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Abstract--Vibration caused by a mechanical resonance 
and time delay caused by signal detection and transmission 
degrade the control performance of a servo controller for a 
multi-mass mechanical system. A precise numerical model 
that represents resonance characteristics and time delay is 
necessary to design a desired control system. This paper 
presents an identification method using the iterative process 
of the linearized and weighted total least squares method. 
The proposed method derives a transfer function without 
any prior knowledge of resonance characteristics and time 
delay. The order of the transfer function is determined with 
a coefficient diagram that shows coefficients of the 
denominator of the transfer function. Identification results 
with an experimental setup are shown to demonstrate the 
performance of the proposed method. A velocity servo 
controller with vibration suppression control is designed 
with the transfer function, and control performance is 
verified with the experimental setup to validate the transfer 
function. 
 

Index Terms—multi-mass mechanical system, mechanical 
resonance, system identification, time delay. 

I.  INTRODUCTION 
Recently, production machinery has employed 

mechanical components with low rigidity, because the 
demand for reductions in weight and cost has been 
increasing. On the other hand, a control system that 
drives a mechanical system has increasingly required 
high-response and high-precision servo control 
performance because of the rising demand for high-speed 
operation of machinery. However, if the control system 
drives the mechanical system with low rigidity, vibration 
caused by a mechanical resonance degrades the control 
precision. Therefore, it is necessary to optimally design 
the control system in consideration of mechanical 
resonant characteristics [1], [2], [3], [4]. In addition, time 
delay such as signal detection and transmission degrades 
the control performance as well as the stability of the 
control system. Accordingly, in order to design a desired 
control system, a numerical model representing 
mechanical resonance characteristics and time delay is 
necessary. 

Conventionally, the differential iteration method and 
the circle curve fitting method have been used as the 
modal identification method. A numerical model in the 
form of differential equations is derived. Those methods 
have recently been applied to the identification of a 

number of vibration modes over a wide range of 
frequencies [5], [6]. However, those methods require 
prior knowledge of vibration modes, such as the number 
and the distribution of vibration modes of a system to be 
identified. Moreover, time delay is not considered with 
those methods. 

Recently, several identification methods for a 
mechanical system have been presented [7]-[11]. Linear 
least squares method is used to estimate parameters of a 
model. The global search technique using a genetic 
algorithm is used to identify parameters of a non-linear 
mechanical system. Non-linear least squares method is 
utilized to obtain a model of a mechanical system. 
However, the structure of the model, such as the number 
of parameters, is defined preliminarily for those 
identification methods. The solution of linear least 
squares method contains bias error caused by the 
linearization of a transfer function. A genetic algorithm 
requires the searching process not to trap at local solution. 
Non-linear least squares method needs initial values of 
parameters for iterative process. Thus, it follows that 
those identification methods require prior knowledge of a 
mechanical system.  

Authors have proposed an identification method using 
the linearized and weighted total least squares method 
(LWTLS method) in discrete time system [12]. The 
LWTLS method derives a pulse transfer function with 
reference to the frequency response data of a multi-mass 
mechanical system to be controlled, taking account of 
outliers in a data set. The proposed method adopts the 
iterative process that eliminates bias error caused by the 
linearization. Initial values for the iterative process are 
not required. The pulse transfer function that properly 
represents mechanical resonant characteristics and time 
delay is derived without any prior knowledge of a multi-
mass mechanical system to be identified. During the 
identification process, the proper order of the pulse 
transfer function is determined with the evaluation of the 
rank of the Sylvester matrix that is composed of 
coefficients of the pulse transfer function.  

