observed from [31, 30], the meaningful attributes have shared structure
wherein they lie close to each other on the manifold. In other words all the mean-
ingful attributes are contained in a subspace onM. In an ideal case, all possible
meaningful attributes should be enumerated in this subspace. Unfortunately, it
is infeasible to enumerate all of them. One intuitive solution is by relying on
the existing human knowledge, that is the human labelled attributes from vari-
ous datasets such as [5, 30, 31]. These attributes are all naturally meaningful
since they are collected via manual human labeling process using the AMT. How-
ever, the number of available labelled attributes may not be sufficient. To this
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end, based on the shared structure assumption, we thus introduce an approxima-
tion of the meaningful subspace by linear combinations of the human labelled
attributes. This means, if an automatically discovered attribute is close enough
to any attribute existing in the meaningful subspace, it should be considered as a
meaningful attribute.

3.2. Distance of an attribute to the Meaningful Subspace
In this section, we mathematically describe the reconstruction error based dis-

tance of an attribute to the Meaningful Subspace. Given a set of N images X , we
denote S = {hj}Jj=1,hj ∈ {−1,+1}N as the set of meaningful attributes. We use
a matrix A ∈ RN×J , in which each column vector is the representation of an at-
tribute, to form the set S. As the assumption in [31], meaningful attributes should
be close to the meaningful subspace spanned by the set of meaningful attributes
S. For instance, the primary colors i.e., red, green, blue are able to construct the
set of secondary colors such as yellow, magenta and cyan. Moreover, the primary
colors can provide negative information clues to describe other primary colors
(e.g., blue is neither green nor red). Under this assumption, we are able to de-
fine a reconstruction error based distance between an attribute and the meaningful
subspace. More specifically, let zk be an attribute and A be the representation of
meaningful attributes. The distance is defined as:

min
r
‖Ar − zk‖22, (1)

where r ∈ RJ×1 is the reconstruction coefficient vector. Note that the reconstruc-
tion in (1) may not be in the manifoldM (i.e. Ar /∈M). Therefore, we relax this
reconstruction procedure into Euclidean space for computational simplicity. This
relaxation effectively becomes an approximation of the true geodesic distance.

3.3. Distance between a set of discovered attributes and the Meaningful Subspace
Analogously, suppose there are K discovered attributes, we use matrix B ∈

{0, 1}N×K to represent the discovered attribute set D. Then, according to the
specific set of images X , we can define the distance between the set of discovered
attributes D and the Meaningful Subspace S as the average reconstruction error:

δ(D,S;X ) = 1

K
min
R
‖AR−B‖2F , (2)

where ‖ · ‖F and R ∈ RJ×K are the Frobenious norm and the reconstruction
matrix respectively.
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The reconstruction coefficients are preferably sparse, because generally only
a few attributes can provide useful clues to reconstruct a particular attribute while
most of them should stay inactive in this procedure. Similar to the example in sec-
tion 3.2, only a few color attributes can reconstruct another color attribute, most
of them should stay inactive (i.e., their reconstruction coefficient should be 0).
Unfortunately, the distances in (1) and (2) may create dense reconstruction coeffi-
cients due to the absence of a regularization term. As such, we first introduce con-
vex hull regularization used in [25]. Moreover, according to [36], the perception
mechanism of human visual systems follows the sparsity principle. That means
only a few attributes will first trigger the semantic-visual connection in our brain.
Desirable attribute discovery methods should also obey this principle. Hereby,
we consider the sparsity-inducing `0 regularization as the second regularization
alternative.

3.3.1. Convex hull regularization
Via introducing a convex hull constraint, (2) becomes:

δcvx(D,S;X ) =
1

K
min
R
‖AR−B‖2F s. t.

R (i, j) ≥ 0

J∑
i=1

R(i, ·) = 1.

(3)

This objective function describes the average distance between each discovered
attribute zk ∈ D and the convex hull of S. Its optimization can be efficiently
solved using the method proposed in [7].

3.3.2. `0 regularization
As to `0 regularization, different from the convex hull regularization, a possi-

ble direct correlation between each discovered attribute zk ∈ D and the meaning-
ful attribute, hj ∈ S is considered:

δjp(D,S;X ) =
1

K
min
R
‖AR−B‖2F , s. t. (4)

∀k ∈ {1 · · ·K}, ‖R·,k‖0 ≤ 1,

∀j ∈ {1 · · · J}, ‖Rj,·‖0 ≤ 1.
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where Rj,·, R·,k represent the j-th row vector and the k-th column vector in matrix
R respectively. The two additional `0 regularizers enforce one-to-one relation-
ships between S and D. The reconstruction matrix R correlates each discovered
attribute to a particular meaningful attribute. More specifically, for each discov-
ered attribute zk ∈ D, the closest hj ∈ S is found to minimize the function.
However, it could be possible that |S| > |D|. In this case, we can only match K
discovered attributes in S and vice versa.

Unfortunately, the optimization for (4) is non-convex. As such, a greedy ap-
proach is proposed to address this through iteratively finding pairs of meaningful
discovered attributes with the smallest distance. This can be converted into finding
the pairs with the highest similarities (lowest distance means highest similarity).

Here we can define the similarities between a discovered attribute zk and a
meaningful attribute hj in terms of their correlations. Let ρ(zk,hj), zk ∈ D,hj ∈
S be the correlation between zk and hj . Then ρ can be defined as:

ρ(zk,hj) =
count(zk = hj)

N
, (5)

where count means the operation which counts how many same elements zk

shares with hj .
Thus, the function ρ(zk,hj) can be computed from A·,j and B·,k, where B·,k,

A·,j represent the discovered attribute zk and the meaningful attribute hj respec-
tively. Denote P as the set of M pairs of hj ∈ S and zk ∈ D that have the highest
correlation, P = {(h1

j , z
1
k) · · · (h

M
j , z

M
k )}, hi

j = hl
j if and only if i = l, zi

k = zl
k.

