6 research outputs found

    In-Situ Transfer Standard and Coincident-View Intercomparisons for Sensor Cross-Calibration

    Get PDF
    There exist numerous methods for accomplishing on-orbit calibration. Methods include the reflectance-based approach relying on measurements of surface and atmospheric properties at the time of a sensor overpass as well as invariant scene approaches relying on knowledge of the temporal characteristics of the site. The current work examines typical cross-calibration methods and discusses the expected uncertainties of the methods. Data from the Advanced Land Imager (ALI), Advanced Spaceborne Thermal Emission and Reflection and Radiometer (ASTER), Enhanced Thematic Mapper Plus (ETM+), Moderate Resolution Imaging Spectroradiometer (MODIS), and Thematic Mapper (TM) are used to demonstrate the limits of relative sensor-to-sensor calibration as applied to current sensors while Landsat-5 TM and Landsat-7 ETM+ are used to evaluate the limits of in situ site characterizations for SI-traceable cross calibration. The current work examines the difficulties in trending of results from cross-calibration approaches taking into account sampling issues, site-to-site variability, and accuracy of the method. Special attention is given to the differences caused in the cross-comparison of sensors in radiance space as opposed to reflectance space. The results show that cross calibrations with absolute uncertainties lesser than 1.5 percent (1 sigma) are currently achievable even for sensors without coincident views

    Absolute Radiometric Calibration of Narrow-Swath Imaging Sensors with Reference to Non-Coincident Wide-Swath Sensors

    Get PDF
    An inter-calibration method is developed to provide absolute radiometric calibration of narrow-swath imaging sensors with reference to non-coincident wide-swath sensors. The method predicts at-sensor radiance using non-coincident imagery from the reference sensor and knowledge of spectral reflectance of the test site. The imagery of the reference sensor is restricted to acquisitions that provide similar view and solar illumination geometry to reduce uncertainties due to directional reflectance effects. Spectral reflectance of the test site is found with a simple iterative radiative transfer method using radiance values of a well-understood wide-swath sensor and spectral shape information based on historical ground-based measurements. At-sensor radiance is calculated for the narrow-swath sensor using this spectral reflectance and atmospheric parameters that are also based on historical in situ measurements. Results of the inter-calibration method show agreement on the 2 5 percent level in most spectral regions with the vicarious calibration technique relying on coincident ground-based measurements referred to as the reflectance-based approach. While the variability of the inter-calibration method based on non-coincident image pairs is significantly larger, results are consistent with techniques relying on in situ measurements. The method is also insensitive to spectral differences between the sensors by transferring to surface spectral reflectance prior to prediction of at-sensor radiance. The utility of this inter-calibration method is made clear by its flexibility to utilize image pairings with acquisition dates differing in excess of 30 days allowing frequent absolute calibration comparisons between wide- and narrow-swath sensors

    New Approach for Temporal Stability Evaluation of Pseudo-Invariant Calibration Sites (PICS)

    Get PDF
    Pseudo-Invariant Calibration Sites (PICS) are one of the most popular methods for in-flight vicarious radiometric calibration of Earth remote sensing satellites. The fundamental question of PICS temporal stability has not been adequately addressed. However, the main purpose of this work is to evaluate the temporal stability of a few PICS using a new approach. The analysis was performed over six PICS (Libya 1, Libya 4, Niger 1, Niger 2, Egypt 1 and Sudan 1). The concept of a Virtual Constellation was developed to provide greater temporal coverage and also to overcome the dependence limitation of any specific characteristic derived from one particular sensor. TOA reflectance data from four sensors consistently demonstrating stable calibration to within 5%the Landsat 7 ETM+ (Enhanced Thematic Mapper Plus), Landsat 8 OLI (Operational Land Imager), Terra MODIS (Moderate Resolution Imaging Spectroradiometer) and Sentinel-2A MSI (Multispectral Instrument)were merged into a seamless dataset. Instead of using the traditional method of trend analysis (Students T test), a nonparametric Seasonal Mann-Kendall test was used for determining the PICS stability. The analysis results indicate that Libya 4 and Egypt 1 do not exhibit any monotonic trend in six reflective solar bands common to all of the studied sensors, indicating temporal stability. A decreasing monotonic trend was statistically detected in all bands, except SWIR 2, for Sudan 1 and the Green and Red bands for Niger 1. An increasing trend was detected in the Blue band for Niger 2 and the NIR band for Libya 1. These results do not suggest abandoning PICS as a viable calibration source. Rather, they indicate that PICS temporal stability cannot be assumed and should be regularly monitored as part of the sensor calibration process