Although the derived pulse transfer function can be 
applied directly to design a digital control system, the 
transformation from discrete to continuous time is 
required in order to analyze the resonance frequency and 
the anti-resonance frequency of the mechanical system. 
Besides, a continuous time model, such as a transfer 

 Estimation of a Multi-Mass System 
Using the LWTLS and a Coefficient Diagram 

for Vibration Controller Design 
Y. Yoshioka* and T. Hanamoto** 

*   Fuji Electric Advanced Technology Co., Ltd., 1, Fuji-machi, Hino-city, Tokyo 191-8502, Japan 
** Kyusyu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyusyu 808-0196, Japan 



 

function, is necessary to design parameters of a controller 
and a compensator in continuous time system directly.  

This paper presents an identification method using the 
LWTLS method for deriving a continuous time model. 
With the proposed identification method, a transfer 
function that models mechanical resonant characteristics 
and time delay can be obtained directly without the 
process of the transformation from discrete to continuous 
time. The proposed method also adopts the iterative 
process that eliminates bias error caused by the 
linearization. The convergence of iterative process is 
evaluated simply with the deviation ratios of coefficients 
of the derived transfer function during the iterative 
process.  

As for the order determination, the evaluation of the 
rank of the Sylvester matrix requires the extra 
computation that calculates singular values of the 
Sylvester matrix during the identification process. In this 
paper, the order determination using a coefficient 
diagram is proposed. In the coefficient diagram, the 
horizontal axis shows the order in linear scale, while 
vertical axis logarithmically shows coefficients of the 
denominator of the derived transfer function. The proper 
order for the transfer function is evaluated with the 
pattern of the coefficient diagram. If a chosen order is the 
proper order, a transfer function that properly models 
both mechanical resonant characteristics and time delay is 
derived, and the coefficient diagram shows a convex 
curve. The convexity of the coefficient diagram is utilized 
to determine whether the chosen order is the proper order. 
The proposed order determination does not require any 
statistical analysis using extra data and the calculation of 
singular values. 

 In Section II, the configuration of an experimental 
setup of a multi-mass mechanical system is described to 
show vibration caused by a mechanical resonance and 
time delay caused by signal detection and transmission. 
The significance of the derivation of a numerical model is 
also indicated. In Section III, the procedure of the 
LWTLS method to obtain the continuous time model is 
described, and the application of the coefficient diagram 
to the order determination is introduced. The proposed 
identification method has been demonstrated with the 
experimental setup to show the identification 
performance. Identification results are shown in Section 
IV. A derived transfer function has been used to design a 
velocity controller with vibration suppression control in 
order to demonstrate the validity of the derived transfer 
function. Control performance of the velocity controller 
has been evaluated with the response of the velocity 
controller to a step change in the velocity reference and 
the torque reference. Experimental results of velocity 
control are shown in Section V. 

II.  CONFIGURATION OF AN EXPERIMENTAL SETUP 
Fig. 1 shows an experimental setup. TABLE 1 shows 

the specification of the setup. TABLE 2 shows the 

specification of the mechanical system. The setup is 
composed of a three-mass mechanical system, a servo 
amp, and an external controller. The mechanical system 
consists of a motor and two disks. The motor and the 
disks are connected by a thin shaft with low torsional 
rigidity. Therefore, vibration caused by mechanical 
resonance between the motor and two disks occurs.  

The servo amp drives the motor in accordance with the 
torque reference signal that is generated from the external 
controller. The external controller consists of a digital 
signal processor (DSP), a DA converter, a counter, and an 
incremental encoder that is Encoder 1 in Fig.1. Encoder 2 
is used to only observe the velocity of the shaft edge. 
Rotational position of the motor shaft is detected with 
Encoder 1, and electrical pulse signals are transmitted to 
the counter. The motor velocity is calculated at the DSP 
with the counter value. The torque reference signal is 
regulated in accordance with the detected motor velocity 
and transmitted to the servo amp via the DA converter. 
The servo amp has an input filter that is the first order lag 
filter with a time constant of about 1ms. Signal detection 
and transmission with the encoder, the counter, the DSP, 
and the DA converter cause time delay. The calculation 
of the motor velocity in the DSP also causes time delay. 