Therefore the matrix R∗ that minimizes (4) is defined, after P is determined,
via:

R∗j,k =

{
1 if (hj, zk) ∈ P
0 if (hj, zk) /∈ P .

(6)

For the given inputs D = {zk}Kk=1, S = {hj}Jj=1 and X = {xi}Ni=1, Algo-
rithm 1 elaborates the procedures of computing the set P . Note that, (hj, ·) and
(·, zk) in step 3 represent all possible pairs containing hj and zk, respectively.

4. Attribute Set Meaningfulness Metric

Attribute meaningfulness metric is designed to determine which existing auto-
matic attribute discovery method is more likely to discover meaningful attributes.
Moreover, it can provide some insights about how to devise new automatic at-
tribute discovery methods.
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Algorithm 1 The proposed greedy algorithm to solve (4)

Input: D = {zk}Kk=1, S = {hj}Js=1 and X = {xi}Ni=1

Output: P that contains M pairs that have the highest correlation, where M =
min(K, J).

1: P ← {}
2: while |P| ≤M do
3: Find the highest ρ(hj, zk) where (hj, ·) /∈ P and (·, zk) /∈ P .
4: P = P ∪ (hj, zk)
5: end while

In this section we will introduce the Attribute Set Meaningfulness Metric. We
order our discussion as follows (1) Meaningful subspace interpolation; (2) Select-
ing meaningful subspace representation and (3) Computing the meaningfulness
metric.

By means of the distance functions δjp and δcvx described in Section 3.2, we are
able to measure how far is the set of discovered attributes D from the Meaningful
Subspace S. The closer the distance, the more meaningful the set of attributes are.
However, as the relationship between the proposed distances and meaningfulness
could be non-linear, the distance may not be easy to interpret. Furthermore, it is
difficult to compare the results between δcvx and δjp.

4.1. Attribute meaningful subspace interpolation
Our goal is to obtain a metric that is both easy to interpret and able to perform

comparisons between various distance functions. Inspired by [15], we apply the
subspace interpolation to generate a set of subspaces between Meaningful Sub-
space and Non-Meaningful Subspace, or Noise Subspace. Here, we use a set of
evenly distributed random attributes to represent the Non-Meaningful Subspace
N .

For the purpose of subspace interpolation, the meaningful attribute set S is
divided into two subsets:

S1 ∪ S2 = S (7)

where we consider the set S1 as the representation of the Meaningful Sub-
space. When gradually adding random attributes Ñ ∈ N into S2, the interpolated
sets of subspaces can be obtained. Here we present the proposition which guaran-
tees that the interpolation is able to generate subspaces between the Meaningful
Subspace and the Non-Meaningful Subspace.
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Proposition 4.1. Let S̃ = S2 ∪ Ñ ; when Ñ = {}, the distance δ∗ between S̃ and
S1 (refers to (7)) is minimized. However, when Ñ− > N , the distance between
S̃ and S1 is asymptotically close to δ∗(S1,N ;X ), where δ∗ is the distance func-
tion presented previously such as δjp and δcvx. More precisely, we can define the
relationship as follows:

lim
|Ñ |→∞

δ∗(S̃,S1;X ) = δ∗(N ,S1;X ). (8)

Remarks. Proposition 4.1 basically describes when random attributes are added
into S̃ gradually, the subspace, that is initially close to the Meaningful Subspace
S1, will be more and more distant from S1. Eventually the subspace will be
spanned by random attributes that is asymptotically close to the Non-Meaningful
attribute subspace. While it is easy to prove the above Proposition, we present one
version of the proof in the appendix.

4.2. Selecting meaningful subspace representation
As discussed in section 3.1, enumerating all the meaningful attributes to rep-

resent the meaningful attribute subspace is impossible. We thus use linear combi-
nations of meaningful attributes to approximate the meaningful subspace.

However, the division of the meaningful attributes into two subsets as sug-
gested in Proposition 4.1 will reduce the subspace spanned to represent the mean-
ingful subspace. More specifically, the linear combination of attributes from S1

may not span the whole meaningful subspace. To remedy this, one should care-
fully select the attributes to form S1 that can maximize the space spanned by the
representation.

Under our proposed approach which is based on the linear reconstruction, the
selected meaningful attributes for S1 should form the bases of the meaningful sub-
space. Here, one way to maximize the space spanned is that to select independent
bases.

The attribute independence with respect to the others can be evaluated by how
well the attribute can be reconstructed from others. In addition, one can evaluate
the attribute independence from the attribute semantic names. For instance, tex-
tural attributes such as ‘metal’ may be independent to the other textural attributes
such as ‘grass’, ‘wooden’. Therefore, these attributes should be included in the
set to represent the meaningful subspace i.e., the set S1.

In the light of these facts, we propose an approach to perform meaningful
subspace representation selection, S1. First, the attribute semantic descriptions
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are considered. Any attributes that are deemed to be independent will be indi-
cated and always put in the set S1. On the second step, we evaluate the attribute
independence by applying either dcvx or djp. In particular, we use a leave-one-
attribute-out scheme which calculates the distance between one attribute to the
rest of the attributes. We then set the threshold α. Again, we indicate any at-
tributes having distance more than α and always put them in S1. The threshold, α
will be one of the parameters which will be determined during the experiments.

