1,656 research outputs found
Estimation of a Multimass System Using the LWTLS and a Coefficient Diagram for Vibration-Controller Design
Vibration caused by mechanical resonance and time delay caused by signal detection and transmission degrade the control performance of a servo controller for a multimass mechanical system. A precise numerical model that represents resonance characteristics and time delay is necessary to design a desired control system. This paper presents an identification method using the iterative process of the linearized and weighted total least-squares method. The proposed method derives a transfer function without any prior knowledge of resonance characteristics and time delay. The order of the transfer function is determined with a coefficient diagram that shows coefficients of the denominator of the transfer function. Identification results with an experimental setup are shown to demonstrate the performance of the proposed method. A velocity servo controller with vibration-suppression control is designed with the transfer function, and control performance is verified with the experimental setup to validate the transfer function
Single-stage electrohydraulic servosystem for actuating on airflow valve with frequencies to 500 hertz
An airflow valve and its electrohydraulic actuation servosystem are described. The servosystem uses a high-power, single-stage servovalve to obtain a dynamic response beyond that of systems designed with conventional two-stage servovalves. The electrohydraulic servosystem is analyzed and the limitations imposed on system performance by such nonlinearities as signal saturations and power limitations are discussed. Descriptions of the mechanical design concepts and developmental considerations are included. Dynamic data, in the form of sweep-frequency test results, are presented and comparison with analytical results obtained with an analog computer model is made
Computer-aided design and distributed system technology development for large space structures
Proposed large space structures have many characteristics that make them difficult to analyze and control. They are highly flexible, with components mathematically modeled by partial differential equations or very large systems of ordinary differential equations. They have many resonant frequencies, typically low and closely spaced. Natural damping may be low and/or improperly modeled. Coupled with stringent operational requirements of orientation, shape control, and vibration suppression, and the inability to perform adequate ground testing, these characteristics present an unconventional identification and control design problem to the systems theorist. Some of the research underway within Langley's Spacecraft Control Branch, Guidance and Control Division aimed at developing theory and algorithms to treat large space structures systems identification and control problems is described. The research areas to be considered are computer-aided design algorithms, and systems identification and control of distributed systems
H∞ Loop shaping control for PLL-based mechanical resonance tracking in NEMS resonant mass sensors
International audienceAbstract--A simple dynamic detection of the resonance frequency shift in NEMS resonant mass sensors is described. This is done without the use of an external frequency sweep signal nor a frequency counter limiting the dynamic variation detection. Neither an amplitude control nor a phase switcher is required for maintaining the resonant oscillations. The sensor is driven directly by the VCO's output for which the control signal is calculated by a robust H∞ controller using loopshaping method. Only the sensor and the VCO's signals signs are detected and compared so that the controller regulates the phase difference between them, maintaining it at π / 2 which occurs on resonance frequency. The measurement issue is transformed to a novel control problem that rejects the disturbance described by the resonance frequency shift, attenuates the phase noise and guarantees good stability margins
A microgravity isolation mount
The design and preliminary testing of a system for isolating microgravity sensitive payloads from spacecraft vibrational and impulsive disturbances is discussed. The Microgravity Isolation Mount (MGIM) concept consists of a platform which floats almost freely within a limited volume inside the spacecraft, but which is constrained to follow the spacecraft in the long term by means of very weak springs. The springs are realized magnetically and form part of a six degree of freedom active magnetic suspension system. The latter operates without any physical contact between the spacecraft and the platform itself. Power and data transfer is also performed by contactless means. Specifications are given for the expected level of input disturbances and the tolerable level of platform acceleration. The structural configuration of the mount is discussed and the design of the principal elements, i.e., actuators, sensors, control loops and power/data transfer devices are described. Finally, the construction of a hardware model that is being used to verify the predicted performance of the MGIM is described
Flexible structure control laboratory development and technology demonstration
An experimental structure is described which was constructed to demonstrate and validate recent emerging technologies in the active control and identification of large flexible space structures. The configuration consists of a large, 20 foot diameter antenna-like flexible structure in the horizontal plane with a gimballed central hub, a flexible feed-boom assembly hanging from the hub, and 12 flexible ribs radiating outward. Fourteen electrodynamic force actuators mounted to the hub and to the individual ribs provide the means to excite the structure and exert control forces. Thirty permanently mounted sensors, including optical encoders and analog induction devices provide measurements of structural response at widely distributed points. An experimental remote optical sensor provides sixteen additional sensing channels. A computer samples the sensors, computes the control updates and sends commands to the actuators in real time, while simultaneously displaying selected outputs on a graphics terminal and saving them in memory. Several control experiments were conducted thus far and are documented. These include implementation of distributed parameter system control, model reference adaptive control, and static shape control. These experiments have demonstrated the successful implementation of state-of-the-art control approaches using actual hardware
Preliminary results on noncollocated torque control of space robot actuators
In the Space Station era, more operations will be performed robotically in space in the areas of servicing, assembly, and experiment tending among others. These robots may have various sets of requirements for accuracy, speed, and force generation, but there will be design constraints such as size, mass, and power dissipation limits. For actuation, a leading motor candidate is a dc brushless type, and there are numerous potential drive trains each with its own advantages and disadvantages. This experiment uses a harmonic drive and addresses some inherent limitations, namely its backdriveability and low frequency structural resonances. These effects are controlled and diminished by instrumenting the actuator system with a torque transducer on the output shaft. This noncollocated loop is closed to ensure that the commanded torque is accurately delivered to the manipulator link. The actuator system is modelled and its essential parameters identified. The nonlinear model for simulations will include inertias, gearing, stiction, flexibility, and the effects of output load variations. A linear model is extracted and used for designing the noncollocated torque and position feedback loops. These loops are simulated with the structural frequency encountered in the testbed system. Simulation results are given for various commands in position. The use of torque feedback is demonstrated to yield superior performance in settling time and positioning accuracy. An experimental setup being finished consists of a bench mounted motor and harmonic drive actuator system. A torque transducer and two position encoders, each with sufficient resolution and bandwidth, will provide sensory information. Parameters of the physical system are being identified and matched to analytical predictions. Initial feedback control laws will be incorporated in the bench test equipment and various experiments run to validate the designs. The status of these experiments is given
Study of active vibration isolation systems for severe ground transportation environments
Active vibration isolation systems for severe ground transportation loading environment
- …