TABLE 2 
 SPECIFICATION OF A MECHANICAL SYSTEM 

Number of Mass 3 

Motor 3.54 

Disk 1 13.2 Inertia              [10-5Kgm2] 

Disk 2 8.79 

Shaft 1 64.3 
Spring constant  [Nm/rad] 

Shaft 2 29.8 
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Fig. 1 Experimental setup 

TABLE 1 
SPECIFICATION OF AN EXPERIMENTAL SETUP 

Rated velocity of motor                      [r/min] 3,000 

Rated torque                                       [Nm] 1.27 

Resolution of incremental encoder     [p/r] 6,000 

Sampling frequency of DSP               [Hz] 4,000 



 

Time delay among the encoder, the DSP, and the DA 
converter is assumed to be four sampling periods.  

Accordingly, in order to design a desired controller 
installed in the DSP, it is necessary to take account of 
mechanical resonance and time delay.  

III.  IDENTIFICATION METHOD 

A.  Procedure of the LWTLS Method 
Fig. 2 shows the whole identification process to obtain 

a numerical model of a multi-mass mechanical system.  
The first stage is the collection of sampled input-

output data from a system to be identified. For the 
identification of the multi-mass mechanical system to be 
controlled, torque reference signal, which is the pseudo-
random binary signal [10], is generated from the DSP as 
input signal. The motor velocity that is the response of 
the torque reference signal is measured at the DSP as 
output signal for the identification.  

In the second stage, frequency response data are 
obtained with the multi-decimation identification method 
using the sampled input-output data [5], [13]. 

After obtaining frequency response data, in the third 
stage, the iterative process of the LWTLS method is 
applied to derive a transfer function with reference to a 
set of the frequency response data. The derived transfer 
function models overall characteristics combining the 
mechanical resonance characteristics, phase lag, and time 
delay. Accordingly, the derived transfer function is 
suitable for designing a controller installed in the DSP. 

The LWTLS method in the third stage is a 
methodology of deriving the transfer function that is 
linked by relation as in (1).  
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where G(sk) is the frequency response data, ai, bi are  
coefficients, r denotes the order. sk is a complex variable 
defined by (2). 

kk fjs π2=  (2) 

where j is the imaginary unit, and fk is the kth frequency 
point within the frequency range to be identified.  

In order to avoid the nonlinear least squares solution 
that requires the sensitive initial value setting and the 
evaluation of a convergence to the local solution, the 
proposed identification method adopts the linearization. 

Linearization is to reformulate the equation (1) into a 
linear equation as in (3) by multiplying the both sides of 
the equation (1) by the denominator of a transfer function, 
which constructs the right side of the equation (1). 

∑∑
==

−+≈
r

i

i
kik

r

i

i
kik sasGsbbsG

11
0 )()(  (3) 

The discrepancy between the left side and the right 
side of the equation (3) is not the same as that of the 

equation (1) as shown in (4). This error is the bias error 
caused by the linearization. 
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where E(sk) is the discrepancy between the left side and 
the right side of the equation (3) as in (5), e(sk) is the 
discrepancy between the left side and the right side of the 
equation (1) as in (6). 
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In order to eliminate the bias error caused by the 
linearization, the proposed identification method adopts 
the iterative process [14], [15]. The procedure of the 
iterative process of the LWTLS method is described in 
detail below.  

First, the order is set for the equation (3). Next, a 
complex matrix equation in terms of the coefficients is 
formulated by constructing a data matrix with the right 
side of (3) and an observation vector with the left side of 
(3). In order to eliminate bias error caused by the 
linearization, a matrix equation as in (7) is formulated 
with a weighting coefficients matrix that is updated 
during the iterative process.  

AxWdW )()( tt ≈  (7) 

where d is the observation vector, A is the data matrix, x 
is an unknown vector that consists of the coefficients of 
the transfer function (1), and W(t) is a diagonal matrix 

Fig. 2 Procedure of the LWTLS Method 



 

that consists of  weighting coefficients at the tth iteration. 
Initial value of the weighting coefficients is set to 1. 