4.3. Computing the meaningfulness metric
After constructing the meaningful subspace, we can calibrate the attribute set

meaningfulness distance by subspace interpolation based on the equivalent dis-
tance effect assumption [4]. That is, if the distance of two attribute subspaces to
the meaningful subspace are the same, the amount of meaningful contents con-
tained in these two subspaces are the same.

We denote the distance between S̃ and the Meaningful Subspace S1 as δS̃ and
the distance between D and the Meaningful Subspace S1 as δD. After subspace
interpolation, we find the subspace S̃ that makes δS̃ ≈ δD. Using the equivalent
distance effect assumption, if δS̃ ≈ δD, the meaningfulness between S̃ and D
should be on par with each other. As S̃ is defined as a set of meaningful attributes
added with additional noise attributes, this representation is able to evaluate the
meaningfulness of D. We can consider this task as an optimization problem as
follows:

g∗ = argmin
|Ñ |

∥∥∥δ∗({S2 ∪ Ñ},S1;X )− δ∗(D,S1;X )
∥∥∥2
2
. (9)

where g∗ represents how many minimum number of random attributes required
to be added into S̃ to make δS̃ ≈ δD. The above optimization problem can be
interpreted as searching for the furthest subspace S̃ from the Meaningful Subspace
in an open sphere with radius δD. The above equation can be simply solved by a
curve fitting approach. In our implementation, we apply the least square approach.

Finally, we denote γ as the proposed attribute meaningfulness metric as fol-
lows.

γ(D;X ,S) = (1− g∗

|S2|+ g∗
)× 100. (10)

Remarks. The equation in (10) determines how many noise/Non-Meaningful at-
tributes are required for a set of automatically discovered attributes to have sim-
ilar distance as δD. On the other hand, our proposed metric reflects how many
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meaningful attributes are contained in the attribute set. A smaller number of Non-
Meaningful attributes indicates a more meaningful attribute set overall.

Since different aspects of meaningfulness may be captured by various distance
functions, we combine the metric values calculated using both proposed distance
functions. For simplicity, we use a equally weighted summation in this paper:
γ̃ = 1

2
γcvx +

1
2
γjp, as our final metric.

5. Experiments

In this part, the efficacy of our approach to measure the meaningfulness of a set
of attributes will be first evaluated. Then the proposed metric is used to evaluate
meaningfulness of the attribute sets generated by various automatic attribute dis-
covery methods such as PiCoDeS [3] and Discriminative Binary Codes (DBC) [33]
as well as some recent hashing methods such as Iterative Quantization (ITQ) [14],
Spectral Hashing (SPH) [44], Locality Sensitivity Hashing (LSH) [22] and Kernel-
Based Supervised Hashing (KSH) [26].

The two proposed metrics γjp (4), γcvx (3) and the combined metric γ̃ are ap-
plied to compare the meaningfulness of the attributes discovered from the compar-
ative methods on four attribute datasets: (1) a-Pascal a-Yahoo dataset (ApAy) [11];
(2) Animal with Attributes dataset (AwA) [21] and; (3) SUN Attribute dataset
(ASUN) [32]; (4) Unstructured Social Activity Attribute dataset (USAA) [13]

Finally, our metric will be then compared against a user study and a metric,
denoted the MPPCA metric or MPPCA, adapted from semi-supervised attribute
discovery method proposed in [31].

5.1. Datasets and experiment setup
a-Pascal a-Yahoo dataset (ApAy) [11] — comprises two sources: a-Pascal and
a-Yahoo. There are 12,695 cropped images in a-Pascal that are divided into 6,340
for training and 6,355 for testing with 20 categories. The a-Yahoo set has 12
categories disjoint from the a-Pascal categories. Moreover, it only has 2,644 test
exemplars. There are 64 attributes provided for each cropped image. The dataset
provides four features for each exemplar: local texture, HOG, edge and color
descriptor. We use the training set for discovering attributes and we perform our
study on the test set. More precisely, we consider the test set as the set of images
X defined in 3.1.
Animal with Attributes dataset (AwA) [21] — the dataset contains 35,474 im-
ages of 50 animal categories with 85 attribute labels. There are six features pro-
vided in this dataset: HSV color histogram, SIFT [28], rgSIFT [41], PHOG [6],
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SURF [2] and local self-similarity [38]. The AwA dataset is proposed for studying
the zero-shot learning problem. As such, the training and test categories are dis-
joint; there are no training images for test categories and vice versa. More specifi-
cally, the dataset contains 40 training categories and 10 test categories. Similar to
the ApAy dataset, we use the training set for discovering attributes and we perform
the study in the test set.
SUN Attribute dataset (ASUN) [32] — ASUN is a fine-grained scene classifi-
cation dataset consisting of 717 categories (20 images per category) and 14,340
images in total with 102 attributes. There are four types of features provided in
this dataset: (1) GIST; (2) HOG; (3) self-similarity and (4) geometric context
color histograms (See [47] for feature and kernel details). From 717 categories,
we randomly select 144 categories for discovering attributes. As for our evalu-
ation, we randomly select 1,434 images (i.e., 10% of 14,340 images) from the
dataset. It means, in our evaluation, some images may or may not come from the
144 categories used for discovering attributes.
Unstructured Social Activity Attribute dataset (USAA) [13] — USAA is a
relatively novel benchmark attribute dataset for social activity video classification
and annotation. It is manually annotated with 69 groundtruth attributes from 8
semantic class videos of Columbia Customer Video (CCV) dataset. There are 100
videos per-class for training and testing respectively. The annotated attributes can
be divided into 5 broad categories: actions, objects, scenes, sounds, and camera
movement. The 8 classes in the dataset are birthday party, graduation party, music
performance, non-music performance, parade, wedding ceremony, wedding dance
and wedding reception. The SIFT, STIP and MFCC features for all these videos
are extracted in the dataset.