    Ultra-Portable Field Transfer Radiometer for Vicarious Calibration of Earth Imaging Sensors

    Get PDF
    A small portable transfer radiometer has been developed as part of an effort to ensure the quality of upwelling radiance from test sites used for vicarious calibration in the solar reflective. The test sites are used to predict top-of-atmosphere reflectance relying on ground-based measurements of the atmosphere and surface. The portable transfer radiometer is designed for one-person operation for on-site field calibration of instrumentation used to determine ground-leaving radiance. The current work describes the detector-and source-based radiometric calibration of the transfer radiometer highlighting the expected accuracy and SI-traceability. The results indicate differences between the detector-based and source-based results greater than the combined uncertainties of the approaches. Results from recent field deployments of the transfer radiometer using a solar radiation based calibration agree with the source-based laboratory calibration within the combined uncertainties of the methods. The detector-based results show a significant difference to the solar-based calibration. The source-based calibration is used as the basis for a radiance-based calibration of the Landsat-8 Operational Land Imager that agrees with the OLI calibration to within the uncertainties of the methods

    New Approach for Temporal Stability Evaluation of Pseudo-Invariant Calibration Sites (PICS)

    Get PDF
    Pseudo-Invariant Calibration Sites (PICS) are one of the most popular methods for in-flight vicarious radiometric calibration of Earth remote sensing satellites. The fundamental question of PICS temporal stability has not been adequately addressed. However, the main purpose of this work is to evaluate the temporal stability of a few PICS using a new approach. The analysis was performed over six PICS (Libya 1, Libya 4, Niger 1, Niger 2, Egypt 1 and Sudan 1). The concept of a “Virtual Constellation” was developed to provide greater temporal coverage and also to overcome the dependence limitation of any specific characteristic derived from one particular sensor. TOA reflectance data from four sensors consistently demonstrating “stable” calibration to within 5%—the Landsat 7 ETM+ (Enhanced Thematic Mapper Plus), Landsat 8 OLI (Operational Land Imager), Terra MODIS (Moderate Resolution Imaging Spectroradiometer) and Sentinel-2A MSI (Multispectral Instrument)–were merged into a seamless dataset. Instead of using the traditional method of trend analysis (Student’s T test), a nonparametric Seasonal Mann-Kendall test was used for determining the PICS stability. The analysis results indicate that Libya 4 and Egypt 1 do not exhibit any monotonic trend in six reflective solar bands common to all of the studied sensors, indicating temporal stability. A decreasing monotonic trend was statistically detected in all bands, except SWIR 2, for Sudan 1 and the Green and Red bands for Niger 1. An increasing trend was detected in the Blue band for Niger 2 and the NIR band for Libya 1. These results do not suggest abandoning PICS as a viable calibration source. Rather, they indicate that PICS temporal stability cannot be assumed and should be regularly monitored as part of the sensor calibration process

    Hyperspectral Empirical Absolute Calibration Model Using Libya 4 Pseudo-Invariant Calibration Site

    Get PDF
    The objective of this paper is to find an empirical hyperspectral absolute calibration model using Libya 4 pseudo-invariant calibration site (PICS). The approach involves using the Landsat 8 (L8) Operational Land Imager (OLI) as the reference radiometer and using Earth Observing One (EO-1) Hyperion, with a spectral resolution of 10 nm as a hyperspectral source. This model utilizes data from a region of interest (ROI) in an “optimal region” of 3% temporal, spatial, and spectral stability within the Libya 4 PICS. It uses an improved, simple, empirical, hyperspectral Bidirectional Reflectance Distribution function (BRDF) model accounting for four angles: solar zenith and azimuth, and view zenith and azimuth angles. This model can perform absolute calibration in 1 nm spectral resolution by predicting TOA reflectance in all existing spectral bands of the sensors. The resultant model was validated with image data acquired from satellite sensors such as Landsat 7, Sentinel 2A, and Sentinel 2B, Terra MODIS, Aqua MODIS, from their launch date to 2020. These satellite sensors differ in terms of the width of their spectral band-pass, overpass time, off-nadir viewing capabilities, spatial resolution, and temporal revisit time, etc. The result demonstrates the efficacy of the proposed model has an accuracy of the order of 3% with a precision of about 3% for the nadir viewing sensors (with view zenith angle up to 5°) used in the study. For the off-nadir viewing satellites with view zenith angle up to 20°, it can have an estimated accuracy of 6% and precision of 4%
    corecore