During the iterative process, the weighting coefficients 
are set to the reciprocal of frequency response of the 
numerator derived at the previous iteration as shown in 
(8). 
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Conventionally, the ordinary least squares (OLS) 
method has been used to obtain the solution of (7). The 
OLS problem seeks to minimize (9). 

2
)()(min AxWdW tt −  (9) 

The assumption of the OLS problem is that errors only 
are included in the observation vector and that errors are 
not included in the data matrix. This assumption is not 
correct to obtain the solution of (7), because the data 
matrix also consists of the frequency data that are 
affected with measurement errors and calculation errors. 
The total least squares method is a method that is 
appropriate to solve (7) when both the observation vector 
and the data matrix contain errors [16]. The TLS problem 
seeks to minimize (10). 

[ ] [ ]
F

tttt dWAWdWAW ˆ;ˆ;min )()()()( −   (10) 

where F⋅ is the Frobenius norm. Any solution satisfying 

(11) is called a total least squares solution. 

xAWdW ˆˆ )()( tt =  (11) 

In order to take account of the outliers included in the 
data matrix and the observation vector, the proposed 
identification method adopts the TLS method to obtain 
the solution of (7). However, the equation (7) is the 
complex matrix equation. The equation (7) is 
reformulated into linear algebraic equations with a 
diagonal matrix as shown in (12). The diagonal matrix 
scales the columns of the weighted data matrix. The 
column scaling is added to obtain the convergence 
solution of the iterative process. 
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where ( )⋅Re  indicates the real part of the complex matrix 
or vector, ( )⋅Im  indicates the imaginary part of those, and 
M(t) is the diagonal matrix defined by (13). 

( ){ })()( max/1 t
i

t diag vM =   (13) 

where vi
(t) is the ith column vector of the noncomplex data 

matrix of (12) at the tth iteration, and ( )⋅max  indicates the 
largest element.  

The TLS problem shown in (10) can be solved using 
the singular value decomposition [17]. The solution of 
(12) is used to update the weighting coefficients matrix 
(8) for the next iteration. During the iterative process, the 
solution of (12), which is coefficients of the derived 
transfer function, is improved with the weighting 
coefficients updated. 

The convergence of the iterative process is evaluated 
with the deviation ratios of the coefficients of the derived 
transfer function as in (14).  
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When either deviation ratios Ea or Eb is smaller than set 
values, it is supposed that the convergence solution is 
derived, and the iterative process is interrupted. For an 
experiment using the setup shown in Fig. 1, the set values 
are set to 10-6, because the significant digit of the 
measured input and output data is the millionth digit. The 
order is evaluated with the proposed order determination 
using a coefficient diagram. If the chosen order is 
determined as the proper order, the iterative process 
finishes. If not, the weighting coefficients in (8) are set to 
1, and the process of the LWTLS method is restarted with 
the different order. 

B.  Order Determination using a Coefficient Diagram 
Conventionally, a coefficient diagram has been used to 

design a controller for a feedback control system. This 
design method is called the Coefficient Diagram Method 
(CDM) [18], [19]. The coefficient diagram is a single 
logarithmic diagram that shows the coefficients of 
characteristic polynomial of the feedback control system 
in logarithmic scale. The coefficient diagram indicates 
stability, robustness, and control response of the feedback 
control system. For example, the degree of convexity 
gives a measure for stability, while the general inclination 
of the curve gives a measure for the control response. It 
follows that the specific characteristics of the system give 
a unique pattern in the coefficient diagram. Therefore, the 
CDM is used to specify the coefficients of the given 
controller polynomials in order to obtain the desired 
characteristics of the feedback control system.  