For each experiment, we apply the following pre-processing step described
in [3]. We first lift each feature into a higher-dimensional space which is three
times larger than the original space. After the features are lifted, we then apply
PCA to reduce the dimensionality of the feature space by 40 percent. This pre-
processing step is crucial for PiCoDeS as it uses lifted feature space to simplify
their training scheme while maintaining the information preserved in the Repro-
ducing Kernel Hilbert Space (RKHS). Therefore, the method performance will be
severely affected when lifted features are not used.

Each method is trained with the training images to discover the attributes.
Then we use the manifold M w.r.t. the test images for the evaluation. More
precisely, each attribute descriptor is extracted from test images (i.e., zk, zk ∈
{−1, 1}N , where N is the number of test images). For each dataset, we use the
attribute labels from AMT to represent the Meaningful Subspace, S.
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We adapted the MPPCA metric from the semi-supervised attribute discovery
method proposed in [31]. In particular, to discover an attribute, the method in [31]
progressively updates MPPCA model using human feedback. In our settings, we
directly train MPPCA using attributes found from AMT for each dataset. To mea-
sure meaningfulness, we compute the posterior probability of the given discovered
attribute to the MPPCA model. We train MPPCA model using five components
and three dimensional subspace for ASUN dataset. As for ApAy dataset, we use
three components and three dimensional subspace. This is because the number of
attributes in ApAy dataset is much smaller than ASUN dataset. Unless otherwise
stated, we follow the experiment settings for MPPCA as described in [31]. For
instance, we employ a threshold on the posterior probability to determine whether
an attribute is meaningful. The MPPCA metric is the computed by computing
the percentage of the attributes deemed as meaningful over the total discovered
attributes.

5.2. Do δcvx and δjp measure meaningfulness?
In this experiment, we evaluate whether the proposed approach really does

measure the meaningfulness on a set of automatically discovered attributes. One
of the key assumptions in our proposal is that the distance between the Meaningful
Subspace and the given attribute set D reflects the meaningfulness of a set of
attribute. More specifically, if the distance is small, it is assumed that the attribute
set is potentially meaningful and vice versa. Aiming to evaluate that, we construct
two sets of attributes, respectively with meaningful and non-meaningful attributes
and observe their distances to the meaningful subspace.

As to the meaningful attribute set, we follow the methods used in Section 4.
Providing manually labelled attribute set S, here denoted the AMT attribute set 2,
in each dataset, we follow the approach used in Section 4 to divide the set into
two subsets S1 ∪ S2 = S where S1 represents the Meaningful Subspace and S2

is considered as a set of discovered attributes (i.e., D = S2). Unequivocally, the
attributes in S2 should be meaningful as they are manually labelled by human
annotator. Thus, we name S2 as the MeaningfulAttributeSet.

For non-meaningful attribute set, we create this set by randomly generating
the attributes. As described in Section 4, we generate a finite set of random at-
tributes denoted by Ñ . We name this set as NonMeaningfulAttributeSet since it

2As mentioned before, attributes discovered from the AMT procedure are considered mean-
ingful. For the sake of clarity, we call these attributes AMT attributes.
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is non-meaningful and should have significantly larger distance to the Meaningful
Subspace.

Recall that the Meaningful Subspace S1 needs to be carefully selected to max-
imize the meaningful subspace spanned. However, to show the efficacy of our
proposed selection, we first randomly select S1. Then, on the second experiment,
we apply our proposed selection approach. To perform our proposed selection ap-
proach, we must evaluate the independence of each AMT attribute via analysing
its attribute name and computing its individual reconstruction error. We will al-
ways put independent attributes in S1. In other words, let Ŝ1 be the set of AMT
attributes marked as independent attributes. Then, the set S is divided into S1 and
S2 such that, Ŝ1 will be always in S1. In this case, we still randomly divide S with
a constraint that the Ŝ1 should always be in the set S1. As previously described, a
leave-one-attribute-out scheme is used to determine the independence of an AMT
attribute with respect to the rest of AMT attribute set. Fig. 2(a) presents the result
of this analysis.

As we can see, the reconstruction error of ApAy dataset are, in general, much
larger than the other datasets. We conjecture that this might caused by the fact that
the other three datasets are all fine-grain classification datasets, however ApAy is
proposed for addressing the general classification problem. This means the at-
tributes provided in this dataset are more likely to be independent as they are
used to describe a wide variety of classes. For further inspection, we take the
ApAy dataset and present the results in the perspective of semantic reasoning of
the attribute names. In Fig. 2(b), we plot the reconstruction error for each at-
tribute in ascending order. As we can see, the attributes with low reconstruction
errors are often more likely to be correlated (i.e., less independent). For example,
images such as the “leaf” and “pot” can reconstruct the “vegetation” attribute,
“Sail” and “Mast” are often present together in the sailing scenes. However, the
attributes with high reconstruction error are more likely to be independent (i.e.
less correlated) such as shape-related attribute “3D Boxy”, material-related at-
tribute “Metal” and especially “Occluded”. It is worthy to note that we only show
the analysis using reconstruction error with convex hull regularization. The same
findings are also exhibited when the `0 regularization is used.