The proposed application of a coefficient diagram is 
similar to the CDM. However, unlike the CDM, a 
coefficient diagram is used to determine the proper order 
for a transfer function, not set the coefficients of the 
transfer function to obtain the desired characteristics of 
the transfer function. In the coefficient diagram for order 
determination, the horizontal axis shows the order in 
linear scale, while vertical axis shows coefficients of the 
denominator of the derived transfer function in 



 

logarithmic scale. The transfer function is normalized for 
the sampling frequency of a control system. It is assumed 
that the sampling frequency is higher than resonant 
frequencies. Like the CDM, the specific characteristics of 
the transfer function give a unique pattern in the 
coefficient diagram. For example, a transfer function that 
represents resonant characteristics of the three-mass 
mechanical system indicates a saw-tooth wave pattern in 
the coefficient diagram as shown in Fig. 3. In addition, a 
transfer function that has time delay shows a convex 
curve in the coefficient diagram irrespective of the order. 
In Fig. 4, as an example, the upper figure shows a 
coefficient diagram of the 2nd order transfer function that 
models time delay for three sampling periods with the 
Padé approximation formulas, and the lower figure shows 
the 5th order one.  

As described in Section II, the multi-mass mechanical 
system to be identified is observed from a controller, and 
the controller is supposed to have time delay such as 
measurement delay of detectors and transfer delay of 
control reference signal. Consequently, the derived 
transfer function has the characteristics of both 
mechanical resonance and time delay. Therefore, 
convexity is shown with a saw-tooth wave in the 
coefficient diagram of the derived transfer function as 
depicted in Fig. 5. The convexity means that the 
coefficient diagram shows a convex curve and that a 
coefficient of the maximum order is not the largest value.  
Fig. 5 shows a coefficient diagram of a transfer function 
that represents the characteristics of both mechanical 
resonance and time delay. The upper figure shows a 
coefficient diagram when time delay is modeled with the 
2nd order transfer function, and the lower figure when 
time delay is modeled with the 5th order transfer function. 

In the identification process, the coefficients of the 
transfer function for each order are obtained with the 
order of the transfer function increased. When the order is 
deficient, the derived transfer function tends to represent 
only the mechanical resonant characteristics, especially 
resonance frequency. As the order becomes high, the 
derived transfer function gradually represents anti-
resonance frequency as well as resonance frequency. 
Then, the derived transfer function represents both time 
delay and mechanical resonant characteristics when the 
chosen order becomes sufficiently high. As for the 
coefficient diagram, a saw-tooth wave pattern is shown 
when the chosen order is deficient, and a saw-tooth wave 
pattern turns into a convex curve when the chosen order 
is sufficient.  

The phenomenon described above is used to determine 
the order for the derived transfer function. The validity of 
the proposed order determination and the identification 
performance has been demonstrated with the 
experimental setup. Identification results are described in 
the next section. 

IV.  IDENTIFICATION RESULTS 
First, the three-mass mechanical system shown in Fig. 

1 is identified with the 7th order transfer function. Fig. 6-
(a) shows a coefficient diagram of the 7th order transfer 
function. The coefficient diagram shows a saw-tooth 
pattern. According to the phenomenon described in the 
previous section, it follows that the coefficient diagram 
indicates that the chosen order is deficient. Fig. 6-(b) 
shows the Bode diagram of the 7th transfer function with 
the heavy line and the measured frequency response with 
the dotted line. In Fig. 6-(b), normalized frequency is 
frequency that is normalized to the sampling frequency of 
the DSP, 4,000Hz, and frequency response below one-
fifth of the sampling frequency is shown. As can be seen 
in Fig. 6-(b), it is confirmed that the 7th order transfer 
function does not accurately model the three-mass 
resonant characteristics and phase-lag. It is confirmed 
that the indication of coefficient diagram is correct.  