To reasonably determine the parameter α (See 4.2), we average the highest
reconstruction error scores from the other three fine-grain datasets. This gives us
a value α = 18.89. That means we consider any attributes in the datasets with
error above α to be independent attributes. Thus the 22 independent attributes
with highest reconstruction error can be put into the meaningful attribute subset
S1 for better approximation of meaningful attribute subspace. The rest of the
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Figure 2: The reconstruction error analysis on datasets. In (a), the horizontal axis represents the
reconstruction error value, the vertical axis represents the frequency of the attributes which fall
into the range of reconstruction error. In (b), the horizontal axis depicts the name of each attribute,
the vertical axis represents the reconstruction error value.
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attributes are still pooled and randomly selected. Table 1 shows the results with
and without the proposed selection strategy. As we can see, after applying the
selection, the MeaningfulAttributeSet which is always considered as meaningful,
exhibits the lowest reconstruction error. Other methods almost remain the same
with little random perturbation that indicates for the automatic attribute discovery
methods our metric is quite stable. Again, we note that we use δcvx and similar
results are also found when using δjp.

Table 1: Comparisons of reconstruction error results on ApAy dataset with and without the selec-
tion strategy.

With selection Without selection

PiCoDeS 12.65 12.52
DBC 48.97 49.66
ITQ 50.73 51.70
SPH 48.91 49.79
LSH 52.17 53.14
KSH 38.34 38.66

NonMeaningful 53.20 54.34
Meaningful 12.09 18.29

Now, we are ready to discuss the evaluation of our proposed approach to deter-
mine whether our approach can measure the attribute meaningfulness. In order to
do that, we first perform the subspace interpolation of all the attribute set discov-
ered by the methods. To perform the subspace interpolation, the random attributes
are progressively added to the set of attributes from each method. By doing this,
we can evaluate if the distance to Meaningful Subspace is enlarged when we pro-
gressively increase the number of non-meaningful attributes.

Fig. 3 presents the evaluation results.
Here we present the reconstruction error results for all 4 datasets where 16 and

32 attributes are discovered by the methods respectively. Recall that although we
carefully selected S1, the set S is still randomly divided. We produced the results
shown in Fig. 3 by repeating the random division of S1 100 times and calculated
the average distance. The detail results are also shown in Table 2. We note that no
matter how S1 is selected, our method is relatively stable.

As we can see from the results that the MeaningfulAttributeSet has the closest
distance to the Meaningful Subspace for both distances δcvx and δjp on all datasets.
As expected, the NonMeaningfulAttributeSet has the largest distance compared
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Figure 3: Validation of attribute meaningfulness measurement by reconstruction error δcvx (first
and second rows) and δjp (third and fourth rows). In each subfigure, the horizontal axis represents
the percentage of noise attributes, the vertical axis means the reconstruction error values. As we
can see, both distances become larger when more random/non-meaningful attributes are added.
MeaningfulAttributeSet has the closest distance to the Meaningful Subspace and NonMeaningfu-
lAttributeSet always has the largest distance. Here, each method is configured to discover 16 and
32 attributes. The smaller the δ, the more meaningful the attribute set is.

Table 2: The table of values in reconstruction errors with standard deviation analysis. Letter E
conventionally represents ’times ten raised to the power of’

cvx jp

ApAy AwA ASUN USAA ApAy AwA ASUN USAA

16

PiCoDeS 12.65 ±9.57E-02 26.73 ±7.10E-02 13.76 ±2.33E-02 9.74 ±5.57E-02 358.61 ±1.53E+01 1150.76 ±1.71E+01 287.95 ±8.80E-01 166.57 ±3.17E+00
DBC 48.97 ±1.78E-04 27.30 ±2.04E-01 17.10 ±2.19E-02 12.12 ±1.14E-01 3499.92 ±2.93E+00 1358.82 ±2.32E+01 491.13 ±1.01E+00 249.69 ±3.39E+00
ITQ 50.73 ±3.15E-04 26.04 ±3.51E-01 17.66 ±4.85E-02 12.88 ±6.79E-02 3768.67 ±4.66E+00 1519.80 ±6.30E+01 551.51 ±3.13E+00 290.29 ±1.03E+00
SPH 48.91 ±1.26E-03 17.32 ±1.12E-01 17.10 ±1.85E-02 10.91 ±3.40E-02 3406.41 ±3.22E+00 588.92 ±3.38E+01 488.34 ±9.30E-01 189.45 ±8.48E-01
LSH 52.17 ±1.15E-09 38.51 ±7.64E-03 18.58 ±3.91E-02 13.22 ±9.34E-02 4127.82 ±6.09E+00 2775.42 ±3.59E+00 636.73 ±1.35E+00 320.39 ±1.53E+00
KSH 38.34 ±1.53E-02 27.94 ±9.73E-02 17.21 ±1.91E-02 12.23 ±6.70E-02 2122.98 ±4.50E+00 1285.05 ±9.89E+00 498.27 ±1.48E+00 246.14 ±1.40E+00

NonMeaningful 53.20 ±1.52E-09 39.27 ±4.32E-14 18.78 ±2.75E-02 13.55 ±1.21E-01 4411.74 ±7.45E-01 3008.71 ±8.16E-01 675.03 ±3.84E-01 339.79 ±2.52E+00
Meaningful 12.09 ±1.09E+00 11.60 ±2.08E+00 9.92 ±6.22E-01 6.78 ±6.27E-01 322.44 ±9.29E+01 492.54 ±1.06E+02 182.04 ±2.20E+01 83.54 ±1.44E+01

32

PiCoDeS 27.67 ±1.12E-01 21.84 ±5.42E-02 12.79 ±4.39E-02 11.82 ±1.49E-01 1872.33 ±3.95E+01 1277.40 ±6.75E+01 336.71 ±4.75E+00 224.44 ±1.96E+00
DBC 49.50 ±1.25E-04 25.56 ±2.69E-01 17.55 ±5.88E-02 12.50 ±3.02E-01 3691.58 ±7.46E+00 1563.89 ±6.90E+01 522.29 ±1.61E+00 272.04 ±2.89E+00
ITQ 51.02 ±2.57E-04 28.18 ±4.31E-01 17.92 ±1.09E-01 13.07 ±2.09E-01 3971.37 ±1.22E+01 2048.51 ±6.32E+01 578.97 ±3.25E+00 298.99 ±1.66E+00
SPH 48.35 ±1.62E-03 17.43 ±1.23E-01 17.54 ±4.82E-02 10.95 ±1.08E-01 3480.28 ±2.39E+01 1196.88 ±1.01E+02 530.47 ±1.45E+00 200.20 ±2.80E+00
LSH 52.22 ±3.37E-09 38.48 ±1.12E-02 18.70 ±9.51E-02 13.43 ±2.99E-01 4268.15 ±9.82E+00 2822.03 ±1.02E+01 656.52 ±2.36E+00 331.45 ±1.54E+00
KSH 38.37 ±3.52E-02 29.71 ±1.29E-01 17.63 ±4.34E-02 12.93 ±2.68E-01 2419.02 ±1.52E+01 1637.47 ±5.03E+01 533.15 ±1.46E+00 276.13 ±1.95E+00

NonMeaningful 53.19 ±6.56E-10 39.28 ±1.18E-04 18.86 ±8.02E-02 13.82 ±3.73E-01 4421.49 ±1.13E+00 3020.82 ±1.69E+00 678.89 ±6.81E-01 342.10 ±1.47E+00
Meaningful 13.45 ±5.79E-01 13.04 ±1.51E+00 10.23 ±5.13E-01 7.12 ±4.13E-01 1234.20 ±9.14E+01 706.19 ±9.04E+01 197.50 ±1.50E+01 100.29 ±7.55E+00
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Figure 4: Visualization of co-occurrence matrix, the color bar represents the value of joint prob-
ability. The range between two ticks represents the attributes from each method. The first row
shows the result for each dataset when each method is configured to discover 16 attributes. The
second row shows the result for each dataset when each method is configured to discover 32 at-
tributes.

with the others. In addition, when the random attributes are progressively added,
the distance between the Meaningful Subspace and the sets of attributes discov-
ered by each method increases. These results indicate that the proposed approach
could be used to measure the meaningfulness of a set of attributes. Moreover, they
also give a strong indication that there is a shared structure between meaningful
attributes.

5.3. Attribute co-occurrence matrix analysis
For further inspection, we also perform the co-occurrence matrix analysis on

the attributes discovered by each method and the AMT attributes i.e., S1 and S2.
The results are shown in Fig. 4.

The co-occurrence matrix figures represent the visualization of joint probabil-
ity between the discovered attributes from each method and the AMT attributes,
which are considered as meaningful. As we can see in the figure, almost in every
dataset, the highest joint probability is achieved between S1 and S2. The trend is
quite obvious in ApAy dataset and ASUN dataset and USAA dataset. However,
the trend does not look apparent in AwA dataset. We conjecture this could be that
there are many attributes in S that are independent. The attributes in AwA dataset
are class-level i.e., each sample in same class has the same attribute representa-
tion. Therefore, in order to guarantee the discriminative power between classes,
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Figure 5: Attribute meaningfulness comparisons between different methods on variant number of
discovered attributes. The first row reports the results using δcvx and the second row reports the
results using δjp. The smaller the δ, the more meaningfulness.

the attributes may be chosen to reflect different aspects of classes, thus they could
have lower joint probability. We note that the supervised attribute learning meth-
ods such as PiCoDeS, DBC and KSH also have comparable high probability with
the AMT attributes. Another finding is that the attribute generated by the LSH
method tend to have high joint probability with each other. This may be due to the
simple linear projection of the data feature matrix in generating the final attribute
representation. Generally, the results are consistent with the previous experiment,
which further indicate the capability of our approach to capture the attribute mean-
ingfulness.

5.4. Attribute set meaningfulness evaluation using δcvx and δjp
In this section, the meaningfulness is evaluated by δcvx and δjp for the set of

attributes automatically discovered by various comparative methods in the litera-
ture. For that purpose, all manually labelled attributes from AMT in each dataset
are used as the representation of the Meaningful Subspace. Then each method is
configured to discover 16, 32, 64 and 128 attributes.

Fig. 5 reports the evaluation results on all datasets. It is noteworthy to mention
that both the proposed distances δcvx and δjp are not calibrated and scaled; making
it difficult to perform in-depth evaluation. However, we still can evaluate the
results in terms of the method rank ordering (i.e., which method takes first place
and which comes the second).

PiCoDeS has the smallest distance in various number of attributes extracted
on most of the datasets. PiCoDeS uses category labels and employs a max-margin
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framework to jointly learn the category classifier and attribute descriptor in an at-
tempt to maximize the discriminative power of the descriptor. In other words, the
goal of PiCoDeS is to discover a set of attributes which can discriminate between
categories.