Next, the three-mass mechanical system shown in Fig. 
1 is identified with the 8th order transfer function. Fig. 7-
(a) shows a coefficient diagram of the 8th order transfer 
function. The coefficient diagram shows the convex 
curve. According to the phenomenon described in the 

 
Fig.3 Coefficient diagram indicating resonant characteristics 

Fig.4 Coefficient diagram indicating time delay 

 
 

 
Fig.5 Coefficient diagram indicating resonant characteristics and 

time delay 



 

previous section, it follows that the coefficient diagram 
indicates that the chosen order is the proper order. Fig. 7-
(b) shows the Bode diagram of the transfer function with 
the heavy line and the measured frequency response with 
the dotted line. Fig. 7-(b) depicts that the resonant 
characteristics and phase-lag of the transfer function are 
almost identical to the measured frequency response. This 
result shows that the indication of coefficient diagram is 
correct. 

 Fig. 8 shows coefficient diagrams when the order is 
set from 6 to 10. When the order is set to 6, a coefficient 
of the maximum order, that is the sixth order, is negative 
value.  Therefore, the coefficient of the sixth order cannot 
be observed in the single logarithmic diagram. As 
described in the previous section, it can be seen that a 
saw-tooth wave pattern turns into a convex curve as the 
order becomes high. When the order is set to higher than 
8, a convex curve is shown in the coefficient diagram. 
The purpose of the identification is to derive the minimal 
order transfer function that represents the characteristics 
of both mechanical resonance and time delay. Therefore, 
it follows from the identification results shown in Fig. 8 
that the 8thorder is the proper order.  

V.  VALIDATION OF THE DERIVED TRANSFER FUNCTION 

A.  Model Analysis 
First, the chosen order is verified. Theoretical order of 

the three-mass mechanical system is fifth. Time delay is 
assumed to be modeled with the 2nd order transfer 
function with the Padé approximation formulas. The 
servo amp has the first order lag filter. Consequently, the 
number of the total sum of the evaluated order is 8. 
Therefore, it is confirmed that the 8th order that is the 
estimated order with the proposed order determination is 
the appropriate order. 

Next, the identified mechanical resonant 
characteristics are verified. Estimated resonance 
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Fig.6 The 7th order transfer function modeling the three-mass 
mechanical system 
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Fig. 8 Coefficient diagrams when the order is set from 6 to 10  

for the identification of the three-mass mechanical system 
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Fig. 7 The 8th order transfer function modeling the three-mass 
mechanical system 



 

frequency and anti-resonance frequency of the three-mass 
mechanical system are shown in TABLE 3. Those values 
are obtained by analyzing the roots of the numerator and 
the denominator of the 8th order transfer function. 
Theoretical resonance frequency and anti-resonance 
frequency calculated by using the specification in the 
TABLE 2 are also shown in TABLE 3. TABLE 3 shows 
that the relative error between the estimated and 
theoretical value is less than 5 %. Therefore, it is 
confirmed that the three-mass mechanical system can be 
identified sufficiently with the 8th order transfer function. 

B.  Design of the Velocity Controller 
In order to demonstrate the validity of a numerical 

model, a motor velocity feedback control system is 
designed by applying the 8th order transfer function that is 
derived with the proposed identification method. Fig. 9 
shows a block diagram of the motor velocity feedback 
control system. r(t) is a reference of motor velocity, and 
y(t) is actual motor velocity. u(t) is a torque reference. 
N0(s)/D0(s) is the 8th order transfer function that 
represents the three-mass mechanical system to be 
controlled. In order to realize vibration suppression 
control, feedback compensation [20] is added as a 
vibration mode compensator. The vibration mode 
compensator, for example, has been utilized as a damping 
controller for power system oscillations [21], [22]. The 
vibration mode compensator is used to shift eigenvalues 
of the system to be controlled and improve the damping 
ration of the vibration modes. In order to shift 
eigenvalues, multiple lead-lag compensators are applied. 

Since the main purpose of the controller design is the 
experimental demonstration of the validity of the derived 
transfer function, two lead-lag compensators that have the 
same time constant are used to simplify the design of the 
time constant. PI controller is used as a feedback 
controller for simplification. Design procedure for 
parameters of the vibration mode compensator and PI 
controller is described blow. 