DBC is also developed under the max-margin framework to extract meaning-
ful attributes as PiCoDeS. However, compared with PiCoDeS, DBC discovers less
meaningful attributes. We conjecture the reason could be DBC learns the whole
attribute descriptors for each category simultaneously unlike PiCoDeS that learns
the attribute individually. This scheme will inevitably emphasize category dis-
crimination of attributes rather than preserving the meaningfulness of individual
attribute. Note that here we do not suggest that DBC is not able to discover mean-
ingful attributes, rather, PiCoDeS may find more meaningful attributes. There-
fore, our finding does not contradict the results presented in the DBC original
paper [33].

Another observation from the results of SPH indicate that it is able to dis-
cover meaningful attributes. SPH is aimed to discover binary codes via a graph
embedding approach preserving the local neighborhood structure. One possible
explanation could be that when two images belong to the same class, they should
share more attributes indicating a shorter distance between them in the binary
space, and vice versa.

Although ITQ aims to learn similarity preserving binary descriptor, it has a
larger distance than SPH, DBC and PiCoDeS. The reason may be the way ITQ
learns the binary descriptor which mainly relies on the global information of the
data distribution. In other word, the algorithm minimizes the quantization error of
the mapping data to the vertices of a zero centered binary hypercube suggesting
that only global information by itself might not be sufficient to discover meaning-
ful attributes.

As expected, the attribute sets from LSH have the largest distances to the
Meaningful Subspace (i.e., least meaningfulness). LSH uses random hyperplanes
to project a data point into the binary space. Therefore, the consistent identifiable
visual concepts are hardly presented in the positive images.

In summary, two recipes could be derived from the current results that could be
significant for the future automatic attribute discovery method design: the method
should attempt to preserve local neighborhood structure as well as to consider the
discriminative power of attributes.
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5.5. Attribute set meaningfulness calibration using the proposed meaningfulness
metric

As described in section 5.4, the distance between attribute sets and the mean-
ingful subspace have some limitations preventing us to perform in-depth analysis.
Quantitative comparisons between different methods are more desirable in analy-
sis of attribute meaningfulness. Here we report the meaningfulness metric results.
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Figure 6: Comparisons of various methods using the proposed meaningfulness metric as well as
human study results. Each method is set to discover 16 and 32 attributes. The higher the more
meaningful. Human study is not conducted for AWA dataset as special zoology knowledge is
required, nor for USAA dataset for inconvenience to display and subjectiveness bias problem.
The human results for LSH method are 0 for ApAy and ASUN datasets.

As shown in (10), we apply γcvx and γjp on the datasets and for each method
by calibrating the proposed distances δcvx and δjp.

The results are shown in Fig. 6 when each method is configured to discover
16 and 32 attributes. The rank orders of the methods are the almost the same with
similar values in most tests by metric γcvx and γjp, with two exceptions in ASUN
dataset. This can be explained to the fact that each metric captures a different as-
pect of attribute meaningfulness. The proposed γcvx captures a one-to-many rela-
tionship while γjp evaluates the one-to-one relationship. Then the equal weighted
metric score γ̃ is applied for further analysis.

A user study is also conducted on the attributes discovered by each method.
Since AwA requires experts in animal studies and USAA is a quite large video
dataset whose complex social group activities are likely to cause subjectivity bias,
we only use ApAy and ASUN dataset for the user study.

The study collected over 100 responses for each number of discovered at-
tributes. In each response, there are positive and negative images presented from
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8 randomly chosen discovered attributes. The user was asked whether these two
set of images represent a consistent visual concept (hence meaningful). The users
were university staffs and students with different knowledge background from
various major fields including IT, Electronic Engineering, History, Philosophy,
Religion and Classics and Chemical Engineering. The responses were averaged
by considering 1 as meaningful and 0 as non-meaningful.

Table 3 illustrates the results of the proposed metric, γ̃ compared with the
human study. In addition, we compare our metric against the MPPCA metric.

Table 3: The results (in percentage) of meaningfulness metric γ̃ on each dataset compared with
user study and MPPCA metric on ApAy & ASUN datasets. Each method is configured to discover
32 attributes. In addition, for convenience we also report the proposed metric results on AwA and
USAA datasets. The bold text indicates the top performing method in the proposed metric. The
higher the more meaningful.

Methods
\Datasets

ApAy ASUN AwA USAA

γ̃ MPPCA Human γ̃ MPPCA Human γ̃ Human γ̃ Human
LSH 1.7 0 0 3.4 0 0 5.6

N/A

4.7

N/A

ITQ 4.5 34.4 20 16.4 31.3 22 41.6 13.1
SPH 11.7 21.9 34 23.8 21.9 25 80.7 48.3
DBC 8.4 15.6 32 24.6 21.9 30 57.1 22.3
KSH 38.9 37.5 60 23.0 12.5 25 47.6 18.3

PiCoDeS 63.3 56.3 71.0 71.5 78.1 43 70.5 36.8

Again, the attribute set discovered by LSH has the lowest meaningful content
at close to 0%. Thus, LSH generates the least meaningful attribute sets. PiCoDeS
and SPH generally discover more meaningful attribute sets. The methods using
randomization scheme such as LSH and ITQ tend to generate lesser meaningful
attribute sets with attribute meaningfulness around 1%-20%. The results indicate
that the attribute meaningfulness could be significantly increased (i.e., on average
by 10-20 percentage points) by applying learning techniques such as PiCodes,
DBC and SPH.

Compared with the results of the proposed metric γ̃, similar trends have been
observed in the user study. Moreover, the user study results compared with γcvx
and γjp are also shown in Fig. 6. Consistent similar trend as shown in previous
experiments is visible.

As for MPPCA metric, similar results can be found such as LSH discovers the
least meaningful attribute sets and PiCoDeS generally discover more meaningful
attribute sets. However, result of our proposed method is closer to the human
study in terms of the ranking order of attribute discovery methods. This could
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indicate that the amount of AMT attributes used to train the MPPCA may not
be sufficient. We note that, the MPPCA was originally designed to have human
feedback in multiple iterative process to discover attributes [31]. As, in our ex-
periment we only fed the MPPCA once with the AMT attributes, it may lack of
human feedback.

We also perform two statistical analysis to compare which metric is closer to
the human study. Both of the analysis are shown in Fig. 7 by applying a simple
logarithmic fitting using the data from Table 3. Fig. 7(a) shows that regression
line fits these data very well.
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Figure 7: Demonstration of correlation analysis between user study and the proposed method γ̃ as
well as MPPCA on both ApAy and Asun datasets.

The coefficients of determinationR2 [10] that indicates how well data fit a sta-
tistical model for ApAy dataset and ASUN dataset fitting are respectively 0.99 and
0.98 between the proposed metric and the human study results. The results suggest
the regression line of our proposed method nearly perfectly fits the data. Fig. 7(b)
shows the fitting result for MPPCA is not as good as the proposed method. The
R2 values of MPPCA metric are respectively 0.64 and 0.89 on ApAy dataset and
ASUN dataset.

This demonstration further indicates to some extent, our proposed metric is
able to evaluate the meaningfulness of a set of discovered attributes from compar-
ative methods as human does.

It is noteworthy to mention that the time cost of the evaluation by our metric
is significantly lower than the manual process using AMT. Recall that, the time
required for a human annotator (an AMT worker) to finish one HIT is 2 minutes,
an AMT worker may need 320 minutes to finish evaluating 5 methods wherein

26



each is configured to discover 32 attributes. Our approach only needs 105 seconds
in total to evaluate all four datasets (i.e., 35 seconds each); thus, leading to several
orders of magnitude speedup!

6. Conclusions

In this paper, we studied a novel problem of measuring the meaningfulness of
automatically discovered attribute sets. To that end, we proposed a novel metric,
here called the attribute meaningfulness metric. We developed two distance func-
tions for measuring the meaningfulness of a set of attributes. The distances were
then calibrated by using subspace interpolation between Meaningful Subspace and
Non-meaningful/Noise Subspace. We extended our previous work by proposing
the meaningful attribute set selection technique that leads to a better meaningful
subspace approximation. The final metric score indicates how much meaningful
content is contained within the set of discovered attributes. In the extensive exper-
iment, the proposed metrics were used to evaluate the meaningfulness of attributes
discovered by two recent automatic attribute discovery methods and four hashing
methods on four datasets. A user study on two datasets showed that the proposed
metric has strong correlation to human responses. Our metric was also shown to
be more correlated with the user study compared with a metric adapted from a re-
cent semi-supervised attribute discovery method. All results suggested that there
is a strong indication that the shared structure may exist among the meaningful
attributes. The results also suggest that discovering attributes by optimising the
attribute descriptor discrimination and/or preserving the local similarity structure
could yield more meaningful attributes. In future work, we plan to explore other
constraints or optimisation models [23] to capture the hierarchical structure of
semantic concepts. Up to our knowledge, there are still no such works in deep
learning area that have similar purpose as our work. In future, we plan to get more
inspiration from the semantic learning in deep learning area and further develop
our work in that direction. We also plan to perform more large-scale user studies
using AMT on other datasets.
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Appendix A.

Proposition 4.1 Let S̃ = S2 ∪ Ñ ; when Ñ = {}, then the distance δ∗ between S̃
and S1 (refers to (7)) is minimized. However, when Ñ → N , then the distance
between S̃ and S1 is asymptotically close to δ∗(N ,S1;X ), where δ∗ is the dis-
tance function presented previously such as δjp and δcvx. More precisely, we can
define the relationship as follows:

lim
|Ñ |→∞

δ∗(S̃,S1;X ) = δ∗(N ,S1;X ). (A.1)

Proof. Let R∗ be the solution for the distance δ∗. The distance δ∗ can be computed
as follows:

δ∗(S2 ∪ Ñ ,S1;X ) = 1

|S2 ∪ Ñ |
‖AR∗ −B‖2F

=
1

|S2 ∪ Ñ |

∑
bi∈S2∪Ñ

‖Ar∗i − bi‖22

=
1

|S2 ∪ Ñ |

∑
bj∈S2

‖Ar∗j − bj‖22 +
∑
bl∈Ñ

‖Ar∗l − bl‖22


(A.2)

As S2 is assumed to be meaningful and Ñ is not, then adding attribute bl, a
member of Ñ , should increase the average distance. Thus, we have the following
inequality:

1

|S2 ∪ Ñ |

∑
bj∈S2

‖Ar∗j − bj‖22 +
∑
bl∈Ñ

‖Ar∗l − bl‖22

 ≥ 1

|S2|
∑
bj∈S2

‖Ar∗j − bj‖22

(A.3)
It means that the distance between S̃ = S2∪Ñ and S1 can only be minimized

when Ñ is an empty set. On the other hand, when we keep increasing the size of
Ñ , the contribution of the second term in (A.2) becomes more significant than the
first term. Thus, (A.2) is approximately close to:

≈ 1

|Ñ |

∑
bl∈Ñ

‖Ar∗l − bl‖22

 , as |Ñ | >> |S2| (A.4)
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In addition, as |Ñ | → ∞, Ñ will be close to N . Thus, the above equation is
approximately close to:

≈ 1

|N |

{∑
bl∈N

‖Ar∗l − bl‖22

}
= δ∗(N ,S1;X ) (A.5)
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