First, parameters of the vibration mode compensator, 
T1 and T2, are designed by means of Bode diagram and 
the analysis of the poles of the system. In Fig. 10, the thin 
line shows the frequency response of the vibration mode 
compensator, and the dotted line shows the frequency 
response of only the 8th order transfer function. Moreover, 
the heavy line shows the frequency response of a system 
that consists of only the 8th order transfer function and the 
two lead-lag compensators. With reference to the Bode 
diagram shown in Fig. 10, T1 and T2 are selected to 
increase damping coefficients of two vibration modes of 
the system that consists of only the 8th order transfer 
function and the two lead-lag compensators.  

Next, a proportional gain KP and integral gain KI are 
adjusted by using computer simulation of the response of 
the velocity controller to a step change in the velocity 
reference. 

As the design results, TABLE 4 shows the obtained 
control parameters. TABLE 5 shows damping 

coefficients of a feedback control system with and 
without vibration suppression control. For a feedback 
control system without vibration suppression, the 
vibration mode compensator is disabled. As shown in 
TABLE 5, adding the vibration mode compensator 
increases two damping coefficients. 

C.  Experimental Results of Velocity Control 
Fig. 11 shows experimental results of the response of a 

feedback control system without vibration suppression 
control to a step change in the velocity reference. A base 

 
Fig. 10 Bode diagram for controller design 

TABLE 3 
IDENTIFICATION RESULTS 

 Estimated 
value [Hz] 

Theoretical 
value [Hz] 

Relative 
error [%] 

First resonance 234.22 244.81 4.3 

First anti-resonance 149.39 147.58 1.2 

Second resonance 112.77 112.93 0.1 

Second anti-resonance 71.23 69.76 2.2 
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Fig. 9 Motor velocity feedback control system 

TABLE 4 
CONTROL PARAMETERS 

 With 
Vibration suppression 

Without 
Vibration suppression

KP 1.1 0.5 

KI 18 1 

T1 0.0003 N/A 

T2 0.002 N/A 
 

TABLE 5 
DAMPING COEFFICIENTS OF VIBRATION MODES 

Vibration 
mode 

With 
Vibration suppression 

Without 
Vibration suppression

First 0.013 0.0001 

Second 0.056 0.002 



 

quantity of per unit value is set to the rated velocity of the 
motor. The proportional gain cannot be increased because 
the feedback control system becomes unstable. It can be 
seen that motor velocity vibrates and edge velocity 
slightly vibrates.  

Fig. 12 shows experimental results of the step 
responses of a feedback control system with vibration 
suppression control. Since the stability of the feedback 
control system increases because of the vibration 
suppression compensator, the proportional gain can be 
increased. Therefore, vibration is not only suppressed but 
also the response of the feedback control system is 
improved. Vibration of motor and edge velocity is rapidly 
damped.  

Fig. 13 depicts the response to a step change in the 
torque reference that is added as shown in Fig. 9. The 
step change is assumed to be the simulated disturbance. 
Velocity of the motor and the edge are stabilized 
promptly at reference velocity.  

VI.  CONCLUSIONS 
In this paper, an identification method using the 

iterative process of the linearized and weighted total least 
squares method has been proposed, and the order 
determination using the Coefficient Diagram Method has 
been introduced.  

Identification of a three-mass mechanical system using 
an experimental setup has been carried out. Experimental 
results demonstrate that a transfer function representing 
mechanical resonant characteristics and time delay is 
derived without any prior knowledge of a multi-mass 
mechanical system, and show that high precision of 
identification with the proposed method can be realized. 

Control system design using a numerical model has 
been carried out to demonstrate the validity of the 
proposed identification method. Experimental results of 
velocity control shows that vibration suppression control 
can be realized with a vibration mode compensator 
designed using the numerical model. 

Those experimental results demonstrate that the 
proposed identification method is the promising method. 
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